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Abstract

OpenStreetMap (OSM), being the most successful Volunteered Geographic In-
formation (VGI) project, holds a vital role in long-term open-sourced geospatial
datasets, sustainable development, humanitarian activities as well as emergence
response. Keeping OSM data up-to-date and complete in areas struggling with
extreme poverty is an important mission for the mapping community. The
development of Geographic Artificial Intelligence (GeoAI) and multimodal Earth
Observation (EO) data in the last decade have shown opportunities for support-
ing automatic mapping processes. Moreover, it presents a promising prospect
for assisting in humanitarian mapping, particularly in identifying areas lacking
OSM buildings and estimating the quantity of missing buildings that need to be
mapped.

Though conventional AI methods demand extensive training data, recent
advancements in adapting pre-trained and task-agnostic AI models have yielded
remarkable success in downstream tasks through fine-tuning, few-shot, or zero-
shot learning. However, when adapting these pre-trained AI models to tackle
geographic tasks, striking a balance between geographic generalizability and
spatial heterogeneity of the model’s performance remains a key challenge. For
instance, detecting buildings across different regions of the world may require
repeated training of GeoAI models, making it challenging to achieve model
generalization across geographical space.

In this thesis, the Geographical Generalizability of GeoAI models was stud-
ied through the lenses of a case study of detecting OSM missing buildings
across diverse regions in sub-Saharan Africa. Specifically, this study proposed a
Geographical Weighted Model Ensemble (GWME) method, which began with
training a Single-Shot Multibox Detetion (SSD) base model for OSM missing
building detection in the source region (Kakola, Tanzania), and transferring this
base model to a set of reference areas surrounding the target area (Babadjou,
Cameroon) by multiple times Few-Shot Transfer Learning (FSTL), eventually
ensemble multiple FSTL predictions according to unique weights, which repre-
sents the importance of reference areas to the target area. The determination of
weights uses a pre-trained Vision Transformer model to simultaneously consider
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Abstract

both context and relative location information, called self-attention weights, com-
pared with the other three weighting approaches (average, image similarity, and
geographical distance). Intensive experiments showed the self-attention-based
weighted model ensemble method achieved the highest performance with a
96.95% precision, 78.99% recall, and 0.8705 F1 score. The promising results
shed inspiring light on improving the generalizability and replicability of GeoAI
models across geographic space.

Furthermore, to explore GeoAI-enhanced web mapping applications, this
thesis demonstrates a framework called GeoAI as a containerized microservice
(GeoAIaaS), which utilizes microservice-based architecture with pre-defined
mission recipes of handling geospatial data to lower the additional geography
expertise barrier and improve the reusability of GeoAI solutions. This study con-
ducts a building detection visualization application with standalone, distributed
developable, and simply deployable microservices. The GeoAIaaS could inspire
researchers with more possibilities in making web mapping applications across
multiple platforms.

Keywords: GeoAI, OpenStreetMap, Model Ensemble, Object Detection, Mi-
croservice
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1. Introduction

1.1. Motivation and Problem Statement

Volunteered Geographic Information (VGI) is a valuable tool for a wide range
of applications, including mapping, planning, and emergency response. Open-
StreetMap (OSM), as one of the most successful VGI projects, plays an important
role in supporting humanitarian mapping activities by providing open source
and accurate geographical information (Herfort et al., 2021). While OSM data can
be very valuable, it can also have some challenges. One of the main challenges
with OSM data is that it’s incomplete or out of date within some areas because
it is collected and maintained by volunteers. As shown in Figure 1.1, the OSM
building density varies across different regions in Africa 1.

Figure 1.1.: The OSM building density map in Africa Region.

It is important to fill gaps in OSM data for a number of reasons. First and
foremost, incomplete or out-of-date data can lead to misunderstandings or
errors in humanitarian aid activities, which can have serious consequences. For
example, if emergency responders are using outdated or inaccurate maps, they

1https://osm-analytics.org/#/

1
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1. Introduction

may have difficulty finding their way to the scene of an emergency, which could
delay response times and put lives at risk. Similarly, if cartographers or planners
are using incomplete or outdated data, they may make decisions based on
inaccurate information, which could lead to inefficient use of resources or other
problems.

It needs a huge amount of time to complete the OSM maps completely by
volunteers. It’s urgently needed to efficiently improve the existing mapping
workflows. In the recent decade, the increasing availability of high-resolution
satellite imagery allows for the enhancement and refinement of OSM data with
machine learning (ML) techniques and offers a variety of promising solutions to
this challenge currently encountered by humanitarian organizations (J. Chen &
Zipf, 2017; Pisl et al., 2021; Vargas-Muñoz et al., 2019).

In contrast to traditional machine learning, which requires a large number of
training samples, some few-shot learning methods have emerged in recent years
to help accelerate the speed and accuracy of mapping in areas with a few map
samples (B. Kang et al., 2019; Y. Wang et al., 2020). The FSTL method proposed
by Li et al. has confirmed that in the sub-Saharan region, a pre-trained base
model can perform well in a geographically remote area with few-shot or even
one-shot training (H. Li, Herfort, et al., 2022). However, a remaining challenge
for improving OSM missing buildings is the geographical generalizability of
trained GeoAI models to detect spatially far areas. This research attempts to find
a solution for improving the geographical generalizability of trained building
detection models from the source region to the target region, which may have
no training samples available. Furthermore, visualizing machine-generated
geographical content and exploring how to integrate GeoAI solutions into a web
mapping application is also an exciting challenge.

1.2. Research Objectives and Questions

The overall objective of this research is to investigate the geographical generaliz-
ability of GeoAI models for detecting OSM missing buildings and visualizing
predicted geographical contents via a web client. In order to fulfill this research
objective (RO), It was divided into the following sub-objectives:

• RO1: To implement Geospatial Artificial Intelligence (GeoAI) methods,
which can be well-generalized for OpenStreetMap missing buildings detec-
tion across geographical space.

• RO2: Design a GeoAI application to efficiently manage, evaluate, and

2



1.3. Thesis Structure

visualize machine-generated geographic contents.

To meet the above research objectives, the following proposed research ques-
tions (RQ) and sub-questions need to be answered:

• RQ1: How to improve OSM missing buildings by GeoAI methods across
geographical space?

– RQ1.1: What is GeoAI?

– RQ1.2: What GeoAI methods are commonly used for OSM missing
building detection?

– RQ1.3: How to enhance the geographical generalizability and eval-
uate the performance of the GeoAI solution to the geospatial object
detection task?

• RQ2: How to design and develop a GeoAI web application, especially
for OSM building detection?

– RQ2.1: What is a web mapping application?

– RQ2.2: How to efficiently visualize and manage machine-generated
geographic content?

– RQ2.3: How can GeoAI be integrated into web mapping applications?

1.3. Thesis Structure

The thesis structure is orchestrated as follows: Chapter 1 describes the back-
ground, motivation, and research objectives of the study. Chapter 2 reviews
related work and introduces some basic theoretical background, including but
not limited to VGI, GeoAI, and Web Mapping. Chapter 3 describes the detailed
workflow of the proposed GWME methodology and depicts the GeoAIaaS-based
infrastructure of the GeoAI-enhanced web mapping applications. Chapter 4
gives a brief summary of selected experiment areas, training datasets, and ex-
perimental configurations. Chapter 5 presents the results of the experiments
and the user interface of the web mapping application. Chapter 6 discusses the
solving ideas to research objectives across the overall thesis, as well as existing
limitations and future perspectives of current work. Chapter 7 summarized the
methodology and findings of the full thesis research.

3





2. Related Works and Theoretical
Background

2.1. Volunteered Geographic Information

User-generated content and Web 2.0 (O’Reilly, 2005), make it possible for every-
one to produce and share their own knowledge, and it is also the case for the
generation and propagation of geographical data online (Gómez-Barrón et al.,
2016). The utilization of Web 2.0 and crowdsourcing platforms for geographical
data has led to the emergence and advancement of Volunteered Geographic
Information (VGI), which was first termed by M. F. Goodchild (2007) in the
article "Citizens as sensors". With the rapid development of communication
technologies (low-cost GPS devices, mobile location based service (LBS) plat-
forms, high-resolution satellite imagery) and geographic information integrated
software, many well-known VGI projects appeared, including OpenStreetMap,
Mapillary, Wikimapia, etc. Aiming at encouraging the public to create, assemble,
and disseminate geographic information, VGI illustrates a great potential to be a
significant digital source of geographic understanding of the Earth.

2.1.1. OpenStreetMap and Humanitarian Mapping

OpenStreetMap (OSM) has become the most successful crowdsourced volun-
teered geographic information project to date since it was founded in 2004
(Minghini & Frassinelli, 2019). It aims to create an open-source map dataset that
is free to use, editable, and licensed under new copyright schemes (Haklay &
Weber, 2008). In areas where access to geographic information is regarded as a
national security problem, OSM may provide the cheapest source of geographic
information, and sometimes the only source (M. F. Goodchild, 2007).

Due to its open-source nature, relatively complete data quality, and accurate
geographic information, OSM is considered the most popular and widely used
VGI platform, which can largely support humanitarian mapping and Sustainable
Development Goals (SDG) as well as fill geographic data gaps for the entire world.

5



2. Related Works and Theoretical Background

Herfort et al. (2021) have summarized the evolution of humanitarian mapping
activities within OSM in Figure 2.1. The sketch illustrates that OSM highly
contributed to humanitarian activities, like humanitarian mapping response
in 2010 Haiti earthquake (Zook et al., 2010), West Africa Ebola outbreak in
2014 (Dittus et al., 2016), humanitarian mapping Cyclone Idai and Kenneth in
Mozambique (H. Li et al., 2020), supporting global response to the COVID-
19 pandemic (Minghini et al., 2020), and the 2023 Turkey Syria earthquake
(OpenStreetMap Wiki, 2023). More and more humanitarian mapping activities
have proven the huge value and potential of OSM for rapid emergency response
when disaster comes. However, in order to provide the most accurate and fastest
humanitarian aid response, it is important to boost the speed and accuracy of
mapping up-to-date and complete, high-quality geographic information within
OSM.

Figure 2.1.: The evolution of humanitarian mapping activities (until 2020) within
OSM, the tools development and imagery sources. Plots at the
bottom display the counts of buildings and highways added to OSM
(Herfort et al., 2021).

6



2.1. Volunteered Geographic Information

2.1.2. Mapping Challenges for OSM

Although OSM data holds great value for emergency response, post-disaster
mapping, and various humanitarian activities, accelerating the speed of hu-
manitarian mappings with less volunteer effort and employing more automatic
processes remains a significant challenge. This section explores the integration
of very high resolution satellite imagery and artificial intelligence as auxiliary
tools to assist volunteers in contributing data to OpenStreetMap.

Several platforms like Humanitarian OpenStreetMap Team (HOT), MapSwipe,
Ushahidi, and RapiD have emerged to facilitate and streamline the mapping
process. HOT (Soden & Palen, 2014) plays a vital role in coordinating volunteers
to respond to mapping tasks efficiently. It streamlines the mapping workflow
and ensures that the most critical areas are mapped promptly. MapSwipe (J.
Chen & Zipf, 2017) is another tool that engages volunteers in the initial stage of
mapping by asking them to identify areas that require mapping. This crowd-
sourced tool optimizes the allocation of mapping resources. Ushahidi (Ashley,
2009) focuses on collecting and managing information from various sources, in-
cluding social media and SMS, to improve the accuracy and comprehensiveness
of OSM data. RapiD (OpenStreetMap Wiki, 2019) leverages artificial intelligence
to semi-automatically extract features from high-resolution satellite imagery,
significantly reducing the manual effort required for mapping. Despite the expo-
nential growth of OSM data contributed by these auxiliary tools and volunteer
contributions, the issue of "geographical information is usually the least available
where it is most needed" continues to present a significant challenge (D. Sui et al.,
2013). The implications of this issue can lead to misunderstandings and errors in
humanitarian aid activities, which can have serious consequences. Humanitarian
organizations usually lack the precise location information of missing OSM data
and the capacity of needed volunteer efforts. Particularly, vast rural regions in
Sub-Saharan Africa remain unmapped (H. Li, Herfort, et al., 2022). Therefore,
novel approaches are needed to optimize humanitarian mapping processes,
aiming at reducing volunteer efforts and accelerating mapping speed.

Fortunately, the growing accessibility of high-resolution satellite imagery
enables the enhancement and refinement of OSM data through the application
of Machine Learning (ML) technologies, providing promising solutions to the
existing challenge faced by OSM community (J. Chen & Zipf, 2017; Pisl et
al., 2021; Vargas-Muñoz et al., 2019). Earlier research (J. Chen et al., 2019;
Herfort et al., 2019; Huck et al., 2021) have found the speed and accuracy
improvement of mapping OSM data leveraging ML technologies. The data
quality of massive ML-based mapping results is still a concern from OSM

7
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community (“Import/Guidelines OSM Wiki”, 2023). To figure out this issue,
machine-assisted mapping approaches are used instead to reduce the risk and
error of ML mapping results (OpenStreetMap Wiki, 2019). Early works by
Kaiser et al. (2017) and Mnih and Hinton (2012) explored the possibility of
integrating OSM data as training samples used by training deep neural networks
(DNNs) to solve segmentation tasks of streets and buildings. J. Chen et al.
(2019) introduced a machine-assisted mapping method involving the concept
of active learning from multiple crowds, which was subsequently validated in
humanitarian activities conducted in Malawi. Nonetheless, ML-based methods
demand large datasets for training. In regions with high OSM data density, the
existing OSM data can be employed to generate training datasets. Conversely, in
regions with limited OSM data density, like Sub-Saharan Africa, H. Li, Herfort,
et al. (2022) introduced a method that involves transferring the pre-trained model
from high-quality areas to distant geographic areas. This approach utilizes few-
shot training samples from the target area to fine-tune the generalization of the
pre-trained model. Their work showcased the transferability of AI models in
tackling geographic problems with limited computational resources and efforts.
However, a significant challenge persists in enhancing the generalizability of AI
models and effectively replicating them in geographically remote areas with no
OSM data. Research focused on adapting pre-trained AI models to low-resource
remote regions (using few-shot and zero-shot techniques) is yet to be explored.

2.2. Geospatial Artificial Intelligence

Geospatial Artificial Intelligence (GeoAI) has emerged as a research hotspot and
cutting-edge frontier for spatial analysis in the field of Geography. Significant
advancements have been achieved in the innovative application and expansion
of AI to solve geographic problems. Derived from computer science, AI research
is dedicated to the advancement of computer systems that acquire machine
intelligence, simulating human ways in perceiving, reasoning, and interacting
with the world and with each other (Russell, 2010). There’s no doubt that
AI community significantly enhances research and applications in geography.
Simultaneously, the geography community boasts a wealth of geographic data
and expertise that facilitates data-driven research with AI technologies. For
instance, multi-modal Earth Observation (EO), which provides a vast amount of
remote sensing imagery data at high, spatial, temporal, and spectral resolution,
making it a frequently used geospatial dataset in AI applications (J. Li et al.,
2022).

8



2.2. Geospatial Artificial Intelligence

The term "GeoAI" was first coined by Mao et al. (2018) and has since gained
popularity among researchers working with data mining, machine learning,
or high-performance computing in the field of (big) geospatial data analysis.
W. Li (2020) illustrates a conceptual representation of GeoAI, depicting it as a
convergence of AI, geospatial big data, and high-performance computing (HPC)
in Figure 2.2. This presents GeoAI as a promising technological solution for
data- or compute-driven geospatial challenges. Recent research demonstrates
great potential for implementing GeoAI methods in the domain of Cartography
and Mapping, especially deep learning for cartographic design and image
colourization(X. Huang et al., 2019; Y. Kang et al., 2019; M. Wu et al., 2021),
detection and extraction of map objects, symbols and texts (H. Li, Herfort, et al.,
2022; Xie et al., 2020; Yan et al., 2021), and cartographic generalization (Feng
et al., 2019; Touya et al., 2019). Multiple instances of AI and GI Science fusion
have demonstrated the significance and forthcoming research potential in the
GeoAI landscape.

Figure 2.2.: A conceptual, three-pillar view of GeoAI (W. Li, 2020).

2.2.1. Big Geospatial Data and Machine Learning

GeoAI is an emerging interdisciplinary field focusing on the exploration and
advancement of AI applications for geography-related analysis employing big
geospatial data (W. Li & Hsu, 2022) as Figure 2.3 shown. To better investigate

9



2. Related Works and Theoretical Background

Figure 2.3.: A big picture view of GeoAI (W. Li & Hsu, 2022).

GeoAI, a robust convergence between AI and Geography is essential. Geography
provides not only geospatial data sources but also a distinctive perspective for
understanding and abstracting the world and society via established geographic
principles like Tobler’s first law of Geography (Tobler, 1970) and the second law
of Geography (M. F. Goodchild, 2004). This knowledge from the Geography do-
main will extend current AI capabilities into spatially-explicit GeoAI techniques
and solutions (Janowicz et al., 2020), enabling AI be more properly adapted to
the geospatial domain. Recently, researchers in GeoAI have shown increased
enthusiasm for utilizing deep learning methodologies, like convolutional neural
networks (CNNs), to address geographical challenges through image analysis.
The following sections briefly describe different types of big geospatial data
for image analysis and mapping, popular deep learning methods, and GeoAI
applications.

Big Geospatial Data for Image Analysis and Mapping

With the continuous advancement of hardware facilities and modern technology,
diverse geographic-related data is swarming out. One of the key focuses of

10



2.2. Geospatial Artificial Intelligence

GeoAI research is how to use geographic data in a rational and effective way.
Some common geographic data categories are outlined next to enhance a better
understanding of geographic data.

• Remote Sensing (RS) Imagery - Recognized as a highly utilized and sig-
nificant geospatial data source, have a great potential for monitoring and
management of diverse spatial data on large-scale areas. Multiple observa-
tion platforms like satellites, unmanned aviation vehicles (UAVs), aircraft,
and diverse spatial, temporal, or spectral resolution sensors including
multi- or hyper-spectral, LiDAR, synthetic aperture radar (SAR), enable RS
data to be very valuable for Earth-related applications. With the rapidly
growing accessibility of multi-modal RS data, researchers can easily extract
information from Earth’s surface and apply modern DL methodologies to
solve geographic problems (J. Li et al., 2022).

• Street View Images - It has become a useful source to extract information
from a human-centric perspective which contains not only geographic
information but also the social environment (Y. Liu et al., 2015). Both
big companies like Google, Tencent, and VGI platforms like Mapillary
are interested in gathering and providing street view images to support
GeoAI research and applications. For instance, H. Li, Yuan, et al. (2023)
estimate building height leveraging street view images from a real-world
perspective. As street view images become progressively richer, more
and more GeoAI methods will derive meaningful information from such
human-centric geographic data.

• Geo-scientific Data - Observations of physical phenomena on Earth’s
surface are of great significance for the study and advancement of human
society. Such Geo-scientific Data are usually divided into two categories,
sensor data, and simulated data. The former can be obtained from diverse
environmental sensors, such as temperature, humidity, microwave, and
infrared sensors, while the latter can be derived from Earth’s environmental
models, such as the water cycle, the atmospheric cycle, the carbon cycle
(Carvalhais et al., 2014; Forkel et al., 2015). These two types of data can
assist humans understand the principles of natural phenomena and predict
future developments. For example, large-scale Geo-scientific data play an
important role in weather prediction, flood observation, and fire detection.
The rise of AI has provided a powerful aid to research in environment
change in terms of handling multi-dimensional data, time series analysis,
etc (Kadow et al., 2020).

• Volunteered Geographic Information - VGI is of immeasurable importance
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for Geographic Information Science (GIScience) research across global
regions. Especially in areas lacking official geographic data sources, open
source, freely accessible, and relatively complete data like VGI stands as the
only geographic data available to them. OSM, as the largest VGI platform,
plays an important role in supporting humanitarian mapping, Sustainable
Development Goals, and the daily use of maps (Herfort et al., 2021). The
integration of OSM with Multi-modal EO data has emerged as a potent and
robust geographical dataset for supporting GeoAI research (H. Li, Herfort,
et al., 2022; H. Li, Yuan, et al., 2023; Minghini et al., 2020). In turn, GeoAI
has fueled the growth and progression of VGI by minimizing human
resources and augmenting computational efficiency (OpenStreetMap Wiki,
2019).

Deep Learning and Neural Networks

As another key focus of GeoAI research, a subset of machine learning, Deep
Learning (DL) enables computational models with a multi-processing-layer struc-
ture to learn multi-level representations of data. DL performs well in discovering
intricate patterns in big geospatial datasets by using the back-propagation algo-
rithm to iteratively refine the internal parameters of the model, thereby guiding
the evolution of representations from one layer to the subsequent layer (Le-
Cun et al., 2015). Some state-of-the-art neural network architectures are briefly
described as follows.

• Fully Connected Neural Network (FCN)

Classical artificial neural network models are the basis for current popular
complex network models. The Feedforward Neural Network (Figure 2.4)
is one of the most basic models, which uses nodes and connections to
simulate the signal propagation between human neurons (Shrestha &
Mahmood, 2019). This model type is also called Fully Connected Neural
Network (FCN), which contains an input layer, an output layer, and several
hidden layers in between connecting them. Each node in each layer is
connected to all nodes in the previous layer. During the training process,
this network can learn the nonlinear relationships between input and
output by adjusting the connections (weights) between nodes. Although
FCNs were widely used in many classification algorithms leveraging their
good capability for extracting features of input data, they always suffer
from two major shortages: the network needs to manually design feature
extractor to collect information from the input. Additionally, multiple
neural layers have to be stacked When tackling intricate problems, and it is
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Figure 2.4.: A fully connected neural network with one hidden layer.

often incredibly computationally expensive and slow. To reduce learning
parameters, newer neural networks have emerged consequently, one of
which is Convolutional Neural Network.

• Convolutional Neural Network (CNN)

Figure 2.5.: LeNet-5: A 7-layer architecture of CNN for digit character recogni-
tion (LeCun et al., 1998).

The emergence of Convolutional Neural Network (CNN) has given a break-
through in handling big data and computational speeds for AI. Instead
of manually designed extractors, CNNs contain the automatic feature
extractors to reduce tons of weights by leveraging a convolution opera-
tion that uses a sliding window to calculate the dot product of the input
data, which could be 1D, 2D or 3D. Each convolution kernel (filter) can
extract a specific feature from the original data, and generate a feature map,
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which represents this feature’s distribution across the whole area. The
convolution kernels are learnable parameters, which are usually randomly
initialized before training. During training, the kernels are updated aiming
at minimizing the loss of the model, and are fixed after training. Normally
a pooling layer (or called down-sampling) is connected after a convolution
layer to ensure the prominent feature is preserved and also compress the
feature map, thus reducing computation cost. Multiple CNN layers can
be stacked to extract high-level features by semantically composing low-
level features extracted at the beginning part. Following feature extraction,
the network can be extended for diverse applications, thus, CNN can be
regarded as a general automatic feature extractor.

Depending on the format of the data input to a CNN model, it can be
categorized as 1D CNN, 2D CNN, or 3D CNN. The 1D CNN often applies
on 1D vector space for processing sequential data, like language text,
or audio segment. On the other hand, the 2D CNN has the ability to
extract features from the planer spatial domain, like horizontal/vertical
edges and corners, making it suitable for image processing. Furthermore,
extending 2D CNN to 3D CNN can take care of temporal dimensional
data, like video frames. As one of the best application scenarios with
CNNs models, figure 2.5 illustrates the well-known 7-layer architecture of
CNN model for digit recognition, called LeNet-5 (LeCun et al., 1998). The
consequent convolution layers progressively refined feature extraction from
input images to output layers, and fully connected layers perform digit
classification according to the extracted high-level features. Subsampling
layers are inserted between convolution layers to reduce parameters. This
kind of network structure has since been widely used in a variety of
image-based applications.

Because of the outstanding ability in considering the local receptive field
instead of connecting all neurons and using shared weights for each neuron
to look for the same pattern but in different parts of input images, CNN-
based networks gain significantly improved performance in both accuracy
and efficiency for both Natural Language Processing (NLP), and Computer
Vision (CV) applications (Alzubaidi et al., 2021). Therefore, CNN becomes
an essential building block for deep learning models.

• Long- Short-Term Memory (LSTM)

While CNN has been widely used in various AI applications, especially in
the CV field, such as image classification, object detection, and semantic
segmentation, it still has limitations when dealing with sequential data.
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Figure 2.6.: A LSTM block with memory cell and gates (Shrestha & Mahmood,
2019).

Conventional CNN models typically require a fixed-size input and yield a
fixed-size output, which is not a problem for image processing. However,
when dealing with sequential data, CNN can not consider intrinsic interre-
lations and contextual influence among datasets, which is a major concern
in addressing NLP challenges. Then Recurrent Neural Network (RNN)
has been developed to use a hidden state as a form of memory that carries
information from one step to the next. Unlike traditional feedforward
neural networks, where data flows in one direction from input to output,
RNNs have connections that loop back on themselves, enabling them to
maintain the contextual memory (Cho et al., 2014). RNNs are particularly
suitable for sequential tasks, such as time series data, NLP, and other tasks
where the order of data points matters.

As an implementation of RNN, Long- Short-Term Memory (LSTM) was
introduced by Hochreiter and Schmidhuber (1997) to address the vanishing
gradients problem of RNNs. Figure 2.6 illustrates a LSTM block that
consists of a memory cell state through which data flows while being
controlled by input, forget, and output gates (Shrestha & Mahmood, 2019).
In the iterative training process, the input gate determines the quantity of
data from the prior state that should influence the current state. The forget
gate evaluates the significance of different memory segments and discards

15



2. Related Works and Theoretical Background

less important information. Meanwhile, the output gate orchestrates the
combination of newly extracted memory with filtered memory to provide
an accurate prediction for a further state (W. Li & Hsu, 2022). Due to its
ability for time sequence predictions by dynamically capturing memories,
it can serve for land use and land cover change by employing a time series
of satellite images (Sherley et al., 2021). Another interesting research of
LSTM in GeoAI is object detection (Hsu & Li, 2021). Despite a standalone
image’s absence of temporal information, the 2D image can be transformed
into a 1D sequence via a scanning pattern. Then LSTM has the ability
to capture the interrelations of the same object throughout the entire 1D
sequence.

Various studies have shown that LSTM is well suited for the prediction
of sequential data, such as speech recognition, text translation, and other
NLP tasks, but it also shows some potential to solve GeoAI problems such
as object detection, land use detection, etc. by utilizing satellite images.

• Transformer

Figure 2.7.: The Transformer architecture (Vaswani et al., 2017).
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The introduction of Transformer in the paper "Attention Is All You Need"
has sparked a significant revolution in the AI field (Vaswani et al., 2017).
The Transformer block is based on an encoder and decoder architecture
that implements sequence-to-sequence learning, as shown in figure 2.7. In
contrast to iteratively processing sequence segments from start to end of a
sequence in RNN, Transformer possesses the ability in taking the entire
sequence as input and capture the interrelationships between all word
pairs in a sequence by assigning different weights to each word based on
its relevance to other words in the sequence. This is called the attention
mechanism, which enables the model to focus on the most relevant parts
of the input sequence while performing various tasks. The Transformer
model uses multiple attention heads in parallel, allowing it to capture
different types of relationships and patterns within the data. The outputs
from these attention heads are then concatenated and linearly transformed
to obtain the final attention output for each word in the sequence. The
attention module is repeatedly used in the encoder and decoder within the
Transformer block.

Instead of directly processing the raw input, the encoder firstly converts
the words into numeric representations with an input embedding and
additionally uses a positional embedding to represent the position of each
word within the input sequence. The embedded numeric representations
will be given to the attention module, then connected with a feedforward
layer for further steps. In summary, the encoder runs in parallel to derive
attention scores that represent the semantics of each word in the input
sequence.

The decoder part has a similar embedding and attention process as the
encoder. It takes the output sequence with positional embedding and
output embedding same as input embedding to get the numeric represen-
tations of a sequence of words. The embedded vectors will be delivered
to an attention module, which is called masked attention. Differentiating
from the attention module within the encoder, the masked attention mod-
ule measures the attention score for each word only by considering the
words before it rather than all words in a sequence, because the decoder
is designed for predicting the forthcoming word in a sequence. After the
masked attention module, the decoder also has another attention module,
which will jointly take the embedded input sequence and embedded out-
put sequence to calculate relations, or called to make predictions. The loss
function will be used to minimize the difference between semantic repre-
sentations of the input sequence and the predicted output sequence. Thus,
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the Transformer could be widely used for various sequence-to-sequence
tasks, such as machine translation, speech recognition, text generation, etc.

Figure 2.8.: The Vision Transformer architecture (Dosovitskiy et al., 2021).

Besides outstanding performance in NLP, Transformer models have been
extended for processing images in CV domain, by splitting a full image
into small patches and regarding an image patch inside an image as a
word inside a sentence. In contrast to CNN focusing on the local receptive
field of the image features, the Transformer can dynamically determine
the size of the receptive field across the entire image. An exciting example
is Vision Transformer (ViT) (Figure 2.8), enabling patch and positional
embedding, which shows great potential on various computer vision tasks,
including image classification, object detection, semantic segmentation,
and more (Dosovitskiy et al., 2021). It can achieve similar or even better
performance than CNN (Dosovitskiy et al., 2021). The success of ViT has
sparked interest in exploring the potential of the Transformer architecture
beyond natural language processing, highlighting its ability to capture long-
range dependencies and spatial relationships in images effectively. Another
trending research is combining language and images to build more complex
models, such as text-to-image, image-to-text, semantic image retrieval, etc
(Minderer et al., 2022; Radford et al., 2021). Undoubtedly, Transformer-
based architecture gives researchers more chances to imagine and address
challenging problems in the future.
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In summary, these progressively emerging neural network models have revolu-
tionized deep learning performance and applications. The foundational models
mentioned above may be well suited for specific domains, such as sequence
or/and image data, however, they can also be incorporated to build more com-
plex models, such as Reinforcement Learning, Generative Adversarial Network
(GAN), and Self-Supervised Learning. Their applications in the GeoAI domain
will be reviewed in the following section.

GeoAI Applications

This section reviews and summarizes current applications of GeoAI, leveraging
remote sensing imagery and ML/DL methods. Major GeoAI applications are
categorized as object detection, classification, segmentation, height/depth esti-
mation, image super-resolution, object tracking, change detection, forecasting,
etc. Table 2.1 provides a brief summary in terms of task types, application
scenarios, application methods, and references.
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Table 2.1.: Review of GeoAI applications
Task Application ML/DL Approach Reference

Object detection Search and rescue operations CNN Bejiga et al. (2017)
Aircraft detection CNN Zhou et al. (2021)
Military object detection CNN Janakiramaiah et al. (2023)
Terrain feature detection CNN W. Li and Hsu (2020)
Building detection CNN H. Li, Herfort, et al. (2022)

Classification Land use classification CNN Y. Yang and Newsam (2010)
Multi-label scene CNN Kumar et al. (2021)
Multi-label scene GAN Khan et al. (2019)
Multi-label scene CNN+GAN Y. Li et al. (2020)
Forest areas classification Stacked auto-encoder Haq et al. (2021)

Segmentation Urban land cover CNN Kampffmeyer et al. (2016)
Cloud segmentation CNN Mohajerani and Saeedi (2021)
Road extraction CNN Grillo et al. (2021)
Fire perimeter 3D U-Net Doshi et al. (2019)
Precision agriculture CNN Osco et al. (2021)

Height/Depth Estimation Monocular depth estimation Self-Supervised Klingner et al. (2020)
Height estimation RCNN Mou and Zhu (2018)
Collapsed buildings CNN Amini Amirkolaee and Arefi (2019)
Height estimation CNN Srivastava et al. (2017)
DSM generation Semi-global and block matching W. Yang et al. (2020)

Image super resolution Hyperspectral image CNN Fu et al. (2019)
Hyperspectral image CNN X.-H. Han et al. (2018)
Hyperspectral image Spatial-spectral prior network Jiang et al. (2020)
DEM super-resolution EfficientNetV2 Demiray et al. (2021)
Lake area Deep gradient network Qin et al. (2020)

Object tracking Satellite videos Multiframe Optical Flow Tracker Du et al. (2019)
UAV aerial video Saliency Enhanced MDnet Bi et al. (2019)
Satellite videos Velocity correlation filter Shao et al. (2019)
Satellite videos Rotation-adaptive correlation filter Xuan et al. (2021)
Multi-object tracking Graph-Based Multitask Modeling Q. He et al. (2022)

Change detection Remote sensing Fast RCNN Q. Wang et al. (2018)
Remote sensing Attention Metric-Based Shi et al. (2022)
Land cover LSTM+FCN Sefrin et al. (2021)
Remote sensing Improved UNet++ Peng et al. (2019)
Remote sensing Transformer H. Chen et al. (2022)

Forecasting Drought prediction LSTM Poornima and Pushpalatha (2019)
Wind Speed prediction DBN Wan et al. (2016)
Drought prediction EMD+DBN Agana and Homaifar (2018)
PM2.5 Prediction FCN Zamani Joharestani et al. (2019)
LU/LC prediction Transformer Mohanrajan and Loganathan (2022)
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2.2.2. Geospatial Object Detection

Object Detection

Object detection, as one of the most fundamental and challenging problems, aims
to recognize objects within an image by determining their categories (classes) and
locations via Bounding Box (BBOX). Generally, there are two primary categories
of object detectors: region-based and regression-based (W. Li & Hsu, 2022).
Within region-based methods, object detection is regarded as a classification
problem, which is divided into three major phases: region proposal, feature
extraction, and classification. Popular deep learning models within this group
include Fast R-CNN (Ren et al., 2016), R-FCN (Dai et al., 2016), FPN (Lin et al.,
2017), and RetinaNet (Lin et al., 2018). Regression-based models directly link
image pixels with BBOX coordinates and class probabilities to save time in
processing and transforming data between diverse layers. Due to its ability to
respond quickly, many real-time applications prefer to use regression-based
models, such as YOLO (Redmon et al., 2016), SSD (W. Liu et al., 2016), RefineDet
(S. Zhang et al., 2018), M2Det (Zhao et al., 2019).

Geospatial Object Detection

Recently, the ever-growing availability of multi-modal Earth Observation (EO)
data, including Very High Resolution (VHR) images, Multi-, and Hyper-spectral
imagery, offers a promising data source for modern GeoAI methods to auto-
matically detect and map geographic objects, ranging from artificial objects
like buildings to natural objects such as trees, lakes. Figure 2.9 shows many
examples of geospatial objects detection from high-resolution remote sensing
images (X. Han et al., 2017). More successful examples of building detection
include Global Urban Footprint (GUF) (Esch et al., 2013) from German Aerospace
Center, High-Resolution Settlement Layer (HRSL) (Tiecke et al., 2017) from the
Connectivity Lab at Meta, and the Google Open Building Layer (GOB) (Sirko
et al., 2021). While these GeoAI methods provide an unparalleled capability
to comprehensively monitor and map geospatial entities, the limitation of sub-
stantial training data at a large scale has emerged as a significant hindrance to
the advancement of geospatial object detection (Ding et al., 2022; H. Li, Zech,
et al., 2022). To address this issue, significant endeavors have been implemented
towards creating benchmark datasets for multi-class geospatial object detection,
such as NWPU VHR-10 (Cheng et al., 2016), DOTA (Ding et al., 2022), and
FAIR1M (Sun et al., 2021).

To implement a geospatial object detection method, a large amount of training
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Figure 2.9.: Geospatial detection examples for the NWPU VHR-10 dataset (X.
Han et al., 2017).
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Figure 2.10.: An example of building object detection.

data is typically needed, which should contain remote sensing images and corre-
sponding location as well as meta information of the target objects. While remote
sensing imagery at various temporal, spatial, and spectral resolutions is easy to
obtain, manually annotating these images is super time-consuming. To speed
up the data preparation process, researchers gave a lot of effort into integrating
crowdsourced geospatial data from VGI platform, like OSM (J. Chen & Zipf,
2017; Herfort et al., 2019; Z. Wu et al., 2020). OSM provides a valuable geospatial
data source with various object classes in millions of instances across the entire
world. More importantly, with the efforts of volunteers and Humanitarian Open-
StreetMap Team (HOT), OSM has provided many economically deprived regions
with a wealth of geographic data that may be the only geographic data resource
available to these regions. H. Li, Herfort, et al. (2022) successfully validated the
method of using deep learning to accelerate building detection in Sub-Saharan
Africa based on open-source remote sensing imagery and OSM data (Figure
2.10).

However, in social and environmental science, from variables of the existing
process, we may observe spatial heterogeneity, which refers to the phenomenon
that the expectation of a random variable varies across the Earth’s surface
(Anselin, 1989). Because of these phenomena, numerous GeoAI studies often
face challenges when researchers attempt to replicate study findings in other
regions, whether overlapping with the original area or not, without a notable
performance drop (M. F. Goodchild & Li, 2021). Therefore, an increasing interest
surrounds the potential of utilizing the expertise-embedded pre-trained GeoAI
models across diverse geographic regions to achieve consistent performance in
geospatial object detection without extensive additional training data.
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2.2.3. Transfer Learning and Spatial Explicit AI

Transfer Learning

The objective of transfer learning is to enhance the performance of target learners
of a specific domain by reusing the knowledge gained from disparate yet related
domains (H. Li, Herfort, et al., 2022; Zhuang et al., 2021). There are several rea-
sons why transfer learning is widely used in AI applications. The first is the lack
of training data, for ideally traditional machine learning methods, the amount
of labeled training data is often greater than or equal to the amount of test data,
however, in many cases, collecting and annotating training data is very expen-
sive, time-consuming, or unachievable. Second, the continuous development of
foundation and pre-trained models in recent years has provided researchers with
many base models that have already been trained on a large number of datasets,
such as Microsoft COCO dataset (Lin et al., 2015), ImageNet dataset (Deng et al.,
2009), and PASCAL VOC (Everingham et al., 2010). Meanwhile, the emergence
of edge computing, and mobile AI technology is driving the demand for transfer
learning, such low-computational platforms can not afford to train models with
big data, but can realize the fine-tuning of the pre-trained models with a small
number of data. In short, transfer learning partly addresses challenges of lack
of training data, knowledge transfer of pre-trained models, and reduction of
training computation.

Figure 2.11.: Categories of Transfer Learning (Zhuang et al., 2021).

The categories of transfer learning are shown in Figure 2.11 (Zhuang et al.,
2021). According to the categorization criteria from Pan and Yang (2010), transfer
learning problems are classified into three classes: transductive, inductive, and
unsupervised transfer learning. These classes are summarized as label-setting-
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based aspects by Zhuang et al. (2021). In brief, transductive transfer learning
refers to cases when the label information only comes from the source domain.
If label information for target-domain instances is accessible, the scenario is
classified as inductive transfer learning. In cases when the label information
remains unknown for both the source and target domains, the scenario is
recognized as unsupervised transfer learning. Another categorization classified
transfer learning as homogeneous and heterogeneous transfer learning based on
if feature spaces and label spaces are the same or not between the source and the
target domains. If categorized in terms of solutions, transfer learning approaches
can be categorized into four classes: instance-based, feature-based, parameter-
based, and relational-based approaches (Pan & Yang, 2010; Zhuang et al., 2021).
Instance-based approaches focus on the instance weighting strategy. Feature-
based approaches transfer the original features into new feature representations,
and they can be further classified into symmetric transformation and asymmetric
transformation. The former approaches want to find a common potential feature
space from the source and the target domain, and then transfer both into the
new feature representations. The latter approach tries to transfer the source
features to match the target features. Parameter-based approaches transfer the
knowledge at the model/parameter level. Relational-based approaches transfer
the logical relationships or rules acquired from the source domain to the target
domain.

Transfer learning is widely used in image-related tasks, especially when there
are few training samples in the target domain, researchers attempt to use a few-
shot learning approach to transfer pre-trained deep learning models to the target
domain (Y. Wang et al., 2020). In the geospatial object detection domain, early
attempts successfully integrated meta-learning methods into few-shot object
detection through re-weighting features within an object detection model (B.
Kang et al., 2019; X. Li et al., 2022). X. Wang et al. (2020) introduced an efficient
few-shot learning approach in object detection and confirmed its remarkable
performance across the state-of-the-art benchmarks. Inspired by this, (H. Li,
Herfort, et al., 2022) proposed a model-agnostic Few-Shot Transfer Learning
(FSTL) method to improve the performance of the building detection model
across different regions in Sub-Saharan Africa. However, the generalization of
deep learning models to diverse regions across the world remains a challenge to
be addressed.
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Geographic Generalization of GeoAI Models

A frequently observed instance in GeoAI research is the poor performance of a
deep learning model pre-trained in a specific region when applied to different
geographic regions. This is also a reflection of the spatial autocorrelation for DL
models, as stated in Tobler’s first law of geography (D. Z. Sui, 2004). Figure 2.12
demonstrates Tobler’s first law of geography that as spatial distance increases,
the relationship between things decreases. This may limit GeoAI models to be
reused with good performance only within a certain range of regions from the
area being trained. Herein, the generalization capability of a GeoAI model to
be reused or replicated across spatial space is called geographic generalizability
(Mai, Huang, et al., 2023), or replicability across space (M. F. Goodchild & Li,
2021).

Figure 2.12.: A graphic illustration of Tobler’s first law of geography (Anthony
C. Robinson, n.d.).

In the AI domain, the reproducibility and replicability of DL models have
always been a worthy concern for scientists (M. F. Goodchild & Li, 2021; Janowicz
et al., 2020). Reproducibility refers to the ability of other researchers to get the
same findings using the same data and methodologies, while replicability refers
to the ability to duplicate the research findings proven by prior studies using the
same methodologies but new data. As the data gradually becomes an integral
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part (or called knowledge) of the model, it is hard to derive the same model
without access to the original dataset used by the model’s author. The availability
of many public, domain-advanced large datasets, such as Microsoft COCO
dataset (Lin et al., 2015), ImageNet dataset (Deng et al., 2009), and PASCAL
VOC (Everingham et al., 2010), can partially help researchers achieve model
reproducibility and replicability, however, in the actual training process, different
data structures, training methods, or hyper-parameters can lead to trained
models do not exactly match the expectation. Therefore, large companies and
organizations have introduced many pre-trained DL models, and the parameters
of these models are usually tuned by the large public databases mentioned above,
which makes these models perform stably. These pre-trained task-agnostic
models lead to great success in downstream tasks via fine-tuning, few-shot, or
zero-shot learning.

While adapting pre-trained AI models to solve downstream problems, it is
still challenging to balance the model’s generalization and specialization. From
the perspective of ML, the discussion about the generalization and specialization
capability of AI models has a long history (Bousquet & Elisseeff, 2002; C. Zhang
et al., 2021). The generalization means machine learning models generalize the
knowledge learned from the training dataset to new unseen data. Conversely,
specialization means models can effectively learn and solve a specific task, it
probably is over-fitting or cannot generalize. Typically, specialization should be
avoided, and ML models should be towards better generalization, which also
means increasing the generalization capability or called generalizability. Many
efforts have been made to achieve better generalized models, such as improving
the gradient descent optimization procedure (Hardt et al., 2016), using large-scale
datasets, developing more powerful model architectures like the Transformer
family (Dosovitskiy et al., 2021; Vaswani et al., 2017), or meta-learning techniques
(Rußwurm et al., 2020).

Although most AI applications tend to favor higher generalizability models,
spatial phenomena (e.g., autocorrelation and spatial heterogeneity) present
additional scenarios for AI, which can also be called spatially explicit AI (M.
Goodchild, 2001; Janowicz et al., 2020). To deal with such scenarios, one needs to
balance the geographic generalizability (or called replicability across space) and
geographic specialization of GeoAI models, especially when targeting large-scale
applications across geographic space (Mai, Huang, et al., 2023). For instance,
many current GeoAI models have specialization in specific training regions,
and these models perform poorly when applied to regions beyond the range
of geographic autocorrelation. However, improving the performance of these
GeoAI models across diverse regions is still a very challenging task. Such a
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problem in the GeoAI domain can be defined as finding the "sweet spot" between
geographic generalizability and spatial heterogeneity (Mai, Huang, et al., 2023).

Many existing studies have attempted to tackle such geographic generaliz-
ability challenges, which can be categorized into three main branches. The first
common practice is to divide the interesting space into diverse regions based
on the underlying data process and train individual models for each region
respectively (Xie et al., 2021; Y. Zhang et al., 2017). The obvious drawback of
these approaches is the large amount of parameters and training datasets needed
for different regions. The second common solution is to apply transfer learning
across space, such as urban-to-rural transfer (Elmustafa et al., 2022), city-to-city
transfer (L. Wang et al., 2018), and country-to-country transfer (H. Li, Herfort,
et al., 2022). In the third category, early attempts have sought to incorporate rep-
resentation learning methods into a range of GeoAI applications, such as place
recognition (Yin et al., 2019), trajectory prediction (Xu et al., 2018), point cloud
segmentation (Qi et al., 2017), and geo-aware image classification (Mac Aodha
et al., 2019; Mai et al., 2020; Mai, Lao, et al., 2023), in which spatial locations
are encoded into a high-dimensional embedding space to capture the spatial
heterogeneity features across space to facilitate downstream tasks. For a review
of location encoding in GeoAI, see (Mai, Janowicz, et al., 2022). Recently, the
concept of position/location embedding has achieved excellent performance in
general AI tasks with the popularity of the Transformer and Vision Transformer
models (Dosovitskiy et al., 2021; Vaswani et al., 2017), where a self-attention
mechanism is employed to capture the relationships between different elements
(like words, image patches, or audio segments) within the same sequence (like
sentence, image, or speech). Inspired by these exciting studies, this thesis tends
to explore the possibility of combining transfer learning and representation
learning to improve the cross-spatial generalizability of GeoAI models.

2.3. Web Mapping

To interactively visualize AI-generated geospatial data, a browser is absolutely
one of the most common and useful platforms. Before designing a user-centered
GeoAI application, some knowledge of web mapping is needed. This chapter
introduces the evolution of web mapping, the standards of web mapping services,
and the GeoAI based mapping services.
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Figure 2.13.: Framework of web mapping eras (Veenendaal et al., 2017).

2.3.1. Eras of Web Mapping

With the progressive evolution of big geospatial data and smart mobile devices,
web mapping has led to revolutionary advancements in recent decades. Whether
humans realize it or not, our daily lives have become inseparable from web
mapping and location-based applications. Defined by Neumann (2008), Web
mapping is the process of designing, implementing, generating and delivering
maps on the World Wide Web. Three foundational elements of web mapping
are geospatial data and their map-based visualization, geospatial software, and
the World Wide Web (Veenendaal et al., 2017). Over the past decades, the
constant development of forms and technologies of these elements has resulted
in continuously updating eras of web mapping.

Nine web mapping eras were identified and arranged through a timeline
to mark the milestones of web mapping developments, as shown in figure
2.13. From static web mapping to current intelligent web mapping, there are
several important concepts or technologies that appeared in each era, where
a star mark indicating the approximate emergence of the developments. No
definitive "end" has yet been defined, as many of these advancements have
either continued, been embedded, or expanded in subsequent eras. The key
developments within each era can be found in the paper of Veenendaal et al.
(2017). Notably, the computer revolution of the 21st century has driven the
advancements of various web technologies and concepts, as well as the rapid
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development of web mapping at the same time. In particular, the growth of
various cloud services and AI technologies in recent years has inspired more
imagination and application scenarios for increasingly available big geospatial
data. However, for the development of complicated web mapping applications
and the processing and management of big geospatial data, a set of standards is
extremely necessary.

2.3.2. OGC Standards

Figure 2.14.: Relationship between clients/servers and OGC protocols (“Open
Geospatial Consortium”, 2023).

Open Geospatial Consortium (OGC) is an international voluntary consensus
standards organization founded in 1994, working on developing standards for
geospatial content, location-based services, sensor web, Internet of Things, GIS
data processing and data sharing (“Open Geospatial Consortium”, 2023). The
OGC standard provides specification standards and application paradigms for
web mapping development, greatly improving the robustness, ease of mainte-
nance, and reusability of web map applications. Figure 2.14 demonstrates a
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common OGC-based web mapping development framework, integrating web
browser, web server, GeoServer, and other map services providers. This proto-
col uses some popular geospatial standards from OGC, like Web Map Service
(WMS), Web Feature Service (WFC), Web Coverage Service (WCS), Keyhole
Markup Language (KML), etc.

The WMS standard allows clients to obtain map images, as well as some
map-related metadata, via the Hypertext Transfer Protocol (HTTP) protocol. The
advantages of WMS services are their simplicity and flexibility, and the ability
to provide customized map styles, annotations, and so on. The WFS standard
allows clients to access detailed information about geographic data, including
elemental attributes and geometry, via the HTTP protocol. The advantage of the
WFS service is that it provides more detailed geographic data, allowing clients to
perform more complex data analysis and processing. The WCS standard allows
clients to obtain detailed information about the coverage, including spatial data
on topography, vegetation, and other geographic information, via the HTTP
protocol. The advantage of the WCS service is that it provides high-resolution
geographic data, which allows the client to analyze and process the data in a
more precise manner.

In addition to the above three commonly used standards, OGC has also formu-
lated many other standardized interfaces for web mapping development, which
enables better data sharing and interaction between different GIS systems. In the
actual web mapping development, open-source GIS software (e.g., GeoServer,
MapServer, etc.) can be employed to realize the support of OGC standards, so
as to provide services such as WMS, WFS, WCS, etc. Meanwhile, users can also
develop their own OGC-based interfaces to meet specific business needs.

With the growing trend of separating front-end development and back-end
development, developers preferred to use JSON/GeoJSON (“GeoJSON”, 2023;
“JSON”, 2023) for data exchange in web mapping development, thus, the OGC
organization put a lot of effort into developing a new set of Application Pro-
gramming Interface (API) standard, called OGC API. The most notable features
of OGC API can be summarized as follows: the interface style is REST (“Repre-
sentational State Transfer”, 2023), and the data exchange is in JSON format by
default.

Therefore, based on the OGC standards and modern web mapping technology,
researchers can build a variety of web mapping applications according to specific
needs. The continuous advancement of GeoAI also promotes the thinking of
how to use web technology and AI algorithms to improve GeoAI research and
address geographic challenges.
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2.3.3. GeoAI and Machine Learning as a Service

With the increasing availability of satellite imagery and advancement of deep
learning techniques, a series of GeoAI applications were discovered, such as
image-level classification, object detection, semantic segmentation, etc (W. Li &
Hsu, 2022). Demand for GeoAI applications is growing not only in the research
domain but also in practical production.

A major problem with applying GeoAI today is the reusability of methods for
geospatial data preparation and processing. For instance, while applying deep
learning methodologies to remote sensing data, satellite imagery often contains
additional spectral bands beyond RGB and potentially integrates with other
geospatial data which may have diverse coordinate systems. The complexity of
appropriately handling various geospatial data should not be underestimated.
Large companies have realized this general problem in the AI field, and offer
easy-to-use APIs (Ribeiro et al., 2015), such as Hugging Face, JINA AI, etc. Recent
research in formulating the application of GeoAI into high-level programming
libraries has risen to lower the barrier of geography-related knowledge and
programming efforts across various deep learning frameworks. TorchGeo is
an excellent instance of integrating geospatial data into the PyTorch ecosystem
(Stewart et al., 2022). However, these APIs have four significant limitations:
(a) Tailoring them for specific applications isn’t straightforward. (b) They are
usually cloud-based. (c) They are complex to understand and use due to the
lack of tutorial workflows or incomplete documentation. (d) They lack support
for reusability and configuration sharing across different applications (Pahl &
Loipfinger, 2018).

One method for overcoming these challenges is a service-oriented approach
that enables individual models to operate and interact with others using web
services (J. Wang, n.d.). Inspired by Machine Learning as a Service (MLaaS) and
the reproducible capability of Docker (Boettiger, 2015), GeoAI methods can also
be developed as an individually developable, locally runnable, reusable, and
simply deployable service. Once a complete GeoAI service was built targeting a
specific task, it can be effortlessly deployed on local workstations, cloud-based
infrastructures, or edge computing platforms.
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This chapter presents the whole workflow and detailed steps of the proposed
GWME method and related algorithms and formulas used. Section 3.1 describes
the definition of the problem and the concepts used in the solution. Section 3.2
introduces the preparation of the training datasets. Section 3.3 shows how to
implement Few-Shot Transfer Learning (FSTL) for a geospatial object detection
model. Section 3.4 brings the core steps of GWME methods, proposed by this
thesis. Section 3.5 provides the metrics and the algorithms for evaluating the
performance of geospatial object detection models. The last section 2.3 demon-
strates the infrastructure of a web mapping application for the visualization of
results.

3.1. Definitions and Preliminaries

This thesis rethinks the geographic generalizability problem and proposes to
solve it by an unsupervised self-attention model ensemble method, namely the
Geographical Weighted Model Ensemble (GWME). An interesting case study
of detecting OSM missing buildings across different counties in sub-Saharan
Africa is conducted to demonstrate the effectiveness of GWME. The overall
method is illustrated in Figure 3.1. This main target is to transfer a building
detection model trained at the source region (Abm) to the target region (Atarget)
and to improve the model’s performance at the target region with the geographic
information from nearby regions of the target region.

The general assumption is that although there’s completely no OSM building
data at the target region, it is still possible to find some nearby regions with a
small number of OSM data that can be used as training samples, which is useful
to help extend the generalization of the base model (Mbm). Firstly, a base model
Mbm was trained by the OSM-labeled training dataset Sbm at an OSM data-rich
area Abm (in Tanzania), which is called the source region. Then a few reference
areas (Aj, j = 1, . . . , T) are selected in the proximity of the target region Atarget
(in Cameroon), which is geographically far away from area Abm and consists of
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Figure 3.1.: Overview of Geographic Weighted Model Ensemble (GWME).

very diverse landscapes and building structures.

Next, a Few-Shot Transfer Learning (FSTL) technique (H. Li, Herfort, et al.,
2022) is applied to extrapolate Mbm to those reference areas neighboring the
target area. After the FSTL, a few less accurate models (M f s) are generated close
to the target area. These M f s were used to detect buildings at the target region
respectively and each M f s can detect a lot of building candidates (called FSPj,
where j = 1, 2 . . . , T). Then the weights between the target region and reference
regions are calculated to determine how important these reference regions are to
the target region. In the end, all of the building candidates FSP are ensembled
according to different weights to generate a more accurate and comprehensive
prediction P at the target region Atarget. Therefore, the determination of weights
is crucial for the model ensemble, which represents not only the importance of
the reference regions Aj, j = 1, . . . , T for the target region Atarget but also the
generalization capability of M f s for the detection P at the target region.

Therefore, the objective of measuring the model’s geographic generalizability
is achieved by minimizing the discrepancy between the GWME predictions
(P) and the ground truth label (Ytarget) of the test dataset (Starget). Different
weighting strategies are conducted: 1) average weighting (average), 2) image
similarity weighting (similarity), 3) geographic distance weighting (distance),
and 4) self-attention weighting (attention). A more detailed description of the
methodology and how it is implemented is given in the following sections and
also presented in (H. Li, Wang, et al., 2023).

Additionally, some important symbols and definitions are listed in Table 3.1.
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Table 3.1.: Glossary of methodology.

Symbol Definition

Abm The source area.
Sbm The training samples from the source area.

Mbm The base model for the GeoAI task.
T The number of reference areas.
Aj The reference area j.
S

j
f s The training samples from the reference area j.

M
j
f s The FSTL model trained at reference area j.

Atarget The target area
Starget The test dataset from the target area.
Ytarget The ground truth label of the target area.
MViT The pre-trained ViT model.

wj Corresponding weight for M
j
f s.

xi Image tile i in the satellite image set.
yi List of object BBOX within the image tile i.
gi Geographic information of the image tile i.

FSP List of BBOX and scores predicted from M f s.
P List of ensembled BBOX and scores.

TH Hyperparameters (the threshold of confidential scores).
Q Weighted boxes fusion function.

HIS The function that calculates the histogram of an image.
COS The function that calculates cosine similarity between two histograms.
CEN The function that calculates the geometric center of a region.
DIS The function that calculates the great circle distance.
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3.2. Data Preparation

This thesis assumes an OSM-labeled training dataset for the base object detection
model (BM) to be a triplet Sbm = {(xi, yi, gi)} with i = 1, . . . , N in an OSM
data-rich area Abm. Here, xi is a satellite image, yi is a set of object bounding
boxes (BBOX) within this image, and gi refers to the location information (e.g.,
longitude and latitude) and optionally geographic distances to the hold-out test
dataset Starget = {(xi, gi)} with i = 1, . . . , M.

Figure 3.2.: The workflow of ohsome2label (H. Li & Zipf, 2022).

The data preparation steps in this thesis were automatically implemented by
ohsome2label (Z. Wu et al., 2020), an open-source package for wrapping queried
satellite imagery from open WMS and queried OSM features for the correspond-
ing area into training samples by a tile-based manner. The detailed workflow
of ohsome2label is shown in Figure 3.2. It starts with a configuration file, where
the query metadata are stored, and downloads OSM features by OhsomeAPI
according to the metadata. After geometric data within the area of interest (AOI)
are downloaded in GeoJSON format, which is an open standard format designed
for representing simple geographical features, the whole GeoJSON feature col-
lection will be clipped into a list of tiles. Then the tile-based GeoJSON will be
forwarded to generate vector tiles, which can be used for making COCO-like
annotations (Lin et al., 2015), and also to download satellite images. Eventually,
tile-based satellite images with the size of 256*256 pixels and the corresponding
rendered label tiles can be compiled for the preview of training samples.

This thesis used Bing Maps Aerial Imagery as the satellite image source,
which provides open-source and high-resolution satellite image WMS via a
REST API (Bing™ Maps Imagery API). One of the most important steps in
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3.2. Data Preparation

(a) Tile coordinates. (b) Pixel coordinates.

Figure 3.3.: Bing maps tile system at level 3 (rbrundritt, 2022).

data preparation is the coordinates transformation. Whether converting the
geographic coordinates of a satellite image to image coordinates when creating
training samples or converting the image coordinates of predictions obtained
by the trained model to geographic coordinates, the conversion between the
geographic coordinate system and the image coordinate system is a very essential
step. Figure 3.3 illustrates a level 3 example of the Bing maps tile system, which
includes tile coordinates and pixel coordinates in a Web Mercator projection
(“Mercator Projection”, 2023). Given latitude and longitude in degrees (on
the WGS 84 datum), and the level of detail, the pixel XY coordinates can be
calculated as follows:

sinLatitude = sin(latitude ∗ π/180)
pixelX = ((longitude + 180)/360) ∗ 256 ∗ level
pixelY = (0.5− log((1 + sinLatitude)/(1− sinLatitude))/(4 ∗ π)) ∗ 256 ∗ level

(3.1)

To optimize the index of the map, Bing maps cut the map into tiles of 256*256
pixels each. The number of tiles is determined by the level of detail:

mapWidth = mapHeight = 2level tiles (3.2)

Given a pair of pixel XY coordinates, the tile XY coordinates of the tile
containing that pixel can be easily determined by:
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tileX = f loor(pixelX/256)
tileY = f loor(pixelY/256)

(3.3)

With the Bing maps tile system, the desired satellite images can be stored
as plenty of image tiles with the size of 256*256 pixels, attached with the tile
coordinates. Furthermore, the latitude and longitude coordinates of the object
BBOX can be converted to pixel coordinates within the range between (0, 0) to
(256, 256). Meanwhile, the pixel coordinates of predicted BBOX can be converted
back to geographic coordinates.

Figure 3.4.: Example Bing aerial image tiles (top), the corresponding OSM labels
(middle), and the preview of training samples (bottom).

Figure 3.4 demonstrates three ohsome2label generated training samples com-
posed of Bing aerial images and OSM building features. As long as in areas
where OSM data is relatively complete, ohsome2label can generate well-prepared
COCO-like training samples, which feed for the training process of object detec-
tion models. Besides the base training dataset Sbm = {(xi, yi, gi)} (i = 1, . . . , N)
at the source area Abm, a list of reference training datasets S

j
f s = {(xj

i , yj
i , gj

i)}
(i = 1, . . . , n, j = 1, . . . , T) were prepared from T reference areas Aj (j = 1, . . . , T)
in the proximity of the target area Atarget. These training datasets will be fed
into the further FSTL process.
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3.3. Few-Shot Transfer Learning

Base Model Training

The base deep learning model was trained using Tensorflow Object Detection
API (J. Huang et al., 2017) which is an open-source framework built on top of
TensorFlow (Abadi et al., 2016) that makes it easy to configure, train and deploy
object detection models. Especially a one-stage SSD-based (W. Liu et al., 2016)
object detection model which was pre-trained by Microsoft COCO datasets (Lin
et al., 2015) was picked due to its relatively high speed and COCO mAP. More
pre-trained models can be found from TensorFlow 2 Detection Model Zoo (J.
Huang et al., n.d.).

Figure 3.5.: The architecture of SSD-ResNet101 for building detection.

This thesis considered a pre-trained SSD-based model as an object detection
base model (BM) (W. Liu et al., 2016). The feature extractor VGG used in the
origin SSD model was replaced with a ResNet layer, which effectively solved the
problem of precision reduction of deep network (K. He et al., 2015). Then the
base model was further trained by optimizing the loss function L via gradient
descent in a supervised manner with the training dataset Sbm = {(xi, yi, gi)}
(i = 1, . . . , N). The overall objective loss function L is a weighted sum of the
localization loss (loc) and the confidence loss (conf) (W. Liu et al., 2016):

L = Lloc + Lcon f (3.4)

where Lloc uses smooth L1 loss, and Lcon f uses sigmoid focal loss.
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Figure 3.5 illustrates the base training process, which can also be described as:

F (Sbm)→Mbm (3.5)

where Mbm represents the BM for a specific GeoAI task (e.g. an OSM building
detection model). In a word, an adequate geographic training dataset from
the source region Abm can extend the capabilities of a pre-trained model from
detecting objects within the COCO label dataset to detecting building objects on
high-resolution satellite images.

Multiple Few-Shot Transfer Learning

To improve the geographic generalizability of the OSM building detection base
model Mbm from source region Abm to a geographically far away target region
Atarget, the FSTL method is an efficient way in case there are some training
samples available at the target region (H. Li, Herfort, et al., 2022). However, if
the target region is completely missing training samples, this thesis assumes
that it is still possible to find some neighboring areas with a small amount of
"training shots". These neighboring areas, or called reference areas, have a higher
spatial correlation with the target region depending on the distance. To ensure
that the full surrounding spatial relevance of the target region can be taken into
account, this thesis took the direction of searching for eligible reference regions
towards the 8-neighborhood space of the target region, as the Figure 3.1 shows.
The training samples from each reference area are expected to partly help extend
the geographic generalizability of the base model.

Leveraging this idea, a given OSM building detection base model Mbm, fed
with several reference few-shot training samples {Sj

f s}
T
j=1 generated from T

reference areas {Aj}T
j=1, can be replicated as multiple FSTL models {Mj

f s}
T
j=1.

This fine-tuning process can be formulated as:

F ({Sj
f s}

T
j=1)→ {M

j
f s}

T
j=1 (3.6)

One step further, conducting these FSTL models forward inference, repre-
sented as P , with the test dataset Starget at the target region Atarget can generate
plenty of object predictions derived from different FSTL models as follows:

FSPj =
⋃

(xi,gi)∈Starget

P(Mj
f s, (xi, gi)). (3.7)
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Where {FSPj}T
j=1 refers to the corresponding set of predictions, which in-

cludes predicted BBOX and corresponding confidence scores, obtained from T
models in the target area Starget, and {Mj

f s}
T
j=1 are a set of FSTL models.

In the case of OSM building detection, after the SSD-based base model being
trained with the base training dataset Sbm at the source region Abm, multiple
Few-Shot Transfer Learning were implemented to extrapolate Mbm to many
less accurate FSTL models {Mj

f s}
T
j=1, which were then employed to predict the

missing OSM buildings with the test dataset Starget at the target region Atarget.
The pseudo-code of multiple FSTL and predictions is shown in Algorithm 1.

Algorithm 1 Multiple Few-Shot Transfer Learning and Predictions
1: Input:
2: Mbm: the base model;
3: T: number of reference areas neighbouring the test area;
4: S

j
f s = {(x

j
i , yj

i , gj
i)} (i = 1, . . . , n, j = 1, . . . , T): FSTL samples from reference

areas;
5: M

j
f s ← {}: few-shot models fine-tuned on reference areas;

6: Starget = {(xi, gi)} (i = 1, . . . , M): dataset from the test area;
7: FSPj, j = 1, . . . , T ← []: predictions from single FSTL models;
8: for dataset S

j
f s of each reference area Aj in {Sj

f s}
T
j=1 do

9: few-shot model M
j
f s ← F (S

j
f s, θ);

10: for each (xi, gi) in Starget = {(xi, gi)}M
i=1 do

11: update FSP
j
i ← P(M

j
f s, (xi, gi));

12: end for
13: end for
14: Output:
15: {FSPj}T

j=1: list of objects and scores predicted from reference few-shot
models;

Obviously, the performance of FSTL models is still limited by factors, such
as the amount and quality of "training shots", the spatial correlation between
regions, and the distance to the target region, which are all essential to the
geographic generalizability of models. In the next section, a further step will
be taken towards combining all of these FSTL predictions by establishing an
effective weighting strategy to ensemble diverse FSTL models.
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3.4. Geographical Weighted Model Ensemble

Since each FSTL model was obtained by fine-tuning the base model Mbm by
the reference datasets {Sj

f s}
T
j=1 from T reference regions surrounding the target

region, the prediction ability of each FSTL model at the target region will be more
or less influenced by these training samples. For instance, this thesis assumes
that if the correlation between these reference training samples and the test
data in the target region is higher, then the prediction ability or the geographic
generalizability of the FSTL model in the target region will also be stronger
(M. F. Goodchild & Li, 2021; H. Li, Herfort, et al., 2022; Mai, Huang, et al., 2023).
This correlation could be the correlation of the data itself, such as the similarity
of the satellite images, or it could also be the geospatial autocorrelation, such
as geographic distance. Therefore, the Geographical Weighted Model Ensemble
(GWME) method was proposed to ensemble the geographic generalizability of
all FSTL models by jointly considering the vision representation and geospatial
correlation between reference regions and the target region (H. Li, Wang, et al.,
2023).

The specific steps of GWME method can be divided into three major parts: 1)
Multiple Few-Shot Transfer Learning and predictions; 2) Calculate the contribu-
tion weights of each FSTL model to the target region; 3) Ensemble predictions
from multiple FSTL models into the final prediction according to their weights.
The process can be described as:

P =
T

∑
j=0
Q(FSPj, wj, TH). (3.8)

where P represents the final prediction with test dataset Starget at target region
Atarget, Q specifically means a Weighted Boxes Fusion (WBF) (Solovyev et al.,
2021) function for object detection fusion and TH represents the corresponding
hyperparameters, such as the threshold of confidential scores. The general idea
of the WBF is visualized in Figure 3.7 and the details will be introduced later.

FSTL Model Weighting

Now after multiple FSTL predictions were generated, the most important fol-
lowing step is to decide the weight of each individual FSTL model M

j
f s. This

thesis aims to consider both the vision information (xj
i) and geographic informa-

tion (gj
i) between reference datasets {Sj

f s = {(x
j
i , yj

i , gj
i)}

n
i=1}T

j=1 and test dataset
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Starget = {(xi, gi)}M
i=1 with an explicit weighting algorithm W ∈ RT×M in a

tile-base manner. The weighting algorithm can determine how and how much
the reference training samples can influence the final prediction at the target
region. More specifically, this thesis proposes an unsupervised method to learn
model ensemble weights by taking both image feature embedding and loca-
tion embedding into account with a self-attention mechanism, which can be
called self-attention weighting (shown in Figure 3.6), and additionally conducts
three other weighting strategies (average weighting, image similarity weighting,
and geographic distance weighting) for comparison. Four different weighting
strategies were elaborated as follows.

Average Weighting (average) - In the simplest case, equal weights for all
of FSTL models were considered. This approach aims for cases where the
relationship between reference regions and the target region can not be obtained
or evaluated. The average weighting can be the easiest way to make the ensemble
model perform a bit better in prediction capability than a single FSTL model.

{wj = 1} → FSPj (3.9)

Image Similarity Weighting (similarity) - For a geospatial object detection
task, it is intuitive to think about considering the similarity of satellite images
among the reference areas and the target area. Therefore, an average cosine
similarity (“Cosine Similarity”, 2023) was considered to determine the relation-
ships between the histograms of satellite image pairs, namely {xj

i}
n
i=1 ∈ S

j
f s and

{xi}M
i=1 ∈ Starget, as a proxy of their image similarity weights (see Equation 3.10).

Herein, HIS(·) indicates a function to compute the image histograms for RGB
channels. COS(·) indicates the average cosine similarity function for computing
the correlation between two stacked vector data. n is the number of few-shot
data samples, which may vary across different reference areas, used for training
the FSTL model M

j
f s from S

j
f s in the reference area Aj.

{wj
i =

1
n ∑

(xj
i ,y

j
i ,g

j
i)∈S

j
f s

COS(HIS(xj
i), HIS(xi)} → FSPj (3.10)

Geographic Distance Weighting (distance) - Given Tobler’s First Law of
Geography (D. Z. Sui, 2004), this approach expects a high spatial correlation
between two objects to be observed if they are close to each other. In this case,
the spatial correlation between the FSTL model trained in a reference region that
is further away and the target region is considered to be lower, which means that
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it should occupy a lower weight when ensemble models. To this end, an inverse
distance weighting strategy was considered for the model ensemble, which is
based on the prior knowledge of the geographic locations of the target dataset
and reference datasets, specifically {gi}M

i=1 ∈ Starget and the geographic center
of each reference region Aj. Equation 3.11 illustrates the general idea where
CEN(·) indicates the geometric center of the study area and DIS(·) indicates a
great circle distance, which represents the shortest distance between two points
over the earth’s surface (“Great-Circle Distance”, 2023).

{wj
i = DIS(gi, CEN(S

j
f s))} → FSPj (3.11)

Figure 3.6.: The extraction of self-attention-based weights for the GWME using
a pre-trained ViT with DINO.

Self-Attention Weighting (attention) - As the most interesting part, an unsu-
pervised method was developed to learn self-attention weights from a pre-trained
ViT model – the Self-Supervised ViT with DINO (Caron et al., 2021), which has
been pre-trained on ImageNet (Deng et al., 2009). Leveraging the ability of
ViT like models to capture both context embedding and position embedding
(Dosovitskiy et al., 2021), this self-attention weighting approach aims to calculate
weights by considering both image similarity and relative spatial relation among
reference areas and target area, which are essential factors to FSTL models’
geographic generalizability. To adopt DINO into GWME, an image patches
ensemble approach was designed according to relative positions of reference
regions and target region, where the central image patch was taken from the
target area and the context image patches were taken from T reference areas
{Aj}T

j=1 as shown in Figure 3.1. In other words, unlike the original ViT which
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splits one single image into different patches, this approach picks different image
patches from different reference or target areas to form a merged image (see
Figure 3.6) and uses relative position embedding of ViT to capture their relative
spatial relations. The output of DINO was a multi-head average attention map,
which illustrates the attention distribution over an image. The multi-head at-
tention is used here to capture richer feature representations, and the overall
attention distribution shows the significance of each part in the image. Further,
the self-attention weights were summarized by splitting the average attention
map back to patches with the same size as the input image patches, which can
be formulated as Equation 3.12. Specifically, each (xi, gi) ∈ Starget can be merged
to generate an attention map and then self-attention weights. In the end, these
weights carry the image vision representations correlation and relative spatial
relation together to support the FSTL models ensemble.

{wj
i = subset(attention_map((xi, gi), {S

j
f s}

T
j=1))} → FSPj (3.12)

The advantage of this approach is twofold: first, the self-attention-based
weighting can simultaneously consider the location (via position embedding)
and image feature embedding (via patch image embeddings) for weighting;
second, the extraction of self-attention relies only on pre-trained ViT and satellite
image patches without any prior knowledge (e.g., geographical location, image
source). Since self-attention can be calculated directly from a pre-trained model,
the GWME is an unsupervised model ensemble method to improve the model’s
geographical generalizability for GeoAI applications.

Weighted Boxes Fusion

Given multiple Few-Shot Transfer Learning (FSTL) predictions and diverse
model weights, a further step is to ensemble all of the predictions to generate
more accurate and credible geospatial object detection predictions. As Equation
3.8 mentioned, Q uses a WBFmethod (Solovyev et al., 2021), which utilizes
confidence scores of all proposed BBOX to construct the weighted averaged
boxes.

The geospatial object detection task combines localization with classification
for desired objects. Given a image, the FSTL building detection models usually
return the predicted locations of the buildings with the image coordinates of
BBOX and a confidence score. Since multiple FSTL were implemented with the
same test dataset Starget, the same buildings might be detected by more than
one FSTL model as the Figure 3.7 (a) and (c) shown. These predictions may
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3. Methodology

Figure 3.7.: An illustration of weighted boxes fusion. (a) and (c) are multiple
predicted boxes from different FSTL models {Mj

f s}
T
j=1; (b) and (d)

are the ensembled boxes by WBF.

vary in terms of locations and confidence scores due to the diverse geographic
generalizability of multiple FSTL models. The conventional solution to the prob-
lem of multiple BBOX overlapping each other uses non-maximum suppression
(NMS) or soft-NMS (Bodla et al., 2017), which picks the highest confidence score
by a ranking of confidence scores for all detection boxes and filter out other
boxes. However, such methods work well for a single detection model, but they
only select the boxes rather than produce an ensemble localization of different
predictions from diverse detection models. Unlike NMS or soft-NMS methods
that simply filter out part of predictions, the WBF method uses confidence scores
of all prediction candidates to construct new weighted averaged boxes, which
significantly improve the quality of the combined predicted BBOX (Solovyev
et al., 2021). Given the self-attention weights from 3.12, Figure 3.7 illustrates that
the WBF method conducts weighted detection boxes fusion for multiple building
predictions yielded from reference FSTL models into the models ensembled
predictions P.

Put it All Together

To put everything together, the pseudo-code of the complete GWME process is
presented in Algorithm 2, where it starts from multiple FSTL model predictions
as well few-shot datasets {Sj

f s = {(x
j
i , yj

i , gj
i)}}

T
j=1 from T reference areas, and

ends with the ensemble predictions together with their confidential scores for
OSM missing building detection task in the target test area.
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Algorithm 2 Geographical Weighted Model Ensemble (GWME)
1: Input:
2: MViT: the pre-trained ViT model;
3: S

j
f s = {(x

j
i , yj

i , gj
i)} with i = 1, . . . , n and j = 1, . . . , T: FSTL training samples

from reference areas;
4: Starget = {(xi, gi)} with i = 1, . . . , M: test dataset from the target area;
5: FSPj, j = 1, . . . , T: list of objects and scores predicted from different detection

models;
6: TH: threshold of prediction score
7: P: ensembled objects and scores;
8: Mode: weighting mode;
9: wj: corresponding weights for M

j
f s.

10: WeightsW ← [];
11: for each (xi, gi) in Starget = {(xi, gi)}M

i=1 do
12: for dataset S

j
f s of each reference area Aj in {Sj

f s}
T
j=1 do

13: if Mode == "average" then
14: average weights wj

i = 1;
15: else if Mode == "similarity" then

16: wj
i =

1
n ∑

(xj
i ,y

j
i ,g

j
i)∈S

j
f s

COS(HIS(xj
i), HIS(xj));

17: else if Mode == "distance" then
18: wj

i = DIS(gi, CEN(S
j
f s));

19: else if Mode == "attention" then
20: image patches patch_list[]← {xi, gi} ∈ Starget;
21: patch_list.append_patch({xj

i , gj
i}), {x

j
i , gj

i} ∈ S
j
f s;

22: multi_heads_attentions = MViT(patch_list);
23: attention_map = attention(multi_heads_attentions);
24: wj

i = subset(attention_map);
25: end if
26: wi ← wj

i

27: prediction candidates FSPi ← FSP
j
i ;

28: end for
29: W ← normalize(wi);
30: update Pi = Q(FSPi, wi, );
31: end for
32: Output:
33: P: ensembled results and scores;
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In conclusion, the GWME method can ensemble the detection performance
of all of FSTL models according to their corresponding weights, which were
learned by considering both image feature embedding and location embedding
with a self-attention mechanism in an unsupervised way. It is still necessary
to evaluate the geographic generalizability of proposed GWME methods with
experiments of the case study of cross-country OSM missing building detection
in Sub-Saharan Africa. The evaluation metrics for indicating the performance of
object detection models will be presented in the following section.

3.5. Evaluation Metrics

In neural network training, besides the loss function used to determine whether
a model is converging or not, some other metrics are still needed to quantita-
tively evaluate the performance of object detection models. In this study, some
commonly used object detection metrics, such as the precision, recall, accuracy,
and f1 score were selected to evaluate the OSM missing building detection model
(Padilla et al., 2021).

Since this study conducts single-class object detection with the predicted
BBOX and confidential scores, the locations of boxes were evaluated against the
ground truth. Intersection Over Union (IOU) is a primary metric to determine if
a detection is valid (True Positive) or not (False Positive). It requires a ground
truth BBOX Btruth and a predicted BBOX Bprediction and evaluates the overlap
between two boxes based on the Jaccard Index as shown in Figure 3.8. The
calculation of IOU can be formulated as Equation 3.13.

IOU =
area(Bprediction ∩ Btruth)

area(Bprediction ∪ Btruth)
(3.13)

Figure 3.8.: An illustration of Intersection Over Union (IOU) (Padilla et al., 2021).
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With IOU, it is possible to further count the confusion matrix (Table 3.2) for
object detection. The basic metrics within the confusion matrix are as follows:

• True Positive (TP) - A correct prediction with IOU ≥ threshold.

• False Positive (FP) - A wrong prediction with IOU ≤ threshold.

• False Negative (FN) - A ground truth object is not predicted.

• True Negative (TN) - A correct false prediction. However, in object detec-
tion tasks, there are countless possible bounding boxes that should not be
predicted within an image. Thus, TN is not used as a metric here.

Note, the threshold for IOU is usually set to 50%, 75%, 95%.

Table 3.2.: A confusion matrix for single-class object detection.
Prediction

Positive Negative Total

Ground Truth
Positive TP FN TP + FN
Negative FP TN FP + TN

Total TP + FP FN + TN N

Additionally, further metrics can be derived based on the confusion matrix:

• Precision - Precision shows the ability of a detection model to identify only
the relevant objects. It is the percentage of true positive predictions among
total positive predictions, which is formulated as:

Precison =
TP

TP + FP
=

True Positive
Total Positive Predctions

(3.14)

• Recall - Recall is the ability of a detection model to find all ground truth
bounding boxes. It is the percentage of true positive predictions among all
relevant ground truths, which is formulated as:

Recall =
TP

TP + FN
=

True Positive
Total Ground Truths

(3.15)

• Accuracy - Accuracy represents the number of correctly predicted data
instances over the total number of data instances. Since TN is not available,
the accuracy here only represents the percentage of true positives over all
of the data instances. It is formulated as:

Accuracy =
TP + TN

TP + FN + FP + TN
=

Correct Predictions
Total Instances

(3.16)
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• F1 Score - F1 Score is a metric that takes both precision and recall into
account. It is typically used to seek a balance between precision and recall
and is formulated as:

F1 = 2× Precision ∗ Recall
Precision + Recall

(3.17)

The above statistical metrics were used throughout the study to evaluate the
performance of geospatial object detection models, and the results are shown in
chapter 5.

3.6. Web Mapping Infrastructure

In order to efficiently visualize the predicted building locations for OSM, a
microservice-based web mapping application was designed to integrate GeoAI
solutions. This section aims to introduce the potential of GeoAI as a container-
ized microservice (GeoAIaaS) to the GeoAI-based web mapping application,
especially for geospatial object detection (J. Wang, n.d.).

Figure 3.9.: The architecture of GeoAIaaS and a use case of geospatial object
detection web application.

GeoAI as a Service

A GeoAI application is typically composed of three parts: frontend, backend,
and microservices. This thesis depicts an easy-to-build architectural framework
of a microservice-based GeoAI application and APIs between different parts
(Figure 3.9).
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Frontend - As the main entrance of the GeoAI application, the frontend
should adhere to a user-centered design, aiming at providing a user-friendly
and intuitive portal to let users interact with maps. Several tools like Leaflet and
Cesium enable the integration of OGC WMS provided by various map providers
like Bing Maps, OSM, and Google Maps.

Backend - Responsible for handling server-side functionalities that support
data management, communication, and API Exposure. In the case of the GeoAI
application, it provides REST APIs that enable the management of geospatial
data, and AI models, and execute specific missions via microservices.

Microservice - It plays a significant role in GeoAI applications by providing
modular, scalable, reusable, and distributed developable geospatial data analy-
sis services. Each microservice can be tailored to handle specific missions via
pre-defined recipes, such as processing remote sensing imagery, querying exter-
nal geographic data, preparing training datasets, conducting object detection,
performing semantic segmentation, etc. The key feature of GeoAIaaS is that it
can hide the geographic-related process inside the microservice itself to lower
the knowledge barrier for researchers. Additionally, it streamlines the intricacies
inherent in programming workflows for processing big geospatial data. For
example, if someone develops a microservice that splits remote sensing images
into fix-sized image tiles with location embedding, given proper metadata, this
microservice can be universally employed across various GeoAI applications
requiring remote sensing image tiles.

The overall architecture of GeoAI applications may vary in demand, however,
well-designed microservices can be easily reused and tailored through the
containerization capability of Docker (Boettiger, 2015).

Geospatial Object Detection Case

Geospatial object detection, a prominent research area within GeoAI, has gained
substantial development due to the growing availability of remote sensing
imagery and advancements in AI techniques, showcasing the great potential for
practical applications (H. Li, Herfort, et al., 2022; Sirko et al., 2021; Tiecke et al.,
2017). This thesis conducts the full workflow of utilizing GeoAI methods to
solve building detection from satellite imagery in three phases, data preparation,
training models, and prediction (Figure 3.9). Each phase is wrapped into a
standalone microservice which can be called via a REST API from the backend.

Data Preparation - This microservice can query and split remote sensing
images sourced from Bing Imagery Service or other WMS providers into the
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desired size without losing location information, and if needed, query geometries
from OpenStreetMap. Furthermore, it can wrap image and geometry data into a
specific data structure, like AtlasHDF (Werner & Li, 2022), which can directly be
used for training, or inferencing.

Training - This microservice bridges datasets and DL models, providing the
development environment and computation resource for training DL models. It
can query a pre-trained object detection model from open sources, like Tensor-
flow Object Detection Model Zoo, and train it with OSM-labeled remote sensing
images.

Inferencing - To efficiently use trained models in real-world scenarios, this
microservice provides the interface for predicting buildings based on the ge-
ographic coordinates of a specific area. The predicted BBOX and confidential
scores will be returned in the easy-to-transfer geospatial data structure, like
GeoJSON, etc.

The frontend interface and more use cases of the above geospatial building
detection web mapping application are presented in chapter 5.

In conclusion, the proposed GeoAIaaS was shown to be an efficient and easy-
to-maintain framework for both GeoAI research and applications. It splits the
whole workflow of the GeoAI solution into three major phases conducted by
diverse microservices. Each microservice is standalone, distributed, developable,
and simply deployable, aiming at lowering the geography knowledge barrier and
improving the reusability of GeoAI applications. The experiment of geospatial
object detection application shows the potential of building self-served spatial
datasets, efficiently training processes, and locally runnable GeoAI services.
However, since the complexity and high data volume of big geospatial data, the
toleration of pre-defined microservices is still needed when facing different prob-
lems. Future work is to explore the standard of building a GeoAI microservice
and leverage the community to support more use cases. The findings of this
section offer insights into the establishment of a collaborative GeoAI workflow
for small research groups or independent developers and shed inspiring light on
possibilities for GeoAI applications across local workstations, edge computing,
distributed development, etc.
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4. Case Study

4.1. Dataset

For a case study of proposed GWME method, this thesis takes the open dataset
collected in (H. Li, Herfort, et al., 2022), where training samples Sbm from a
well-mapped area Abm in Tanzania is used to train the base model Mbm and a
geographically remote area in Cameroon is selected as the target area Atarget who
does not have any training samples. Eight reference areas {Aj}8

j=1 were identified

with few-shot training samples {Sj
f s}

8
j=1 for the FSTL purpose surrounding the

target area (as shown in Figure 4.1).

Figure 4.1.: The overview of datasets. Abm refers to the source region that
includes base model training dataset Sbm in the blue box. Atarget
refers to the target region, which includes test dataset Starget in the
black box and T reference datasets {Sj

f s}
T
j=1 in red boxes. The base

map is from OpenStreetMap and the satellite imagery is from Bing
Maps Aerial Imagery.

More specifically, OSM buildings within the training area Abm in Tanzania
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were fully mapped during a humanitarian mapping activity organized by the
Humanitarian OpenStreetMap Team (HOT). For the target area Atest, since it is
completely missing in OSM, an expert mapping campaign was organized by
H. Li, Herfort, et al. (2022) and 1,811 buildings within an 8.57km2 area were
digitized in total in Cameroon as the ground truth data. Table 4.1 gives the
statistic of all datasets

Table 4.1.: Summary statistic of the datasets.

Counts Abm Atarget A1 A2 A3 A4 A5 A6 A7 A8

Buildings 6,272 1,811 66 45 116 46 71 61 40 79
Areas (km2) 232.50 8.57 0.35 0.16 0.35 0.22 0.34 0.44 0.25 0.20
Tiles n 1,744 343 5 5 9 7 9 9 7 7

4.2. Experiment Setup

To generate the training data, the ohsome2label package (Z. Wu et al., 2020)
was used to combine OSM building geometries with Bing satellite imagery at a
zoom level of 18 (i.e., a spatial resolution of 0.6m), which were then converted
to training datasets for the TensorFlow Object Detection API 1. For the SSD
object detection model (W. Liu et al., 2016), the pre-trained parameters were
downloaded from the TensorFlow Detection Model Zoo. With an initial learning
rate of 0.0004, the training process for the base model in Tanzania was run for
50,000 epochs and the FSTL fine-tuning epochs were then set to 10,000 for all
reference areas to ensure the training models were convergence. The algorithms
were implemented using Python 3.10, TensorFlow 2.6, and TensorFlow object
detection API on a Linux server with a GeForce RTX 3080Ti graphical processing
unit (GPU) of 12 GB memory.

For evaluation, common evaluation metrics were used for a single-class object
detection task, such as Precision, Recall, Accuracy, and F1-score. Specifically, a
default IoU threshold of 0.5 was set as the criteria to decide whether a prediction
bounding box refers to a building bounding box in the target data, which then
distinguishes all predictions into False Negatives (FN), False Positives (FP), and
True Positives (TP). There is no True Negative (TN) since detecting non-building
objects is not reasonable.

1https://github.com/tensorflow/models/tree/master/research/object_detection
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5. Experiments and Results

This chapter demonstrates the experiments and results on improving OSM
missing buildings leveraging the proposed GWME method and showcases
a minimalistic GeoAI web application for the building detection task. The
OSM missing building detection task was divided into three main steps: 1)
Multiple few-shot predictions by FSTL models. 2) Weight computing via diverse
weighting strategies. 3) Weighted model ensemble and evaluation. Additionally,
the hyperparameter setting within the model ensemble is also a noteworthy
experiment.

5.1. Multiple Few Shot Model Predictions

First, a general one-stage object detection model SSD-ResNet101 pre-trained via
Microsoft COCO dataset (Lin et al., 2015) was trained with the OSM-labeled
training samples Sbm from the source region Abm. The obtained building detec-
tion base model Mbm performed well with the validation set of the source area,
with a series of promising evaluation results (91.04% precision, 51.69% recall,
49.18% accuracy, and 65.94% F1 score). Then few-shot training sets {Sj

f s}
8
j=1

from 8 reference areas geographically surrounding the target area were used to
fine-tune the base model Mbm and generated 8 FSTL models {Mj

f s}
8
j=1, which

were further used to predict missing buildings with the test dataset Starget re-
spectively. The detection performance of the base model and FSTL models were
shown in Table 5.1.

Herein, a finding from Table 5.1 shows an overall significant performance im-
provement of FSTL models over the base model, with so call Mean({FSPj}8

j=1)

over the base model. However, an interesting observation is that the individual
FSTL model performance varies a lot, where FSP4 leads to the biggest improve-
ment and FSP6 the lowest. Particularly, high precision means the ability of a
model that correctly detect buildings among all detections, high accuracy means
the ability to successfully detect buildings among all objects, high recall means
the ability to completely detect buildings, and a high f1 score means that the
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Table 5.1.: Evaluation metrics of predictions from the base model and single
FSTL models on the test dataset. BMP and FSPj indicate the model
predictions of the base model Mbm as well as different FSTL models
{Mj

f s}
T
j=1.

Predictions Precision (%) Accuracy (%) Recall (%) F1

BMP 97.66 13.71 13.75 0.2411
FSP1 99.00 60.90 61.27 0.7570
FSP2 96.94 68.93 70.46 0.8160
FSP3 98.18 53.06 53.58 0.6933
FSP4 98.22 49.06 49.50 0.6582
FSP5 98.44 61.27 61.87 0.7598
FSP6 84.65 40.90 44.18 0.5806
FSP7 99.12 52.66 52.91 0.6899
FSP8 98.73 52.60 52.96 0.6894
Mean({FSPj}8

j=1) 96.66 54.92 55.84 0.7055

model performs well in both detection precision and completeness. Such a
distinct behavior implies the different levels of geographical generalizability
among a set of FSTL models.

5.2. Weighting Result

To support the next model ensemble step, the tile-based weights matrix was
computed via four different weighting strategies (average, similarity, distance,
attention). These weights represent the importance of the neighboring reference
areas to the target area, and also the degree of involvement of the FSTL models
in the model ensemble. Specifically, a higher weight for an individual model
represents a higher contribution of that FSTL model to the final ensemble
prediction compared to other models. Therefore, in the experiments in this
thesis, weights can be recognized as a concrete numerical representation of the
geographical generalizability of a building detection model.

To better understand the relationships between weights and neighboring
reference areas to the target area, Figure 5.1 illustrates the weight distribution of
the distance weighting approach (distance). Obviously, the distance weighting
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Figure 5.1.: The visualization of distance weighting results. The center is the
geographic location of the reference areas and the target area. The
8-neighborhoods heatmaps represent the weight distribution by the
distance weighting. The color of the heatmaps ranges from light
white to dark red representing the distance weights from 0 to 1.

result fits Tobler’s first law of geography very well, where the image tile is
closer to the reference area, the distance weight is higher. To put it another way,
each image tile is more susceptible to models that are geospatially close when
ensemble models.

When comparing three weighting approaches of image similarity, distance, and
self-attention, Figure 5.2 shows different weight distribution patterns. Specifically,
the image-similarity-based weights vary due to the contextual difference of the
images, which may also lead to similar images in different regions resulting in
the disappearance of differentiation between diverse FSTL models. On the other
hand, the distance-based weights exhibit strong spatial clustering, which may
result in a single FSTL model contributing less to distant image tiles. However,
the weights based on the self-attention mechanism, because it takes both the
content correlation and the relative position correlation into account, show the
weight difference caused by the distance of different FSTL models while ensuring
that the image content is also considered.

Figure 5.3 illustrates the histogram distribution of self-attention-based weights
attributed to the model ensemble predictions of 343 image tiles by 8 FSTL models.
In conjunction with Table 5.1, a very interesting finding is that when using a
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Figure 5.2.: The visual comparison of different weighting strategies. The left
column is the weighting result of M6

f s, and the right column is M3
f s.
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Figure 5.3.: The comparison of the self-attention weights histogram distribution
of multiple FSTL models.
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single FSTL model to predict buildings at the target area, FSTL models from
reference area A5, A2, A1, A3, which account for larger self-attention weights,
perform better in the single-FSTL-model prediction. In contrast, FSTL models
from reference area A7, A8, A4, A6 share smaller self-attention weights while
performing relatively poorly in the individual model prediction.

5.3. Predictions Ensemble Result

Carrying diverse weights, multiple WBF-based model ensemble experiments
were conducted. Table 5.2 compares the performance of four different weighting
strategies with the proposed GWME method, where a threshold of prediction
scores (TH) is set to ones with precision ≥ 95% as shown in Figure 5.4. Several
key findings can be observed. First, even with average weighting, the model
ensemble leads to a significant improvement in the overall performances of single
FSTL models, which proves the effectiveness of GWME compared to the baseline
model. Second, although it assumes that image similarities play a role in the
model’s generalization, image similarity weighting (similarity) ends up with the
least improvement in the model ensemble, while the inverse distance weighting
gives a surprisingly better result. Last but foremost, the biggest performance
improvement via the GWME method is with self-attention-based weighting
(attention), which leads to more than 6% improvement in overall accuracy and
the highest Recall of 78.99% in the target area Atarget.

Table 5.2.: Evaluation metrics of predictions from ensembled results by different
weighting modes.

GWME Weightings Precision (%) Accuracy (%) Recall (%) F1

average 96.35 71.70 73.70 0.8352
similarity 95.68 71.16 73.52 0.8315
distance 97.76 72.98 74.22 0.8438
attention 96.95 77.07 78.99 0.8705

The proposed GWME method can effectively improve the geographical gener-
alizability of GeoAI models in an unsupervised manner. In Figure 5.5, multiple
evaluation metrics were plotted between the baseline method (e.g., the base
model Mbm and a single FSTL model M4

f s) and GWME results with different
weighting strategies.
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(a) The curve of precision and the threshold
of prediction scores.

(b) Precision-Recall curve with the rising
threshold.

Figure 5.4.: Evaluation Metrics

Figure 5.5.: Performance of GWME predictions (precision > 95%) using different
weighting strategies.
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Figure 5.6.: The comparison map of prediction results. (a) the base model (Mbm);
(b) the single FSTL model (i.e., M4

f s); (c) the GWME result with
self-attention-based weights attention.

61



5. Experiments and Results

To visually interpret the advantages of the proposed GWME method, Fig-
ure 5.6 compares the OSM missing building detection results of three different
models: the base model Mbm, the single FSTL model M4

f s, and the results from
GWME method with self-attention-based weights (attention). Comparing Figure
5.6 (b) with (a), It’s obvious that a significant decrease in FN, which originates
from valid buildings that are overlooked by a model trained in geographically
remote areas, confirms the assumption that few-shot learning is very effective in
improving model performance in geographically remote areas. Comparing Fig-
ure 5.6 (c) with (b), the proposed GWME with self-attention weights (attention)
further reduces the FN and FP. This confirms the effectiveness of GWME in
achieving better geographical generalizability for GeoAI models, especially for
geospatial object detection tasks.

5.4. Web Mapping Interface

To better visualize the machine-generated geographic results and explore the
potential of the GeoAI as a Service (GeoAIaaS), a minimalistic building detection
web mapping application was designed and implemented as Figure 5.7 shown.
The basic development framework was orchestrated by Vue.js 1 as the frontend,
GeoDjango 2 as the backend, and GeoAI based microservices. Specific application
features are as follows:

Frontend - As shown in Figure 5.7, the frontend was mainly composed of
two components, the map interface developed by Leaflet 3 and the control user
interface (UI) implemented by modern web development techniques (HTML,
CSS, JavaScript, etc.). Specifically, OSM was used as the base map layer, and Bing
Maps Aerial and ERSI Imagery were added as overlay layers for comparison,
which can be controlled by the layer and the opacity controllers at the top right
corner of the interface. Furthermore, machine-predicted building instances can
be added as new overlay layers in GeoJSON format or removed from current
layer groups. With the drawing tool sitting at the left bottom corner, users can
draw a rectangle region on the map or manually type coordinates into the panel
to further request the training samples downloading process, which could be the
data preparation mission provided by a microservice. More complex operations
within the GeoAI solution (e.g. models training, inference, etc.) can also be
provided with frontend entries for users depending on demands.

1https://vuejs.org/
2https://docs.djangoproject.com/en/4.2/ref/contrib/gis/
3https://leafletjs.com/
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5.4. Web Mapping Interface

Figure 5.7.: The demo of a GeoAI web application for building detection. The
left map is from Bing Maps Aerial, and the right map is from OSM.
The blue rectangles displayed on the map represent the locations of
predicted buildings.

Backend - Since this web application uses WMS from OSM, Bing Maps,
and ESRI to provide the map tiling interface, the backend here only considers
the storage and management of machine-generated geographic contents, like
GeoJSON files, and the delivery of GeoAI mission requests between frontend
and microservices. For instance, users can upload/delete GeoJSON format
building prediction data to a PostGIS geospatial database by HTTP operations
(like POST). In addition, the backend can also receive the type of GeoAI missions
(like data preparation, inference, etc.) and the test area (coordinates) specified
by users, and encapsulate these raw data into a standard HTTP request which
can be received by microservices. Meanwhile, the backend also plays a role in
accepting and parsing the response data from microservices.

Microservice - Leveraging the encapsulation capabilities and reusability of
Docker (Boettiger, 2015), microservices can empower modern web mapping
applications with more GeoAI solutions. Based on the building detection task
in this thesis, two Flask-based microservices were designed to assist users in
achieving more efficient model training and building detection. One is the data
preparation microservice, which receives the HTTP request and based on the
metadata and the required image data source can generate fixed-size remote
sensing images and corresponding OSM geometries for the training purpose.
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Another is a building prediction microservice, which can use a pre-trained
building model to make predictions on the received images, and eventually
return the prediction results in the form of GeoJSON. Furthermore, if possible,
the model training process can also deployed on machines that carry sufficient
computational resources or high-performance computing platforms and provide
APIs for users to perform model training remotely.
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6. Discussion

The overall research objective of this study is to research the geographical
generalizability of GeoAI models across geospatial space with a case study
of detecting OSM missing buildings across different countries in Africa and
develop a web mapping application integrated with GeoAI solutions. Specifically,
this was achieved by three parts: 1) investigated GeoAI trends and state-of-art
technologies; 2) proposed a GWME method to improve the replicability and
geographical generalizability of a trained building detection model from the
source region to the target region; 3) explored GeoAI as a Service framework to
empower web mapping applications.

First, Section 2.2 provides a comprehensive summary of the current devel-
opment state of GeoAI and ideas in addressing real-world challenges, from
definitions, popular models, and applications to transfer learning and spatial
explicit AI. Second, Section 2.1, 3.2, 3.3, 3.4, 5.3 together present the existing
challenge in the efficiency of OSM mapping activities and the difficulties of
transferring building detection model across countries, and proposes a GWME
method, which is based on FSTL and self-attention based weighted boxes fusion,
greatly improved geographical generalizability of object detection models. Addi-
tionally, Section 2.3, 3.6 and 5.4 design and implement a visualization application
for building detection results, and introduce an innovative attempt to integrate
GeoAI solution into web mapping applications.

However, due to the complexity of the problem and the limitations of the
experiments, there are still many pending challenges to be addressed in future
research.

• Although the proposed GWME approach and GeoAIaaS application present
a great improvement in transferring a pre-trained building detection
model across geospatial space and high efficiency of visualizing machine-
generated predictions with OSM map and Bing Maps Aerial Imagery, how
to further extend such a model to more study areas and establish data
connectivity with OSM mapping is still a future research direction. One
possible solution is to design a system that maps the footprints of detected
buildings and transfers these geographic data to the OSM mapping tools,
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like Rapid Editor, to assist in manual mapping.

• This study uses ensemble weights, which were recognized as the impor-
tance of reference areas to the target area by considering both the spatial
and image correlation between training samples, to represent the geo-
graphical generalizability of building detection models numerically. This
representation is still limited to the quality of training samples and the
number of reference regions, and in the future, correlations between dif-
ferent models can be considered from either the extraction of high-level
features of the training process or transferability metrics for object detec-
tion (Fouquet et al., 2023), which may find the more important features of
GeoAI models.

• The model ensemble in this study occurs at a prediction level, while a
parameter-level model ensemble can be preferred by considering computa-
tional efficiency (Dong et al., 2020).

• The reference areas in the case study were picked in proximity to the target
area, and future work could consider either a larger scale study area for
more aggressive improvement of geographical generalizability, or the same
study areas but at different times to study temporal generalizability.

• In the step of self-attention weighting, this study used the default position
embedding from a pre-trained ViT mode, which only considers the relative
spatial correlation across image patches. It would be interesting to integrate
spatially explicit location embedding into the training process (Mai et al.,
2020) or other advanced location encoding technologies (Mai, Janowicz,
et al., 2022).

• Leveraging the great generalization capability of foundation models, more
complex GeoAI solutions (such as multi-class geospatial object detection,
semantic segmentation, satellite image retrieval, and forecasting) are yet to
be explored(Mai, Cundy, et al., 2022; Mai, Huang, et al., 2023).

• The proposed GeoAIaaS pattern demonstrates the potential of GeoAI
across distributed AI development, edge-computing, and advanced spatial
data infrastructure (SDI), which could enhance automatic methods for
improving the quality and sharing of geospatial data and metadata, for
supporting reproducibility and replicability in GeoAI research (Janowicz
et al., 2020). This also inspires future research possibilities into geospatial
federated learning with multi-modal EO, mobile devices, and LBS.
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The emergence of novel deep learning networks over the past few decades,
together with multiple sourced big geographic data, has greatly contributed to
the development of GeoAI. Aiming to improve mapping efficiency and reduce
volunteer efforts for OSM building mapping, this study proposed a Geographi-
cal Weighted Model Ensemble (GWME) method to improve the geographical
generalizability of GeoAI models (H. Li, Wang, et al., 2023). Leveraging the
replicability of few-shot transfer learning (FSTL) (H. Li, Herfort, et al., 2022), this
thesis conducts multiple FSTL with a SSD-ResNet101 based building detection
model trained on the source region across several reference regions surrounding
the target region, and develops a self-attention-based weighted boxes fusion
approach by simultaneously considering the image and location correlation
among diverse FSTL models. More importantly, compared with the other three
weighting approaches (average weighting, image similarity weighting, and ge-
ographical distance weighting), self-attention weighting can intuitively learn
both context and location information from a pre-trained ViT model without
prior knowledge in a fully unsupervised manner. To evaluate the effectiveness
of GWME, intensive experiments were conducted with a case study of OSM
missing building detection in the African region, where the base model is trained
in Tanzania, and the target test area is in Cameroon. Experimental results con-
firmed the capability of GWME with the self-attention-based weighting which
can outperform both the base model and single FSTL model with overall per-
formance improvement over the best single FSTL model. Future work is to
explore a larger-scale GeoAI model on geographical generalization and temporal
generalization.

Additionally, to explore the GeoAI-enhanced web mapping applications, this
thesis demonstrates a GeoAI as a Service (GeoAIaaS) design pattern, which
was shown to be an efficient and easy-to-maintain framework for both GeoAI
research and applications. It splits the whole workflow of GeoAI into three major
phases conducted by diverse microservices. Each microservice is standalone, dis-
tributed, developable, and simply deployable, aiming at lowering the geography
knowledge barrier and improving the reusability of GeoAI solutions. The ex-
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periment of a building detection application shows the potential of constructing
self-served spatial datasets, efficiently training processes, and locally runnable
GeoAI services. However, since the complexity and high data volume of big
geospatial data, the toleration of pre-defined microservices is still needed when
facing different problems. Future work is to explore the standard of building
a GeoAI microservice and leverage the community to support more use cases.
The findings of this thesis offer insights into the establishment of a collaborative
GeoAI workflow for small research groups or independent developers

In short, this thesis inspires the general topic of the geographical general-
izability of GeoAI models by the proposed GWME method and sheds light
on possibilities for GeoAI-enhanced web mapping applications across local
workstations, edge computing, and distributed development by the depicted
GeoAIaaS.
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A. Appendix

All the code and test data used in this thesis are shown here:

The code repository of the full training workflow including data preparation,
FSTL, and GWME can be accessed via https://github.com/Wjppppp/building-
detection.git.

The code repository and test images of the proposed GWME method can be
accessed via https://github.com/tum-bgd/GWME.git.

The code repository of the building detection web mapping application can be
accessed via https://github.com/Wjppppp/missing-osm.git.
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