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Abstract

Due to the complexity of indoor spatial structures, the acquisition of spatial
information indoors has long been a challenging area of study. Virtual Augmented
Reality (AR) technology has introduced novel learning approaches to this field;
however, the visualization guidance of numerous virtual landmarks can lead to
information overload and organizational confusion. To address this issue, this
study employs a method known as ’Spatial Chunking,’ aimed at restructuring the
informational architecture of indoor spaces to provide improved learning cues and
experiences. The Spatial Chunking method leverages the inherent orderliness of
indoor spatial structures, organizing information through color-based categorical
and hierarchical visualization. Following the study’s completion, a controlled
experiment is conducted, with results indicating that, compared to a singular
emphasis on virtual landmark reinforcement, the adoption of Spatial Chunking
significantly enhances the quality of spatial learning. This research offers valuable
insights into refining methods for indoor spatial learning and underscores the
potential applicability of Spatial Chunking in AR-based learning.

Keywords: Augmented Reality, information organization, spatial learning, sptial
chunking
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1 Introduction

1.1 Background and motivations
Essential for indoor positioning and navigation, Augmented Reality (AR) and Mixed Reality
(MR) technologies have demonstrated their effectiveness in guiding users to their intended
destinations (Joshi, Hiwale, Birajdar, & Gound, 2020; J. Kim & Jun, 2008; Mulloni, Seichter, &
Schmalstieg, 2012). These innovative technologies seamlessly enhance wayfinding experiences
by superimposing virtual landmarks and indicators onto the physical environment. However,
recent investigations have prompted concerns regarding the potential drawbacks of excessive
reliance on AR and virtual reality (VR) for indoor navigation. Scholars such as Gramann,
Hoepner, and Karrer-Gauss (2017) and Ruginski, Creem-Regehr, Stefanucci, and Cashdan (2019)
assert that an overdependence on these technologies in navigation may diminish users’ awareness
of their surroundings, subsequently hindering their capacity to grasp and interpret the spatial
arrangement. Additionally, inadequately designed landmarks have been linked to compromised
user safety (Fang, Li, & Shaw, 2015; May & Ross, 2006), and poorly crafted MR navigation
systems can lead to user confusion, significantly impacting their spatial learning (B. Liu, Ding,
Wang, & Meng, 2022b). While AR and VR have undeniably transformed indoor applications
and human spatial navigation, addressing their potential adverse effects on spatial cognition is
imperative. This is essential to prevent users from excessively relying on virtual landmarks and
to cultivate their familiarity with indoor environments. In critical scenarios, users’ perception
and mastery of indoor space play a pivotal role, as they depend on their spatial knowledge rather
than blindly following assisted navigation systems (B. Liu & Zhan, 2021). Consequently, it is
vital to strike a balance between the usability of navigation systems for wayfinding and their
influence on spatial learning, as underscored in recent research (Brügger, Richter, & Fabrikant,
2019; Wen, Deneka, Helton, & Billinghurst, 2014)

To tackle the constraints of human short-term memory, it is vital to consider that the capacity
to remember multiple objects is inherently limited (Brener, 1940; Cowan, 2001). To enhance
users’ spatial learning ability, spatial chunking emerges as a viable solution (B. Liu & Zhan,
2021). Spatial chunking involves breaking down specific types of memory into smaller, related
units based on certain rules, ultimately enhancing memory efficiency. Researchers posit that
spatial chunking achieves this by compressing memory encoding through retrieval from long-
term memory, thereby lightening the load on working memory and bolstering spatial memory
performance (Thalmann, Souza, & Oberauer, 2019). The primary objective of this research is to
explore whether MR-based spatial chunking assistance can effectively facilitate users’ spatial
learning during indoor navigation. Drawing on the principles of spatial chunking and human
memory, the study aims to foster users’ active spatial learning by strategically organizing visual
cues within the MR system, countering their potential to become oblivious to the surrounding
environment. This approach seeks to strike an optimal balance between providing navigation
assistance and encouraging users’ active engagement with their spatial surroundings during
indoor navigation tasks. Ultimately, this endeavor aims to improve users’ overall spatial learning
performance and diminish their reliance on virtual landmark indicators.

In conclusion, AR and MR technologies have proven invaluable as supplementary tools for
indoor positioning and navigation, significantly benefiting users in reaching their destinations.
However, the potential negative effects on spatial cognition and learning require thorough
consideration. Achieving an optimal balance between navigation assistance and active spatial
engagement is essential to ensure that users retain their ability to perceive and learn indoor
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spaces effectively. Spatial chunking emerges as a promising approach to enhance users’ spatial
learning during indoor navigation tasks. By thoughtfully integrating spatial cues within the MR
system, users can gain a deeper understanding of their environment and reduce their reliance on
virtual landmarks. Continued research and implementation of AR and MR technologies will
maximize their potential to facilitate indoor navigation while preserving users’ spatial cognition
and learning abilities.

(a) Low information (b) Middle information (c) High Information

Figure 1: Spatial information cases (Sample images come from the Stable Diffusion Model
[https://stablediffusionweb.com/])

From Figure 1, we can know that the information load of indoor spaces is often imbalanced.
In some cases, the targets in the current spatial region are scarce, making it difficult for users
to acquire meaningful spatial knowledge. In other cases, the targets in the space are dense and
complex, leading to cognitive overload and hindering effective learning. Our research aims to
address this issue by exploring appropriate methods for spatial chunking, in alignment with
human cognitive patterns, to enhance users’ learning efficiency.

The arrangement of visual cues is a complex and broad concept. One promising approach is to
employ spatial information chunking from multiple perspectives, such as color, shape, texture,
and position. These chunks rely on spatial and semantic proximity, organizing information and
visualizing various aspects, with unpredictable effects. This presents challenges for chunk-based
AR spatial learning. Addressing how to organize, utilize, and present the correlation of indoor
spatial objects is a crucial point urgently requiring attention in this paper. Spatial information
chunking offers an efficient way to manage data in indoor environments. By grouping related
visual cues based on their relationships, users can navigate more effectively. For instance,
similar colors or shapes may represent different zones, while cues close together might indicate
spatial connections. Implementing this approach requires considering factors like the perspective
for chunking data. Moreover, optimizing the organization and presentation of visual cues
is vital. Grouping related cues and ensuring each chunk conveys meaningful information
allows for effective processing and memory. Selecting suitable cues is essential, making sure
they are relevant to users’ navigation goals and representative of the indoor spatial objects.
Considering the impact of visual complexity is also crucial. While chunking improves memory
efficiency, overly complex cues may overload users’ cognitive capacity. Striking a balance
between information richness and manageability is necessary. In conclusion, spatial information
chunking from multiple perspectives shows promise for enhancing AR spatial learning in indoor
environments. However, challenges exist in determining perspectives, organizing cues, and
selecting relevant information. Addressing these aspects contributes to the advancement of
chunk-based AR spatial learning for indoor navigation scenarios.
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1.2 Research questions
1.2.1 Research Objectives

The primary aim of this research is to develop an MR visualization system rooted in spatial
chunking principles, aimed at guiding users in comprehending the current indoor environment
and enhancing their ability to retain detailed information. Spatial chunking, a well-established
psychological technique, capitalizes on the limitations of human memory to expand its capacity.
As per the findings of Kahn, Tan, and Beaton (1990), humans have been shown to excel at
recalling information when it is organized into chunks of 7±2 elements. Furthermore, chunking
serves as a valuable tool in the realm of spatial cognition and navigation, aiding individuals in
effectively surmounting memory constraints and optimizing memory functions (Krukar, Anacta,
& Schwering, 2020; Shank, 2018). Consequently, the primary research objective can be further
subdivided into the following three specific sub-objectives:

1. The search for an effective method for spatial chunking has led researchers to explore
various approaches. Many existing spatial chunking methods rely on semantics, such as
direction, turning points, or functional areas (J. Sargent, Dopkins, Philbeck, & Chichka,
2010; J. Q. Sargent, Zacks, Hambrick, & Lin, 2019). While these methods possess
significance and operational ease, they often struggle to balance information between
chunks, limiting users’ ability to fully utilize their memory capacity. Other studies have
attempted to combine quantitative and qualitative methods to achieve a more systematic
spatial division, aiming to help users perceive and remember more without cognitive
overload. One promising approach involves using information metrics as spatial chunking
standards. Researchers can directly chunk space based on semantic meaning, ensuring an
even distribution of information load within each chunk. Spatial entropy (Batty, 1974),
a measure of the disorder of current spatial information, and Fisher information metric
based on SLAM robots (Verbelen, De Tinguy, Mazzaglia, Çatal, & Safron, 2022) are
commonly used spatial metrics calculated based on information theory. However, these
chunking methods may be relatively rigid, partitioning space into distinct blocks without
adequately organizing the underlying relationships among objects within the space. In
modern architectural design, indoor space layouts are often deliberate, exhibiting inherent
correlations and hierarchies (Reddy, Chakrabarti, & Karmakar, 2012; Suh & Cho, 2021;
Zhou & Liu, 2021). Therefore, our design emphasizes organically chunking objects within
the current space based on different features, such as shape, color, or texture. This flexible
approach aims to avoid rigid segmentation that might lead to semantic disconnections
and hinder users’ perception of the overall spatial structure. By considering the inherent
relationships and hierarchies within the indoor environment, our proposed method seeks
to enhance users’ spatial cognition and memory retention during navigation tasks.

2. To effectively design visual guidance for information chunks, it’s essential to consider
their inherent challenges. Each information chunk holds a distinct set of data, making
it challenging for individuals to intuitively grasp the spatial distribution and commit it
to memory, as pointed out by Stites, Matzen, and Gastelum (2020). Consequently, the
research necessitates the development of tailored visual aids. These visual aids should
not only convey meaningful semantics but also align with cognitive principles regarding
memory load management. Simultaneously, they should actively engage users’ cognitive
faculties, as user-driven cognition tends to yield more favorable memory outcomes, as
highlighted by Moore and Zirnsak (2017). In cases where individuals possess superior
spatial memory abilities, they may naturally focus on and remember the various virtual
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landmarks within the current information chunk. However, this effect may not be as
pronounced for average individuals or those with lower spatial memory capabilities. Hence,
the implementation of suitable information filtering mechanisms becomes imperative to
prevent information overload, as suggested by Zhao, Simpson, Wallgrün, Sajjadi, and
Klippel (2020). In the context of the experiment, the design of virtual landmarks should
be strategically balanced. These landmarks should captivate the user’s attention while also
accommodating individuals with limited spatial learning aptitude.

3. The research will include a control experiment to validate the hypothesis. Two groups
will be established: one without spatial chunking and the other with spatial chunking,
enabling a comparison of users’ spatial memory effects. Additionally, the experiment
aims to gather quantitative data through questionnaires and data analysis, supporting the
final results theoretically. The experiment will begin by assessing users’ spatial learning
abilities, sense of direction, and familiarity with the experimental site. Subsequently, users
will navigate the experimental site while using AR devices equipped with spatial learning
software to enhance their learning process. Afterward, users will provide feedback on
their perception of the AR system, along with the quantity and accuracy of their spatial
memory. The control experiment will provide valuable insights into the impact of spatial
chunking on users’ spatial memory and overall navigation experience, contributing to the
advancement of AR-based spatial learning systems.

1.2.2 Research Questions

Based on the research objectives mentioned above, several research questions are introduced
here for further consideration and exploration:

1. Delve into the quest for an efficient method of spatial chunking to divide the area users are
required to acquaint themselves with. How should this chunking process be executed? Is
a strict adherence to predefined criteria necessary for the balanced segmentation of the
present indoor space, or should we embrace a more intricate approach to aptly structure
and classify information within the given space, ultimately leading to chunking techniques
grounded in spatial information filtration? A rational strategy should be formulated for
guiding the design of the AR interface system, with the aim of diminishing the information
burden on users while maintaining their holistic perception of the entire space.

2. The research aims to identify an appropriate visualization approach for chunk-based
learning that can effectively steer users in spatial comprehension. What is the optimal
way to create visual landmarks that enhance users’ cognitive processes? In mixed reality
(MR) devices, virtual landmarks play a significant role in capturing users’ attention,
underscoring the importance of landmark design. How can we strike a balance in
managing the information load experienced by users? Individuals with varying spatial
memory capacities may respond differently to specific information quantities. This
investigation will delve into techniques for information filtering and the development of
distinct information load levels tailored to individual users.

3. What approaches should be employed to formulate experiments, assessments, and the
corresponding data analysis protocols for volunteers? Following the creation of the mixed
reality (MR) system geared towards spatial learning, the investigation aims to assess users’
performance, seeking to ascertain whether the implementation of spatial chunking yields
a beneficial impact on spatial memory. Subsequent to the development of the MR spatial
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learning system, the study will assess user memory outcomes to determine whether the
utilization of spatial chunking methods aids in enhancing spatial memory.

1.3 Thesis structure
The paper is divided into five chapters, aiming to elucidate the design details of our current AR
indoor spatial learning system by introducing the design concepts and showcasing our design
outcomes to the readers. Subsequently, we present the experimental details and post-analysis
of data to demonstrate the superior indoor spatial learning effectiveness of our current design.
Specifically, the chunking method assists in organizing indoor spatial information and aiding
users in better memorizing various details within the indoor environment.

Chapter 1 provides an introduction to the research background and motivation, while highlighting
the challenges that our study needs to address, thereby establishing the core of the entire
discussion.

Chapter 2 primarily summarizes existing relevant research findings, discussing their relevance
to our current study and providing references and insights that can contribute to our research.
It also identifies limitations or areas requiring improvement in these approaches, offering an
overall overview of the relevant field.

Chapter 3 focuses on the devices utilized in our experiments and the design principles of the
current AR-assisted system. Additionally, this chapter presents the visual effects of the system to
provide a more intuitive visual experience.

Chapter 4 details the experimental procedures, including the organization of the experiments,
recruitment of volunteers, and data collection. Following the experimentation phase, this chapter
quantitatively and qualitatively analyzes the collected data, comparing the conditions of the
experimental group and the control group to determine the corresponding advantages of spatial
learning.

Lastly, Chapter 5 concludes with a summary and discussion of the subsequent steps.

2 Related Work
This chapter provides a comprehensive review of relevant research findings and state-of-the-art
(SOTA) methods. It begins by reviewing the support and enhancement of learning abilities
through AR, shedding light on the underlying principles. The chapter then introduces chunking-
related learning methods, discussing their applications in psychology and how they support the
learning process. Furthermore, we discuss the current research on AR-based spatial learning
and the achievements within this field, highlighting areas that can be leveraged and applied.
Moreover, this chapter delves into the quantitative analysis methods of sketch maps, as sketch
maps serve as important indicators for evaluating users’ spatial learning abilities. However, they
pose challenges in terms of quantitative analysis. Therefore, such discussions are invaluable for
our experiments and research. Finally, this chapter concludes by weighing the pros and cons of
various aspects of the current research, in order to provide support for our ongoing study.
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2.1 AR Cartography
Integrating Augmented Reality (AR) into cartography has become a prominent research topic.
By replacing conventional paper or electronic maps, AR immerses users in the real environment,
combining visual cues to provide innovative navigation and spatial orientation experiences.
Schmalstieg and Reitmayr (2007) explore the potential and challenges of Augmented Reality
(AR) as a novel cartographic medium, along with the reciprocal impact and contributions of
AR and cartography. They argue that AR has the capacity to offer users more immersive and
engaging map experiences, while also requiring resolution of certain technical and social issues.
They also highlight that AR can learn from cartography in terms of methods and techniques,
while simultaneously presenting new opportunities for cartography as a discipline. Bobrich and
Otto (2002) propose a method to enhance cartographic visualization through AR technology,
which involves integrating virtual objects with real maps to offer additional dimensions and
interactivity. They believe that AR can provide a novel approach for cartographic applications,
enabling the presentation and manipulation of digital geospatial data on top of simulated maps.
Carbonell Carrera and Bermejo Asensio (2017b) discuss the advantages of AR technology in
terrain interpretation and spatial orientation, and whether AR can improve learners’ spatial
orientation skills. The article suggests that, with appropriate design, AR can offer a novel
way of interacting with three-dimensional terrain representations, thereby aiding learners in
determining their own and target locations within the environment. Dickmann, Keil, Dickmann,
and Edler (2021) emphasize that the core of AR technology lies in the integration of virtual
objects with real-world scenes, thereby providing users with additional spatial information. They
also highlight that different AR techniques can influence the visualization and perception of AR
elements in three-dimensional space. The article asserts that understanding these technological
foundations is an essential prerequisite for harnessing AR in cartography. Carbonell Carrera
and Bermejo Asensio (2017a) hold the view that AR technology can serve as an innovative
teaching tool to enhance students’ understanding and manipulation of three-dimensional terrain
information. They also highlight that AR can be integrated with devices such as tablet computers,
allowing users to interact with digital terrain models (DTMs) through gestures, thereby providing
a novel way of engaging with terrain representations.

Research on AR in cartography is still in its infancy. Anastopoulou et al. (2023) conduct an
analysis of fifteen scientific papers involving different Levels of Detail (LoD) management
techniques in AR environments, considering dimensions such as data type, technology type,
and user behavior. The findings indicate that the applications in this domain are still at an early
stage and relatively limited in number. However, they provide a comprehensive synthesis of
existing knowledge and highlight the exciting and dynamic challenges that lie ahead in future
research. Indeed, research on AR presents its own challenges. Dong et al. (2021)’s findings reveal
differences in participants’ attention towards environmental objects when using AR compared
to 2D maps. AR users exhibit less visual attention towards buildings but more towards people.
Additionally, the results of route drawing show that AR users had more difficulty forming clear
route memories. Similarly, Carbonell-Carrera, Jaeger, and Shipley (2018)’s study finds that two-
dimensional contour maps have lower motivational impact on students compared to AR, which
increases students’ interest and engagement. However, students perceive that two-dimensional
contour maps improve their abilities despite requiring more effort. Interestingly, in terms of
spatial reasoning ability, there is no significant difference observed between two-dimensional
contour maps and AR. Keil, Edler, and Dickmann (2019)’s perspective on holograms suggests
that they have the potential to influence people’s perception and interaction with geographic
space, thereby enhancing direction, navigation, and spatial knowledge. However, the article also
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highlights a crucial challenge related to the early development stage of AR hardware, particularly
concerning the position accuracy and stability of holograms. Addressing this issue is essential
for conducting standardized spatial cognition experiments and applications in the future. As AR
technology continues to advance, overcoming such technical limitations will be instrumental in
fully harnessing the benefits of holographic representations for spatial cognition and navigation.
These results highlight the complexities and nuances of incorporating AR into mapping and
learning experiences, suggesting the need for further exploration and refinement to optimize its
effectiveness in different contexts.

2.2 AR assisted learning
Augmented reality (AR) is a technology that overlays virtual information on the real environment,
providing users with rich visual and interactive experiences. This section will review some
related literature, analyzing the advantages and challenges of AR technology in the education
field.

In recent years, AR technology has been widely applied and researched in the education field,
aiming to improve learners’ learning outcomes and motivation. Especially in the domain of
scientific learning, AR can assist learners in comprehending abstract and complex concepts
or phenomena that are difficult to observe directly. It also facilitates a better explanation of
scientific content knowledge (Cheng & Tsai, 2013; Sahin & Yilmaz, 2020; Sylaiou et al., 2015).
Numerous empirical studies have demonstrated that integrating AR technology into science
curricula (such as physics, chemistry, earth science, biology, mathematics, etc.) can enhance
students’ scientific learning outcomes. For instance, it can improve content comprehension and
foster interest in science (Radu, 2014). Furthermore, it can increase motivation and engagement
in scientific learning (Cai, Chiang, & Wang, 2013; Diegmann, Schmidt-Kraepelin, Eynden,
& Basten, 2015; Goff, Mulvey, Irvin, & Hartstone-Rose, 2018), as well as improve academic
performance (Akçayır & Akçayır, 2017).

Akçayır and Akçayır (2017) lead a systematic review of AR technology in the education field,
summarizing the impact of AR technology on learning, the advantages and limitations of AR
technology, and the future research directions. They found that AR technology can improve
learners’ cognitive, affective, and behavioral performance, while also facing some technical,
educational, and ethical issues that need further research and discussion. Küçük, Yỳlmaz, and
Gökta (2014) explore the effect of AR technology on students’ academic achievement and
motivation in English course studying, using an experimental group and a control group design,
comparing the learning effects of using AR technology and traditional materials. They found
that the experimental group students were superior to the control group students in cognitive
level, affective attitude, and memory retention, indicating that AR technology can enhance the
teaching effect.

In addition to formal educational settings, informal science institutions (ISIs) such as science
centers, science museums, zoos, botanical gardens, and aquariums play a crucial role as venues
for utilizing AR devices to facilitate public understanding and engagement in science (Bao &
Engel, 2019; Capozzi, Lorizzo, Modoni, & Sacco, 2014; Chen, Zhou, & Zhai, 2023; Yoon &
Wang, 2014). A systematic review conducted by (Chen et al., 2023) examine 22 relevant studies
and concluded that AR or VR, by supplementing real objects with virtual materials, can directly
present abstract concepts through simulation and emulation methods. This approach can better
assist users in their learning process.
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In general, the enhancement of human learning abilities through AR is supported by psychological
theories. AR can improve learners’ engagement and interest. Multiple studies have shown that AR
can stimulate learners’ curiosity and desire for exploration in scientific content, thereby increasing
their participation and interest in classroom or informal learning settings (Chen et al., 2023;
Huang, Chen, & Chou, 2016; Radu, 2014). AR can meet learners’ basic psychological needs,
such as autonomy, competence, and relatedness, by providing choices, feedback, interactivity,
and social support. This, in turn, enhances their intrinsic motivation and autonomous drive (Lai,
Chen, & Lee, 2019). Simultaneously, AR can optimize learners’ cognitive load. Cognitive Load
Theory (CLT) posits that humans have limited working memory capacity, and AR technology
can optimize working memory load by reducing irrelevant information or increasing relevant
information, thereby enhancing cognitive efficiency and learning outcomes (Kalyuga, 2011;
Q. Liu, Yu, Chen, Wang, & Xu, 2021). AR can also enhance learners’ spatial abilities. Spatial
abilities refer to the perception, analysis, and manipulation of spatial relationships, shapes,
directions, and movements. It plays a crucial role in science education (Uttal et al., 2013).
AR can assist learners in understanding spatially complex or abstract concepts or phenomena
by providing three-dimensional, dynamic, and interactive visual representations (Ibáñez &
Delgado-Kloos, 2018).

In summary, a specially designed AR system can effectively assist humans in various aspects
of learning. This enhancement in learning abilities is attributed to the AR system’s ability to
effectively organize cognitive load and facilitate coordinated brain function at the psychological
level. As a result, it promotes the optimal utilization of human memory and learning capabilities.

2.3 Chunking assisted learning
Chunking is a process of segmenting certain information into meaningful chunks based on
specific semantic rules and psychological principles. It serves to better organize information
and enhance learning efficiency. Chunking has been widely studied and applied in various
learning domains and scenarios, as it can help learners overcome the limitations of short-term
and working memory, enhance the organization and retrieval of information, and facilitate the
acquisition and recall of complex knowledge (Gobet, 2017; Thalmann et al., 2019). In the early
stage of the chunking theory, Miller (1956) suggest that human memory capacity iss limited to
about seven chunks of information, and that chunking could increase the amount of information
per chunk by using familiar or meaningful patterns. Later research expanded the notion of
chunking and explored its mechanisms and effects in different contexts. For example, Chase
and Simon (1973) find that expert chess players could recall chess positions better than novices
because they could chunk the pieces into meaningful configurations based on their knowledge
and experience.

Chunking primarily utilizes inherent cognitive patterns in humans and assists in memory
processes from a psychological perspective. Gobet et al. (2001); Laird, Rosenbloom, and
Newell (1984) propose two forms of chunking: purposeful, strategic, and controlled chunking,
and automatic, continuous, and perception-related chunking. They also present evidence for
chunking and introduced the EPAM/CHREST mechanism as a psychological foundation for
chunking-assisted learning. Through this mechanism, chunking at different levels of memory
and learning enables the effective acquisition of knowledge in various domains, such as chess,
music, mathematics, and physics. Fonollosa, Neftci, and Rabinovich (2015), on the other hand,
investigate the dynamical principles of chunking by employing a competitive mode dynamical
model to explain the role of chunking in cognitive sequences. Their work provides more
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solid evidence and a theoretical foundation for chunking-based learning theories. Additionally,
from a dynamical perspective, they also offer an explanation for certain mental disorders
and cognitive impairments in humans. It is precisely due to these psychological theoretical
foundations that chunking-based learning has been applied in various domains and has achieved
certain effectiveness. For example, Buschke (1976) argue that in language learning, learners
spontaneously organize their learning in a chunking manner, organizing their current knowledge
based on certain chunking rules. Zhang, Ding, Stegall, and Mo (2012) also find that the chunking
method can compensate for the innate limitations of visual working memory through experiments.
Through appropriate chunking design and guidance, students with these limitations can overcome
difficulties in learning geometric mathematical knowledge and achieve better learning outcomes.

It is evident that chunking is an effective method for assisting learning in many domains,
and this method can occur spontaneously or through guidance. However, there is ongoing
research and debate on how chunking is guided and enhances human learning capabilities.
Thalmann et al. (2019) review the impact of chunking on working memory and its interaction
with long-term memory and attention. This research indicates that chunking can enhance the
capacity, duration, and encoding efficiency of working memory while reducing the risk of
interference and forgetting. Additionally, this study discusses the neural basis and developmental
changes associated with chunking, as well as its applications in different domains. Nassar,
Helmers, and Frank (2018) propose a chunking model of visual working memory, suggesting
that similar features are co-encoded through center-surround dynamics to enhance memory
capacity and performance. They demonstrate the advantages and limitations of chunking through
experiments and simulations, as well as individual differences. They argue that chunking reveals
the flexibility and complexity of capacity limitations in visual working memory. Jones (2012)
think that chunking is a better explanation for cognitive developmental changes in children
than the development of short-term memory capacity or processing speed (though the help
from the latter two is not denied). They contend that chunking can account for individual,
age-related, and cross-cultural differences observed in children’s performance across various
tasks. Moreover, they highlight that chunking can aid children in constructing more complex
and abstract knowledge structures while enhancing their meta-cognitive abilities. Thus, this
research elucidates chunking as an inherent attribute of human development. Therefore, there are
multiple interpretations regarding how chunking specifically influences humans. However, it is
certain that humans may spontaneously employ chunking techniques during the learning process.
Furthermore, in educational and instructional settings, systems can utilize chunking or induce
users to engage in chunking to significantly enhance the efficiency of knowledge acquisition.
This provides psychological guidance for the development of our system in this project.

2.4 AR chunking spatial learning
Spatial learning is a daily behavior and methodology formed by humans in their exploration
and cognition of the world, serving as one of the fundamental pillars of knowledge acquisition.
Spatial learning is considered an indispensable ability in addition to spatial navigation, which
helps humans to understand space and make autonomous responses in emergency situations
(B. Liu & Zhan, 2021). Spatial thinking, as a broader topic than spatial ability, encompasses
the ability to select or create spatial representations suitable for tasks. Ishikawa and Newcombe
(2021) also argue that navigation, as a specific type of spatial thinking, requires understanding
of our position and orientation relative to the surrounding environment. They assert that
navigation is a fundamental and essential survival skill that can be enhanced through education
and training. In fact, landmark knowledge, route knowledge, and survey knowledge are the basis
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for mastering spatial knowledge and occur during the process of spatial learning (K. Kim & Bock,
2021). Therefore, learning about space is not only helpful but also necessary. Ishikawa (2021)
discuss the significance of spatial learning and navigation in everyday human spatial behavior.
They emphasize the substantial individual differences observed in this domain. They also
highlight that providing maps or verbal instructions may not effectively assist individuals with
navigation difficulties, and navigation software may potentially weaken users’ spatial awareness.
As geographic spaces continue to evolve, researchers need to carefully consider the cognitive
processes and experiences of individuals using technology and living within society.

MR/AR devices play a crucial role in spatial learning. Although navigation functions are
generally believed to impair human spatial learning initiative (Brügger et al., 2019), visually
guided MR/AR systems designed to enhance users’ spatial cognition and memory abilities have
shown promising results. For example, Hammady, Ma, Strathern, and Mohamad (2020) design
an MR navigation application for MuseumEye at the Egyptian Museum using HoloLens, which
validated the feasibility of MR system-guided learning. Furthermore, Buchner, Buntins, and
Kerres (2022) believe that AR systems prevent users from switching back and forth between
traditional paper & electronic maps and real visual field, enhancing users’ attention to the
surrounding environment. Users also have more positive feedback on the role of AR devices
(Dong et al., 2022; B. Liu, Ding, & Meng, 2021). In addition, some development guidelines
based on MR/AR systems have increased the applicability of these devices (B. Liu, Ding, Wang,
& Meng, 2022a; B. Liu & Meng, 2020; Rokhsaritalemi, Sadeghi-Niaraki, & Choi, 2020). Further
experiments also prove that the immersive or virtual environment based on the subtle design can
lead people to better recognize the surrounding environment while benefiting spatial learning and
navigation tasks. Hedge, Weaver, and Schnall (2017) creat a digital representation of the Fulda
Gap region and design a series of experiments to test the effects of different navigation strategies
and types of spatial knowledge on spatial learning and wayfinding, finding that using this system
improves the performance of male users in survey knowledge tests. Furthermore, AR serves as a
suitable assessment tool for measuring spatial short-term memory abilities. Juan, Mendez-Lopez,
Perez-Hernandez, and Albiol-Perez (2014) design the ARSM task, which utilizes AR technology
to assess short-term spatial memory difficulties in children. This task demonstrates superior
effectiveness compared to traditional testing methods. Simultaneously, in the realm of complex
spatial environments, AR can enhance human cognition of the current space. Goldiez, Ahmad,
and Hancock (2007) investigate the effects of different Augmented Reality (AR) display strategies
on human performance in simulated ”search and rescue” navigation tasks. They discovere that
specifically designed AR systems exhibit potential advantages in such scenarios. Additionally,
they propose design guidelines to facilitate the future performance improvement of AR systems.

The strategy of spatial chunking provides new inspiration for spatial learning. Research suggests
that when humans or advanced animals engage in spatial learning, their brains spontaneously
perform spatial chunking to assist memory (Burte & Montello, 2017; Lee, 2023; Meck &
Williams, 1997; J. Sargent et al., 2010). However, this memory mode proves inadequate
when dealing with complex spatial structures, while it is also a crucial difference between
individuals with high and low sense of direction (SOD) (Stites et al., 2020). Therefore, assisted
spatial chunking is necessary (Stieff, Werner, DeSutter, Franconeri, & Hegarty, 2020). Current
research mainly focuses on qualitatively chunking space based on spatial structures or other
semantics (Klippel, Hansen, Richter, & Winter, 2009; Krukar et al., 2020; Nuhn & Timpf, 2022;
J. Q. Sargent et al., 2019). Meanwhile, some researches also propose the concept of spatial
entropy or other information measures, which can serve as a reference for chunking based on
quantitative chunking methods (Altieri, Cocchi, & Roli, 2018, 2019; Batty, 1974; Boeing, 2019;
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Calmet & Calmet, 2005; Verbelen et al., 2022).

2.5 Quantitative sketch map analysis
In the experiment, the primary means of assessing users’ spatial memory is to have them draw
sketches at the conclusion of the trial. However, sketches themselves are non-quantitative in
nature. Different users employ diverse sketching methods, making the final results challenging
to align and standardize. Blaser (1998) posit that sketches of geographic spatial scenes are
much simpler than initially expected. However, these sketches still possess a certain level of
expressiveness and can convey specific geographic spatial information. Moreover, sketches
are considered a valuable method for interacting with computers. Thus, in the experiment,
we aim to gain insights into what information the current sketches have learned. Billinghurst
and Weghorst (1995) explore the applicability of sketch maps as external representations of
individuals’ cognitive maps of virtual environments. The study compare map optimality and
the number of object categories within the same world, while also employing relative object
position ratios to compare maps from different worlds. The research demonstrate that sketch
maps accurately reflected volunteers’ topological relationships within their current cognitive
maps. Importantly, this study is primarily based on dense maps. Chipofya, Wang, and Schwering
(2011) also acknowledge the significance of sketches, deeming them as easily manipulable
objects that benefit ordinary users in organizing their geographic spatial knowledge. However,
it is important to note that sketches are results derived from observation rather than precise
measurements, which introduces certain distortions, generalizations, and instabilities. Therefore,
a subsequent series of sketch-based registration operations becomes necessary to standardize
sketches from certain perspectives, enabling quantitative representation and comparison.

To address this issue, some research has considered employing procedural and modular methods
to quantitatively describe the quality of sketch maps. Skubic, Blisard, Bailey, Adams, and
Matsakis (2004) approach the analysis of route map sketches from a qualitative perspective.
The researchers aim to generate multi-level interviews based on spatial relationships to acquire
essential knowledge about the paths. This method facilitates the formatted organization of the
knowledge structure within the route map sketches. Schwering, Krukar, Manivannan, Chipofya,
and Jan (2022) summarize the challenges related to the completeness, generality, and spatial
accuracy of sketch maps, stating that these aspects pose difficulties in the analysis of sketch
maps. Therefore, subsequent efforts should be directed towards designing appropriate workflows
and software to support the analysis of sketch maps based on these three key points. Gardony,
Taylor, and Brunyé (2016) attempt to standardize sketch map analysis techniques using an
open-source software package called GMDA (Gardony Map Drawing Analyzer). They employ
this tool to analyze sketch map instructions from both a global perspective, evaluating overall
landmark configuration and providing a holistic analysis, and a single landmark perspective,
which influences the overall score. The software’s workflow is systematically validated through
appropriate operations and its reliability is demonstrated through simulation and experimental
data. Krukar, van Eek, and Schwering (2023) explore how to comprehensively analyze sketch
map types, measurement accuracy, and spatial knowledge differences based on different drawing
task instructions. They also propose future research directions. The study emphasizes the
significance of instructions, highlighting the importance of providing accurate and clear drawing
guidance during sketch map drawing tasks. Meanwhile, Tu Huynh and Doherty (2007) design
a method that utilizes tablet computers and Geographic Information Systems (GIS) to collect,
draw, and explore the process of sketch map creation. They also analyze the relationship
between the order and types of sketch map elements drawn by participants and the cognitive
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map theory. The study suggests that sketch maps can be utilized to gather data on volunteers’
spatial perception abilities. This lays the groundwork for our future work. Sketch maps are
highly abstracted and distorted representations of the physical environment. Based on empirical
research, Schwering et al. (2014) identify certain unaffected and reliable alignment techniques.
These aspects of sketch maps involve the topological, directional, and sequential information
of street segments, intersections, landmarks, and blocks. They employ existing qualitative
representations to formalize these aspects into a qualitative constraint network.

Challenges still persist in this area, as some diversity studies have revealed cognitive differences
between males and females when drawing sketch maps. Men tend to employ orientation or
measurement strategies, while women lean towards route strategies (Huynh, Doherty, & Sharpe,
2010). These differences also introduce certain research complexities. Moreover, several
preliminary studies have also demonstrated the various uncertainties inherent in sketch maps.
This undoubtedly presents challenges for our research. Therefore, selecting an appropriate
method for quantifying sketch maps is of paramount importance.

2.6 Summary
Our research builds upon some other preliminary studies and focuses on using landmarks to
enhance users’ spatial memory within the current environment. This topic presents challenges
due to the complexity of indoor spaces, where similar spatial structures can lead to disorientation,
and the lack of global landmarks hinders individuals’ overall spatial awareness, often resulting
in getting lost indoors (Hirtle & Bahm, 2015; Ho, Tsai, Hsu, Chang, & Lai, 2017; Huang,
Shu, Yeh, & Zeng, 2016; Tan, Lee, & Lam, 2020). To address this issue, we aim to employ
augmented reality (AR) virtual landmarks as an aid to facilitate spatial learning. Previous
research indicates that virtual landmarks can attract individuals’ attention to themselves and
nearby targets, exhibiting the potential to enhance the learning process (B. Liu et al., 2021).
However, an excessive number of landmarks may lead to visual overload, as individuals might
struggle to effectively process spatial information due to the presence of numerous unorganized
landmarks. Therefore, we endeavor to apply the concept of spatial chunking to the design of
the AR system, aiming to effectively organize information and enable users to remember more
spatial knowledge by following certain patterns and information organization principles.

To achieve spatial chunking, conventional research often adopts qualitative approaches, segment-
ing the current space based on its spatial structure and semantics. Alternatively, quantitative
methods are used to calculate the amount of spatial information, enabling a more precise parti-
tioning of space. However, these methods often result in rigid spatial divisions, neglecting the
integrity and coherence of the space. Therefore, our approach involves organizing information
within the entire space to achieve spatial chunking, ensuring a more holistic and cohesive
representation. Meanwhile, our research focuses on information decomposition and filtering,
presenting users with an appropriate information volume for different levels of SOD (sense of
direction), enabling users to remember as much as possible and maximizing spatial learning
efficiency. Our design fully utilizes the characteristics of MR devices, both leveraging the
attractive power of virtual landmarks in MR devices and presenting the real environment to
users. It enables users to mobilize their senses when performing their personal tasks, thereby
learning about the surrounding environment from a top-down perspective at the psychological
level (Desimone & Duncan, 1995) and enhancing the learning effect.
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3 Methodology
In this section, we will present the workflow currently utilized to provide a clearer overview of our
research approach. Additionally, we will showcase our hardware and software platforms, address
pertinent technical issues, and elucidate our design principles. Our overarching design principle
is to employ spatial partitioning methods to visually organize the objects within the current
space, aiming to enhance user experience. There are multiple approaches to spatial partitioning,
as mentioned in Section 2.4, where we discussed qualitative or quantitative partitioning methods.
In the design of qualitative partitioning, we can divide the space based on its spatial semantics,
such as corners, for instance. This type of partitioning seeks to deconstruct the global space
in a manner congruent with human spatial cognition, reducing the memory load required for
memorizing the entire space at once. Alternatively, we can divide the space into several regions
based on landmark semantics, each region having a fixed semantic meaning, such as a storage
area or a professor’s office. While this method is natural and simple, it may not achieve the
desired effect for certain long corridors with numerous objects in our chosen experimental setting.
These corridors lack clear spatial semantics for segmentation, and the multitude of objects can
lead to severe information overload. Furthermore, using landmark-based segmentation might not
be effective, as different department offices in long corridors might be interspersed rather than
aggregated within a single area. Another innovative approach involves using spatial information
metrics, such as spatial entropy, to measure the complexity of the current space. Subsequently,
the space is evenly divided based on the computed information complexity, ensuring that each
partition has approximately similar information content, thus avoiding information imbalance
resulting from manual segmentation. However, this approach could overlook natural spatial
division points (e.g., corners, entrances), disrupting human spatial memory patterns. For instance,
people often mentally separate spaces that are visible from those that are not, a phenomenon
that this information metric approach might disregard. Given these considerations, neither of
these two spatial partitioning methods is suitable for our current experimental setting or other
organized indoor spaces. Hence, we adopt a more flexible spatial partitioning strategy, involving
the segmentation of space based on the type and hierarchy of spatial objects. These partitions are
then visually distinguished through various visualization techniques to convey the partitioning
effect effectively. Finally, we will display sample images of the final design to illustrate the
outcomes of our efforts.

Figure 2a illustrates semantics-based chunking, where spatial divisions are made based on spatial
or landmark semantics. However, this approach may inadvertently fragment discontinuous
functional zones or lead to localized information overload. Conversely, Figure 2b depicts
information-based chunking. This method achieves equitable partitioning of areas by evaluating
their information content, thereby preventing information overload. For instance, it might involve
encompassing indoor corners within a single chunk, contravening the spatial cognitive habit of
the average person, who typically regards corners as the conclusion of a region.

3.1 Workflow
Based on the research question presented above, our first step involves surveying the experimental
site. Subsequently, we design an AR system using a series of hardware and software devices,
adhering to specific visualization rules. The design process entails modeling and interactive
visualization operations. Once the design is complete, user research and experiments are
conducted to validate the system’s superior capabilities in spatial learning and elucidate the
underlying reasons for this phenomenon. Our workflow shows as Figure 3.
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(a) Semantic chunking

(b) Quantitative chunking

Figure 2: Cases of semantic and quantitative chunking
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Figure 3: Workflow

We have selected the experimental site, which is located on the first floor of Building 0509 in the
main campus of the Technical University of Munich. The area forms a U-shaped layout and
comprises several office spaces, including Cartography, Remote Sensing, Traffic Construction,
and OpenLab. This area presents a variety of scenarios, ranging from simple ones near OpenLab
to more complex regions, such as the Cartography office area. The latter contains numerous
similar office doors and various intricate facilities, which can potentially induce visual load
and information confusion for an average person. Indeed, this area presents a diverse range
of complexities in its scenes and facilities, with certain spatial patterns like offices with in the
same chair often clustering together. These characteristics make it an excellent choice as an
experimental site. The varying complexities and spatial regularities offer an ideal environment
for conducting our research and evaluating the effectiveness of the AR system for spatial learning.
After selecting the site, we will proceed with spatial modeling in Unity. The modeling process
involves creating 3D representations of the walls, floor, doors of individual offices, and various
accessories such as fire extinguishers and trash bins. Each object will be assigned distinct
shapes and materials to cater to visualization requirements. It is essential to maintain a 1:1
scale during the modeling process to accurately represent the real-world environment in the
AR system. This level of detail and accuracy in the modeling will contribute to creating an
immersive and realistic spatial learning experience for users. Exactly, after completing the spatial
modeling, we will apply specific spatial chunking rules and incorporate additional interactive
visual elements in Unity. By utilizing C# scripting in Unity, we can access and modify the
properties of different objects within the model. This allows us to implement the predefined
visualization rules and design the code accordingly to achieve the desired effects. Through the
implementation of spatial chunking and visual interactions, we aim to enhance the organization
and comprehension of spatial information within the AR system. Users will benefit from a
structured and coherent representation of the complex environment, enabling them to better
learn and navigate through the space. This process necessitates iterative design and extensive
discussions to achieve satisfactory outcomes.
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Once the design is completed, the system will be deployed onto the corresponding AR terminals.
Such a system can be utilized for conducting subsequent experiments. We will establish an
experimental group (equipped with a comprehensive spatial chunking-enabled AR spatial
learning system) and a control group (using an AR spatial learning system without spatial
chunking functionality) to compare the superiority of our spatial chunking approach. Additionally,
volunteers will be invited to fill out questionnaires to assess their spatial perception abilities and
provide feedback on the system. The users’ spatial learning outcomes will primarily be reflected
through the sketches they create. The sketches will be standardized through spatial alignment to
better evaluate the quantity, accuracy, and precision of the landmarks recalled by users. The
final results will allow for a comparison between the experimental and control groups to identify
differences.

3.2 Device and platform
In this project, we primarily utilize the Hololens 2 as the main hardware device. The Hololens 2
builds upon the advancements of its first-generation counterpart, offering numerous performance
improvements. It can be used for various innovative immersive experiences, such as AR and
VR, while providing excellent hand gesture and eye movement tracking capabilities, which
further enhances its applications and research significance (Guo & Prabhakaran, 2022). The
versatile features of Hololens 2 allow its application across various domains, including but
not limited to healthcare and education (Miller Koop et al., 2022; Palumbo, 2022; Park, Hunt,
Nadolski, & Gade, 2020; Pose-Dı́ez-de-la Lastra et al., 2022). In our project, Hololens 2 enables
spatial self-localization and calibration, allowing users to immerse themselves in an augmented
reality-assisted environment. Once calibrated, the models built in Unity can be accurately
projected into the real world, providing users with a seamless and authentic experience. This
capability of Hololens 2 ensures precise alignment between the virtual content and the physical
surroundings, enhancing the realism and effectiveness of the AR system. With the ability to
seamlessly blend digital content into the real world, Hololens 2 empowers our project to create a
compelling and interactive spatial learning platform for users.

Our software platform utilizes Unity, a professional cross-platform game engine capable of
developing 2D and 3D games or applications (Jitendra, Srinivas, Surendra, Rao, & Chowdary,
2021). With Unity, we can design indoor environments and corresponding objects, apply
unique materials, and implement interactive operations using code. To deploy the application to
Hololens 2, we use Windows Universal Platform (UWP) for development, targeting the ARMx64
architecture for deployment. To bridge the gap between Unity and Hololens 2, we leverage the
Mixed Reality Toolkit (MRTK) package, which provides essential Mixed Reality settings and
components, allowing seamless integration of Unity applications with the Hololens 2 hardware
(Ong, Siddaraju, Ong, & Siddaraju, 2021). MRTK ensures that our Unity-based application is
optimized and compatible with the specific capabilities of the Hololens 2 device, enabling us to
deliver a compelling mixed reality experience to our users. In MRTK, we align Unity’s main
camera to the logical position of the Hololens 2 headset and enable spatial anchor functionality,
which accurately provides position and orientation information for subsequent experimental
operations. Additionally, we activate a set of Data Providers and Pointers functionality, allowing
users to interact with different objects based on their head movements and orientations. These
features enhance the user experience by enabling intuitive and natural interactions within the
mixed reality environment.
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Unity serves as a cross-platform game engine
and development environment, offering an array
of tools and features designed to empower
creators in crafting diverse interactive
experiences. (Version 2020.3.15f2, education
licence)

MRTK, developed by Microsoft, is a Mixed
Reality Toolkit that constitutes an open source
initiative. It operates within the Unity
framework. MRTK facilitates seamless
interoperability across a diverse spectrum of
software and hardware platforms. (MRTK 3,
MIT license)

HoloLens 2, a product of Microsoft, is a mixed
reality head-mounted display that projects
virtual three-dimensional imagery into the
glasses through the utilization of holograms,
achieving a fusion with the real world.
(Hololens 2, Microsoft license)

Figure 4: Device and platform

3.3 Classification chunking
Classifying the learning objects is an effective method of spatial chunking. For instance,
in the experimental area, there are offices of various disciplines, often in spatial proximity
but intermingled. Without any visual cues, individuals may perceive the office doors as
indistinguishable, making it challenging to remember the distribution of different disciplines’
offices. Therefore, providing necessary visual cues is crucial. We assign distinct colors to
the doors of offices based on their respective disciplines or chair types. As a result, even if
the users cannot recall the specific content represented by each door, a quick glance allows
them to roughly remember the blocks corresponding to different disciplines’ offices, forming
a preliminary impression of that area. In this way, individuals with lower spatial awareness
and orientation abilities can grasp the overall spatial knowledge. Conversely, individuals with
strong spatial learning abilities can use this spatial chunking to efficiently organize information,
invoking their working memory to learn detailed knowledge in a more structured manner.

In indoor spaces, rooms (i.e., doorways) are the most crucial elements because for most people,
self-positioning and navigation indoors are primarily based on certain rooms as pivots. However,
other supplementary elements are also significant, as they can help individuals deepen their
cognitive awareness of the current space. In certain situations, these elements may also serve
as targets that individuals seek indoors, such as fire hydrants, trash bins, etc. In the current
experimental area, there are stereoscopes, fire hydrants, display boards, models, trash bins, and
other elements. These objects are also included in the spatial modeling process to enrich the
spatial content and increase the spatial information payload. Since these objects have relatively
simple classification attributes (they are similar objects generally and lack semantic differences),
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a unified color scheme is applied to these virtual landmarks globally. Through this approach,
users can also develop a categorical understanding of the different supplementary objects in the
current space based on the colors displayed.

We will categorize the experimental area to a certain extent. Firstly, we will classify each
room. The experimental area includes offices from different departments, such as Hydrology
Department, Cartography Department, Photogrammetry and Remote Sensing Department,
Transportation Engineering Department, Traffic Construction Department, OpenLab, Restrooms,
etc. Each of these rooms will be identified with its unique color. All other subsidiary small
objects will also be assigned distinctive colors, such as fire hydrants, trash bins, stereoscopes,
show boards, and some rare independent objects (they can be represented with the same color due
to their rarity, while also reducing the color space density to avoid overcrowding and decrease
color discrimination). Additionally, we will use red as the highlight color, so when a user gazes at
a virtual landmark, it will be highlighted, displaying relevant information. The table 1 illustrates
our color design.

Table 1: Landmark classification table

Category RGB Color
Cartography Dept (0.13f , 0.54f , 0.13f , 1.0 f)

Photogrammetry Dept (0.8 f , 0.55f , 0.22f , 1.0 f)
Traffic Eng. (0.0 f , 0.54f , 0.54f , 1.0 f)

Transportation Cons. (0.62f , 0.16f , 0.94f , 1.0 f)
OpenLab (0.7 f , 0.13f , 0.13f , 1.0 f)

Restrooms (1.0 f , 1.0 f , 0.0 f , 1.0 f)
Fire Hydrants (1.0 f , 0.5 f , 0.5 f , 0.5 f)

Trash Bins (1.0 f , 0.5 f , 0.0 f , 0.5 f)
Stereoscopes (0.0 f , 1.0 f , 0.0 f , 0.5 f)
Show boards (0.0 f , 0.5 f , 1.0 f , 0.5 f)

Independent Objects (0.8 f , 0.7 f , 0.0 f , 0.54f)
Highlight Color (1.0 f , 0.0 f , 0.0 f , 1.0 f)

Transparent Color (0.0 f , 0.0 f , 0.0 f , 0.0 f)

3.4 Hierarchy chunking
In AR, virtual landmarks can be enhanced by emphasizing their contrast with the surrounding
environment and complemented by shapes that carry relevant semantics. By carefully designing
the appearance and characteristics of these virtual landmarks, they become more distinct and
recognizable, aiding users in better perceiving and remembering their spatial context. However,
a large number of landmarks can lead to memory overload, resulting in a decline in memory
efficiency. Therefore, we have implemented a hierarchical structure to address this issue. In
specific spatial contexts, we designate certain objects as primary landmarks, considering them
the most crucial elements within the current space. To make them more conspicuous, we assign
them deeper colors. Related landmarks, which have been categorized alongside these primary
landmarks during the classification step, are deemed to possess lower semantic importance than
the primary landmarks. Consequently, we assign them lighter colors, visually making them less
attention-grabbing compared to the primary landmarks. With this design, we anticipate that
individuals will prioritize the observation of primary landmarks, enabling them to grasp the most

18



important elements within the spatial environment and establish a preliminary understanding of
the spatial framework (akin to the logic of categorization-based spatial chunking). Subsequently,
individuals with additional cognitive capacity may choose to further observe and learn about
secondary landmarks. These secondary landmarks share the same color tone as the primary
landmarks but have a lower brightness level, facilitating the establishment of visual associations.
In summary, our hierarchical approach is designed to guide individuals’ attention, enhance
spatial learning, and mitigate memory overload, thereby optimizing the efficiency of the AR
system. The assignment of primary and secondary virtual landmarks follows a logical rationale.

Figure 5: HSV example: we mainly use the S channel to distinguish the main object and the
secondary object, as the S channel can clearly make the color faded.

Certain ancillary small objects, such as fire hydrants, have a consistent semantic nature, and thus
do not require hierarchical classification. On the other hand, each office within the experimental
site serves as a prominent navigation and orientation target for users, exhibiting a certain level of
semantic complexity. Therefore, they are suitable for hierarchical categorization. In the context of
office areas, we designate the offices of the Chairs of respective Programs as primary landmarks,
as they can represent the semantic area of the respective program. Moreover, remembering
the location and spatial configuration of the Chair’s office is beneficial for navigation when
seeking offices related to specific Programs. The spatial hierarchy delineation throughout the
experimental site can be conducted following this principle. In the specific implementation of
visualizing the hierarchical classification of spatial objects, we chose to manipulate the HSV
color space to reflect the saliency of the objects. For primary landmarks, we maintain their
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original RGB values. For secondary landmarks, their colors are transformed into the HSV color
space for processing, with a certain proportion of saturation reduction. This adjustment makes
the colors noticeably lighter while preserving their original hue, establishing a visual distinction
between primary and secondary landmarks while still allowing them to be associated with each
other.

Figure 6: By manipulating in the HSV color space and decrease the S (Saturation value), we can
make the color lighter.

Algorithm 1 Fading Color Function
1: function FadingColor(𝑐𝑜𝑙𝑜𝑟, 𝑓 𝑎𝑑𝑒𝐴𝑚𝑜𝑢𝑛𝑡 = 0.25)
2: RGBToHSV(𝑐𝑜𝑙𝑜𝑟, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐻𝑢𝑒, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑎𝑙𝑢𝑒)
3: 𝑓 𝑎𝑑𝑒𝑑𝑉𝑎𝑙𝑢𝑒 ← Clamp01(𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑓 𝑎𝑑𝑒𝐴𝑚𝑜𝑢𝑛𝑡)
4: 𝑓 𝑎𝑑𝑒𝑑𝐶𝑜𝑙𝑜𝑟 ← HSVToRGB(𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐻𝑢𝑒, 𝑓 𝑎𝑑𝑒𝑑𝑉𝑎𝑙𝑢𝑒, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑎𝑙𝑢𝑒)
5: 𝑓 𝑎𝑑𝑒𝑑𝐶𝑜𝑙𝑜𝑟.𝑎 ← 0.8
6: return 𝑓 𝑎𝑑𝑒𝑑𝐶𝑜𝑙𝑜𝑟

7: end function

Because this master-slave relationship defines a series of coordinated highlight behaviors when
objects are fixated upon, and the coordinated highlights disappear together when the fixation
ends. Due to the computational limitations of the Hololens 2 client device, to prevent visual
sluggishness, this master-slave relationship is defined only for objects within the current visible
space, rather than for all objects in the global space, to avoid computational overload.

In addition to color associations, we have also incorporated a highlighting feature. When users
wear the Hololens headset, it can detect their current gaze direction. If the gaze direction
corresponds to a specific virtual landmark, that landmark will be highlighted in red and display
its corresponding name. This approach allows users to obtain more information about the objects
they are interested in and assists in spatial object categorization. When users focus on primary
landmarks, associated secondary landmarks will also be highlighted together. This is done to
enhance users’ familiarity with similar objects, strengthen their understanding of categorical and
hierarchical spatial divisions. On the other hand, when users focus on secondary landmarks,
only those landmarks will be highlighted individually. This effort is made to reduce cognitive
load and emphasize the significance of primary landmarks, guiding users’ attention towards
them effectively.

3.5 Effect
The design outcomes generate in the Unity Editor provide a simulated representation of the
spatial environment. However, when the design is implemented in the real world, various
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Figure 7: Experiment area model in Unity

(a) Unity visual effect of the control group (b) Unity visual effect of the experimental group

Figure 8: Visual effect of the Unity designs

factors, such as the device’s screen visualization, the influence of natural light, and other external
elements, can impact the visual perception of the virtual elements. Therefore, certain aspects of
the visual design, such as color schemes and shapes, need to be further developed and adjusted
to ensure a seamless integration with the physical environment. To address the challenges of
practical visualization, a key modification is made to the spatial modeling of doors. Instead
of using simple door color blocks, the design now employs door frames, which are rectangles
encompassing the original door area. This adjustment is made to prevent the occurrence of large
color blocks in room-dense corridors, as this could obscure significant portions of the actual
scene, making it difficult for users to distinguish between virtual and physical elements. The goal
of this alteration is to strike a balance between the virtual and real-world elements, ensuring that
the visual cues provided by the augmented reality system complement the physical surroundings
rather than overwhelming them. By using door frames, users can better perceive the location and
boundaries of virtual elements in relation to the actual environment, enhancing their ability to
navigate and understand the spatial layout effectively. Ultimately, these design refinements aim
to create an immersive and informative experience for users, optimizing their spatial learning
capabilities and reducing visual confusion. The seamless integration of augmented reality
into the real-world environment fosters a more intuitive and effective spatial learning process,
empowering users to engage with the virtual content while maintaining a clear understanding of
their physical surroundings. The visualization effects are shown from Figure 7 to Figure 9.
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(a) Real visual effect of the control group (b) Real visual effect of the experimental group

Figure 9: Real visual effect in Hololens 2

4 Experiment and Analysis
We need to conduct experiments to obtain the corresponding data and demonstrate the effec-
tiveness of our approach. The experiment consists of two groups: the experimental group
and the control group, each consisting of 19 participants, mainly with the age from 24 to 27.
The experimental group will use the software interface designed according to the methodology
presented in Section 3, while the control group will use a visualization interface without spatial
partitioning effects, i.e., without classification and hierarchical visualization, with all virtual
landmarks presented in a uniform color. The experimental procedures for both groups are
essentially the same. Initially, the researchers will introduce the purpose of the experiment to the
volunteers and provide information about the basic procedures and equipment. The experiment
will then commence, and the volunteers will be asked to sign privacy-related agreements and
complete pre-task questions. These questions mainly assess users’ background information,
sense of direction, self-positioning ability, navigation skills, and familiarity with AR and VR
technologies. Subsequently, the researchers will guide the volunteers through the process of
spatial alignment before proceeding to explore the test area. After the exploration, the volunteers
will sketch their maps, provide feedback on their experiences, and participate in subsequent
mini-tests to allow the researchers to collect relevant information. Once all the questionnaires
are collected, the researchers will perform data analysis. The data analysis will examine users’
background, familiarity with the test area, sense of direction, evaluation of the equipment and
software, and other factors. The sketch maps will be standardized to observe users’ memory
capacity and accuracy. These analyses will comprehensively examine the differences between
the experimental and control groups, providing corresponding analysis and interpretations. Our
experiment area is Figure 10, along with the corresponding landmark information.

4.1 Experiment Process
4.1.1 Pre-task questionnaires

In the pre-task questionnaire, we will request volunteers to sign relevant privacy agreements
before proceeding with the experiment. The experiment will be conducted only after ensuring that
the participation of volunteers is voluntary and informed. This step will also gather information
about the volunteers’ gender, nationality, age, profession, or occupation. In the questionnaire, we
will use the SBSOD (Q1-Q15, Santa Barbara Sense of Direction scale, Hegarty, Richardson,
Montello, Lovelace, and Subbiah (2002)), which is widely used to assess volunteers’ sense
of direction, self-navigation, and self-positioning abilities. Additionally, Q16 and Q17 will
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investigate whether users tend to get lost indoors and outdoors, and inquire about their familiarity
with AR and VR technologies. The researchers will be present throughout the questionnaire
administration to provide assistance in clarifying any confusing points (e.g., distinguishing
between AR and VR, as many people may not have a clear understanding of the difference). Each
question will be graded on a seven-point scale ranging from AGREE to DISAGREE, allowing
for a more nuanced differentiation of users’ self-assessment at various levels.

4.1.2 Spatial learning section

In the spatial learning phase, the participants will be guided to the calibration area and instructed
to open the visualization software. Our deployed software incorporates the MRTK’s Spatial
Anchor feature, allowing the Hololens 2 to recognize the current scene through computer
vision feature matching and perform self-positioning and orientation correction. After the
calibration is completed, the participants will be led to the starting point. They will be informed
about the functionalities of the visualization software and the significance of virtual landmarks
before commencing their journey. Participants will proceed at a normal walking pace while
observing the surrounding objects and virtual landmarks. Subsequently, participants will
continue walking until they reach the endpoint. They will then remove the devices and return to
the office to complete the follow-up questionnaires. From Figure 11, we can see that during the

Figure 11: Experiment scene case

experimental procedure, ensuring accurate global positioning and orientation of the Hololens 2
headset is crucial, as our Mixed Reality (MR) system necessitates alignment with the real-world
environment. Leveraging computer vision techniques, we enable the Hololens 2 to acquire an
understanding of the current scene, thereby achieving indoor passive localization.
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4.1.3 Post-task questionnaires

After completing the spatial learning phase, the volunteers will return to the office to complete
the follow-up questionnaires. Firstly, the volunteers will be asked to draw a sketch of the
experimental area they just walked through based on their memory. The researchers will provide
necessary guidance, such as prompting the volunteers to recall the contours of the walked area
and suggesting them to start drawing the remembered objects sequentially from the starting point.
Adding labels is encouraged, and more detailed labels are preferred (although it is challenging
for anyone to remember specific office details after walking through once). Volunteers are also
encouraged to draw some ancillary objects, such as fire hydrants, display boards, trash bins,
and so on. This process is generally limited to five minutes, and the researchers will time this
process. When the user cannot recall more objects, this segment will end. The next segment
mainly involves the volunteers’ evaluation of the system, including their familiarity with the
experimental area, their preference for the equipment and software, and their assessment of how
colors, labels, and virtual landmarks assisted their spatial learning and memory. Finally, the
volunteers will evaluate their preferences for AR and maps in indoor spatial learning scenarios.

Afterwards, we have designed a scenario-based experiment: assuming there is a controllable fire
in the experimental area, and you may wish to respond to the situation by trying to find a fire
hydrant to extinguish the fire. Based on your memory, where do you remember there are fire
hydrants? This question mainly assesses users’ attention and memory towards ancillary objects
during spatial learning. The floor plan of the experimental area will be provided. Users are not
required to perfectly mark the locations of fire hydrants on the floor plan; instead, they only need
to draw a circle to indicate the area where they remember the fire hydrant is located. Finally,
volunteers will complete the NASA Task Load Index (Hart and Staveland (1988)) to assess
the experimental pressure and assist the researchers in making improvements for subsequent
experimental steps. Afterwards, we will ask the volunteers to reconfirm their consent for data
collection and sign the agreement once again.

4.2 Data Preparation
The collected questionnaires contain both structured and unstructured data. All data need to
be formatted and digitized for record keeping. Three sections of the questionnaire can be
directly converted into numerical and formatted data: the questions about spatial orientation
in the pre-task questionnaire, the questions evaluating the system in the post-questionnaire,
and the data from the NASA Test. As these data are represented numerically to indicate
preference levels, the final results are composed of corresponding numerical vectors. Each
position in the vector corresponds to a specific question, ensuring semantic interpretation. For
unstructured data, especially the sketches drawn by users based on their memory, quantification
is particularly challenging. Firstly, different users have varied expression preferences when
drawing sketches. Secondly, users possess different levels of information recall for different
spatial objects; some might remember the specific professor associated with an office, while
others might only recall the presence of an office. Lastly, the neatness of sketches varies; some
users produce clear and concise sketches, while others create less organized ones. To address this
issue, we have prompted users to initially outline their sketches (U-shaped corridor maps). This
allows us to easily determine the spatial orientation in their mental concept after identifying the
departure point. Our sketch standardization primarily focuses on the relative positions of nearby
objects, information labeling, and the approximate accuracy of several correctly labeled objects’
global positions. However, stringent requirements are not imposed on distance relationships or
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directional relationships between each object. For instance, if the object ”trash bin” appears
at the end of the first segment of the route, as long as the user places the marker for the trash
bin at the front end of that segment, it is not necessary to provide precise relative or absolute
coordinates. However, obvious errors, such as placing the trash bin at the starting point of the
first segment or close to the departure side of the OpenLab (while it should be further towards
the front of the OpenLab), will be considered spatial topological errors and marked incorrect. In
addition to the placement of landmarks themselves, the depth of information is also examined.
We have established the following rules:

1. Complete placement errors or no labeling score 0 points;

2. Correct placement that lets the reader understand the user does remember the presence of
an object but not its specific information, or recalls the information for several objects in
the area but cannot precisely label each object (e.g., remembering that the offices in this
area belong to the Cartography department but not knowing the specific details), scores 1
point;

3. Accurate labeling of the object and providing basic information about it for the reader to
comprehend its type and basic details scores 2 points;

4. Accurate labeling of the object and providing detailed information for the reader to
understand the type and specific details of the object (e.g., knowing which professor’s
office it is) scores 3 points.

Table 2: The red point is the landmark that the user marks and notes; the blue point is the
standard map objects along with its information.

Situation Score

a b b

0: Completely erroneous labeling or omission of
labeling will both be recorded as a score of zero.

b

0: Users may randomly label numerous unnamed
landmarks in a certain area based on their impres-
sion that it contains numerous elements. However,
if they cannot accurately indicate the correspond-
ing landmark locations and content, nor provide
meaningful spatial reference information, their
score is also considered as zero in such cases.
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b b
b: 0 b: 1 a

c

a b

c

1: Users fall into two categories: In the first
scenario, a user can label a landmark but cannot
recall its specific content; however, they are aware
of the category to which the landmark belongs,
which warrants a score of 1. Alternatively, users
who cannot recall the specific content or category
of a landmark, yet provide sufficiently accurate
surrounding annotations, demonstrating their com-
prehension of the spatial distribution within that
area, also receive a score of 1.

a
a: Prof.b

2: Users are capable of accurately placing marks
and providing corresponding labels, although lack-
ing in providing more detailed information. Such
annotations can demonstrate the users’ remem-
brance of the marked object and its relative spatial
location, serving as global anchors for evaluat-
ing the spatial and semantic accuracy of other
landmarks with less informational content.

a: Prof.b
a: Prof.b

3: Users not only demonstrate accurate recall of
the respective landmark’s location but also provide
detailed information, thereby ensuring semantic
clarity as well.

Furthermore, some ambiguous labeling behaviors cannot be considered correct. In corridors with
numerous rooms, some users with unclear memory might only recall that the corridor contains
numerous rooms, without remembering any specific ones. Consequently, they might haphazardly
draw room symbols to indicate the presence of many rooms in that corridor. Such behavior will
not be awarded scores according to the second criterion. Firstly, this type of feedback does not
reflect that users have acquired any useful spatial information. Additionally, this information does
not allow the reader to identify which specific rooms correspond to the randomly labeled ones.
Based on this, we assess each sketch, list various objects, and assign scores to each one. Since
objects are categorized as primary (rooms) and secondary (such as fire extinguishers, trash bins),
we have performed classification. However, the aforementioned quantification of information
solely evaluates semantic accuracy. For spatial accuracy, such as sequential relationships, we
have employed the concept of edit distance. We label the objects on both sides of each corridor
with letters, then create strings representing the order and information of objects drawn by users,
calculating the edit distance between the standard string and the composed string to measure
users’ spatial accuracy. This completes the quantification of sketch-related information. In
the questionnaire, to assess users’ memory of non-essential targets, an indoor floor plan was
provided, requiring users to encircle the approximate location of the fire extinguisher based on
their memory. As users were not required to precisely pinpoint the fire extinguisher’s location,
but rather to encircle it with a circle indicating its general vicinity, during the final analysis, if the
circled area drawn by the user encompassed or was near the fire extinguisher, it was considered
as a correct encirclement.
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a b c d
b c a d

(a) Users exhibit the ability to recall landmarks
and their corresponding content within a given
area, but demonstrate misplacement of these
elements.

a b c d
a b c

(b) Omission Error: Users omit spatial infor-
mation regarding certain landmarks, which be-
comes evident when sufficient spatial references
are present in the vicinity.

Figure 12: The right sequence is: abcd, and the consequence is bcad and abzc (z generally refers
to default filling.)

4.3 Data Analysis
In the data analysis phase, we initiate by conducting an analysis of background data. This analysis
assesses both the experimental and control groups from the perspectives of scene familiarity,
familiarity with Mixed Reality (MR) technology, and self-evaluation of spatial orientation. This
ensures a balanced foundation in crucial background aspects between the two experimental
groups. Subsequently, we delve into sketch analysis, scrutinizing it from two angles: semantic
scoring and spatial scoring. Semantic scoring is performed through assigning scores based on
semantics, while spatial scoring employs the concept of edit distance to measure sketch quality.
We analyze the disparities between the two groups in terms of these metrics. Concurrently,
the experimental area is partitioned into three segments to assess user performance across
distinct zones. Moving on to the user evaluation of the system, we examine participants’ overall
perception of the system and their specific evaluations of its design. This examination elucidates
user preferences for the two divergent systems—the experimental and control systems—and
helps elucidate reasons for disparities in sketch quality. Group analysis of stress, as determined
by the NASA questionnaire, reflects the adequacy of the experimental design and gauges the
multifaceted stress impact of the two systems on users. Analysis of the annotation of fire
extinguishers reveals users’ attitudes toward learning non-primary targets within indoor spaces.
Ultimately, we perform a correlation analysis to elucidate the degree to which certain user
backgrounds and preferences correlate with final outcomes. This comprehensive assessment
aids in evaluating the design strengths and weaknesses of the systems.

4.3.1 Background analysis

The background analysis encompasses users’ familiarity with the environment, their familiarity
with MR devices, as well as their orientation skills and navigational assessments. This is because
these three background aspects could directly influence the final outcomes: individuals with a
better sense of direction might find it easier to remember spatial information; those familiar with
the experimental area naturally have an advantage over those who are not; and individuals more
acquainted with MR technology tend to use our equipment more effortlessly. Thus, we aim to
ensure similarity in these three aspects of background between the experimental and control
groups. And these three kinds of inquiries correspond to various questions within the original
questionnaire: For responses involving multiple questions, we normalize the numerical values
of each question’s answers, rendering all differences comparable across two one-dimensional
vectors. To assess the disparities between these vector datasets, we employ the Levene variance
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Table 3: Background inquiry questions

Aspect Questionnaire Question

Environment familiarity POST TASK Q1
MR familiarity PRE TASK Q18-Q19

SOD score PRE TASK Q1-Q4, Q6, Q8, Q11-Q12, Q14-Q17

Table 4: Difference of background between Experimental Group and Control group.

Group Levene P-Value Diff P-Value

SOD 0.796 0.632
Scene Familiarity 0.173 0.480
MR Familiarity 0.187 0.112

comparison test to determine whether the assumption of approximate variances between the
two groups of data holds true. If the hypothesis of similar variances is upheld, the Student’s
t-test is employed. Conversely, if this hypothesis is rejected, the Welch’s t-test is utilized. The
Levene test can be employed to examine the equality of variances across multiple samples. It
initially computes the absolute deviations within the samples and subsequently performs variance
analysis to determine if substantial between-group differences exist. This method is applicable
to both normally and non-normally distributed data, thus boasting a broad scope of applicability.
Generally, a p-value below 0.05 is commonly regarded as significant evidence for rejecting the
null hypothesis (Levene, 1960):

𝑊 =
(𝑁 − 𝑘)
(𝑘 − 1) ·

∑𝑘
𝑖=1 𝑁𝑖 (𝑍𝑖. − 𝑍..)2∑𝑘

𝑖=1
∑𝑁𝑖

𝑗=1
(
𝑍𝑖 𝑗 − 𝑍𝑖.

)2 (1)

In this context, 𝑘 represents the number of distinct groups to which the sample cases belong,
𝑁 signifies the total number of examples. Meanwhile, 𝑍 refers to the absolute value of the
difference between the examples and the mean or median (Levene et al., 1960). Based on
the assumption of variance equality, different choices for hypothesis testing are made: When
variance is considered to be dissimilar or unequal, the Mann-Whitney U test is employed. This
method is widely used when the assumption of equal variances is not met and there is no need to
ascertain the normal distribution of data (Mann & Whitney, 1947); When variance is considered
to be similar or equal, the Student’s t-test is utilized (Mishra, Singh, Pandey, Mishra, & Pandey,
2019). The resulting p-values from both methods are typically assessed against a threshold of
0.05. The null hypothesis (𝐻0) posits that no significant difference exists between the two sets
of data. If the obtained p-value is less than 0.05, the null hypothesis is rejected. This series of
methods serve as our means to assess the distinctiveness of the obtained data, finding widespread
utility in both inter-group and intra-group comparisons. Through this approach, we endeavor to
identify background differences among participants in the experimental and control groups. We
aggregate quantified responses to questions pertaining to sense of direction, scene familiarity,
and MR familiarity. This yields three corresponding vectors for the experimental and control
groups. Each vector pair is subjected to Levene’s test, followed by the selection of an appropriate
testing method. Subsequently, p-values are computed, and a threshold of 0.05 is employed to
determine whether the null hypothesis should be rejected.

The P-value threshold for the hypothesis testing of both variance differences and mean differences
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Table 5: Mean semantic scores of overall and segments

Area Exp. important Con. important Exp. un-important Con. un-important

Overall 0.93 0.20 0.64 0.21
Block 1 1.01 0.15 0.35 0.04
Block 2 0.62 0.23 0.85 0.34
Block 3 1.08 0.38 0.73 0.24

is set at the empirical value of 0.05. Based on the data from Table 4, following the Levene’s test,
Student’s t-test is applied to all three groups of data. And the resulting P-values also indicate the
inability to reject the hypothesis of equal means, indicating minimal differences among these
three datasets. This suggests that the participants involved in the experiment, whether from the
control or experimental group, exhibit comparable overall backgrounds, which can imply that
potential biases in background conditions do not significantly impact the experimental outcomes.

4.3.2 Sketch map analysis

The analysis of hand-drawn sketches constitutes a focal point of this study. Hand-drawn sketches
encapsulate users’ recollection of various environmental features within the experimental setting
following their interaction with the system, thereby reflecting their spatial memory quality. The
evaluation of sketches is approached from two aspects. The first approach employs a quantitative
scoring system, whereby distinct scores are assigned to individual landmarks based on the
accuracy of their depiction and the level of detail provided by users. This scoring scheme
serves to depict the quality of users’ hand-drawn maps. Important landmarks and un-important
landmarks can be analyzed separately. The second approach involves an evaluation based on
spatial edit distance analysis. Each landmark along a given route is attributed a unique letter, and
users’ annotations are transformed into corresponding strings. Subsequently, the edit distance
between the user-generated string and the standard string is computed. A higher edit distance
signifies a greater number of modifications required to transform the user-generated string into
the standard string, thereby indicating poorer sketch quality derived from users’ hand-drawn
maps. Simultaneously, the U-shaped experimental area is partitioned into three distinct segments,
and each of these segments is to analyze whether there is difference for segment situation between
the control and experimental group.

In Table 5, drawing from the holistic and segmented quantitative analysis of sketches, the scores
presented in the table signify the mean assigned scores based on the entirety of each group.
Notably, across all aspects, the experimental group consistently outperforms the control group in
the table. Based on the results presented in the table, both in terms of the overall magnitude and
when considering segmented analysis, the experimental group outperforms the control group.
By depicting the score distributions of each group using box plots, as illustrated in Figure 13,
it becomes evident that the experimental group achieves significantly higher scores for both
important and un-important landmarks compared to the control group. Within each group, the
experimental group’s scores for important landmarks notably surpass those for un-important
landmarks. Conversely, in the control group, unimportant landmarks acquire a slightly higher
distribution of scores than important landmarks. Furthermore, the data distribution of scores
for un-important landmarks in both groups displays higher variability, indicating substantial
discrepancies in users’ memory of un-important landmarks.
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Figure 13: Distribution plots of user sketch quality assessment scores based on important and
un-important landmarks for both the experimental and control groups.

Table 6: Comparison of Inter-group and Intra-group Mean Differences between Experimental
and Control Groups

Group Levene P-Value Diff P-Value

Exp. Important & Exp. Un-important 0.490 0.003
Con. Important & Con. Un-important 0.632 0.892

Exp. Important & Con. Important 0.222 < 0.001
Exp. Un-important & Con. Un-important 0.008 < 0.001

In order to gain a more specific understanding of inter-group and intra-group score differences,
we also conducted variance and mean difference tests, resulting in the outcomes presented in
Table 6. Regarding the intra-group analysis, a significant disparity is observed between the scores
of important and un-important landmarks within the experimental group. This observation, in
conjunction with the data presented in Table 5, suggests that the scores for important landmarks
are notably higher than those for un-important landmarks within the experimental group. In
contrast, within the control group, such a distinction is not prominently evident, indicating that
scores for both important and un-important landmarks are relatively same. In the context of
inter-group analysis, the experimental group exhibits substantial differences compared to the
control group across all aspects, with users’ recall performance notably surpassing that of the
control group.

Blockwise analysis also reveals that both for scores related to important landmarks and un-
important landmarks, the experimental group outperforms the control group. From Figure 14, it
can be observed that in the density visualizations of user ratings, the density of ratings in the
experimental group typically exhibits a unimodal distribution, whereas in the control group,
the density of ratings usually appears as either unimodal or bimodal distributions. Overall,
the distribution of user ratings in the experimental group appears more dispersed, while in the
control group, it tends to be more concentrated. In terms of peak values, the scores from the peak
region of the experimental group is higher than that of the control group, explaining the visual
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(a) Block 1

(b) Block 2

(c) Block 3

Figure 14: Blockwise Analysis: scores in each segment
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Table 7: Difference analysis between each segment (p-values of Student’s t-test or Mann-Whitney
U’s t-test)

Segment Exp. Important & Con. Important Exp. Un-important & Con. Un-important

Block 1 < 0.001 < 0.001
Block 2 < 0.001 < 0.001
Block 3 < 0.001 0.001

superiority of the experimental group’s performance over the control group in each block. For
important landmarks, in Block 1 and Block 3, which correspond to the initial and final regions of
the experimental area, the experimental group performs better. However, in Block 2, the middle
section of the experimental area, their performance is relatively poorer. In contrast, the control
group performs poorly in Block 1, and there are a few occurrences of higher scores in both
Block 2 and Block 3. As for un-important landmarks, the experimental group’s performance
is better in Block 2 compared to Block 1 and Block 3. On the other hand, the control group’s
performance in Block 1 remains the weakest, with a concentration of low scores at the highest
peak of the bimodal distribution. The p-values resulting from the segment-wise analysis of
differences for each block, as listed in Table 7, reveal a substantial advantage in favor of the
experimental group over the control group. Hence, users in the experimental group demonstrate
outstanding performance in each segment.

We also conduct a differential analysis of the performance of the experimental group and the
control group in various blocks. Upon examination, significant differences are observed in
the recall of both important and un-important landmarks by the experimental group in various
blocks (𝑝 − value < 0.05). However, for the control group, the scores for the recall of important
landmarks remain relatively consistent across different blocks (𝑝 − value = 0.09), while the
scores for non-important landmarks exhibit significant variations (𝑝−value < 0.05). Combining
this with Table 14, it can be understood that the experimental group performs poorly in recalling
important landmarks in Block 2, and both the experimental and control groups exhibit lower
performance in recalling un-important landmarks in Block 1.

For the analysis of edit distances, as it involves the topological relationships and sequential
positions of landmarks, no distinction is made between important and un-important landmarks
in the grouping. The average distance values are calculated for the overall area and for each
block, listed as Table 8, showing that for all aspects the experimental group indicates better sptial
performance than the control group.Following the calculation of average edit distances for each
segment, a box plot representation is obtained, as illustrated in Figure 15. From the graph, it
can be observed that the edit distance scores of the control group are higher than those of the
experimental group. The Levene’s test for both groups yields a p-value of 0.046, indicating
the unequal variances assumption cannot be upheld. Therefore, the Mann-Whitney U’s test is
employed, resulting in a p-value less than 0.001, indicating a significant difference between the
two groups. This suggests that not only in terms of quantitative measures but also in terms of
spatial quality, the sketches of the experimental group outperform those of the control group.
In the case of the control group, the edit distance scores are concentrated in the high score
range, suggesting generally lower spatial quality of sketches in this group. On the other hand,
the distribution of edit distance scores for the experimental group is primarily concentrated in
the low score range with a few outliers, indicating some variability in spatial quality within the
experimental group, but with the majority still concentrated in the low-score region.
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Table 8: Average values of the edit distance score for the overall area and each block of the
experimental group and the control group

Area Control group Experimental group Diff p-value

Overall 0.93 0.69 < 0.001
Block 1 0.91 0.68 < 0.001
Block 2 0.95 0.69 < 0.001
Block 3 0.92 0.70 < 0.001

Figure 15: Box plot representation of edit distance scores

Similarly, conducting a segmented analysis on the edit distance, we obtain the distribution of
edit distance scores for each block, as illustrated in Figure 16. For each block, the distribution of
edit distance scores for the two groups is visualized by plotting score densities and interpolating
using KDE. The results indicate that in each block, the control group exhibits higher edit distance
scores, suggesting a lower level of spatial accuracy reflected in their sketches. From the graph,
it can be observed that the distribution of edit distance scores generally follows a unimodal
pattern, with the peaks of the control group corresponding to higher scores than those of the
experimental group. This trend reflects the higher spatial distribution quality of sketches in the
experimental group compared to the control group. For the experimental group, the poorest
performance is observed in Block 3, which lacks low edit distance scores. Although the peaks of
the experimental group are consistent across the three blocks on the graph, and the means of
the three areas are not significantly different, Block 3 exhibits a deficiency in low edit distance
scores. As for the control group, their performance is consistent across the three blocks, yet there
is a segment of low scores in Block 1 and 2, indicating there are small numbers of relatively
slightly better performance in those blocks. However, the overall examination reveals that there
is no significant difference among each block in the edit distance score (𝑝 − value > 0.05).

4.3.3 Small objects recall quality

The small experiment in this section aims to assess users’ memory of inconspicuous targets. The
fire extinguisher is an example of an inconspicuous yet crucial object in emergency situations,
making it a typical subject for examination. Both the experimental and control groups are
instructed to mark the locations they remember for fire extinguishers on a map, and the results are
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(a) Block 1

(b) Block 2

(c) Block 3

Figure 16: Blockwise Analysis: edit distance scores in each segment
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represented in a box plot as shown in Figure 17. The figure demonstrates that the experimental
group exhibits a higher degree of memory for fire extinguisher locations compared to the control
group. To assess the significance of this difference, a Student’s t-test is conducted on the two
sets of data, under the condition of homogeneity of variances, yielding a result p-value of 0.019.
This indicates a significant difference between the two groups, providing evidence that the
experimental group’s memory performance regarding fire extinguishers is significantly superior
to that of the control group.

Figure 17: Box plot of fire extinguisher recall quality

4.3.4 User evaluation analysis

Following the sketch analysis, we collect user evaluations of the system. Since both the
experimental and control groups do not have the opportunity to experience products from the
opposite group and the evaluation involves subjective judgments, the inter-group comparison
lacks significant differences and specific meaning. The questionnaire primarily request users
to assess the preferences, memory assistance, positional assistance, and orientation cognition
effects of color, labels, and landmark design. Specifically, ”COLORS” represents landmark
colors, including transparency; ”LABELS” represents label text and icons; and ”LANDMARKS”
represents aspects such as shape, location, and orientation. For the three elements of color, labels,
and landmark design, we aim to investigate whether users perceive these designed elements as
important and, in terms of preference, memory assistance, positional assistance, and orientation
cognition, which aspect holds greater significance for the users. To ascertain whether these three
elements play a predominant role and in which aspect they have the most significant impact,
we primarily employ ANOVA analysis and Tukey HSD analysis. ANOVA serves as a relatively
preliminary analysis, comparing the variability among means of different groups to determine
if within-group variables exhibit notable differences and providing corresponding confidence
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Table 9: Evaluation scores for the experimental group

Element Preference Memory Positioning Orientation

COLOR 4.95 3.95 3.37 3.47
LABEL 5.37 5.88 5.42 5.05

LANDMARK 5.53 6.11 6.00 5.26

Table 10: Evaluation scores for the control group

Element Preference Memory Positioning Orientation

COLOR 4.37 3.84 3.37 3.58
LABEL 5.32 5.37 4.58 4.79

LANDMARK 5.21 5.53 5.16 4.68

levels:
𝐹 =

𝐵𝑀𝑆𝑆

𝑊𝑀𝑆𝑆
, 𝑝 − value = 𝑃(𝐹 > 𝐹𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 |𝐻0) (2)

Among them, 𝐵𝑀𝑆𝑆 is the between means sum of squares, while the 𝑊𝑀𝑆𝑆 is the within
means sum of squares, and 𝐹 is the test statistical value (Fisher, 1970). Upon determining
the significant differences among the current group variables, it is essential to identify which
variables exhibit substantial disparities and pinpoint the most prominent one among these
variables. This necessitates the utilization of Tukey HSD analysis, which facilitates the detection
of pairwise differences between variables and highlights the most significant one through visual
representation. This method is essentially analogous to the t-test, yet it corrects for familywise
error rate, mitigating the risk of Type I errors, and not sensitive to the data normality (Tukey,
1949). However, the reliability of these two tests is contingent upon the requirement that the data
exhibit a normal distribution and possess homogeneity of variances. Homogeneity of variances
can be assessed using the Levene’s test, while the normality of distribution is examined through
the Shapiro-Wilk method. The null hypothesis of the Shapiro-Wilk test assumes that the data is
drawn from a population that follows a normal distribution.

𝑊 =

(∑𝑛
𝑖=1 𝑎𝑖𝑥(𝑖)

)2∑𝑛
𝑖=1(𝑥𝑖 − 𝑥)2

(3)

𝑊 is the test statistic, 𝑥 represents the sample, and 𝑎 is derived from the covariance matrix
(Shapiro & Wilk, 1965). Through these steps, we sequentially examine each aspect. We firstly
calculate the mean value of each aspect for three elements as Table 9 and Table 10. However,
these means are quite similar with little variation, making it difficult to identify prominent
variables. Hence, normality and homogeneity of variances tests are conducted, followed by the
output of ANOVA and Tukey HSD results.

1. Preference

Commencing with the experimental group, the Shapiro-Wilk test is applied to the three
elements. The results reveal that the corresponding p-values for all three elements are
not uniformly less than 0.05, thereby not satisfying the assumption of normal distribution.
Furthermore, the p-value for the test of homogeneity of variances is 0.433, indicating a
semblance of homogeneity in variance. Subsequent multifactor ANOVA testing yields
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a p-value of 0.325, suggesting an absence of significant differences within the groups.
Similarly, the variables within the control group also deviate from a normal distribution,
and the ANOVA analysis similarly indicates an absence of significant differences within
the group. The corresponding Tukey HSD plot is depicted in Figure 18. While there are
no significant differences between inter-group variables, comparatively, both the control
group and the experimental group find the design concerning colors dissatisfactory.

(a) Experiment group (b) Control group

Figure 18: Tukey HSD plot on how do you like the element you saw

2. Spatial memory

The investigation into whether users perceive these three elements as aiding their spatial
memory is ongoing, with the examination of corresponding differences. The variable dis-
tribution within the experimental group does not entirely conform to a normal distribution,
while that of the control group does; the Levene’s test yields p-values of 0.089 for the
experimental group and 0.016 for the control group, suggesting homogeneity of variances
for the experimental group but not for the control group. The results of a multifactor
ANOVA analysis for the experimental and control groups are both less than the threshold
0.05, respectively, indicating significant differences in intra-group variables. Despite the
non-normality in the experimental group’s data, we still generate the corresponding Tukey
HSD plot, as illustrated in Figure 19. The figure reveals that the issue with color design
stands out more compared to landmark and label design. Given the lower mean value
associated with color design, it can be inferred that concerning spatial memory, there is
a notably significant concern with color design relative to the other two aspects, which
might necessitate further analysis and improvements in subsequent stages.

3. Spatial locating

We also evaluate the impact of these designs on users’ spatial orientation. The variable
distributions for both the experimental and control groups do not adhere to a normal
distribution. Upon conducting the Levene’s test, the experimental group yields a p-value
of 0.224, while the control group’s p-value is 0.715, indicating homogeneity of variances.
The multifactor ANOVA reveals p-values less than 0.001 for the experimental group and
0.714 for the control group, suggesting significant internal differences for the experimental
group but not for the control group. Despite the non-conformity of normality in both sets of
data, a Tukey HSD chart is presented here, as depicted in Figure 20. From the graph, it can
be inferred that color design remains a salient concern in this evaluation. Users perceive
that landmark design and label design contribute to a better sense of self-orientation.
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(a) Experiment group (b) Control group

Figure 19: Tukey HSD plot on how do you think each element helps you remember the area

(a) Experiment group (b) Control group

Figure 20: Tukey HSD plot on how do you think each element helps you locate your position
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4. Orientation recognition

We investigate the self-assessment of user orientation cognition concerning these three
elements. The variable distributions of both experimental and control groups do not
adhere to normal distribution. Conducting the Levene test yields a p-value of 0.849 for the
experimental group and 0.915 for the control group, indicating homogeneity of variance.
The multifactor ANOVA reveals a p-value of 0.006 for the experimental group, suggesting
significant internal differences. In contrast, the control group has a p-value of 0.137,
implying minor internal differences. Despite both groups’ data exhibiting non-normality,
we present the Tukey HSD plot in Figure 21. In the control group, Tukey HSD also shows
small differences in variables between groups. In the experimental group, color is still a
prominent variable and is in a relatively disadvantaged position.

(a) Experiment group (b) Control group

Figure 21: Tukey HSD plot on how do you think each element helps you identify your orientation

In summary, in the four aspects mentioned above, users generally think that the color design is
significantly weaker than the landmark design and the label design in most cases. This result
will affect our investigation of the color design and the subsequent research analysis work. After
follow-up interviews, most people report that the color design has a significant role in landmark
semantic classification; however, in semantic layering, due to the influence of natural light and
the deficiency of device visualization, the color is distorted, making users unable to feel the
depth of color, and would tend to think that the dark and light colors are different colors. For
example, the dark green in the device may be biased towards blue, and be mistaken by some
users as dark blue.

In most cases, individuals comprehend indoor spatial structures through indoor maps, including
physical maps commonly posted in various locations on campus or electronic maps. Therefore,
we also explore whether users who have experienced AR devices hold higher expectations and
interest in understanding indoor spaces through AR. We conduct a brief study within both the
experimental and control groups, gathering user perceptions of AR and maps. In the experimental
group, the average interest rating for AR is 5.63, while for maps, it is 4.53. Levene’s test indicates
homogeneity of variance between the two groups, and a Student’s t-test yields a p-value of 0.019,
indicating significant differences. Further analysis within the control group reveals an average
interest rating of 5.58 for AR and 4.11 for maps. After conducting tests for homogeneity of
variance and Student’s t-test, the p-value is 0.009, indicating substantial differences. Hence, it
can be inferred that both the control and experimental groups hold high expectations for utilizing
AR in understanding indoor spaces.
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4.3.5 Workload evaluation

The NASA Load Test primarily assesses the stress experienced by users during the experiment,
encompassing psychological stress, physical stress, time constraints, self-assessment of perfor-
mance, self-exertion assessment, and evaluation of negative emotions. Users are required to
rate their stress levels during both the Learning and Recalling phases. This feedback not only
provides insights into the challenges users face during the experiment, aiding in the interpretation
of their performance, but also contributes to the evaluation of the experiment’s overall workload,
facilitating improvements in subsequent experimental designs. Among all the metrics, lower
scores indicate more positive ratings, while higher scores represent a more negative perception.

(a) Spatial learning section

(b) Recalling section

Figure 22: Boxplot of NASA Test Load evaluation on two aspects

Comparing these data sets, it can be observed through difference tests that there are no significant
differences (𝑝 − value > 0.05) in the distribution of ratings for the same attributes between the
experimental group and the control group. However, visualizing the data distribution through
box plots still reveals some clues. A fascinating observation emerges from the data, as depicted
in Figure 22: during both the learning and recall phases, the experimental group reports a
greater degree of stress in terms of mental, temporal, and physical demands when compared
to the control group. However, when assessing their own performance, whether in spatial
learning or recall stages, the experimental group demonstrates increased confidence, believing
their performance to surpass that of the control group; this aligns with the factual outcomes.
Compared to the control group, the experimental group believe that they notably perceive a
more organized stream of information while wearing the AR system, allowing for the creation of
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finer sketches. However, during the recall phase, the control group tends to invest more effort in
recollecting the landmarks, even if the final results are inferior to those of the experimental group.
Both groups exhibit a relatively low level of negative emotions. Post-experiment interviews
reveal that some members of the experimental group tend to experience positive guidance from
the visualization system, enhancing their awareness of visual pressure and information load in the
spatial environment. Conversely, due to the nearly uniform design of landmarks, certain members
of the control group struggle to perceive the information load in the spatial environment. They
find it challenging to distinguish which landmarks require their attention, as these landmarks
appear monotonous, leading to their reluctance to engage in detailed observation.

4.3.6 Correlation analysis

After conducting comparative analyses on the existing data, we proceed to quantify users’
background information and perform regression analysis by correlating it with their quantified
sketching scores. The objective is to explore whether users’ performance in the current experiment
correlates with their backgrounds. The regression analysis employs three key background factors
as independent variables: users’ familiarity with the test environment, their sense of direction
(SOD), and their familiarity with Mixed Reality (MR) technology. The dependent variables
consist of users’ quantified scores for both important and non-important landmarks, as well as
their editing distances. For this regression analysis, several classic linear and non-linear models
are utilized as tools for assessing correlations:

1. Multivariate Linear Regression: A simple and classic regression model used to investigate
whether a linear relationship exists between the independent and dependent variables. This
method employs the least squares approach to estimate the coefficient matrix, aiming to
optimize the coefficients of the model. The estimation pattern for the coefficient matrix is
as follows:

𝛽 =

(
𝑋𝑇𝑋

)−1
𝑋𝑇 𝑦 (4)

Where 𝑋 represents the observed independent variables and 𝑦 represents the dependent
variable. In cases of multicollinearity among the observed variables, this method enables
the estimation of the coefficient matrix to obtain an optimal solution (Trenkler et al., 1996).

2. Polynomial Regression: This method is analogous to multiple linear regression, with the
distinction that it involves calculating the values of each independent variable from zeroth
to the highest order based on the given degree. The coefficients matrix is then computed
using the least squares method. Here we use 2 as our degree.

3. Ridge Regression: Also known as Tikhonov regularization. When solving overdetermined
problems, the covariance matrix of the coefficient matrix may become close to or equal to
a singular matrix. In such cases, using the least squares method can lead to instability.
Therefore, in Ridge Regression, Tikhonov introduces a regularization term to mitigate
bias:

𝐽 (\) = 𝐿 (\, 𝑑) + _𝑅(\) (5)

_𝑅(\) represents the regularization term and the corresponding parameter. This approach
helps mitigate issues related to singular values (Tikhonov, 1963).

4. Lasso Regression: It offers flexibility in covariate selection, inducing smoother changes in
coefficient values compared to ridge regression. Lasso actively engages in feature selection
and regularization, enhancing the interpretability of the model (Tibshirani, 1996).
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5. Decision Tree: A non-linear method that partitions the current data into subsets using
designated hyperplanes, selecting appropriate features for regression decisions.

To assess the regression outcomes, we employ the coefficient of determination, also known as
the R-squared, as a tool to examine the model’s performance. Its semantics involve examining
the proportion of variance in the dependent variable that can be explained by the independent
variables. This allows us to evaluate whether the current model possesses a certain level of
explanatory power (Steel & Torrie, 1960). Our dependent variables consist of the important
landmark scores, un-important landmark scores, and edit distance scores of both the experimental
and control groups. Hence, six rounds of regression analyses are conducted. Initially, we
construct a scatterplot matrix to observe the relationships between variables, as depicted in Figure
23. From the graph, it can be observed that there is no evident direct relationship between the
variables. To better analyze the collinearity between independent and dependent variables and
enhance the effectiveness of regression analysis, a correlation coefficient heatmap is constructed
for numerical analysis.

From Figure 24, it can be observed that there is no significant collinearity relationship between
any pair of independent variables. Therefore, various regression models can be attempted based
on this observation, and the results are presented from Table 11 to 16. The final regression results
indicate that the commonly used regression models perform poorly on the dataset. There is no
clear correlation between the experimental group and the control group in relation to different
dependent variables. Since the R Squared values are negative, the models’ fit is even worse
than that of random data. To further investigate whether participants’ backgrounds are related
to sketch quality, the Spearman correlation analysis is conducted to explore whether there is a
significant relationship between independent and dependent variables.

Table 11: Experimental Group: important landmarks

Model Mean Squared Error R-squared

Linear Regression 0.199 -3.508
Polynomial Regression 1.039 -22.509
Ridge Regression 0.188 -3.264
Lasso Regression 0.112 -1.542
Decision Tree Regression 0.134 -2.026

Table 12: Experimental Group: un-important landmarks

Model Mean Squared Error R-squared

Linear Regression 0.205 -2.582
Polynomial Regression 0.456 -6.963
Ridge Regression 0.184 -2.212
Lasso Regression 0.069 -0.207
Decision Tree Regression 0.235 -3.110

The Spearman correlation coefficient is a non-parametric measure of correlation used to assess
whether there is a monotonic relationship between two variables. The Spearman correlation
coefficient ranges from -1 to 1, where -1 indicates a perfect negative monotonic relationship, 1
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(a) Experiment group: Important landmark (b) Experiment group: Un-important landmark

(c) Experiment group: Edit distance (d) Control group: Important landmark

(e) Control group: Un-important landmark (f) Control group: Edit distance

Figure 23: Scatterplot matrix of independent and dependent variables
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(a) Experiment group: Important landmark (b) Experiment group: Un-important landmark

(c) Experiment group: Edit distance (d) Control group: Important landmark

(e) Control group: Un-important landmark (f) Control group: Edit distance

Figure 24: Correlation heatmap of independent and dependent variables

Table 13: Experimental Group: Edit distance

Model Mean Squared Error R-squared

Linear Regression 0.030 -0.779
Polynomial Regression 0.170 -9.233
Ridge Regression 0.028 -0.699
Lasso Regression 0.018 -0.106
Decision Tree Regression 0.029 -0.429
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Table 14: Control Group: important landmarks

Model Mean Squared Error R-squared

Linear Regression 0.019 -3.170
Polynomial Regression 0.017 -2.582
Ridge Regression 0.019 -3.003
Lasso Regression 0.011 -1.262
Decision Tree Regression 0.031 -5.671

Table 15: Control Group: un-important landmarks

Model Mean Squared Error R-squared

Linear Regression 0.040 -7.722
Polynomial Regression 0.075 -15.491
Ridge Regression 0.038 -7.296
Lasso Regression 0.018 -2.999
Decision Tree Regression 0.079 -16.429

Table 16: Control Group: edit distance

Model Mean Squared Error R-squared

Linear Regression 0.001 -2.274
Polynomial Regression 0.002 -5.187
Ridge Regression 0.001 -2.207
Lasso Regression 0.001 -1.050
Decision Tree Regression 0.001 -2.738
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indicates a perfect positive monotonic relationship, and 0 indicates no monotonic relationship.
This correlation coefficient can also measure curved relationships (Daniel, 1990).

Table 17: Spearman correlation p-values

Scene familiarity SOD MR familiarity

Experimental&Important 0.240 0.213 0.384
Experimental&Un-important 0.895 0.767 0.936
Experimental&Edit distance 0.486 0.248 0.830
Control&Important 0.146 0.491 0.715
Control&Un-important 0.362 0.810 0.422
Control&Edit distance 0.935 0.262 0.411

Consequently, the Spearman correlation coefficients p-value between each set of data’s in-
dependent variables and dependent variables are computed, yielding Table 17. Under the
consideration to set the threshold as 0.05, in the table, all of data exhibit weak monotonic
correlations. Therefore, it can be asserted that within the AR-based spatial learning paradigm
we have designed, improvements can be achieved in users with different scene familiarity, MR
familiarity and SOD, while these enhancements have little correlation with users’ backgrounds.

5 Discussion and Conclusion

5.1 Summary
In this paper, we first introduce the potential benefits of MR-based virtual landmarks for
indoor navigation, positioning, and spatial cognition, emphasizing their role in facilitating
spatial learning. However, the challenge of organizing intricate yet visually monotonous indoor
spatial information arises, compounded by an overload of landmarks. Therefore, we introduce
the Chunking method to organize and segment spatial information. After exploring spatial
semantic chunking and spatial information chunking, we employ spatial classification and
hierarchical visualization techniques to design our AR system. Following the system’s design, a
control group without spatial classification and hierarchical visualization is set up to assess the
effectiveness of our system. Concurrently, we conduct experiments involving both experimental
and control groups, each consisting of 19 participants, to examine the efficacy of spatial learning.
Upon completing the experiments, data analysis is carried out. We comprehensively analyze
participants’ backgrounds, evaluate their spatial learning outcomes at both magnitude and spatial
levels, and compare and reflect on their subsequent feedback. The experiment and corresponding
data analysis validate that our current chunking method, which involves classification and
layering, yields superior outcomes compared to scenarios without chunking. This approach
effectively addresses the challenge of managing vast amounts of information and significantly
enhances spatial learning. The study also involves correlational analysis between participants’
backgrounds and their final outcomes, demonstrating the general applicability of our system’s
efficacy in enhancing spatial cognition across diverse user profiles.
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5.2 Discussion
5.2.1 Explanation to the final result

Our study, including the design, experiments, and subsequent analysis, has convincingly
showcased the effectiveness of AR systems employing spatial chunking in enhancing spatial
learning when compared to AR visualization systems lacking information organization. However,
delving into the underlying reasons for this phenomenon is imperative. It is widely accepted that
the reorganization of intricate and disordered information can establish a structured foundation
for spatial memory, thereby bolstering learning outcomes. Nevertheless, as we delve into Section
4.3.5, we stumble upon some intriguing observations.

Firstly, it is important to note that the spatial chunking methodology is intended to restructure
existing spatial information, reducing information overload and enhancing learning capacity.
Curiously, our experimental group reports elevated levels of stress compared to the control group.
Despite this, the experimental group displays greater self-confidence in their performance, a
trend consistent with our data analysis findings.

Building on this, Cheng (2017) assert that a low perceived information load does not necessarily
translate into a positive learning intent. In our study, we distinguish between information load
and the perception of information load as two distinct concepts. Information load signifies the
current quantity of organized information, whereas the perception of information load pertains
to the user’s subjective experience of this information volume. This perspective aligns with
İbili (2019), who argue that the primary role of AR is to reduce irrelevant information load
while augmenting relevant information load, underscoring the critical importance of AR system
design.

In the control group, nearly all landmarks adhered to a uniform design pattern. Pascoal
and Guerreiro (2017) elucidate that inundating AR environments with excessive contextual
information can render it meaningless, as AR’s core objective is to emphasize relevant information.
Consequently, in such scenarios, the control group may struggle to discern complex and
disordered information within the current scene, possibly leading to a lack of focused thinking—a
phenomenon akin to the Dunning-Kruger effect (Mazor & Fleming, 2021).

Contrastingly, even though the experimental group perceives a greater level of pressure, it is
important to note that what they perceive is useful and well-organized information, affording
them an advantage in their final performance. For the control group, users experience a sense
of disorientation amidst the cluttered information. Consequently, they not only fail to perceive
potential associations within the space but also exhibit a lack of inclination toward proactive
learning. In contrast, the experimental group is capable of perceiving rational information cues
generated by virtual landmarks. This engenders a proactive learning attitude, enabling them to
swiftly comprehend the fundamental spatial structure and experience the acquisition of spatial
knowledge. However, a judicious reduction in the perception of information load during the
design phase is essential. An excessive perception of information load can have adverse effects
on learning, ultimately diminishing learning efficiency (Chu, 2014; Wang, Fang, & Gu, 2020).

Simultaneously, block-wise exploration is also a noteworthy point for discussion. Firstly,
concerning the edit distance scores, there are no significant differences observed among the
various blocks. This is because, overall, even in the experimental group, the number of
annotations for landmarks is quite low. In situations where the number of landmarks is low,
spatial topological errors are less likely to occur, resulting in relatively stable edit distance scores
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across different blocks.

Regarding the semantic scores for important landmarks, the presence of a large number of
landmarks in Block 2 leads to a performance decrease for both groups. Despite our efforts in
information organization, users are still affected by a certain degree of information overload in
this block, resulting in relatively poor performance. In contrast, the control group’s scores are
consistently low across all blocks, exhibiting poor performance in each one.

As for the semantic scores for non-important landmarks, we observe that both the control and
experimental groups perform worse in Block 1. Block 1 lack higher scoring segments compared
to the other blocks. Users tend to initially focus their attention on visually prominent primary
landmarks when wearing AR devices, leading to a delay in attention to un-important landmarks.

Correlation analysis also provides a new perspective. We explore the influence of background
factors on the final result assessment by fitting various commonly used linear and nonlinear models
to examine the relationship between influencing factors and the final results. However, these
models yield poor results. Subsequently, in Spearman’s rank correlation test, it is observed that
there is a lack of monotonic consistency in the relationship between the independent variables
and the dependent variables. This outcome suggests that our current system design is not
significantly influenced by user backgrounds, demonstrating the system’s general applicability.

5.2.2 Achievements

Overall, we have successfully designed an indoor spatial learning assistance system based on the
concept of spatial chunking. Subsequently, through comprehensive data analysis following the
experiments, we have provided evidence supporting the effectiveness of our design. Our study has
designed an AR-based indoor spatial learning assistance system with the aim of aiding individuals
in organizing potentially related information within indoor spaces, thereby enhancing their ability
for spatial learning. We employ the Chunking technique to flexibly segment the information
present within the indoor environment. Different categories of objects are distinguished using
various colors, with primary landmarks being highlighted in bright colors and non-primary
landmarks depicted in lighter shades. Following the design and deployment of the system onto
mobile AR devices, we conducted comparative experiments involving experimental and control
groups. Subsequent data analysis after the experiments has demonstrated that key metrics that
could potentially influence the experimental outcomes, such as spatial orientation, familiarity
with the environment, and proficiency with Mixed Reality (MR), remain balanced between
the experimental and control groups. Given this, we assign our designed AR system to users,
allowing them to explore our experimental environment. We then evaluate users’ spatial learning
quality based on semantic landmark scoring of the obtained recall sketches and spatial edit
distances. The study reveals that, regardless of whether it is for important landmarks or less
significant ones, and whether it is in terms of semantic or spatial scoring, the experimental
group’s average scores surpass those of the control group, and statistical tests confirm that
the differences are significant. This indicates that the incorporation of spatial chunking, as
opposed to not using chunking, effectively enhances individuals’ spatial learning efficiency.
Simultaneously, we also conduct tests on users’ memory of some inconspicuous landmarks,
such as fire extinguishers. The results indicate that, in comparison to the control group, the
experimental group can significantly remember more fire extinguishers. This suggests that the
design of spatial chunking also demonstrates advantages in memory retention for small objects.
Furthermore, feedback obtained through post-experiment surveys reveals that participants
generally perceive AR as superior to traditional paper or electronic maps in the context of indoor
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spatial cognitive learning. We conclude our study with a correlation analysis. The results reveal
that, for our AR system, several prominent background variables such as familiarity with MR,
familiarity with the environment, and directional aptitude do not significantly impact the final
quality of spatial memory. This suggests that our designed system effectively caters to users
with varying backgrounds, substantiating its considerable versatility.

5.2.3 Limitations

However, our study still has certain limitations that necessitate further refinement and reflection
in order to enhance its generalizability and deepen our insights:

1. The experiment requires a larger pool of participants. Although the current participants
exhibit a degree of balance in several key background indicators, a broader array of
volunteers in future research will introduce greater diversity in background characteristics.
This rich source of data will assist us in conducting more diversified differential studies,
exploring the enhancements offered by the Chunking-based AR spatial learning system. It
will also enable us to assess the system’s generalizability and universality.

2. Furthermore, our experimental environment is relatively limited. Our testing site represents
a typical university campus professorial office area, which contains somewhat monotonous
content. In future research, expansion to other types of environments should be considered,
such as classroom areas within schools, exhibition areas, and the exploration of experiments
in different types of large buildings such as malls and office complexes. Deploying AR
systems designed based on Chunking principles in various architectural settings is beneficial
for assessing the universality of our current approach and for addressing a range of potential
new challenges.

3. The design of AR systems requires more careful consideration. For instance, in the aspect
of color design, color is a vital tool for our chunking process. However, many users express
significantly higher levels of dissatisfaction with color design compared to landmark and
label design. Through subsequent feedback interviews, users suggest that using color
depth to represent the effectiveness of primary landmarks in reflecting the hierarchical
structure of landmarks may not be very effective. This is associated with real-world
external factors such as natural light interference and the actual display issues of AR
device screens. Therefore, system design should take into account practical deployment
issues and attempt to use more robust elements to execute the Chunking concept.

4. Furthermore, a more nuanced approach to questionnaire design is essential for our research.
Currently, our experiments predominantly rely on sketch-based assessments to evaluate
the quality of users’ spatial learning. However, it is evident that this approach has its
limitations, particularly in providing a holistic understanding of spatial memory. To address
this limitation, we need to incorporate a wider array of test questions that encompass
diverse aspects of spatial cognition. This could include quantitative tests related to users’
orientation and distance estimation abilities, as well as questions that delve into the
cognitive processes underlying their spatial learning experiences. Such an approach would
not only enrich our dataset but also enable us to gain deeper insights into the multifaceted
phenomena associated with spatial learning in the context of augmented reality.

5. While our experimental group outperforms the control group in the memory of small objects,
overall, users in both groups exhibit subpar memory retention for certain inconspicuous
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landmarks. Subsequent research should endeavor to balance memory for significant and
inconspicuous landmarks through more diverse design approaches.

It’s worth considering the practical implications of our findings. As we refine our AR-guided
spatial learning system, we should also contemplate real-world deployment challenges. For
instance, the feedback received from users regarding the use of color for chunking raises
important questions about the usability and visibility of AR systems in various environmental
conditions. Exploring alternative, more robust design elements for implementing chunking
may be a valuable avenue for future research. In conclusion, while our current research has
provided valuable insights, there is still ample room for improvement and exploration. By
refining our questionnaire design, expanding the scope of our assessments, and considering
real-world deployment challenges, we can advance our understanding of AR-guided spatial
learning and its practical implications.

5.2.4 Scene transferability

Our current research has achieved significant results, but it is limited to office areas within
university campuses. Generalizing and extending our methodology to other large buildings
would be beneficial, as it would allow our research to be applicable in different scenarios and
promote the industrial implementation of AR-based spatial learning systems. Although we have
not experimented with our methodology and system in other buildings, we still provide some
guiding recommendations. We believe that modern architectural designs adhere to certain rules
that aim to facilitate the functionality of buildings and rationalize the layout of indoor spaces,
avoiding confusion for occupants. However, indoor spaces often lack global landmarks to guide
individuals, and different areas tend to appear uniform, lacking distinctive and prominent features.
As a result, some logically and contextually relevant spatial objects may not be immediately
noticeable to people. Therefore, our task is to employ visualization techniques to present these
relationships and reorganize spatial information based on the orientation abilities of different
individuals, accommodating their cognitive load capacity. Here, we present several iconic public
buildings and offer design suggestions based on our methodology:

1. Museum of Art and History: In art and history museums, guiding visitors through various
exhibition halls is crucial. To achieve this, we can implement unique virtual landmarks
and color coding to help visitors understand different art movements and historical periods.
The application of spatial chunking can be employed to facilitate the recognition of
distinct exhibition areas and enhance the visitors’ experience. Notable virtual landmarks
and color-coded virtual objects can be used to categorize and hierarchically organize
information for each exhibition hall. For instance, in a history museum, a visual timeline
can be used to guide users through the history exhibition hall, aiding in quickly grasping
the organization of the exhibits. In an art museum, paintings from different art movements
can be categorized at the first level, followed by chunking the works of corresponding
artists, providing visitors with informative navigation.

2. Conference Center: Conference centers typically feature vast indoor spaces interconnected
by various-sized meeting rooms. In such venues, participants need to swiftly locate their
desired meetings and event spaces. To assist them, virtual signposts, gradient-color-coded
visualizations of schedules, and annotations on meeting rooms can be created. These
visual aids can provide users with an intuitive understanding of the proximity and timing
of each event. A color-coding system can help users comprehend the spatial organization
of the building.
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3. Library: Libraries consist of diverse sections, reading rooms, and numerous bookshelves.
Users often seek specific books or study areas. In this context, virtual landmarks can
be placed in different reading zones, and interactive virtual maps can be integrated. As
libraries typically have well-defined areas, some users may rely solely on the building’s
design to navigate. Thus, the system can emphasize visual assistance by providing rough
global category landmarks to help users determine their general search direction. For users
who prefer or require more intricate navigation, finer-grained landmarks can be offered for
complex or design-dependent areas. Interactive maps, as well as navigation assistance at
both coarse and fine levels, can cater to various user needs.

4. Shopping Mall: Shopping centers encompass malls of various sizes and multifaceted
functional zones, with a constant flow of visitors, making location and navigation
challenging. Shoppers often need to find restrooms, elevators, emergency exits, as well
as specific stores and entertainment facilities promptly. Virtual icons and interactive
navigation tools, accompanied by bold color zoning, can be employed to provide clear
guidance. For instance, using translucent color blocks to cover different commercial or
functional zones can offer users direct visual cues.

5. University Campus: On university campuses, students and visitors need to locate academic
buildings, student centers, and dining areas. To facilitate this, virtual landmarks can
be established, and color-coded virtual objects can be used to distinguish different
academic departments and administrative offices, aiding efficient navigation around
campus. Additionally, the complexity arising from multiple distinct buildings on a campus
can be addressed by incorporating global chunking landmarks: for significant areas that
serve as global orientation points, users can have global visibility.

By applying our methodology to these diverse public buildings, we aim to enhance spatial
perception and cognitive mapping for users, making their experiences more intuitive and efficient
within these spaces.

5.3 Conclusion
Our study introduces a spatial chunking approach to address the issue of information overload in
indoor spatial learning through Augmented Reality (AR). We employ a color-based categorical
and hierarchical visualization method, aiming at guiding individuals towards more efficient
indoor spatial learning, while preserving finer details of the indoor environment.

Subsequent experimental results indicate a significant improvement in users’ spatial learning
efficiency when employing the spatial chunking method, as opposed to a naive and uniform
virtual landmark design. This finding underscores the critical role of information organization
in AR-based learning and highlights the impact of information load management on learning
outcomes. Moreover, our correlation analysis suggests that the enhancement in spatial learning
performance is minimally correlated with user background factors, thereby supporting the
universality of our research findings.

Although the study has identified some shortcomings in aspects like the design of virtual
landmark colors and lack of efficiency to assist un-important landmark learning, our study offers
valuable insights for enhancing practical indoor spatial learning and provides a foundational
framework for future investigations into the intricate relationships among information load,
information organization, and learning outcomes. It also offers a forward-looking methodological
approach for conducting similar experiments in different contexts. We encourage researchers
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and designers in the spatial learning field of AR technology to consider the adoption of the
spatial chunking approach to optimize AR learning experiences and consequently improve users’
learning outcomes.
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6 Appendix

6.1 Questionnaire

 
 

Informed Consent Form 
Dear Participant, 

 

thank you for your participation in the study.  

 

In this study, you’ll be asked to perform certain tasks wearing Microsoft HoloLens and to answer some questions. The whole process 

will take around 30-60 minutes. You are free to stop, quit the study and retract your data at any time during the study with no further 

consequences. Privacy: Original data obtained from this study will be anonymized and only processed in aggregate. In such form, it 

might be published in academic journals, presentations or other media, but never in a way that would allow individual identification. 

One week after the study it might no longer be possible to retract your data from such aggregated analyses.  

 

If you have any questions, please contact Jiongyan Zhang via jiongyan.zhang@tum.de. 

 

▢ I confirm I volunteered to participate in this study. 

▢ I confirm I was allowed to ask questions and that I was provided with responses. 

▢ I confirm I was presented with this document prior to the beginning of the study. 

▢ I confirm and I understood my right to quit the study at any time. 

▢ I confirm I was informed that a conversation with researcher will be recorded after navigation during the study. 

 
 
 

Date  Signature of researcher 
 

 
 
 

Signature of participant 

 

 

If you would like to be informed about future studies, please let us know your email address:  
 
 
 

Email address (optional) 
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Pre-task questionnaire 

 
Gender: Male  Female  Other Nationality:   Age:  

Field you are working/studying in: 

 

 

This questionnaire consists of several statements about your spatial and navigational abilities, preferences, and 

experiences. After each statement, you should circle a number to indicate your level of agreement with the 

statement. Circle "1" if you strongly agree that the statement applies to you, "7" if you strongly disagree, or some 

number in between if your agreement is intermediate. Circle "4" if you neither agree nor disagree. 

 

1= strongly agree / none, 7 = strongly disagree / a lot of 

1 I am very good at giving directions. strongly agree 1 2 3 4 5 6 7 strongly disagree 

2 I have a poor memory for where I left things. strongly agree 1 2 3 4 5 6 7 strongly disagree 

3 I am very good at judging distances. strongly agree 1 2 3 4 5 6 7 strongly disagree 

4 My “sense of direction” is very good. strongly agree 1 2 3 4 5 6 7 strongly disagree 

5 
I tend to think of my environment in terms of cardinal 

directions(N, S, E, W). 
strongly agree 1 2 3 4 5 6 7 strongly disagree 

6 I very easily get lost in a new city. strongly agree 1 2 3 4 5 6 7 strongly disagree 

7 I enjoy reading maps. strongly agree 1 2 3 4 5 6 7 strongly disagree 

8 I have trouble understanding directions. strongly agree 1 2 3 4 5 6 7 strongly disagree 

9 I am very good at reading maps. strongly agree 1 2 3 4 5 6 7 strongly disagree 

10 
I don’t remember routes very well while riding as a passenger 

in a car. 
strongly agree 1 2 3 4 5 6 7 strongly disagree 

11 I don’t enjoy giving directions. strongly agree 1 2 3 4 5 6 7 strongly disagree 

12 It’s not important to me to know where I am. strongly agree 1 2 3 4 5 6 7 strongly disagree 

13 
I usually let someone else do the navigational planning for 

long trips. 
strongly agree 1 2 3 4 5 6 7 strongly disagree 

14 
I can usually remember a new route after I have traveled it 

only once. 
strongly agree 1 2 3 4 5 6 7 strongly disagree 

15 I don’t have a very good “mental map” of my environment. strongly agree 1 2 3 4 5 6 7 strongly disagree 

16 I usually get lost indoors. strongly agree 1 2 3 4 5 6 7 strongly disagree 

17 I usually get lost outdoors. strongly agree 1 2 3 4 5 6 7 strongly disagree 

18 I have __ experience with Augmented Reality. none 1 2 3 4 5 6 7 a lot of 

19 I have __ experience with Virtual Reality. none 1 2 3 4 5 6 7 a lot of 
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TASK1: Please draw and label all the spatial information you remember, including 

rooms, room names, stereoscopes, fire distinguisher, garbage can and anything else 

you can recall. 
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TASK 2: Please complete the following questionnaire (“1” = not at all, “7” = very 

much). 

COLORS stands for the color of landmarks including transparency, LABELS stands for the label text and icon, 

LANDMARKS stands for the shape, position and orientation etc.  

1. Before this walking, how familiar were you with the study area? 

not at all 1 2 3 4 5 6 7 very much 

2. How do you like the device/hardware? 

not at all 1 2 3 4 5 6 7 very much 

3. How do you like the interface? 

not at all 1 2 3 4 5 6 7 very much 

4. How do you like each element you saw? 

Colors    not at all 1 2 3 4 5 6 7 very much 

Labels    not at all 1 2 3 4 5 6 7 very much 

Landmarks   not at all 1 2 3 4 5 6 7 very much 

5. How do you think each element helps you remember the area? 

Colors     not at all 1 2 3 4 5 6 7 very much 

Labels     not at all 1 2 3 4 5 6 7 very much 

Landmarks   not at all 1 2 3 4 5 6 7 very much 

6. How do you think each element helps you locate your position? 

Colors     not at all 1 2 3 4 5 6 7 very much 

Labels     not at all 1 2 3 4 5 6 7 very much 

Landmarks   not at all 1 2 3 4 5 6 7 very much 

7. How do you think each element helps you identify your orientation? 

Colors     not at all 1 2 3 4 5 6 7 very much 

Labels     not at all 1 2 3 4 5 6 7 very much 

Landmarks   not at all 1 2 3 4 5 6 7 very much 

8. How do you think of the spatial information overload in this system? 

not at all 1 2 3 4 5 6 7 very severe 

9. Do you think the landmark design has a certain sense of hierarchy and classification? 

not at all 1 2 3 4 5 6 7 very much 

10. Do you think this kind of sense of hierarchy and classification assists you to remember the space? 

not at all 1 2 3 4 5 6 7 very much 
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11. To what extent does the landmark design help you to judge the distance between landmarks? 

not at all 1 2 3 4 5 6 7 very much 

12. To what extent does the landmark interfere with your eyesight? 

not at all 1 2 3 4 5 6 7 very much 

13. To what extent does the landmark interfere with your observation to the real world? 

not at all 1 2 3 4 5 6 7 very much 

14. To what extent does the design help you with understanding the local spatial layout? 

not at all 1 2 3 4 5 6 7 very much 

15. Please compare your preference between AR and map: which help you understand the indoor space more? 

Map    not at all 1 2 3 4 5 6 7 very much 

AR   not at all 1 2 3 4 5 6 7 very much 
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TASK 3: Just imagine there is a fire alarm, and you need to extinguish a 

controllable fire: where do you think you could find the fire extinguisher? 
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NASA Task Load Index 

Hart and Staveland’s NASA Task Load Index (TLX) method assesses workload on five 7-points scales. Increments of high, 

medium and low estimates for each point result in 21 gradations on the scales. 

1. Mental Demand: How mentally demanding was the task? 

                    

                    

         Very Low            Very High 

 

2. Physical Demand: How physically demanding was the task? 

                    

                    

         Very Low            Very High 

 

3. Temporal Demand: how hurried and rushed was the pace of the task? 

                    

                    

         Very Low            Very High 

 

4. Performance: How successful were you in accomplishing what you were asked to do? 

                    

                    

         Perfect                 Failure 

 

5. Effort: How hard did you have to work to accomplish your level of performance? 

                    

                    

         Very Low            Very High 

 

6. Frustration: How insecure, discouraged, irritated, stressed, and annoyed were you? 

 

                    

                    

         Very Low            Very High 

 

 

 

 

Please use different symbols: 
Spatial Learning Section:   “X” 
Task Quiz Section:              “O” 
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Please confirm the authenticity of data in this document (including pre-task questionnaire, post task questionnaire and task 

quiz). 

 

 

▢ I confirm the authenticity of all data in the document (including pre-task questionnaire, 

post task questionnaire and task quiz). 

 

 
 
 

Date  Signature of researcher 
 

 
 
 

Signature of participant 
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