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Abstract

With the maturity of supporting software and hardware, sensors with strong perception
capabilities are being piloted as traffic sensors. Compared with current mainstream traffic
sensors, these advanced traffic sensors can achieve the accurate detection and tracking
of pedestrians and vehicles and obtain trajectory-level data. Therefore, they can achieve
more than just traffic flow monitoring, such as traffic accident monitoring.

Before traffic sensors can function in the field, their location strategy is a critical deci-
sion to be made. The related discussion is generalized as the Traffic Sensor Location
Problem (TSLP). The location strategy of traffic sensors is always determined by their
functionality. Therefore, over time, TSLP has often been discussed from the perspective
of traffic flow, while the discussion from the perspective of traffic safety has been rather
rare. This thesis just aims at this gap to conduct an exploratory study on TSLP from
the perspective of traffic safety.

This thesis proposes that from the perspective of traffic safety, traffic sensors should be
located in traffic accident and near-accident hotspots. Based on this, a methodology for
solving TSLP from the perspective of traffic safety is proposed. It consists of three parallel
parts: network analysis, risk analysis and rule analysis. Network analysis is to use the
network analysis methods to detect the historical traffic accident hotspots on the road
network. Risk analysis is to explore the relationship between the accident risk of traffic
intersections and their nearby geographic features and therefore predict the accident risk
with the geographic features. Based on the prediction results, predicted high-risk traffic
intersections are potential traffic accident or near-accident hotspots. Rule analysis is
to discover the association rules between accident locations and their nearby geographic
features, and accident-associated geographic features are expected to be found. Based on
the association rules, places close to accident-associated geographic features are potential
traffic accident hotspots. In this way, a methodology consisting of three hierarchical
study objects, which are the road network, traffic intersections and accident locations, is
proposed.

This thesis chooses the city of Wuppertal as the study area, and two open data sources,
namely OpenStreetMap and the German Accident Atlas, are adopted. Data preparation
is a key step before performing three analysis methods, data of three different study
objects needs to be processed by road network modelling, traffic intersection detection,
accident data filtering, and data enrichment. Network analysis is conducted on three
levels of the road network: centrality measures on the node level, network kernel density
estimation on the lixel level, and community detection on the community level. Risk
analysis is conducted by training a random forest classification model with the data of
four nearby cities, and predicting the accident risk of traffic intersections in Wuppertal.
Rule analysis is conducted by implementing the association rule analysis between traffic
accidents and their nearby geographic features, and it’s conducted on the overall dataset,
data clusters by their attributes and data clusters by community detection.

The results of the case study initially demonstrate the effectiveness of the methodology
and three analysis methods proposed in this thesis. Network analysis methods can ef-
fectively identify the historical accident hotspots on the road network. The relationship
between accident risk and geographic features can be effectively modelled and used for
risk prediction, and association rules between accident risk and geographic features can
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be effectively extracted. With their results, potential accident and near-accident hotspots
can be predicted. What’s more, this thesis proposes a general guideline on dealing with
the TSLP from the perspective of traffic safety for other’s reference.

This thesis is an explorative study. The discussion about solving TSLP from the perspec-
tive of traffic safety can be continued by going deeper with network analysis, combining
risk analysis and rule analysis, iterative analysis and more. The related research about
TSLP should continue so that spatial decision-making can support more for the deploy-
ment of advanced traffic sensors and therefore smart transportation.

Keywords: Traffic Sensor Location Problem, Traffic Safety, Traffic Accident Hotspot De-
tection, Spatial Decision-Making, Network Analysis, Machine Learning and Data Mining

IV



Table of Contents

Statement of Authorship I

Acknowledgements II

Abstract III

Table of Contents VII

List of Figures VIII

List of Tables IX

1 Introduction 1

1.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature Review 4

2.1 Progress on Traffic Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Traffic Sensors with Strong Perception Abilities . . . . . . . . . . 5

2.2 Research and Application of Advanced Traffic Sensors in Traffic Safety . 6

2.2.1 Research on Traffic Accident and Near-Accident . . . . . . . . . . 7

2.3 Traffic Sensor Location Problem in Transportation Science . . . . . . . . 7

2.3.1 Current Status of TSLP: Traffic Flow-Oriented TSLP . . . . . . . 7

2.3.2 Traffic Safety-Oriented TSLP . . . . . . . . . . . . . . . . . . . . 8

2.3.3 Relevance of TSLP to Site Selection Problem . . . . . . . . . . . 8

2.4 Network Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Centrality Measures . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.2 Network Kernel Density Estimation . . . . . . . . . . . . . . . . . 9

2.4.3 Community Detection . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Machine Learning and Data Mining Methods . . . . . . . . . . . . . . . . 12

2.5.1 Random Forest Model . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2 Model Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.3 Association Rule Learning . . . . . . . . . . . . . . . . . . . . . . 13

V



3 Methodology 15

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Part 0: Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Part 1: Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Node Level: Centrality Measure . . . . . . . . . . . . . . . . . . . 17

3.3.2 Lixel Level: Network Kernel Density Estimation . . . . . . . . . . 18

3.3.3 Community Level: Community Detection . . . . . . . . . . . . . . 18

3.4 Part 2: Risk Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Random Forest Model Training and Model Boosting . . . . . . . 18

3.4.2 Risk Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Part 3: Rule Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.1 Data Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.2 Association Rule Analysis . . . . . . . . . . . . . . . . . . . . . . 21

4 Case Study 22

4.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Data Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 German Accident Atlas . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.2 OpenStreetMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Part 0: Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Road Network Modelling . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.2 Traffic Intersection Detection . . . . . . . . . . . . . . . . . . . . 28

4.3.3 Accident Data Filtering . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.4 Data Enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Part 1: Accident Hotspot Identification on Road Network . . . . . . . . . 32

4.4.1 Node Level: Hot Node Identification . . . . . . . . . . . . . . . . 32

4.4.2 Lixel Level: Hot Lixel Identification . . . . . . . . . . . . . . . . . 32

4.4.3 Community Level: Hot Community Identification . . . . . . . . . 32

4.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Part 2: Risk Prediction of Traffic Intersection . . . . . . . . . . . . . . . 34

4.5.1 Random Forest Model Building . . . . . . . . . . . . . . . . . . . 36

4.5.2 Model Enhancement and Risk Prediction . . . . . . . . . . . . . . 36

4.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Part 3: Association Rule Analysis of Accident Location . . . . . . . . . . 39

4.6.1 Data Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

VI



4.6.2 Association Rule Analysis between Accident Locations and Geo-
graphic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Discussions 44

5.1 From Analysis Results to Candidate Sensor Locations . . . . . . . . . . . 44

5.1.1 Historical Accident Hotspots as Candidates . . . . . . . . . . . . 44

5.1.2 Potential Accident and Near-Accident Hotspots as Candidates . . 45

5.2 Answers to Research Questions . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Relationship between Traffic Accidents and Geographic Features . . . . . 46

5.4 Differences between Three Analysis Methods . . . . . . . . . . . . . . . . 47

5.5 Limitations and Where to Continue . . . . . . . . . . . . . . . . . . . . . 47

6 Conclusions 49

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 General Guideline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Bibliography 51

VII



List of Figures

2.1 Overview of Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Schematic Diagram of Kernel Function (Gelb, 2021) . . . . . . . . . . . . 10

2.3 Different Kernel Functions (Gelb, 2021) . . . . . . . . . . . . . . . . . . . 10

3.1 Overview of the Methodology . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Methodology of Part 1 - Network Analysis . . . . . . . . . . . . . . . . . 16

3.3 Methodology of Part 2 - Risk Analysis . . . . . . . . . . . . . . . . . . . 19

3.4 Methodology of Part 3 - Rule Analysis . . . . . . . . . . . . . . . . . . . 20

4.1 Location of the City of Wuppertal . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Locations of the Four Cities and Counties around Wuppertal . . . . . . . 23

4.3 The Workflow of Data Preparation . . . . . . . . . . . . . . . . . . . . . 26

4.4 Road Network of Wuppertal after Modelling . . . . . . . . . . . . . . . . 27

4.5 An Example Showing the Relationship between a Traffic Intersection in
the Practical Sense (Source: OSM) and in the Mathematical Sense . . . . 28

4.6 The Satellite Image of the Example Traffic Intersection (Source: Apple
Maps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.7 Traffic Intersections Detected in Wuppertal . . . . . . . . . . . . . . . . . 29

4.8 Betweenness Centrality Result (Left: Original Road Network, Right: Up-
dated Road Network) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.9 PageRank Centrality Result (Left: Original Road Network, Right: Up-
dated Road Network) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.10 NKDE Results (Years 2019-2022) . . . . . . . . . . . . . . . . . . . . . . 34

4.11 NKDE Results (Year 2019, Year 2020, Year 2021, Year 2022) . . . . . . . 35

4.12 Community Detection Results . . . . . . . . . . . . . . . . . . . . . . . . 35

4.13 Schematic Diagram of Model Training . . . . . . . . . . . . . . . . . . . 36

4.14 Prediction Results of the Model (Confusion Matrix) . . . . . . . . . . . . 37

4.15 Geographic Distribution of Potential Near-Accident Hotspots . . . . . . . 37

4.16 Accident Number of Actual High-Risk but Predicted Low-Risk Intersections 38

4.17 Histogram of the Importance of each Geographic Feature . . . . . . . . . 39

4.18 Community Detection Results (Visualized with Gephi) . . . . . . . . . . 40

4.19 Parts of the Road Network that is Close to Crossings . . . . . . . . . . . 42

5.1 Distribution of Residential Land Use Types in Wuppertal . . . . . . . . . 46

VIII



List of Tables

2.1 Intrusive Sensors Currently Used for Traffic Control (Tewolde, 2012; Guerrero-
Ibáñez et al., 2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Non-Intrusive Sensors Currently Used for Traffic Control (Tewolde, 2012;
Guerrero-Ibáñez et al., 2018) . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Comparison Table of Site Selection at Different Scales . . . . . . . . . . . 9

4.1 The Attribute List of Road Traffic Accident Record . . . . . . . . . . . . 24

4.2 13 Road Classes Extracted from OSM . . . . . . . . . . . . . . . . . . . . 24

4.3 8 Classes of Traffic Facilities Extracted from OSM . . . . . . . . . . . . . 24

4.4 8 Classes and 6 Kinds of Amenities Extracted from OSM . . . . . . . . . 25

4.5 26 Kinds of Land Use Types Extracted from OSM . . . . . . . . . . . . . 25

4.6 Official Municipality Key of the Study Area . . . . . . . . . . . . . . . . 30

4.7 Accident Number of Each Year in Wuppertal . . . . . . . . . . . . . . . . 30

4.8 Attribute Table of Traffic Intersections after Data Enrichment . . . . . . 31

4.9 Division of Training and Testing Sets . . . . . . . . . . . . . . . . . . . . 36

4.10 Prediction Scores of the Model . . . . . . . . . . . . . . . . . . . . . . . . 37

4.11 Top Important Geographic Features of the Trained Model . . . . . . . . 38

4.12 Part of the Attribute List of Road Traffic Accident Record . . . . . . . . 40

4.13 ARA Results of the Whole Dataset . . . . . . . . . . . . . . . . . . . . . 41

4.14 ARA Results of Certain Types of Accidents . . . . . . . . . . . . . . . . 42

IX



1 Introduction

1.1 General Overview

In order to achieve a balance between effectiveness and cost, the discussion about optimal
traffic sensor locations has lasted for decades since traffic sensor networks were deployed.
Owais (2022) summarized this type of problem as the Traffic Sensor Location Problem,
which is abbreviated as TSLP.

Location strategies are always associated with sensor functionality. Currently, the main
function of mainstream traffic sensors is to monitor traffic flow, which is a decisive element
in transportation planning and traffic management (Owais, 2022). Therefore, TSLP
always looks for optimal solutions from the perspective of traffic flow and answers two
typical questions: how many sensors are needed, and what are the best locations for their
deployment (Owais, 2022; Liu et al., 2023)?

However, thanks to enhanced computing power and real-time automatic data processing
capabilities, emerging LiDAR sensors with high precision, all-day and all-weather working
ability, and strong privacy protection ability compared with cameras, are being piloted
as traffic sensors (J. Zhao et al., 2019; Z. Zhang et al., 2019; J. Zhang et al., 2020). These
advanced sensor technologies, including HD cameras and LiDAR sensors, are helping the
perception capabilities of traffic sensors to significantly improve. More advanced and
refined functions can be achieved than just traffic flow monitoring. In particular, they
have great application prospects in traffic safety, which is difficult to achieve with the
current mainstream traffic sensors (Wu et al., 2018). They can detect the occurrence of
traffic anomalies such as traffic accidents and near-accidents (that is, near misses), and
monitor their full and detailed process. In this way, traffic anomalies can be reported to
the police more quickly and early warning to follow-up road users via V2X (Vehicle to
Everything). The full process monitoring can help with accident liability presumption
and insurance claims, and more importantly, help us better understand the causes of
traffic anomalies, which can help reduce traffic accidents and even help future autonomous
vehicles better understand human driving behaviour so that they can better make decision
while interacting with human drivers (Wu et al., 2018).

Before the new traffic sensors can play a role in improving traffic safety in the transporta-
tion network, the first step is location selection, that is, dealing with TSLP. However, the
current discussion of TSLP is mainly from the perspective of traffic flow, the discussion
from the perspective of traffic safety is rather rare. To the best of the author’s knowledge,
no relevant literature records were found.

Therefore, this thesis is just aiming at this gap to carry out an exploratory study of
solving TSLP from the perspective of traffic safety.

1.2 Research Objectives

This thesis aims to extend the discussion on TSLP from only the perspective of traffic
flow to the perspective of traffic safety. More specifically, this thesis wants to explore the
data, methods and workflow to detect the optimal traffic sensor locations for monitoring
traffic anomalies and improving traffic safety. The case study will be made to verify the
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effectiveness of the proposed workflow, methods and data.

Traffic anomalies include traffic accidents and traffic near accidents. The former can be
acquired from the existing historical traffic accident dataset, while there are few datasets
about near accidents, so the latter can only be predicted. In this way, historical traffic
accident hotspots and predicted near accident hotspots can be selected as the traffic
sensor locations to monitor traffic anomalies.

Therefore, more practically, the objective of this thesis is to find the methods to de-
tect historical traffic accident hotspots and predict near accident hotspots, design the
workflow, and test the workflow with suitable data of a certain study area.

In this respect, this thesis proposes three methods to achieve the expected research ob-
jectives:
1) Network Analysis: historical traffic accident hotspot analysis on the road network,
2) Risk Analysis: traffic risk prediction of traffic intersections,
3) Rule Analysis: association rule analysis between geographic features and accident
locations.

In this way, these three parts constitute a study that is progressive and oriented to
three different research objects, that is, road networks, traffic intersections and accident
locations.

1.3 Research Questions

Following the research objectives of this thesis, research questions are proposed below:

RQ 1: What are the status and the latest progress on the Traffic Sensor Location
Problem? Has traffic safety-oriented TSLP already been discussed? And what is the
difference between it and traffic flow-oriented TSLP?

RQ 2: How to deal with TSLP from the perspective of traffic safety? What methods
can be beneficial?

RQ 3: How can the historical traffic accident hotspots on the road network be extracted
so that the traffic sensor can be located in those high-risk locations?

RQ 4: Can the relationship between the accident risk of one traffic intersection and
its surrounding environment be modelled? And can the model effectively predict the
accident risk of traffic intersections in one city and be examined with the true value, so
that the traffic sensor can be located in those predicted high-risk intersections, including
potential near-accident hotspots?

RQ 5: Can some significant association rules between traffic accidents and geographic fea-
tures be extracted, so that the traffic sensor can be located near those accident-associated
geographic features, which are potential accident or near-accident hotspots?

1.4 Thesis Structure

This thesis consists of seven chapters:

Chapter 1 Introduction: This chapter introduces the topic of this thesis from its
background and scientific relevance to the proposed research objectives and questions.
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Chapter 2 Literature Review: This chapter reviews the progress on traffic sensors,
their application in traffic safety, their location strategy, namely TSLP, and two categories
of methods that will be used in this thesis.

Chapter 3 Methodology: This chapter introduces the general methodology proposed
in this thesis.

Chapter 4 Case Study: This chapter introduces the detailed examination and appli-
cation of the methodology proposed in Chapter 3 with the city of Wuppertal as the study
area.

Chapter 5 Discussions: This chapter discusses the results of the case study, makes
connections between analysis results and location strategy, answers the research questions,
and points out the limitations and where to continue.

Chapter 6 Conclusions: This chapter summarises the whole thesis, proposes a general
guideline on solving TSLP from the perspective of traffic safety and includes an outlook.

3



2 Literature Review

This chapter includes five sections. It starts with a review of 2.1 Progress on Traffic
Sensors, and emerging 2.1.1 Traffic Sensors with Strong Perception Abilities
are introduced. Advanced traffic sensors can bring new functionalities, and traffic safety
improvement could be one of them. So a review of 2.2 Research and Application
of Advanced Traffic Sensors in Traffic Safety is followed, especially the 2.2.1 Re-
search on Traffic Accident and Near-Accident. Regardless of their functions, the
location strategy of traffic sensors is always an important decision to make. So 2.3 Traf-
fic Sensor Location Problem in Transportation Science is introduced, the current
status of TSLP is summarised as 2.3.1 Traffic Flow-Oriented TSLP, and 2.3.2 Traf-
fic Safety-Oriented TSLP is to be discussed in this thesis. 2.4 Network Analysis
Methods and 2.5 Machine Learning and Data Mining Methods could be bene-
ficial to the solution of traffic safety-oriented TSLP. The exact methods and algorithms,
including 2.4.1 Centrality Measures, 2.4.2 Network KDE, 2.4.3 Community De-
tection, 2.5.1 Random Forest Model and 2.5.3 Association Rule Learning, and
their selection reasons are introduced.

The structure of this chapter is also illustrated in Figure 2.1.

Figure 2.1 Overview of Literature Review

2.1 Progress on Traffic Sensors

Over time, sensor technology has become ubiquitous. In road traffic, sensor technology
supports its surveillance, control, and management, and is crucial for Intelligent Trans-
portation Systems (ITS) (Guerrero-Ibáñez et al., 2018; J. Zhao et al., 2019). Based on
their installation locations, traffic sensors can be classified into two categories: intru-
sive (or in-roadway) sensors and non-intrusive (or over-roadway) sensors (Tewolde, 2012;
Guerrero-Ibáñez et al., 2018).

Intrusive traffic sensors (Tewolde, 2012; Guerrero-Ibáñez et al., 2018) are installed on
pavement surfaces and can be divided into four types by their principles: (1) passive
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magnetic sensors, (2) pneumatic road tube sensors, (3) inductive loop detectors (ILDs)
and (4) piezoelectric. Thanks to their technology maturity and high accuracy in detecting
vehicles, intrusive sensors are used most in traffic control systems. While the drawback is
the high costs of installation, maintenance and repair. Table 2.1 shows the applications
of these four types of intrusive sensors that are currently in use for road traffic.

Non-intrusive traffic sensors (Tewolde, 2012; Guerrero-Ibáñez et al., 2018) are installed
at different places on the roads and can be divided into three groups by their installation
locations: (1) roadside mast-mounted, (2) bridge-mounted and (3) across-roadside. By
their principles, they can be divided into seven types as shown in Table 2.2. They can
detect vehicle’s transit and other parameters such as vehicle speed and lane coverage.
They provide many of the intrusive traffic sensors’ functions with fewer difficulties, but
they are expensive and highly affected by environmental conditions.

Table 2.1 Intrusive Sensors Currently Used for Traffic Control (Tewolde, 2012; Guerrero-Ibáñez
et al., 2018)

Sensor Type Application and Use
Pneumatic road tube Short-term traffic counting, traffic classification by axel count and spacing,

for the purpose of planning and research studies
Inductive Loop Detector (ILD) Vehicle passage, presence, count, occupancy and speed

Magnetic sensors Identify stopped and moving vehicles
Piezoelectric Classify vehicles by axel count and axel spacing and to measure vehicle

weight and speed

Table 2.2 Non-Intrusive Sensors Currently Used for Traffic Control (Tewolde, 2012; Guerrero-
Ibáñez et al., 2018)

Sensor Type Application and Use
Video cameras Detection of vehicles across several lanes and can classify vehicles

by their length, and report vehicle presence, flow rate, occupancy,
and speed for each class

Radar sensors Object detection and measurements of distance and speed, calculate the
vehicle data such as volume, speed, occupancy, length, etc.

Infrared Provide data on vehicle presence at traffic signals,
volume, speed, length, and queue measurement

Ultrasonic Provides vehicle count, presence, occupancy information and vehicle speed.
Acoustic array sensors Measure vehicle passage, presence, and speed

Road surface condition sensors Collect information on weather conditions, such as surface temperature,
dew point, water film height, road conditions and grip

RFID Track vehicles mainly for toll management
(Radio-frequency identification)

2.1.1 Traffic Sensors with Strong Perception Abilities

Although each sensor technology has its inherent strengths and weaknesses, a common
problem of current mainstream sensor technologies lies in their inability to get trajectory-
level data and low performance in the accurate detection and tracking of pedestrians and
vehicles (J. Zhao et al., 2019). In some papers, the data in need is summarised as High-
Resolution Micro Traffic Data (HRMTD), which includes speed, location, direction and
timestamp (Lv et al., 2019). Besides, there should be no doubt that autonomous vehicles
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will take over the driving task in the future with a compact system of accurate onboard
sensors, sophisticated algorithms, and powerful computing. It raises the question of how
future infrastructure-based traffic sensor systems should be developed in alignment with
autonomous driving technology to make the roads and all road users a seamless and
cooperative system (J. Zhao et al., 2019; Z. Zhang et al., 2019; J. Zhang et al., 2020).

In the short run, getting the HRMTD of all road users will become a big leap in traffic
monitoring, it will greatly help to improve traffic safety, traffic operation and control,
traffic management, and performance measurement (J. Zhao et al., 2019). In the long
run, a real-time vehicle-road cooperative system will be needed and built (J. Zhao et al.,
2019). However, the initial step is always to apply more advanced and reliable traffic-
sensing technologies.

In the past decade, researchers have used LiDAR and HD cameras for this purpose (J.
Zhao et al., 2019; Z. Zhang et al., 2019; J. Zhang et al., 2020). LiDAR sensors and HD
cameras are different in data quality, data coverage and expected performance aspects:
(1) Data Quality: Data from the former is point cloud data, which has high accuracy but
relatively lower density, while data from the latter are high-resolution images. (2) Data
Coverage: Compared with the latter, the former can cover a wider detection range at all
angles simultaneously, while its unit price is more expensive. (3) Expected Performance:
The former can work 24/7, and its data analysis requires much less processing and com-
puting power (J. Zhao et al., 2019; Z. Zhang et al., 2019; J. Zhang et al., 2020). What’s
more, LiDAR can better protect road users’ privacy such as their biometric information,
which makes LiDAR sensors more popular than HD cameras in those countries that focus
on privacy protection like Germany.

2.2 Research and Application of Advanced Traffic Sensors in
Traffic Safety

According to the Global Status Report on Road Safety 2018 of the World Health Orga-
nization (WHO) (WHO, 2018), every year the lives of approximately 1.3 million people
are cut short as a result of road traffic accidents, and between 20 and 50 million more
people suffer non-fatal injuries, with many incurring a disability as a result of their injury.
Road traffic injuries cause considerable economic losses to individuals, their families, and
nations as a whole. It is estimated that road traffic accidents cost most countries 3%
of their gross domestic product (WHO, 2018). Therefore, the United Nations General
Assembly has set an ambitious target of halving the global number of deaths and injuries
from road traffic accidents by 2030 (Resolution A/RES/74/299 Adopted by the General
Assembly).

In the context of such urgent social needs, relevant research on traffic safety is necessary.
Using traffic sensors with strong perception abilities could help to monitor the full process
of traffic accidents and acquire detailed data on them, which can be very helpful for
research on traffic safety and traffic accidents.

Several studies have been carried out to explore the application prospects of traffic sen-
sors in traffic safety. Goldhammer et al. (2012) presented a novel multi-sensor network
to perceive the intersection environment for traffic safety applications. This network
consists of laser scanners, cameras, signal phase tapping and an I2V (Infrastructure to
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Vehicle) communication unit. H. Zhao et al. (2012) presented a network of horizontal
laser scanners to monitor an intersection.

2.2.1 Research on Traffic Accident and Near-Accident

A near-accident or near-miss is an event that has the potential to develop into a collision
situation between two vehicles or between a vehicle and a pedestrian or bicyclist (Huang
et al., 2020). These events are important to monitor and analyze for preventing collisions
in the future (Huang et al., 2020).

The research on using LiDAR and HD cameras to identify traffic near-accident is still
very novel. Wu et al. (2018) present a method for traffic near-accident identification
based on the trajectories of road users extracted from roadside LiDAR data. Three pa-
rameters, including time difference to the point of intersection (TDPI), distance between
stop position and pedestrian (DSPP) and vehicle-pedestrian speed-distance profile, were
developed for vehicle-pedestrian near-crash identification. Huang et al. (2020) propose an
integrated two-stream convolutional network architecture that performs real-time traffic
near-accident detection of road users in traffic video data and builds a traffic near-accident
dataset.

However, the current research is rather on a small scale like an intersection and hasn’t
discussed the location strategy of traffic sensors on a larger scale like a city.

2.3 Traffic Sensor Location Problem in Transportation Science

For effectiveness and cost purposes, location always needs to be considered when a traffic
sensor is to be deployed in the traffic system. The discussion about the location strategy
of traffic sensors has been a long-standing topic in transportation science for over 30
years Owais, 2022. Owais (2022) summarized this topic as the Traffic Sensor Location
Problem, abbreviated as TSLP. It aims to answer two typical questions: how many sensors
are needed, and where are the best locations for their deployment?

2.3.1 Current Status of TSLP: Traffic Flow-Oriented TSLP

The location strategy of traffic sensors is always closely related to their functions. There-
fore, the current status of TSLP is determined by the current functions of traffic sensors,
or more precisely, by the data these sensors acquire.

Traffic flow data is central to transportation planning, operations and management, it’s
also crucial for Intelligent Transportation Systems (ITS), where complete traffic flow data
is required (Owais, 2022). Over time, traffic sensors have been recognized as sources of
such data (Owais, 2022). Therefore, currently, the discussion on TSLP is focused on the
acquisition of expected traffic flow data. It’s called Traffic Flow-Oriented TSLP in this
thesis.

Owais (2022) classified the past TSLP studies into six categories:

(1) O/D estimation/updating (ODE): An O/D trip matrix is formed by a two-dimensional
matrix, where the value of each cell denotes the number of trips between the row number
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(origin zone) and column number (destination zone). O/D matrix estimating/updating
is one of the earliest applications of traffic flow data. It usually seeks the most accurate
O/D matrix estimation using statistical methods.

(2) Flow observability (OBS): The flow observability problem addresses all network flow
elements (i.e., O/D, link, and path flow), aiming at calculating all flow values by directly
measuring a subset.

(3) Link flow inference (LFI): The link flow inference problem generally searches for
the minimum locations of sensors to infer all other link flows through the conservation
equation of the basic nodes (i.e., inflow = outflow).

(4) Path reconstruction (PRC): The path reconstruction approach investigates how the
captured flow information can be used to draw a complete picture of the paths used
among O/D pairs.

(5) Screen line/traffic surveillance (SLP): It simply seeks the lowest number of sensors in
a network in which no vehicle can move from the origin (O) to a destination (D) without
passing at least one sensor. This process ensures complete traffic coverage of a network.

(6) Travel time estimation (TME): AVI (Automatic Vehicle Identification) sensors or
other similar technologies are essential because they can precisely record the vehicle-
passing time of two consecutive AVI sensors. Consequently, they can be used to estimate
the travel time for all traffic with careful network placement.

2.3.2 Traffic Safety-Oriented TSLP

As introduced in 2.1, with the development of vehicle-road cooperative systems and ITSs,
sensors with strong perception abilities, like LiDAR sensors and HD cameras, are piloted
as traffic sensors. As introduced in 2.2, these traffic sensors can achieve more than just
acquiring the traffic flow data, they can monitor the micro traffic behaviours in detail,
like near accidents, thanks to their perception ability. Therefore, these sensors can play
a big role in monitoring traffic accidents and near accidents so that traffic safety can be
improved by monitoring, early warning and response to these traffic anomaly events.

As these sensors with strong perception abilities are just piloted as traffic sensors, and
it’s still at a very early stage, their location strategy hasn’t been well discussed yet. This
thesis aims for this gap to explore the possible solution to traffic safety-oriented TSLP.

2.3.3 Relevance of TSLP to Site Selection Problem

In GIScience, there is a relevant hot topic called the site selection problem (Rikalovic
et al., 2014). But how is the relevance of TSLP to the site selection problem and are
there some methods that can be borrowed from it to deal with TSLP?

As shown in the table below, according to actual conditions, the site selection problem
can be classified into three classes by their different scales: (1) macro scale, (2) meso
scale, (3) micro scale.

The site selection problem in GIScience mainly focuses on the macro scale, where Multi-
Criteria Decision Analysis (MCDA) (Rikalovic et al., 2014) and viewshed analysis meth-
ods are often used. TSLP focuses on the meso scale, which means the site selection of
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small features in a large space. If the traffic sensor locations in a specific intersection need
to be determined, then it should be classified as the micro scale, which is more dependent
on human experience.

Table 2.3 Comparison Table of Site Selection at Different Scales

Scale Description Example
Macro Scale large features in a large space power station site selection in a city (often select one from several candidates)
Meso Scale small features in a large space traffic sensor location selection in a city
Micro Scale small features in a small space traffic sensor location selection in an intersection

2.4 Network Analysis Methods

Network theory (National Research Council, 2005) is a part of graph theory. It defines
networks as graphs where the nodes or edges possess attributes. Network analysis (Na-
tional Research Council, 2005)is a method of studying the relationships between nodes in
a network. It involves analyzing the edges between nodes, as well as the characteristics
of the nodes themselves. Network analysis can be used to study a wide range of systems,
including social networks, transportation networks, biological networks, etc.

There are many types of network analysis (National Research Council, 2005), including
centrality analysis, community detection, topological analysis, influence analysis, flow
analysis and more.

In the following, several network analysis methods used in this thesis will be introduced.

2.4.1 Centrality Measures

Centrality measures (Bonacich, 1987; Borgatti, 2005) are answers to the question "What
characterizes an important node?" In network analysis, centrality measures assign num-
bers or rankings to nodes within a network corresponding to their network position, which
identifies the most important nodes. The word "important" has a wide number of mean-
ings, leading to many different definitions of centrality. The common centrality measures
include betweenness centrality, degree centrality, closeness centrality and more. Suitable
centrality measures can help to identify the key nodes in the network, such as the traffic
accident hotspots on the road network.

Applications of centrality measures (Bonacich, 1987; Borgatti, 2005) include identifying
the most influential person(s) in a social network, key infrastructure nodes in the Internet
or urban networks, super-spreaders of disease, and brain networks.

2.4.2 Network Kernel Density Estimation

A classical Kernel Density Estimate (KDE) estimates the continuous density of a set
of events in a two-dimensional space (Y.-C. Chen, 2017; Gelb, 2021). The density is
estimated at sampling points, traditionally the centres of pixels dividing the study area
into equal zones. While classical KDE is not adapted to analyze the density of events
occurring on a network, like accidents and crimes in streets, or leaks on a network of water
pipes. Indeed, calculating density values for locations outside the network is meaningless
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and the Euclidean distance underestimates the real distance between two objects on the
network. Moreover, networks are not isotropic spaces (uniformity in all orientations). In
other words, it is not possible to move in every direction, but only along the edges of the
network.

Figure 2.2 Schematic Diagram of Kernel Function (Gelb, 2021)

Figure 2.3 Different Kernel Functions (Gelb, 2021)

To calculate a Network Kernel Density Estimate (NKDE) (Gelb, 2021), it is possible to
use lixels instead of pixels. A lixel is a linear equivalent of a pixel on a network. The lines
of the network are split into lixels according to a chosen resolution. The centres of the
lixels are sampling points for which the density will be estimated. The network distances
between objects instead of Euclidean distances are calculated. The kernel function is
adjusted to deal with the anisotropic space.
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Figure 2.2 shows a schematic diagram of how the kernel function works in a network space.
Black lines represent the network space, and each green point represents one event that
occurred along the network space. Red lines represent the kernel functions. The kernel
function is used to assign the “influence” of each point to the network space (Gelb, 2021).
This "influence" is limited within the bandwidth (as shown in Figure 2.2) and it decreases
when getting away from the event. Therefore, the kernel density of each sampling point
is the accumulated "influence" of nearby events. The mathematical expression of the
kernel function is as follows:

K(x) >= 0, if x < bandwidth

K(x) = 0, if x >= bandwidth∫
K(x) = 1

Figure 2.3 shows multiple different kernel functions. Most of the kernels look alike.

2.4.3 Community Detection

In the study of complex networks, a network is said to have community structures if the
nodes of the network can be easily grouped into (potentially overlapping) sets of nodes
such that each set of nodes is densely connected internally (Fortunato, 2010).

Community detection refers to the procedure of identifying community structures in
networks according to their structural properties. The common community detection
methods include (Fortunato, 2010):

(1) Minimum-cut method: This is one of the oldest algorithms used for dividing networks
into parts. The network is divided into a predetermined number of parts, chosen such
that the number of edges between groups is minimized. However, this method will find
communities regardless of whether they are implicit in the structure, and it will find only
a fixed number of them.

(2) Hierarchical clustering: A similarity measure quantifying some (usually topological)
type of similarity between node pairs is defined, and similar nodes are grouped into
communities according to this measure. This method will be used in this thesis.

(3) Girvan-Newman algorithm: It identifies edges in a network that lie between com-
munities and then removes them, leaving behind just the communities themselves. The
identification is performed by employing the betweenness centrality, which assigns a num-
ber to each edge which is large if the edge lies "between" many pairs of nodes (Girvan
and Newman, 2002).

(4) Modularity maximization: This is one of the most widely used methods for community
detection. Modularity is a benefit function that measures the quality of a particular
division of a network into communities. The modularity maximization method detects
communities by searching over possible divisions of a network for one or more that have
particularly high modularity. A popular approach to modularity maximization is the
Louvain method, which iteratively optimizes local communities until global modularity
can no longer be improved given perturbations to the current community state (Blondel
et al., 2008). Louvain method will be used in this thesis.
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(5) Statistical inference: This method attempts to fit a generative model to the network
data, which encodes the community structure.

(6) Clique-based method: Cliques are subgraphs in which every node is connected to
every other node in the clique. As nodes can not be more tightly connected than this,
many approaches to community detection are based on the detection of cliques in a graph
and the analysis of how these overlap.

2.5 Machine Learning and Data Mining Methods

Machine learning and data mining often employ the same methods and overlap signif-
icantly, but while machine learning focuses on prediction, based on known properties
learned from the training data, data mining focuses on the discovery of (previously)
unknown properties in the data.

Machine learning approaches are traditionally divided into three broad categories (El
Naqa and Murphy, 2015; Jordan and Mitchell, 2015), which correspond to learning
paradigms, depending on the nature of the "signal" or "feedback" available to the learning
system:

(1) Supervised learning (El Naqa and Murphy, 2015; Jordan and Mitchell, 2015): The
computer is presented with example inputs and their desired outputs, given by a "teacher",
and the goal is to learn a general rule that maps inputs to outputs.

(2) Unsupervised learning (El Naqa and Murphy, 2015; Jordan and Mitchell, 2015): No
labels are given to the learning algorithm, leaving it on its own to find structure in its
input. Unsupervised learning can be a goal in itself (discovering hidden patterns in data)
or a means towards an end (feature learning).

(3) Reinforcement learning (El Naqa and Murphy, 2015; Jordan and Mitchell, 2015):
A computer program interacts with a dynamic environment in which it must perform
a certain goal (such as driving a vehicle or playing a game against an opponent). As
it navigates its problem space, the program is provided with feedback that’s analogous
to rewards, which it tries to maximize. Although each algorithm has advantages and
limitations, no single algorithm works for all problems.

Performing machine learning can involve creating a model, which is trained on some
training data and then can process additional data to make predictions. Various types of
models have been used and researched for machine learning systems. Common machine
learning models include (El Naqa and Murphy, 2015; Jordan and Mitchell, 2015) (1)
artificial neural networks, (2) decision trees, (3) support vector machines, (4) regression
analysis, (5) Bayesian networks, (6) Gaussian processes, (7) genetic algorithms (GA), (8)
belief functions.

2.5.1 Random Forest Model

In machine learning, ensemble learning uses multiple learning algorithms to achieve better
predictive performance than any of the constituent learning algorithms alone (Opitz and
Maclin, 1999).

Random forest or random decision forest is an ensemble learning method for classification,
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regression and other tasks that operates by constructing a multitude of decision trees
at training time (Opitz and Maclin, 1999). For a classification task, the output of a
random forest is the class selected by most trees. For a regression task, the mean or
average prediction of the individual trees is returned (Ho, 1995). Random forests correct
for decision trees’ habit of over-fitting to their training set. Random forests generally
outperform decision trees, but their accuracy is lower than gradient-boosted trees (Hastie
et al., 2001).

In addition, decision tree learning is a supervised learning approach commonly used in
machine learning and data mining. The goal is to create a model that predicts the
value of a target variable based on several input variables. It includes two main types:
classification tree and regression tree. The former is when the predicted outcome is the
discrete class to which the data belongs, while the latter is when the predicted outcome
can be considered as a real number, that is, a continuous number (Maimon and Rokach,
2014).

In this thesis, the random forest model for classification tasks will be used to predict the
traffic accident risk of traffic intersections.

2.5.2 Model Boosting

Model boosting is an ensemble meta-algorithm for primarily reducing bias and variance
in supervised learning, and a family of machine learning algorithms that convert weak
learners to strong ones (Zhou, 2012). Specifically, a single machine learning model might
make prediction errors depending on the accuracy of the training dataset, while model
boosting tries to overcome this issue by training multiple models sequentially to improve
the accuracy of the overall system.

XGboost (eXtreme Gradient Boosting) (T. Chen and Guestrin, 2016) is a popular exam-
ple of model boosting. It is an open-source software library that implements optimized
distributed gradient boosting machine learning algorithms under the Gradient Boosting
framework. XGboost can be used to improve the prediction performance of random forest
model.

2.5.3 Association Rule Learning

Association rule learning (Agrawal et al., 1993) is a rule-based machine learning method
for discovering interesting relations between variables in large databases. It is intended
to identify strong rules discovered in databases using some measures of interestingness.

Agrawal et al. (1993) originally defined the problem of association rule learning as:

Let I = i1, i2, ..., in be a set of n binary attributes called items. Let D = t1, t2, ..., tn be s
set of transactions called the database. Each transaction in D has a unique transaction
ID and contains a subset of the items in I. Then a rule is defined as an implication of
the form:

X ⇒ Y, where X, Y ⊆ I

Every rule is composed by two different sets of items, also known as itemsets, X and
Y , where X is called antecedent or left-hand-side (LHS) and Y is called consequent or
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right-hand-side (RHS). The antecedent is that itemset that can be found in the data while
the consequent is the itemset found when combined with the antecedent. The statement
X ⇒ Y is often read as if X then Y , where the antecedent X is the if and the consequent
Y is the then. This simply implies that, in theory, whenever X occurs in a dataset, then
Y will occur as well.

Two common indicators of association rule analysis are support and confidence. Support
is an indicator of how frequently the itemset appears in the dataset, while confidence is
the percentage of all transactions satisfying X that also satisfy Y . Their mathematical
formulas are as follows:

support = P (X
⋃

Y ) =
(number of transactions containing X and Y )

(total number of transactions)

confidence(X ⇒ Y ) = P (Y |X) =
support(X

⋃
Y )

support(X)

2.5.3.1 Apriori Algorithm
A well-known algorithm of association rule learning is the Apriori algorithm (Agrawal
et al., 1994). It proceeds by identifying the frequent individual items in the database and
extending them to larger and larger item sets as long as those item sets appear sufficiently
often. The name of the algorithm is Apriori because it uses prior knowledge of frequent
itemset properties. The algorithm process is described below:

The frequent item set is generated by counting the number of occurrences of each item and
calculating the support values. Then the item set is pruned by picking a minimum support
threshold. This process will be repeated by counting pairs, triplets, and quadruplets... of
items in the item set I.

support = P (A) =
(number of transactions containing A)

(total number of transactions)

In this thesis, association rule learning has two applications. the aim is to detect the
association rules between geographic features and accident locations, In this thesis, the
aim is to detect the frequent geographic features that are near traffic accident locations.
Therefore, the Apriori algorithm will be used to detect the frequent item set of the nearby
geographic features of traffic accident locations. The support indicator has a practical
implication, namely, the percentage of each geographic feature near the accident locations,
which are recorded in the case city.
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3 Methodology

3.1 Overview

This thesis aims to explore the solution of TSLP from the perspective of traffic safety.
As introduced previously, the location strategy of traffic sensors is determined by their
functions. To achieve the function of monitoring traffic anomalies to improve traffic
safety, the location of traffic sensors needs to be determined accordingly. The proposed
solution in this thesis is to put sensors where traffic accidents or near accidents tend to
happen. Therefore, traffic safety-oriented TSLP has been transformed into the detection
of traffic anomaly hotspots, including historical accident hotspots and potential near
accident hotspots.

In order to achieve the above purpose, the methodology as shown in Figure 3.1 is designed.
From left to right, from top to bottom, this methodology is composed of five parts: (1)
Part 0 - Data Preparation, (2) Part 1 - Network Analysis, (3) Part 2 - Risk Analysis, (4)
Part 3 - Rule Analysis, (5) Part 4 - Traffic Sensor Location Problem.

Part 0 is to process and prepare the data from data sources so that they are suitable
for further analysis. Part 1, Part 2 and Part 3 are three parallel parts using different
analysis methods (network analysis, risk analysis and rule analysis respectively), focus-
ing on different study objects (road network, traffic intersection, and accident location
respectively), but having the same purpose, namely traffic anomaly hotspot detection.
Part 4 is to detect the historical traffic accident hotspots or potential traffic near-accident
hotspots from the analysis results. The detailed steps within each part will be explained
in 3.2, 3.3, 3.4 and 3.5 respectively.

Figure 3.1 Overview of the Methodology

3.2 Part 0: Data Preparation

The first part is Part 0 - Data Preparation. The data to be used is cleaned, processed
and enriched so that it can be used for further analysis.
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In this thesis, the process of enriching the data of study objects (respectively, road net-
works, traffic intersections, and accident locations) by querying their nearby geographic
features (including roads, amenities, facilities and land use types) from OSM is called
data enrichment. In this way, the data of study objects is enriched and beneficial for
further analysis.

For the following parts, the data of each different study object needs to be prepared.

For Part 1 - Network Analysis, road network data needs to be acquired and modelled as
a directed graph, and the historical accident data (point data representing the accident
locations) should be processed to be added to the road network data. The method
proposed in this thesis is to calculate the accident linear density of each road segment
(edge on the graph) and add the linear density as an attribute of the corresponding
road segment. Lixels of the road network need to be created as introduced in 2.4.2 for
network kernel density estimation. In this way, a road network with accident information
is created, and the historical accident hotspots can be identified from the road network
using the analysis methods proposed in this thesis.

For Part 2 - Risk Analysis, the study objects are traffic intersections. Therefore, the
data of traffic intersections (point data representing the location of traffic intersections)
need to be acquired, and they need to be enriched with nearby geographic feature data
(queried from OSM). In this way, the model representing the relationship between the
accident risk and the nearby geographic features of the traffic intersections can be trained
and used for the following prediction.

For Part 3 - Rule Analysis, the study objects are accident locations (point data). These
data need to be enriched with nearby geographic feature data (queried from OSM). In
this way, the association rules between accident locations and nearby geographic features
can be explored.

3.3 Part 1: Network Analysis

Part 1 - Network Analysis aims to extract the historical accident hotspots on the road
networks by multiple levels: node level, lixel level, and community level. Figure 3.2 shows
the methodology of Part 1 - Network Analysis.

Figure 3.2 Methodology of Part 1 - Network Analysis

With the prepared road network data, network analysis on the different levels of the
road network can be made in a parallel way as follows. The extracted historical accident
hotspots can be regarded as candidate locations for traffic sensors.
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3.3.1 Node Level: Centrality Measure

In a practical sense, nodes in the road network represent the intersections of roads, which
are just the places where traffic sensors tend to be placed. So the work of detecting the
potential installation places can be replaced with detecting the suitable nodes in the road
network. In this case, the suitable nodes are those nodes with high traffic accident risk.

As introduced in 2.4.1, in network analysis, centrality measures assign numbers or rank-
ings to nodes within a network corresponding to their network position. If the assigned
ranking can somehow reflect the traffic accident risk of each node, the potential instal-
lation places of traffic sensors can be correspondingly got. Then the work is to find or
design a suitable centrality measure.

Among all the centrality measures, betweenness centrality and PageRank centrality could
be the candidates.

Betweenness centrality of a node v is the sum of the fraction of all-pairs shortest paths
that pass through v, and its mathematical formula is as below:

cB(v) =
∑
s,t∈V

σ(s, t|v)
σ(s, t)

where V is the set of nodes, σ(s, t) is the number of shortest (s, t)-paths, and σ(s, t|v)
is the number of those paths passing through some node v other than s, t. If s = t,
σ(s, t) = 1, and if v ∈ s, t, σ(s, t|v) = 0 (Brandes, 2001).

By assigning the weight of each edge (namely each road segment) of the road network
with its inversed traffic accident linear density, an updated road network is obtained. The
assigned weight is regarded as the passing cost of each edge. Thus, those high accident-
risk nodes will be connected to edges with lower passing costs, and they will lie on more
shortest paths. Therefore, these nodes will get higher betweenness centrality and can be
filtered out.

PageRank centrality computes a ranking of the nodes in the graph based on the structure
of the incoming edges. Both the number and the weight of incoming edges are considered.
It was originally designed as an algorithm to rank web pages.

By assigning the weight of each edge of the road network with its traffic accident linear
density, another updated road network is obtained. Thus, those nodes that are connected
to more edges with higher traffic accident linear density will have higher PageRank cen-
trality and can be filtered out.

It’s worth mentioning that in both cases, the topology of the road network has an im-
portant impact on the centrality results, besides the traffic accident distribution. The
locations of nodes on the road network (central or marginal) greatly influence its between-
ness centrality, those marginal nodes can hardly get high betweenness centrality even if
there are a lot of historical traffic accidents. This will obscure some of the potential
hot nodes. For PageRank centrality, the impact is more obvious, nodes connecting more
edges get higher PageRank centrality, but it can be easily dealt with by considering both
the number of connecting edges and their accident linear density.

The solution to eliminating the excessive impact of road topology is to design a more
reasonable centrality measure to be better suited for this application case. The relevant
discussion will continue in 5.5 (1).
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3.3.2 Lixel Level: Network Kernel Density Estimation

As introduced in 2.4.2, Network Kernel Density Estimation (Network KDE) is the up-
dated version of classical Kernel Density Estimation (KDE), and it deals with the density
of events occurring on a network space (Gelb, 2021).

Obviously, traffic accidents always happen along the road network, which is just a network
space. Network KDE is the ideal way of assessing the accident density along the road
network and detecting historical accident hotspots. Therefore, compared to other lixels,
the lixels with higher kernel density are candidate locations for traffic sensors.

Several key parameters need to be determined while applying Network KDE: bandwidth,
lixel, and kernel function. For the bandwidth, the experimental value of 300 meters given
by Gelb (2021) for accident data can be used. Gelb (2021) also gives two methods of
obtaining the optimal bandwidths. And even an adaptive bandwidth can be used. For
the lixel, a value equal to the perception range of traffic sensors (about tens of meters)
can be adopted. For the kernel function, as shown in Figure 2.3, most of the kernel
functions look alike, and different kernel function does not make a significant difference
to the results. The quartic kernel function is recommended to be used (Gelb, 2021).

3.3.3 Community Level: Community Detection

As introduced in 2.4.3, Community Detection is to identify groups of nodes that exhibit
strong interconnectivity or share similar characteristics. It detects the communities of a
network with its topology, node attributes and edge attributes including their directions
and weights.

By assigning the weight of each edge of the road network, that is, each road segment, with
its traffic accident linear density, an updated road network is obtained. In this way, on
this updated road network, the edge with higher accident linear density will get a higher
weight, and a group of nodes connected to each other by edges with high weights can be
detected as a community. The detected community consists of a group of edges with high
accident linear density, and they can be recognized as high accident-risk communities.
Therefore, the detected high-accident-risk communities are candidate locations for traffic
sensors.

How to choose a suitable community detection algorithm is the key to successfully de-
tecting high accident-risk communities. In this case, the Louvain Algorithm can be used
to achieve the task.

3.4 Part 2: Risk Analysis

Part 2 - Risk Analysis aims to predict the accident risk of traffic intersections based on
historical accident data. Figure 3.3 shows the methodology of Part 2 - Risk Analysis.

3.4.1 Random Forest Model Training and Model Boosting

After data preparation, the enriched traffic intersection data can be obtained. It includes
the historical accident number in each traffic intersection and the nearby geographic
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Figure 3.3 Methodology of Part 2 - Risk Analysis

feature data (in the form of the number of each geographic feature). Therefore, the
model representing the potential relationship between the historical accident number and
nearby geographic features can be trained. Then it’s a regression task.

Considering that the relationship between them should be more like an association re-
lationship rather than a causation relationship. So compared with the regression task,
the classification task will be more suitable to discover the potential relationship. The
historical accident number can be transferred into two classes: high accident risk (acci-
dent number is larger than a threshold) or low accident risk (accident number is smaller
than a threshold) according to their annual accident number. In this way, the model
representing the potential relationship between the historical accident risk and nearby
geographic features can be trained.

In this case, the Random Forest Classifier is the ideal model to be trained. The task
for the model would be assigning the accident risk (high-risk or low-risk) to each traffic
intersection according to its nearby geographic features. So nearby geographic features
will work as features, and accident risk will work as labels for the model training and
testing.

But before the model training, a key task is to prepare the training set and testing set.
It’s usually done by randomly splitting the dataset into two parts. In this case, using
the data of one place to predict the accident risk in another place could be a better
choice. But of course, these two places should share geographical proximity and similar
environments. In this way, the accident risk in one place can be obtained completely
rather than partially, and relatively larger training and testing sets can be obtained to
get better model performance.

Furthermore, as introduced in 2.5.2, the model can be boosted with XGBoost methods
to achieve a better model performance.

3.4.2 Risk Prediction

Once the model is built and boosted, the accident risk of certain traffic intersections
could be predicted with the nearby geographic feature data. Therefore, the predicted
high-accident-risk intersections are just the candidate locations for traffic sensors, includ-
ing those actual low-accident-risk intersections, which could be potential near-accident
hotspots.

The prediction results of the model can be presented in the form of a confusion matrix.
And the prediction scores of the model can be gotten in the form of precision and re-
call. The precision score wants to answer "What proportion of positive identifications
was actually correct?" and the recall score wants to answer "What proportion of actual
positives was identified correctly?"
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Moreover, the importance of each geographic feature can be obtained from the trained
model, it represents the importance of each geographic feature in training the model.

3.5 Part 3: Rule Analysis

Part 3 - Rule Analysis aims to make the association rule analysis between accident loca-
tions and nearby geographic features. Figure 3.4 shows the methodology of Part 3 - Rule
Analysis.

Figure 3.4 Methodology of Part 3 - Rule Analysis

The idea is to cluster the accident location data into different groups and within each
of them, the accidents are somehow similar. Then the association rule analysis is made
to explore the association rules with nearby geographic features. In other words, the
association rules between one group of accidents and the nearby geographic features of
the accident locations are explored. Therefore, those locations near accident-associated
geographic features are just the candidate locations for traffic sensors.

What’s more, the association rules of the whole traffic accident dataset can be analyzed.
Some holistic rules could be found out. A comparison analysis between the results from
the whole dataset and the results from the clusters can be made.

3.5.1 Data Clustering

The aim of data clustering is to divide the complex traffic accident dataset into several
internally similar clusters. The data clustering method to be used is the community
detection method, which is good at detecting internally similar community structures on
the network. But there should be a network of accident data first.

To create a network, each accident is regarded as one case (one node in the network).
If two accidents are somehow similar (like they share a certain number of identical at-
tributes, which is more than a threshold), then one link between the two accidents is
built, and the weight of the link is set based on the degree of similarity between the two
accidents. The threshold here is a key parameter to set, a suitable threshold should make
the edge number of the built network neither too large nor too small so that the commu-
nity detection method can be effectively applied to the network. In this way, a network
showing the similarity relation between each pair of accidents is built, and the community
detection method can be used to detect the community within the built network. The
detected communities are just the expected accident data clusters.
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3.5.2 Association Rule Analysis

Association rule analysis is used here to find the association relationship within each
group of accident data. Certain geographic features associated with a group of accident
data are expected to be extracted.

Association rule analysis is often used to extract those rules in the form of "If... Then...".
In this case, the rule would be "If there is a traffic accident, then there are (usually) some
geographic features nearby". As introduced in 2.5, there are two common indicators of
association rule analysis, namely the support indicator and the confidence indicator.

Considering the data characteristics of traffic accident location data, there are only nega-
tive values (location with accident) and no positive values (location without accident). In
more detail, each piece of data shows an accident location, while there is no non-accident
location. Only rules like "if an accident, then geographic feature Y" can be discovered,
and rules like "if geographic feature Y, then an accident" can not be discovered, because
the situations where there is "geographic feature Y" but there is no accident can not be
obtained. Therefore, the confidence indicator can not be calculated, which is just used
to judge whether the rule "if some geographic features are nearby, then there is (more
likely) a traffic accident" is true.

However, traffic intersection data can have both negative and positive values (some traffic
intersections have accident records while some do not), both the rules like "if an acci-
dent, then geographic feature Y" and "if geographic feature Y, then an accident" can
be discovered. Therefore both the support indicator and confidence indicator can be
calculated. This part can continue with the traffic intersection data to better discover
potential association rules.

Considering that the analysis of the accident location has practical meaning and can
make up a hierarchical methodology from the road network to traffic intersections and
accident locations, this part can continue to use traffic location data.
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4 Case Study

4.1 Study Area

In this work, the city of Wuppertal is selected as the study area.

Wuppertal is a city in North Rhine-Westphalia, the most populous state of Germany.
With a population of approximately 355,000, Wuppertal is the seventh-largest city in
North Rhine-Westphalia as well as the 17th-largest city in Germany (Wikipedia, 2023).
Figure 4.1 shows the location of the city of Wuppertal (in dark blue colour) in North
Rhine-Westphalia (in light blue colour) and in the administrative district of Düsseldorf
(in medium blue colour).

Figure 4.1 Location of the City of Wuppertal

Choosing a medium-sized city like Wuppertal as the study area can provide an appropriate
amount of data for the case study so that the amount of data is not too large or too small.
If the data amount is too large, the corresponding processing time will get too long, while
if the data amount is too small, the analysis results may not be representative.

Meanwhile, the city of Wuppertal is promoting its smart city construction strategy and
has begun to lay out roadside LiDAR sensors on a relatively large scale. The analysis
results of this thesis can provide a reference for the city of Wuppertal and hopefully make
up a continuous and complete study from the location selection to implementation and
data application.

What’s more, in Part 2 Risk Analysis, the data of four nearby cities and counties of
Wuppertal, which are Ennepe-Ruhr-Kreis, Kreis Mettmann, Solingen, and Remscheid,
are used for risk prediction model building to predict the risk of traffic intersections in
Wuppertal. Their geographical proximity and similar geographical and social environ-
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ments make the prediction reliable. Figure 4.2 shows the location of these four cities and
counties (in medium blue colour). The data of another nearby county Oberbergischer
Kreis (southeast of Wuppertal) hasn’t been used for the model training, because its area
is too large and its main part is far away from Wuppertal, which may influence the model
performance.

Figure 4.2 Locations of the Four Cities and Counties around Wuppertal

4.2 Data Source

The data used in the case study are all open data. There are two main data sources, one
is the German Accident Atlas, and the other is OpenStreetMap.

4.2.1 German Accident Atlas

The German Accident Atlas (https://unfallatlas.statistikportal.de/) is published by the
Federal Statistical Office and is updated annually. It records all the road traffic accidents
that happened in Germany due to vehicular traffic on public roads or places, with persons
killed or injured or involving material damage. Accidents involving only material damage
are not contained. The data is based on reports from police stations, so accidents, where
the police were not called, are not contained.

For each road traffic accident record, 24 attributes (as shown in Table 4.1) are included.
The attributes include the unique accident ID, location information (geographic coordi-
nates and administrative divisions), time information (year, month, weekday and hour),
environment information (light and road conditions) and accident attribute information
(accident type and kind).
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Table 4.1 The Attribute List of Road Traffic Accident Record

Column Name Content
ID Serial Number
ULAND Land
UREGBEZ Administrative Region
UKREIS Administrative District
UGEMEINDE Municipality
UJAHR Year of Accident
UMONAT Month of Accident
USTUNDE Hour of Accident
UWOCHENTAG Day of the Week
UKATEGORIE Road Accidents Involving Personal Injury
UART Kinds of Accidents
UTYP1 Type of Accidents
ULICHTVERH Light Conditions
IstRad Accident with Bicycle
IstPKW Accident with Passenger Car
IstFuss Accident with Passenger
IstKrad Accident with Motorcycle
IstGkfz Accident with Goods Road Vehicle
IstSonstige Accident with Other
USTRZUSTAND Road Surface Conditions
LINREFX Coordinates of the Place of Accident
LINREFY (ETRS 89 / UTM Zone 32N)
XGCSWGS84 Coordinates of the Place of Accident
YGCSWGS84 (WGS84)

Table 4.2 13 Road Classes Extracted from OSM

OSM Tag Description
highway = motorway A restricted access major divided highway.
highway = motorway_link
highway = trunk The most important roads in a country’s system that aren’t motorways.
highway = trunk_link
highway = primary The next most important roads in a country’s system.

(Often link larger towns.)
highway = primary_link
highway = secondary The next most important roads in a country’s system.

(Often link towns.)
highway = secondary_link
highway = tertiary The next most important roads in a country’s system.

(Often link smaller towns and villages)
highway = tertiary_link
highway = unclassified The least important roads in a country’s system.

(Often link villages and hamlets.)
highway = residential Roads that serve as access to housing.
highway = living_street The residential streets where pedestrians have legal priority over cars.

Table 4.3 8 Classes of Traffic Facilities Extracted from OSM

OSM Tag Description
highway = bus_stop A small bus stop.
highway = crossing A.k.a. crosswalk.
highway = give_way A give way sign.
highway = motorway_junction Indicates a junction or exit.
highway = speed_camera A fixed roadside or overhead speed camera.
highway = stop A stop sign.
highway = traffic_signals Lights that control the traffic.
highway = turning_circle A rounded, widened area to facilitate easier vehicle turning.
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Table 4.4 8 Classes and 6 Kinds of Amenities Extracted from OSM

OSM Tag Description
(amenity = sustenance) bar, biergarten, cafe, fast_food, food_court, ice_cream, pub, restaurant
(amenity = education) college, driving_school, kindergarten, language_school, library,

toy_library, research_institute, training, music_school, school,
traffic_park, university

(amenity = transportation) bicycle_parking, bicycle_repair_station, bicycle_rental, boat_rental,
boat_sharing, bus_station, car_rental, car_sharing, car_wash,
compressed_air, vehicle_inspection, charging_station, driver_training,
ferry_terminal, fuel, grit_bin, motorcycle_parking, parking,
parking_entrance, parking_space, taxi

(amenity = financial) bank, bureau_de_change
(amenity = healthcare) clinic, dentist, doctors, hospital, nursing_home, pharmacy, social_facility,

veterinary
(amenity = entertainment) arts_centre, brothel, casino, cinema, community_centre,

conference_centre, events_venue, exhibition_centre, fountain, gambling,
love_hotel, music_venue, nightclub, planetarium, public_bookcase,
social_centre, stripclub, studio, swingerclub, theatre

(amenity = public_service) courthouse, fire_station, police, post_box, post_depot, post_office,
prison, ranger_station, townhall

(amenity = facilities) bbq, bench, dog_toilet, dressing_room, drinking_water, give_box,
mailroom, parcel_locker, shelter, shower, telephone, toilets,
water_point, watering_place

amenity = kindergarten For children too young for a regular school.
amenity = school Primary, middle and secondary schools.
amenity = doctors A doctor’s practice or surgery.
amenity = hospital A hospital providing in-patient medical treatment.
amenity = socialfacility A facility that provides social services.
(amenity = parking) motorcycle_parking, parking, parking_entrance, parking_space

Table 4.5 26 Kinds of Land Use Types Extracted from OSM

OSM Tag Description
landuse = allotments A piece of land given over to local residents for growing vegetables and flowers.
landuse = animal_keeping An area of land that is used to keep animals, particularly horses and livestock.
landuse = basin An area artificially graded to hold water.
landuse = brownfield Describes land scheduled for new development where old buildings have been

demolished and cleared.
landuse = cemetery Place for burials.
landuse = commercial Predominantly commercial businesses and their offices.
landuse = construction A site under active development and construction of a building or structure.
landuse = education An area predominately used for educational purposes.
landuse = farmland An area of farmland used for tillage.
landuse = farmyard An area of land with farm buildings.
landuse = flowerbed An area designated for flowers.
landuse = forest Managed forest or woodland plantation.
landuse = garages One-level buildings with boxes commonly for cars.
landuse = grass An area of mown and managed grass.
landuse = greenfield Describes land scheduled for new development where there have been no

buildings before.
landuse = greenhouse_horticulture Area used for growing plants in greenhouses
landuse = industrial Predominantly industrial land uses such as workshops, factories, or warehouses.
landuse = meadow Land primarily vegetated by grass and non-woody plants.
landuse = orchard Intentional planting of trees or shrubs maintained for food production.
landuse = plantnursery Intentional planting of plants maintaining for the production of new plants.
landuse = railway Area for railway use.
landuse = recreation_ground An open green space for general recreation.
landuse = religious An area used for religious purposes.
landuse = residential Land where people reside.
landuse = retail Predominantly retail businesses such as shops.
landuse = village_green A distinctive area of grassy public land in a village centre.
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4.2.2 OpenStreetMap

OpenStreetMap (https://www.openstreetmap.org/), OSM for short, is a free, open geo-
graphic database updated and maintained by a community of volunteers via open collab-
oration.

In the case study, road network data (OSM tag: highway), POI data (OSM tag: amenity),
land use data (OSM tag: landuse) and other data of the study area are extracted from
the OSM database for further analysis. The data used are introduced in detail as follows.

OSM tag highway is used to describe roads and footpaths. Table 4.2 shows 13 road classes
used in the case study. They are all drivable roads rather than paths. Actually, there
are 14 more road and path classes in OSM, like "service" and "pedestrian". Considering
that more than 99% of the recorded traffic accidents happened along the first 13 road
classes, and introducing the last 14 road classes will double the data volume, only the
first 13 road classes are extracted and used for further analysis.

Also, OSM tag highway is used to describe traffic facilities, such as traffic signals and
crossings. Table 4.3 shows 8 kinds of traffic facilities used in the case study.

OSM tag amenity is used to describe all kinds of facilities used by visitors and residents.
Table 4.4 shows 8 classes of amenities and 6 kinds of amenities used in the case study.
There is no specific tag for each class of amenity, so multiple kinds of amenities are
aggregated into one class, according to the classification in OSM. 6 kinds of amenities
with vulnerable road users gathering are specifically selected for further analysis.

OSM tag landuse is used to describe the purpose for which an area of land is being used.
Table 4.5 shows 26 kinds of land use types used in the case study.

4.3 Part 0: Data Preparation

As shown in Figure 4.3, several data preparation works need to be done before the
analysis, including 4.3.1 road network modelling, 4.3.2 road intersection detection, 4.3.3
accident data filtering, and 4.4.4 data enrichment.

Figure 4.3 The Workflow of Data Preparation
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After these data preparation works, the analysis objects of each part are obtained, which
are road network of network analysis, traffic intersections of risk analysis and accident
locations of rule analysis respectively.

The details of each step are described below.

4.3.1 Road Network Modelling

Figure 4.4 Road Network of Wuppertal after Modelling

The road data directly acquired from OSM is rather detailed and not neat, so road
network modelling is needed to get a qualified road network.

Python package OSMnx (https://osmnx.readthedocs.io/) is used to achieve the aim. All
the drivable public streets (but not service roads, like internal roads in factories and
parking lots) within the boundary of the study area are acquired as the initial road
network. The road network’s topology is simplified by removing interstitial nodes, that
is, all nodes that are not intersections or dead-ends. But the course of the road is
preserved.

Figure 4.4 shows the road network modelling results of Wuppertal. Nodes, namely road
intersections, are in dark blue colour and edges, namely road segments, are in light blue
colour. It’s worth mentioning that the bottom right part of the network is not connected
to the main part of the network (actually the small part connects the main part through
the road network outside the city of Wuppertal). Therefore, this modelled road network
consists of two disconnected sub-networks. This will influence the latter network analysis
results. But considering that it’s a rather small part, the influence is rather limited.
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The further network analysis will be based on this modelled road network.

4.3.2 Traffic Intersection Detection

Figure 4.5 An Example Showing the Relationship between a Traffic Intersection in the Practical
Sense (Source: OSM) and in the Mathematical Sense

Figure 4.6 The Satellite Image of the Example Traffic Intersection (Source: Apple Maps)

A traffic intersection is defined as a junction where two or more roads converge, diverge,
meet or cross at the same height. There is no such data directly representing traffic
intersections in OSM. So traffic intersections need to be extracted from other data in
OSM. In this thesis, such a process is called Traffic Intersection Detection.

In this case, traffic intersections in the practical sense and in the mathematical sense
need to be distinguished. Taking Figure 4.5 as an example, the left graph (a screenshot
on OSM) shows one traffic intersection in Wuppertal, it can be modelled as shown in the
right graph. In the mathematical sense, there are four intersections, because roads with a
certain width are treated as lines without widths and their meet creates four intersections.
But actually, as shown in Figure 4.6, there is only one traffic intersection in the practical
sense, because the four intersections have practical widths and they merge together as
one traffic intersection.
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In other words, if traffic intersections are to be detected from the modelled road network,
those intersections within a limited distance from each other are only intersections in the
mathematical sense. They are caused by ignoring the width of roads during road network
modelling. In the practical sense, there is only one traffic intersection.

Based on this principle, the common method for traffic intersection detection is to ag-
gregate nearby "intersections" of the road network, namely the road network nodes as
shown in Figure 4.4. For example, the function consolidate_intersections of the Python
package OSMnx just follows this idea to consolidate nodes as traffic intersections. The
common parameter of maximum distance between nearby nodes should be considered
with the design specifications of the local road system, 10 meters is an empirical value.

However, the number of results of such a process could be relatively large. One way
to reduce the number and keep the ones of higher importance is to select only those
intersections of higher-class roads. In this thesis, another method is proposed to achieve
a similar aim even more effectively. In OSM data, there is one class of data called traffic
signals. These traffic signals can help to identify those important traffic intersections in
a city.

In this case study, a buffer of 22.5m (empirical value, and the width of a two-way six-
lane road with a lane width of 3.75m) is selected to aggregate nearby traffic signals as
one traffic intersection, and the centroid of the dissolved buffers is set as the location
of the detected traffic intersection. The selection aim of the buffer width is to merge
the intersections belonging to one traffic intersection and to separate the intersections
belonging to different traffic intersections.

The detected 345 traffic intersections in Wuppertal are shown in Figure 4.7.

Figure 4.7 Traffic Intersections Detected in Wuppertal
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4.3.3 Accident Data Filtering

As shown in Table 4.6, the road traffic accident data is filtered using its attributes
ULAND, UREGBEZ, UKREIS, and UGEMEINDE, which together make up the Of-
ficial Municipality Key (AGS), so that only the accident data happened in the study area
is kept. Among them, ULAND = 05 refers to North Rhine-Westphalia, UREGBEZ = 1
and UREGBEZ = 9 refer to Regierungsbezirk Düsseldorf and Regierungsbezirk Arns-
berg respectively.

Table 4.6 Official Municipality Key of the Study Area

City/County Car Sign ULAND UREGBEZ UKREIS UGEMEINDE AGS
Wuppertal W 05 1 24 000 05124000
Solingen SG 05 1 22 000 05122000
Remscheid RS 05 1 20 000 05120000
Kreis Mettmann ME 05 1 58 000 05158000
Ennepe-Ruhr-Kreis EN 05 9 54 000 05954000

The German Accident Atlas includes the accident data of North Rhine-Westphalia from
the year 2019 to the year 2022. The four years of data will be used in the following parts.
Table 4.7 shows the number of traffic accidents that occur each year in Wuppertal.

Table 4.7 Accident Number of Each Year in Wuppertal

Year 2019 Year 2020 Year 2021 Year 2022 Total
Wuppertal 910 770 814 902 3396

4.3.4 Data Enrichment

After the previous data preparation works as introduced in 4.3.1, 4.3.2 and 4.3.3, the
study objects of the following three parts are obtained, that is, road network, traffic
intersections, and accident locations. The next step is the so-called data enrichment,
which means using the two data sources to enrich each study object for further analysis.

For the road network, the nearby accident data can enrich it. In this case study, the
accident linear density (accident number per unit length of road) of each edge (road
segment) of the road network is added to the road network. The data quality of the
German Accident Atlas is rather high, the accident location is registered in the middle of
the corresponding road. Buffers of 10 meters are created for each road segment to count
the accident number for each road segment.

For traffic intersections, both the traffic accident data and OSM data can enrich them.
In this case study, the accident number and the surrounding geographic features, like the
road class, road number, nearby amenity and land use type, are added to each traffic
intersection. Table 4.8 shows all the attributes added to each traffic intersection. Buffers
of 200m are created for each traffic intersection and the corresponding geographic features
and traffic accidents intersecting with the buffers are extracted. 200m is an empirical
value based on the test results. Among the geographic features of 100m, 200m, 400m and
1000m, geographic features of 200m show the highest importance in the model training,
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Table 4.8 Attribute Table of Traffic Intersections after Data Enrichment

Attribute Name Content Category
nearbyNodes number of nearby road network nodes 1
nearbyEdges number of nearby road network edges 1
nearbyEdgeClass number of nearby road network edge classes (i.e. road classes) 1
nearMotorway whether near motorway or motorway_link road 1
nearTrunk whether near trunk or trunk_link road 1
nearPrimary whether near primary or primary_link road 1
nearSecondary whether near secondary or secondary_link road 1
nearTertiary whether near tertiary or tertiary_link road 1
nearUnclassified whether near unclassified road 1
nearResidential whether near residential road 1
nearLivingStreet whether near living_street road 1
nearbyBusStop number of nearby bus stops 2
nearbyCrossing number of nearby crossings 2
nearbyGiveWay number of nearby give way signs 2
nearbyMotorwayJunction number of nearby motorway junctions 2
nearbySpeedCamera number of nearby speed cameras 2
nearbyStop number of nearby stop signs 2
nearbyTrafficSignals number of nearby traffic signals 2
nearbyTurningCircle number of nearby turning circles 2
nearbySustenance number of nearby amenities of sustenance 3
nearbyEducation number of nearby amenities of education 3
nearbyTransportation number of nearby amenities of transportation 3
nearbyFinancial number of nearby amenities of finance 3
nearbyHealthcare number of nearby amenities of healthcare 3
nearbyEntertainment number of nearby amenities of entertainment, arts & culture 3
nearbyPublicservice number of nearby amenities of public service 3
nearbyFacilities number of nearby amenities of facilities 3
nearbyKindergarten number of nearby kindergartens 3
nearbySchool number of nearby schools 3
nearbyDoctors number of nearby doctors 3
nearbyHospital number of nearby hospitals 3
nearbySocialfacility number of nearby social facilities 3
nearbyParking number of nearby car parks 3
nearAllotments whether near land use type of allotments 4
nearAnimalKeeping whether near land use type of animal keeping 4
nearBasin whether near land use type of basin 4
nearBrownfield whether near land use type of brownfield 4
nearCemetery whether near land use type of cemetery 4
nearCommercial whether near land use type of commercial 4
nearConstruction whether near land use type of construction 4
nearEducation whether near land use type of education 4
nearFarmland whether near land use type of farmland 4
nearFarmyard whether near land use type of farmyard 4
nearFlowerbed whether near land use type of flowerbed 4
nearForest whether near land use type of forest 4
nearGarages whether near land use type of garages 4
nearGrass whether near land use type of grass 4
nearGreenfield whether near land use type of greenfield 4
nearGreenhouseHorticulture whether near land use type of greenhouse horticulture 4
nearIndustrial whether near land use type of industrial 4
nearMeadow whether near land use type of meadow 4
nearOrchard whether near land use type of orchard 4
nearPlantNursery whether near land use type of plant nursery 4
nearRailway whether near land use type of railway 4
nearRecreationGround whether near land use type of recreation ground 4
nearReligious whether near land use type of religious 4
nearResidentialLU whether near land use type of residential 4
nearRetail whether near land use type of retail 4
nearTrafficIsland whether near land use type of traffic island 4
nearVillageGreen whether near land use type of village green 4
isAccident whether there is accident 5

31



so 200m is chosen. Actually, multiple buffers of different sizes can be created to get
multiple levels of geographic feature data used for model training and prediction. For the
sake of simplicity, this thesis only uses the 200m buffer.

For accident locations, OSM data can also enrich them with nearby geographic features.
Buffers of 50m are created for each accident location and the corresponding geographic
features intersecting with the buffers are extracted.

4.4 Part 1: Accident Hotspot Identification on Road Network

From three levels, accident hotspots of the road network of Wuppertal are identified.

4.4.1 Node Level: Hot Node Identification

As introduced in 3.3, betweenness centrality and PageRank centrality are to be used, and
two updated road networks are to be built. For the first, the inversed accident linear
density ldi shown in the formula below is treated as the weight w1 of each edge (each
road segment) of the road network. For the second, the accident linear density ld shown
in the formula below is treated as the weight w2 of each edge (each road segment) of the
road network.

In the first formula, parameter n is the number of nearby accidents of each edge within a
buffer of 5 meters, parameter l is the length of each edge in meters, and parameter ld is
the linear density of traffic accident of each edge, that is, how many accidents per hundred
meters. In the second formula, the inversed accident linear density ldi is calculated and
scaled to suit further analysis.

The betweenness centrality and PageRank centrality of two updated road networks are
calculated respectively. For comparison purposes, the centrality results of the original
road network are also calculated. The results are shown in Figure 4.8 and Figure 4.9.

4.4.2 Lixel Level: Hot Lixel Identification

The network kernel density of the nearby traffic accidents of each lixel, which is set as
50 meters long (which is roughly the perception range of a LiDAR sensor or an HD
camera), is calculated. According to the recommendations by Gelb (2021), the quartic
kernel function is used, and the bandwidth is set as 300 meters.

The kernel density of the cumulative four years is calculated. The kernel density of each
year is calculated respectively. The results are shown in Figure 4.10 and 4.11.

4.4.3 Community Level: Hot Community Identification

Based on the road network of Wuppertal, the community detection method is carried
out. The improved accident linear density shown in the formula below is regarded as
the weight w3 of each edge of the road network. The design of the formula is up to a
reasonable analysis results.
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In this way, the higher the accident linear density of one edge, the larger the weight of
the edge, thus the closer the relationship between two nodes of the edge. And community
detection method can detect those communities of nodes with close relationships. In this
case, the Louvain Algorithm is used for community detection.

w3 = ldim =
n√
l

1000

+ 1

4.4.4 Results

Figure 4.8 Betweenness Centrality Result (Left: Original Road Network, Right: Updated Road
Network)

Figure 4.9 PageRank Centrality Result (Left: Original Road Network, Right: Updated Road
Network)

Figure 4.8 shows the betweenness centrality results of the original road network (road
length as the weight of each edge) and updated road network (inversed road traffic acci-
dent linear density as the weight of each edge). The darker the blue colour of the node,
the higher its centrality.

The left graph represents the degree of each node lying on more shortest paths (the
passing cost is the sum distance - road length, namely the sum weight of passing edges)
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between any other two nodes on the network. The darker the blue colour, the node will
lie on more shortest paths. On the right graph, with the inversed accident linear density
as the weight, the passing costs of the high accident-risk nodes will decrease, and these
nodes will lie on more shortest paths, which helps them get higher centrality. The dark
blue nodes are just those high-centrality nodes.

Figure 4.9 shows the PageRank centrality results of the original road network (the weight
of each edge is the same) and updated road network (road traffic accident linear density as
the weight of each edge). The darker the blue colour of the node, the higher its centrality.

The left graph represents the degree of each node connecting to more edges. On the right
graph, with the accident linear density as the weight, those nodes connecting to more
edges with higher weight will get higher centrality. In the physical meaning, the dark
blue nodes on the right graph are those connecting riskier and more edges.

Figure 4.10 shows the network kernel density estimation results of cumulative four years.
The darker the blue colour of the lixel, the higher the accident density of the lixel, and
therefore more accidents happened near the lixel in the past four years.

Figure 4.11 shows the estimation results of each year. There are small variations between
years, but the general distribution of the hotspots is similar.

Figure 4.12 shows the community detection results. Those communities with high ac-
cident risk are successfully detected and highlighted in the figure. Their distribution is
somehow consistent with the density estimation results in Figure 4.10.

Figure 4.10 NKDE Results (Years 2019-2022)

4.5 Part 2: Risk Prediction of Traffic Intersection

As shown in Figure 4.13, in this part, the random forest classifier model is trained with
the data of four nearby cities/counties, and the accident risk of traffic intersections in
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Figure 4.11 NKDE Results (Year 2019, Year 2020, Year 2021, Year 2022)

Figure 4.12 Community Detection Results
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Wuppertal is predicted. These four nearby cities have similar geographic, cultural, eco-
nomic and social environments to Wuppertal, so the model built with the data of these
four cities should be applicable in Wuppertal.

Figure 4.13 Schematic Diagram of Model Training

4.5.1 Random Forest Model Building

After the data preparation work in 4.3.2, 946 traffic intersections in the four nearby cities
or counties are extracted, and 345 traffic intersections in Wuppertal are extracted. They
are used for the model training and testing.

As shown in Table 4.8, 4 classes and 60 items of nearby geographic features are enriched
into each traffic intersection, therefore the geographic environment of each traffic inter-
section is somehow represented. These items form the training and testing features of
the model.

The accident risk of each traffic intersection is regarded as the training and testing labels
of the model. In this case study, if the number of traffic accidents occurring in the traffic
intersection (within the buffer of 100 meters of the centre of the traffic intersection) is
less than 4, that is, less than or equal to 1 time per year, the traffic intersection will be
regarded as low-risk, otherwise will be regarded as high-risk.

Therefore, the training and testing sets shown in Table 4.9 are prepared.

Table 4.9 Division of Training and Testing Sets

Description Number Features Labels
Training Set four nearby cities/counties 946 946 * 60 946 * 1
Testing Set Wuppertal 345 345 * 60 345 * 1

4.5.2 Model Enhancement and Risk Prediction

With the trained model, the accident risk of traffic intersections in Wuppertal is predicted.
The predicted results are compared with truth values to verify the effectiveness of the
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trained model. Figure 4.14 and Table 4.10 show the prediction results in the form of
a confusion matrix and prediction scores respectively. Besides, the importance of each
feature can be got out of the model as shown in Figure 4.17 and Table 4.11 so that the
features highly related to traffic accidents can be identified.

In 3.4, it’s designed with an intermediate step of model enhancement to improve the
behaviours of the model. Because, in most tasks, correctness is the top aim of model
training, like the pattern recognition task. However, given that the aim of the model
is to reveal the relationship between traffic accident risk and geographic features rather
than blindly pursuing the correct rate, an excessive pursuit could be counterproductive
by covering up some key information. Therefore, in this case study, model enhancement
is deprecated.

4.5.3 Results

Figure 4.14 Prediction Results of the Model (Confusion Matrix)

Table 4.10 Prediction Scores of the Model

Precision Recall
Low-Risk 0.68 0.88
High-Risk 0.81 0.57

Figure 4.15 Geographic Distribution of Potential Near-Accident Hotspots
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Figure 4.14 shows the prediction results of the model in the form of a confusion matrix.
The columns show the predicted accident risk, and the rows show the actual accident risk.
For example, 155 + 22 traffic intersections are actually low-risk, but 155 are predicted as
low-risk, and 22 are predicted as high-risk. Based on the prediction results, the prediction
scores are gotten as shown in Table 4.10. Precision is a score representing "among all
items predicted as X, what percentage are actually X", while Recall is a score representing
"among all items that are actually X, what percentage are predicted as X".

As shown in Figure 4.14 and Table 4.10, for those actual low-risk traffic intersections, the
model behaves very well with an accuracy of 88%. And those predicted high-risk traffic
intersections can be recognized as potential near-accident hotspots. Their geographic
distribution is shown in Figure 4.15.

For those actual high-risk traffic intersections, the model behaves badly with an accuracy
of 57%. However, as shown in Figure 4.16, the predicted low-risk ones concentrate on the
slightly high-risk part. And in 70% of the traffic intersections, less than 2 accidents per
year happened there. For those intersections with a high number of historical accidents,
there could be some other causes than geographic features.

Figure 4.16 Accident Number of Actual High-Risk but Predicted Low-Risk Intersections

Table 4.11 Top Important Geographic Features of the Trained Model

Feature Importance Description
nearbyCrossing 0.10 number of crossing
nearbyEdges 0.08 number of road segment
nearbyNodes 0.06 number of intersection

nearbyTransportation 0.06 number of transportation amenities
nearbyEdgeClass 0.05 number of road class
nearbyParking 0.05 number of parking lots
nearbyBusStop 0.04 number of bus stops

The importance of each geographic feature is estimated by the trained model, as shown
in Figure 4.17. And top 7 important geographic features are shown in 4.11. They are all
transportation-relevant features without exception. Among them, the number of crossings
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Figure 4.17 Histogram of the Importance of each Geographic Feature

is the most important feature, followed by the complexity of nearby road networks, that
is, the number of nearby intersections, and the number and class number of nearby road
segments.

Among road classes, the primary, secondary and tertiary roads are of the most importance
in turn. Among POIs, besides the transportation class, the sustenance class of POIs is
of the most importance. Among traffic facilities, crossings, bus stops and give-way signs
are of high importance, while the others are of little importance, especially traffic signals
are of no importance. Compared with the others, land use type is of lesser importance.
And the forest land use type is surprisingly of more importance than any other land use
type.

4.6 Part 3: Association Rule Analysis of Accident Location

The idea of association rule analysis is to explore the associated geographic features of
accident locations in Wuppertal. The association rule analysis will be made on the whole
accident dataset first to discover the overall rules. Meanwhile, considering the complexity
and diversity of the accident data of the whole city, data clustering is used to group similar
accidents, and then association rule analysis is made on the different groups again.

4.6.1 Data Clustering

Obviously, the easiest way of data clustering is to cluster data directly by their attributes
as shown in Table 4.1, like the accident types, accident time, and accident conditions.

And community detection method is also used to make the data clustering.
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Table 4.12 Part of the Attribute List of Road Traffic Accident Record

Column Name Content
UJAHR Year of Accident
UMONAT Month of Accident
USTUNDE Hour of Accident
UWOCHENTAG Day of the Week
UKATEGORIE Road Accidents Involving Personal Injury
UART Kinds of Accidents
UTYP1 Type of Accidents
ULICHTVERH Light Conditions
IstRad Accident with Bicycle
IstPKW Accident with Passenger Car
IstFuss Accident with Passenger
IstKrad Accident with Motorcycle
IstGkfz Accident with Goods Road Vehicle
IstSonstige Accident with Other
USTRZUSTAND Road Surface Conditions

Over four years, Wuppertal has seen 3,396 accidents. As shown in Table 4.1, each accident
record has 24 attributes. Besides ID and other location attributes, 15 attributes shown
in Table 4.12 are to be used to tell the similarity between two accidents.

Figure 4.18 Community Detection Results (Visualized with Gephi)

For community detection, the first step is to build a network used for the community
detection method. Each of the 3396 accidents is regarded as a node of the network.
The number of identical attributes between any pair of accidents is checked for network
building. If the number of identical attributes between one pair of accidents is larger
than the threshold, then one edge is built between this pair of accidents. The threshold
is set to 14 out of 15 so that the built edges between accidents will not be too many or
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too few, and therefore the detected communities will not be too many or too few. Thus,
the network showing the similarity between accidents is built.

With the built network, the community detection method is applied to it. The com-
munity detection method used here is the Louvain Algorithm. As introduced in 2.4.3,
this algorithm is a heuristic algorithm, so the results change from time to time, but the
degree of change is acceptable, and the results tend to be similar. Figure 4.18 shows the
community detection results, where 6 communities are detected. Except for the commu-
nity in green colour, other communities intertwine with each other, which shows that the
community detection results are not ideal. The current method cannot effectively cluster
accident data.

4.6.2 Association Rule Analysis between Accident Locations and Geographic
Features

The Apriori algorithm introduced in 2.5.3 is used for association rule analysis. It aims
to extract frequent item sets. In this case, it shows whether, for a certain group of
accidents, there are some features in common, that is, whether they are commonly near
certain geographic features.

Association rule analysis is used for the whole dataset, certain types of accidents, and the
resulting clusters of community detection. The results for the whole dataset are shown
in 4.13.

Table 4.13 ARA Results of the Whole Dataset

No. Support ItemSets Length
1 0.804406 (nearResidentialLU) 1
2 0.656445 (nearResidential) 1
3 0.570408 (nearResidentialLU, nearResidential) 2
4 0.477821 (nearTransportation) 1
5 0.417684 (nearCrossing) 1
6 0.392676 (nearParking) 1
7 0.392676 (nearTransportation, nearParking) 2
8 0.379280 (nearSecondary) 1
9 0.376600 (nearTransportation, nearResidentialLU) 2
10 0.342662 (nearCrossing, nearResidentialLU) 2
11 0.335814 (nearTransportation, nearResidential) 2
12 0.333135 (nearForest) 1
13 0.317059 (nearSecondary, nearResidentialLU) 2
14 0.313188 (nearBusStop) 1
15 0.302173 (nearTransportation, nearResidentialLU, nearParking) 3
16 0.302173 (nearResidentialLU, nearParking) 2
17 0.301876 (nearCommercial) 1
18 0.292647 (nearCrossing, nearResidential) 2
19 0.292647 (nearPrimary) 1
20 0.292349 (nearGiveWay) 1
21 0.281929 (nearResidential, nearParking) 2
22 0.281929 (nearTransportation, nearResidential, nearParking) 3
23 0.277464 (nearTertiary) 1
24 0.270914 (nearTransportation, nearResidentialLU, nearResidential) 3
25 0.265853 (nearResidentialLU, nearBusStop) 2
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4.6.3 Results

Table 4.14 ARA Results of Certain Types of Accidents

No. Support Itemsets
1 0.615385 (nearResidentialLU)
2 0.538462 (nearForest)
3 0.407692 (nearResidential)
4 0.400000 (nearMotorway)
5 0.392308 (nearPrimary)
6 0.376923 (nearCrossing)
7 0.369231 (nearTransportation)
8 0.276923 (nearParking)
9 0.269231 (nearCommercial)

(a) Accidents Involving Trucks

No. Support Itemsets
1 0.866460 (nearResidentialLU)
2 0.810559 (nearResidential)
3 0.566770 (nearTransportation)
4 0.472050 (nearParking)
5 0.428571 (nearCrossing)
6 0.372671 (nearBusStop)
7 0.368012 (nearSecondary)
8 0.315217 (nearSustenance)
9 0.315217 (nearGiveWay)

(b) Accidents Involving Passengers

Figure 4.19 Parts of the Road Network that is Close to Crossings

Table 4.13 shows the association rules between the whole traffic accident dataset and
nearby geographic features. It’s ranked with the support measure, which means for
a certain proportion (Support) of accidents, they are near certain geographic features
(Itemsets). The Length means the length of Itemsets, which means how many items are
in the Itemsets. According to the results, 80.4% accidents occurred near residential land
use type, 65.6% accidents occurred near residential roads, and 47.8%, 41.8%, and 39.3%
accidents occurred near transportation amenities, crossings and parking lots, respectively.

Table 4.14 shows the association rules between the accidents involving (a) trucks and
(b) passengers and nearby geographic features. Compared with the results of the whole
dataset in 4.13, they have shown significant differences. Accidents involving trucks signif-
icantly less occurred near the residential land use type and residential roads, while they
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significantly more occurred near the forest land use type, motorway roads and primary
roads. Accidents involving passengers significantly more occurred near the residential land
use type, residential roads and transportation amenities. These are just two examples,
other clusters of accidents with certain attributes also show some significant differences
compared to the whole dataset, like different accident times and accident types. Due to
space limitations, no further details are provided here.

Taking crossing as an example, for each crossing, a buffer of 50 meters is built, and the
part of the road network that intersects buffers is shown in blue colour. Therefore, the
potential accident hotspots associated with crossings are shown in Figure 4.19.

However, the association rule analysis of the accident clusters from community detec-
tion doesn’t show enough significant differences compared with the results of the whole
dataset. In a sense, this is like a random sampling of the whole dataset.

All in all, there are surely some accident-associated geographic features and different
accident data clusters can show different association rules relevant to geographic features.
It is worth pointing out that clustering data by their single attribute is more effective in
revealing association rules than community detection, which takes an overall consideration
of the similarity between accidents.
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5 Discussions

In this chapter, the discussions about the results of the case study are made, and the
connections between the case study, methodology and research gap are built.

Specifically speaking, it first connects the analysis process and decision-making, namely
sensor location selection, and discusses the candidate sensor locations obtained from the
analysis results. Secondly, it answers the research questions proposed in 1.3. Thirdly,
it discusses the relationship between traffic accidents and geographic features and its
prospective application. Fourthly, it discusses the difference between different analysis
and their results. Fifthly, it discusses the limitations of this thesis and lists where to
continue in the future work.

5.1 From Analysis Results to Candidate Sensor Locations

In the case study, network analysis, risk analysis and rule analysis are made respectively
in 4.4, 4.5 and 4.6.

4.4 uses network analysis methods of three different levels to identify accident hotspots
on the road network. Given that these identified hotspot results are all based on histor-
ical data, they are called historical accident hotspots in the following. These historical
accident hotspots can be regarded as candidate sensor locations.

4.5 uses the random forest classification model representing the relationship between
traffic accident risk and nearby geographic features to predict the accident risk of traffic
intersections in another city. Given that these high-risk traffic intersections are based
on the prediction, they are called potential accident hotspots. Among them, those pre-
dicted high-risk but actual low-risk traffic intersections are called potential near-accident
hotspots. Because even if there were few historical traffic accidents, there are still poten-
tial near-accident hotspots. These potential accident and near-accident hotspots can be
regarded as candidate sensor locations.

4.6 uses the association rule analysis method to obtain the accident-relevant geographic
features, like residential roads, transportation amenities, crossings and parking lots. Then
the parts of the road network that are close to these accident-relevant geographic features
have potential accident risks. They are called potential accident hotspots. These potential
accident hotspots can be regarded as candidate sensor locations.

Therefore, candidate sensor locations can be divided into two categories: historical acci-
dent hotspots and potential accident and near-accident hotspots. The former is obtained
in 4.4 and discussed in 5.1.1, and the latter is obtained in 4.5 and 4.6, and discussed in
5.1.2.

5.1.1 Historical Accident Hotspots as Candidates

On three levels of road networks, that is, node, lixel and community, historical accident
hotspots are identified.

As shown in Figure 4.8 (Right) and Figure 4.9 (Right), the historical hotspots on the
node level are extracted using centrality measures. The nodes with a darker blue colour
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are the high centrality nodes, which are the extracted historical hotspots and therefore
the candidate sensor locations.

As shown in Figure 4.10 and Figure 4.11, the historical hotspots on the lixel level are
extracted using network kernel density estimation. The lixels with a darker blue colour
are the high kernel density lixels, which are the extracted historical hotspots and therefore
the candidate sensor locations.

As shown in Figure 4.12, the historical hotspots on the community level are extracted us-
ing the community detection method. The highlighted communities (multiple small-scale
road networks) are the high-risk communities, which are the candidate sensor locations.

On these three different levels, besides the geographic distribution of historical traffic
accidents, the topology of the road network, namely the structure of the road network,
always more or less influences the analysis results.

5.1.2 Potential Accident and Near-Accident Hotspots as Candidates

4.5 uses the random forest classification model to predict the potential accident hotspots.
As shown in Figure 4.14, 117 traffic intersections are predicted as high-risk, and they
are regarded as potential accident hotspots. Among them, 22 traffic intersections are
actually low-risk as shown in Figure 4.15, and they are regarded as potential near-accident
hotspots.

4.6 uses the Apriori algorithm to detect the frequent geographic features that are near
accident locations. As shown in Table 4.13, for the whole accident dataset, some accident-
associated geographic features are detected. As shown in Table 4.14, for certain types of
traffic accidents, some accident-associated geographic features are also detected. Taking
crossing as an example, Figure 4.19 shows the potential near-accident hotspots associated
with crossings in the road network.

5.2 Answers to Research Questions

For the five research questions proposed in 1.3, according to the results of the case study
made in this thesis, five answers are made respectively as follows:

Answer 1: Research Question 1 is answered by Chapter 2 - Literature Review. As
introduced in 2.3 and 2.1, the functions of traffic sensors determine their location strategy,
and they focus on traffic flow monitoring. Therefore, the current TSLP can be summarised
as the traffic flow-oriented TSLP. As introduced in 2.2 and 2.1, research on using traffic
sensors to monitor traffic safety is still rare, so the discussion about the corresponding
location strategy, that is traffic safety-oriented TSLP is also very rare. The difference
between these two types of TSLP is mainly their different monitor aims and objects, which
source from their difference in functions. Traffic flow-oriented TSLP tends to monitor as
much traffic flow as possible with the least traffic sensors, while the traffic safety-oriented
tends to monitor as many traffic accident or near-accident events as possible with the
least traffic sensors.

Answer 2: Research Question 2 is answered by Chapter 4 - Case Study. Traffic safety-
oriented TSLP can be solved by detecting traffic accident hotspots and near-accident
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hotspots. According to the results of the case study, network analysis methods, machine
learning and data mining methods are beneficial.

Answer 3: Research Question 3 is answered in 4.4. According to the results of the case
study, historical traffic accident hotspots can be extracted by multiple network analysis
methods. The hotspots on multiple levels including node, lixel and community can be
successfully extracted with centrality measures, network kernel density estimation and
community detection, respectively. Therefore, those extracted historical traffic accident
hotspots can be regarded as candidate locations for traffic sensors.

Answer 4: Research Question 4 is answered in 4.5. According to the model performance,
the relationship between the accident risk of one traffic intersection and its surrounding
environment can be modelled with the random forest classification model, and the acci-
dent risk of traffic intersections in one city can be predicted. Therefore, those predicted
high-risk intersections, can be regarded as candidate locations for traffic sensors.

Answer 5: Research Question 5 is answered in 4.6. The association rules between
traffic accidents and geographic features can be extracted. Therefore, those locations
near accident-associated geographic features can be regarded as candidate locations for
traffic sensors.

5.3 Relationship between Traffic Accidents and Geographic Fea-
tures

Figure 5.1 Distribution of Residential Land Use Types in Wuppertal

Both 4.5 Risk Analysis and 4.6 Rule Analysis show some accident-associated geographic
features. In 4.5, Figure 4.17 and Table 4.11 show the importance of geographic features
to the trained model, which reflects which geographic features are of high association to
the accident risks. In 4.6, Table 4.13 shows the association rule analysis results of the
whole dataset, which reflects which geographic features are accident-associated. These
two results have shown strong consistency, where crossings, parking lots, transportation
amenities and bus stops commonly rank high. However, there are also some inconsisten-
cies between the two results. Table 4.13 shows that residential roads and residential land
use types are the strongest associated geographic features, while Figure 4.17 shows that
residential roads and residential land use types are of small importance in the model.
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This is because the residential roads and residential land use types already exist in large
numbers in the city as shown in 5.1, and therefore most accidents are inevitably near
certain residential roads and residential land use types.

It’s worth pointing out that the relationship found in this thesis between traffic accidents
and nearby geographic features (risk high or low, accident or not) is an association re-
lationship rather than a causation relationship. These geographic features are not the
causes of traffic accidents, but they can serve as the symptoms of accident risk. The mech-
anism works in such a way that the accident risk gets higher if near certain geographic
features and gets lower if near others.

This relationship can be used to locate potential accident or near-accident hotspots,
and therefore traffic sensors can be located there. However, like what the examples
of residential roads and residential land use types have revealed, the analysis of the
association relationship is still incomplete and can be continued with further work. Not
only the association rules from traffic accidents to geographic features, the association
rules from geographic features to traffic accidents also need to be analyzed. The discussion
about this is continued in 5.5 (2).

5.4 Differences between Three Analysis Methods

The three analysis methods proposed in this thesis, namely network analysis, risk analysis
and rule analysis, have some differences, which leads to the differences between their
results.

These three methods focus on different study objects. Network analysis focuses on the
different levels of the road network: node level, lixel level and community level, which
represent intersections, road segments, and a small group of roads. Risk analysis focuses
on the traffic intersections which are artificially defined. Rule analysis focuses on all
accident locations along the road network, and obtains all the road segments close to the
accident-associated geographic features.

Moreover, these three methods obtain different actual or predictive results. Network
analysis obtains historical accident hotspots, while risk analysis and rule analysis obtain
predicted potential accident and near-accident hotspots.

In this way, the results of three different methods have different characteristics, they can
not be directly compared. They each have advantages and disadvantages, and the choice
depends on the specific situation. The discussion will continue in 6.2.

5.5 Limitations and Where to Continue

Based on the current work, a lot of reflections are made. This thesis has some limitations
and can be continued with the following ideas, and these ideas can provide references for
future work.

(1) Current network analysis is still limited, go deeper with designing customized cen-
tralities and algorithms.

The network is an efficient way of modelling the real road network. The elements in the
road network, including node, edge and community, all have practical meanings. The
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analysis of the network can help to detect the target elements, like the high-risk node or
community studied in this thesis.

In the network analysis part of the case study, the key work is to determine useful central-
ity measures with practical meaning to detect high-risk nodes and efficient community
detection algorithms to detect high-risk communities. Although the chosen ready-made
centrality measures and community detection algorithms can work, the results are not
ideal enough. The current chosen centrality measures are either too global or too local,
they are too much influenced by the road network topology and do not focus on the
accident risk. The current chosen community detection algorithm also places too much
focus on road topology rather than accident risk.

Therefore, the network analysis can be continued with designing customized centrality
measures and community detection algorithms to get more suitable for the current task:
to detect high-risk nodes and communities. An ideal centrality measure for this task
should consider both the local and global conditions and focus on the accident risk rather
than road network topology. An ideal community detection method for this task should
focus on detecting high-risk communities and reduce the impact of road network topology.

What’s more, other attributes of the road network, such as road class. can be introduced
and used for network analysis. Different road classes represent the different importance
of roads. The introduction of road class can help to reveal the key roads and nodes.

(2) Limited by data, the rule analysis is incomplete. Combine risk analysis and rule
analysis, and apply new data to them.

As introduced in 3.5.2, association rule analysis can not be fully employed in the case
study, because the data used in the case study, namely accident locations, only has
negative values (there is an accident), and positive values (there is no accident) are unable
to be defined and sampled (there is no such data like a no-accident location record).

But if the rule analysis is continued with risk analysis, and the study object is transferred
to traffic intersections, then association rule analysis can be fully employed. Because there
will be both positive values (low-risk) and negative values (high-risk) in the data. There-
fore, not only the support indicators ("if traffic accident risk high/low, then geographic
feature X") can be calculated, but confidence indicators ("if geographic feature X, then
traffic accident risk high/low") can be calculated.

In this way, the relationship between traffic accidents and geographic features can be
better investigated. Risk analysis and rule analysis can be compared with each other and
form a more complete study.

(3) Analysis can be iterated based on results, which have shown the potential of crossings.

Both 4.5 Risk Analysis and 4.6 Rule Analysis show that crossings have a strong association
relationship with accident risks, especially compared with traffic signals. In this thesis,
as introduced in 4.3.2, traffic intersections are identified with traffic signal data, while
they can also be identified with crossing data.

Therefore, risk analysis can be done with the identified traffic intersections, and as in-
troduced in the last point, rule analysis can also be done with the identified traffic in-
tersections. Although limited by time, it is not carried out in this thesis, it’s still a very
meaningful iterative work to continue.

48



6 Conclusions

6.1 Summary

This thesis is an exploratory study. It aims to explore the location strategy of traffic
sensors in the application scenario of traffic safety. Specifically, this thesis aims to ex-
plore the possible solutions for detecting or predicting traffic accident and near-accident
hotspots on the road network, thereby dealing with the traffic sensor location problem
from the perspective of traffic safety.

This thesis proposed three possible solutions in its methodology, which are accident
hotspot identification on road networks, risk prediction of traffic intersections, and asso-
ciation rule analysis of accident locations and geographic features. These three possible
solutions all use open data sources, they are based on different analysis methods, aiming
at different study objects, and acquiring different types of results. Therefore, this thesis
is more about the extensive exploration of possible solutions, rather than going very deep
into a certain one.

With the case study, the effectiveness of the methodology as well as three possible so-
lutions proposed in this thesis is initially verified. Network analysis methods, machine
learning and data mining methods are beneficial for solving TSLP from the perspective
of traffic safety. Network analysis methods can effectively identify the historical accident
hotspots on the road network. The relationship between accident risk and geographic
features can be effectively modelled and used for risk prediction, and association rules
between accident risk and geographic features can be effectively extracted. With their
results, potential accident and near-accident hotspots can be predicted. What’s more,
a general guideline on how to deal with TSLP from the perspective of traffic safety is
proposed.

This thesis is just an initial exploration. Many aspects of the work can be continued,
either the methods being used or the problem being discussed. Therefore, an outlook of
the possible future work is concluded.

6.2 General Guideline

Hereby, a general and initial guideline on dealing with TSLP from the perspective of traffic
safety is proposed. Under which conditions, a certain method may be more suitable is
concluded. The advantages and disadvantages of each method are also concluded.

(1) Network analysis aims at the road network by multiple levels and directly acquires the
historical accident hotspots on the road network. This method can directly and clearly
acquire the accident hotspots and can be used for multiple types of locations on the
road network. However, it requires multi-year historical accident data in the study area,
otherwise, the results can not be obtained or are not accurate.

In network analysis, those three different levels represent different practical meanings.
The node represents the intersection on the road network, the pixel represents each tiny
road segment, and the community represents a connected part of the road network.
Therefore, when carrying out practical sensor location selection tasks, the analysis level
can be decided based on the desired installation locations. If an intersection is to be
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covered, then choose node level. If any place on the road network can be selected, then
choose the lixel level. And if a high-risk community is to be covered, then choose the
community level.

(2) Risk analysis aims at the traffic intersections and predicts the potential accident and
near-accident hotspots. This method can be used in a study area without historical
accident data if a model representing the relationship between accident risk and nearby
geographic features has been trained in other similar areas. However, this method can
only reflect the accident risk associated with geographic features, the accident risk caused
by other factors can not be predicted.

(3) Rule analysis aims at the accident locations and finds out the accident-associated
geographic features. This method can also be used in a study area without historical
accident data, as long as the association rules in other similar areas have been obtained.

All in all, these three analysis methods aim at different study objects on the road network,
some obtain historical hotspots and others predict potential hotspots. The selection of
an exact analysis method should consider the actual project needs (like only choosing
from traffic intersections) and data situation.

6.3 Outlook

There is still a long way to go before transportation becomes smart, safe and sustainable
enough in one day. To achieve that, the process of applying more advanced traffic sensors
in more scenarios will not stop. Therefore, the study and discussion about the location
strategy of traffic sensors, that is Traffic Sensor Location Problem, have to continue,
extend, and adapt to the new scenarios in future work.

In the scenario of traffic safety, traffic sensors have many prospects in detecting, alarming,
recording and understanding traffic accidents to make transportation safer and more
efficient. But "where to put them" and "how many in need" always need to be answered
to achieve the key balance between cost and effectiveness. At the current pilot stage, the
initial exploration of this problem has great pioneering significance. It will help to reveal
the application prospect of advanced traffic sensors in improving traffic safety and help
the implementation of related research and applications.

The future work of solving TSLP from the perspective of traffic safety can continue
in many ways. More effective network analysis methods including accident centrality
measures and community detection methods can be developed to analyze the accident
hotspots on the road network, and more attributes of the road network can be used in the
process. The association relationship between accident risk and geographic features can
be further and completely analyzed, and it can be implemented on a larger geographic
scale. With this relationship, the accident hotspots can be better predicted. More work
should be carried out to explore other methods used for solving TSLP from the perspective
of traffic safety, like optimization methods and heuristic methods.
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