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Abstract 
 

This study focuses on contemporary bike-sharing systems, specifically hybrid 
systems that blend docked and dockless approaches. These systems offer 
sustainable urban transportation solutions, but research has mainly concentrated on 
station-based and dockless variants, leaving hybrid systems underexplored. Our 
research introduces a spatiotemporal analysis workflow centered on dynamic 
community detection within Munich's hybrid bike-sharing network. The primary 
objective is to understand user travel behavior and its connection to the urban 
environment. We develop this workflow, assess existing analysis methods, adopt 
dynamic community detection algorithms, and apply the workflow to urban transport 
planning. Our research addresses various research questions, exploring spatial 
patterns, temporal considerations, network analysis attributes, semantic information, 
and the advantages of dynamic community detection. Key findings highlight the 
dynamic nature of urban mobility influenced by temporal factors and the impact of 
built environment features on travel patterns. Land use information assigned to 
communities reveals distinct travel purposes among them. While this research 
demonstrates the potential of dynamic community detection, it acknowledges 
computational challenges and suggests future work in GI Science. In conclusion, our 
methodology contributes to Geographic Information Science, Cartography, and Urban 
Transport Planning, offering insights for optimizing bike-sharing systems and 
promoting sustainable urban transportation. 

Keywords: Dynamic Community Detection, Human Mobility, Bike Sharing 
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Nomenclator 
𝐺𝐺 ∶  𝑂𝑂𝑂𝑂 Graph. Consists of a set of Graphs for each time interval. 

𝐶𝐶𝑡𝑡 : Communities in specific 𝑡𝑡𝑡𝑡ℎ interval of graph 𝐺𝐺𝑡𝑡. 

𝐶𝐶𝑖𝑖𝑡𝑡: 𝑖𝑖𝑡𝑡ℎ community in specific time interval communities. 

𝐺𝐺𝐶𝐶 = (𝑉𝑉𝐶𝐶 ,𝐸𝐸𝐶𝐶): Consensus graph/network—> Constructed from “community 
membership graphs” which have undirected weighted edge connecting nodes of 
the same community. 

𝑉𝑉𝐶𝐶 : Union of all nodes within all snapshots. 

𝐸𝐸𝐶𝐶  : Unions of all edges in all community membership graphs. 

𝑤𝑤𝑖𝑖𝑖𝑖
𝑐𝑐  : The weight of an edge in the consensus graph, represents the time duration 

of an edge. Shows how many times nodes stay connected within a community 
among all snapshots. 

τ: total number of snapshots. 

𝐶𝐶𝐶𝐶 : Set of consensus communities within the consensus graph 𝐺𝐺𝐶𝐶. 

𝐶𝐶𝑖𝑖𝐶𝐶  : 𝑖𝑖𝑡𝑡ℎ consensus community in consensus communities 𝐶𝐶𝐶𝐶  within consensus 
graph 𝐺𝐺𝐶𝐶. 

𝐶𝐶𝐷𝐷,𝑡𝑡 : set of Dynamic communities in a snapshot 𝐺𝐺𝑡𝑡 (where 𝐶𝐶𝑖𝑖𝐶𝐶  and 𝐶𝐶𝑖𝑖
𝐷𝐷,𝑡𝑡 have the 

same set of nodes.)  

 𝑆𝑆𝐶𝐶𝑖𝑖
𝐷𝐷,𝑡𝑡 : set of dynamic sub-communities. 
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1. Introduction 
Bike-sharing systems have evolved from the first pioneering systems in Amsterdam 
in 1965 and second-generation, coin-based systems in Copenhagen in the 1990s to 
today's fourth-generation, hybrid systems (Z. Chen et al., 2020; Eren & Uz, 2020; Liao 
et al., 2023; Shaheen et al., 2010; L. Zhang et al., 2015). The hybrid bike-sharing 
systems are a combination of docked and dockless systems, allowing its users to 
park their bicycles independently from a station, anywhere in the operation area, and 
the extent of the bicycle fleet is not limited to the station size (Kou & Cai, 2021; Shen 
et al., 2018; Shui & Szeto, 2020).  These systems have attained popularity with their 
advantages such as deflating traffic intensity during peak hours, lowering carbon 
emissions, service to human health, decreasing car ownership, and having an 
essential role in sustainable transportation discussions (Song et al., 2021).  

Although public transport ensures an extensive mobility function, it is not possible for 
them to reach all parts of the urban regions as vehicles do (Fan et al., 2019). Due to 
being an eligible way of city traveling, shared bike systems are an effective way to 
link the first or last mile of the journey with public transportation systems and a 
beneficial tool for complimentary mode in public transportation (Liao et al., 2023; Lu 
et al., 2023; Shui & Szeto, 2020). Constant upgrowth in bicycle-sharing systems made 
researchers focus on bike-sharing and has crucially increased publications in the 
literature (Fishman, 2016; Shui & Szeto, 2020; Song et al., 2021). Up to the author’s 
knowledge, there are a great number of studies regarding station-based and dockless 
bike-share systems but, studies related to hybrid bike-sharing systems are limited 
and need further investigation (Albiński et al., 2018; Kou & Cai, 2021). 

The latest generation of shared bikes is hybrid systems with GPS devices embedded. 
This allows the unique gathering of large-scale travel data which enables scientists 
to study user's travel behavior and examine built environment effects on the system 
level (Z. Chen et al., 2020). Discovering, and analyzing GPS data on bike-share usage 
innovatively with spatiotemporal analysis methods ensures decision support for 
service enhancement (Lu et al., 2023). Therefore, it is necessary to apply novel 
spatiotemporal analysis methods to reveal users’ travel behavior patterns and their 
relation to built environment factors. 

Mobility data can be visualized as origin/destination pairs as points, and straight 
lines in between these pairs as travel flows. Visualizing travel flows can allow us to 
understand urban mobility patterns and analyze the reasonings behind them. 
However, human mobility has a dynamic structure and shows complex patterns 
throughout different times of the day, different days of the week, or different seasons 
of the year. Additionally, with the help of new GPS systems, it is possible to collect 
hundreds of thousands of trip data that are generated by humans which also makes 
this data complex to evaluate. At this point, we can benefit from Community 
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Detection Methods of Network Science to address revealing meaningful travel 
patterns by converting bike share traffic data into a mobility network. The community 
detection method determines clusters or modules that have more intra-region 
journeys than inter-region journeys within bike-sharing mobility data. The goal of such 
algorithms is to understand spatial patterns of bike share traffic from a network 
viewpoint and validate spatial pattern analysis methods(Song et al., 2021).  

Community detection methods are efficient in finding static communities but, they 
neglect the dynamic characteristics of human mobility patterns. Static community 
detection approaches that use specific periods (snapshots) cannot detect human 
mobility features entirely. Previous methods are effective in determining progressing 
communities with great similarity among two subsequent periods (Zhao et al., 2023). 
Several studies have already applied community detection in urban science, 
particularly within bike-sharing systems. However, due to the high dynamics of the 
bike-sharing system (e.g., bike deployment), a dynamic community detection 
approach is necessary. In this study, we propose a dynamic community detection 
model and apply it to urban planning as one potential application. In our study, the 
nodes in the mobility network are basic urban units in Munich, and the links of nodes 
are flows of bikes. 

1.1. Research Identification 

This section will introduce the research objective that underpins the research 
motivation, along with its sub-objectives. Additionally, the research questions devised 
to achieve these objectives will be presented. Subsequently, the thesis's contribution 
to the fields of GI Science and Cartography will be discussed. 

1.1.1. Research Objectives & Sub-Objectives 

This thesis will utilize open-source Origin & Destination GPS data provided by MVG 
Rad (MVG Rad, 2023). The primary objective is to develop a spatiotemporal analysis 
workflow that models dynamic community structures. This approach aims to 
enhance the understanding of users' travel behavior within the hybrid bike share 
system's network and its correlation with the built environment across the city of 
Munich. 

 The main objective and its sub-objectives are described as follows; 

RO1: Develop a spatiotemporal analysis workflow to model dynamic community 
structures of hybrid bike share usage. 

 RO1.1: Evaluate existing spatiotemporal analysis methods that are used to 
extract bike share travel behavior. 
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 RO1.2: Adopt novel network analysis methods (dynamic community detection 
methods) to extract cluster/community structures. 

RO1.3: Implement and evaluate the proposed workflow as an application of 
Urban Transport Planning and analyze travel patterns of hybrid bike share usage. 

1.1.2. Research Questions 

The main objective and its sub-objectives are met by providing solutions to the 
following RQs, and each of them is enumerated according to corresponding Sub-
Objectives (i.e. RO 1.3  RQ 1.3.1, RQ 1.3.2). 

RQ 1.1.1. What are the current spatial pattern analysis methods of hybrid bike 
share system usage? 

RQ 1.2.1. What would be the most suitable temporal time unit for the adopted 
method? 

RQ 1.2.2. What additional attributes or parameters could be used to extract 
meaningful information in a network? 

RQ 1.2.3. How would semantic information be assigned to communities? 

RQ 1.3.1. Can community detection methods help to extract travel purposes? 

RQ 1.3.2. Is there any benefit of defining changing communities? 

1.1.3. Detection of Dynamic Communities 

The innovation of this research is to generate spatiotemporal analysis workflow by 
adopting the Dynamic Community Detection Method to reveal community shifts over 
time in an urban space based on shared bicycle mobility data. To the author's 
knowledge, there are much research(Lin et al., 2020; Lu et al., 2023; Song et al., 2021) exists 
regarding community detection of bike-sharing data. However, Zhao et al. (2023) 
proposed a novel method for detecting dynamic community structures generated 
based on daily dynamics of human mobility by classifying evolving patterns of urban 
structure. The dynamic community detection method and its applications need further 
investigation (Zhao et al., 2023) and the proposed methods will be used for the first time in 
the city of Munich. 

1.2. Thesis Outline 

The thesis is structured into six chapters that follow a logical flow. Its focus is on the 
adaptation of community detection, a method within the field of Network Science, to 
the discipline of Cartography & GI Science. Furthermore, a methodological framework 
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is proposed that can be utilized in Urban Transport Planning as a means of analyzing 
patterns in human mobility. 

The thesis starts with Chapter 1, Introduction, which outlines the author’s motivation 
for the implementation of dynamic community detection for bike-sharing mobility 
networks and the research goal. It also formulates Research objectives & questions 
and explains the project’s contribution to the Cartography and Urban Transport 
Planning domains.  

In Chapter 2, Background and related work,  core definitions and fundamental 
concepts in Bike Sharing Systems, and Community Detection Algorithms are 
introduced. Moreover, similar research where community detection methods are 
applied to bike-sharing systems is discussed to address the potential applications of 
the proposed methods.  

In Chapter 3 Methodology we have outlined the research methodology employed in 
the study, including data preprocessing, static community detection, dynamic 
community detection throughout the day, and the quality criteria used for analysis. 

Following Chapter 4, Case Study, a specific case study is presented. We discussed 
the test data and the study area, which includes the MVG Rad 2022 Bike-Share 
Mobility Data (MVG Rad, 2023). We applied the proposed workflow to this data, 
therefore this section involves dynamic community detection within this dataset, 
involving data preprocessing, static community detection on snapshots, dynamic 
community detection throughout the day, and dynamic Sub-Community detection. 

After the case study section, in chapter 5, we presented the findings and discussions 
of the research. We also include the outcomes of the community detection analysis 
and insights derived from the data. Any limitations or constraints may also be 
discussed in this section. 

The final chapter summarizes the study's main conclusions and provides an outlook 
for future research directions.  
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2. Theoretical Background & Related Work 
Developing a spatiotemporal analysis workflow to model dynamic communities of 
bike-sharing systems is a complex objective to achieve. A collaboration between 
various domains such as Urban Trasport Planning, Cartography, GI Science, and 
Graph Theories is necessary. Therefore, this section provides background 
information and defines underlying concepts. First, the chapter starts with a general 
perspective on bike-sharing systems by explaining their emergence, historical 
background, and system types, along with their significance in the context of Urban 
Transport Planning. Afterward, to gain an understanding of bike-sharing systems, 
users’ travel behaviors, and spatiotemporal analysis to reveal travel patterns are 
discussed. In the next section, community detection and its foundation, graph theory, 
is explained by providing definitions and mathematical expressions. Since the 
abstraction of real-world network systems such as bike-sharing mobility networks, is 
necessary for community detection algorithms, the next section introduces how real-
world networks are represented. Lastly, the section narrows down to community 
detection applications on bike-sharing systems. 

2.1. Bike – Sharing Systems 

2.1.1. Background 

In recent years, the need for sustainable transportation plans such as clean fuels, 
transport technologies, and demand management worldwide became more crucial 
for experts because of issues such as global climate change, energy security, and 
nonstable fuel prices (Z. Chen et al., 2020; Eren & Uz, 2020; Liao et al., 2023; Shaheen 
et al., 2010; L. Zhang et al., 2015). Urban planning and transportation specialists are 
encouraging diverse eco-friendly travel options, like utilizing public transportation, 
walking, and biking, to serve as cost-effective means of transportation. This aims to 
mitigate the adverse impacts associated with extensive car utilization (Bachand-
Marleau et al., 2012). In their conventional state, alternative modes of transportation 
are not as flexible and convenient as cars (Bachand-Marleau et al., 2012; Shaheen et 
al., 2010). Even though public transport covers long distances, it doesn't expand 
citywide like automobiles, resulting in the first/last mile problem because of limited 
connectivity (Fan et al., 2019). The first/last mile problem pertains to challenges 
arising from the urban and social environment, such as land use mix, neighborhood 
design, employment opportunities, and the presence of public transport services 
during the first and final section of a journey (Fan et al., 2019).  

Creative solutions have been designed to increase the competitiveness of public 
transportation against automobiles. Adoption of Bike-sharing programs as a mobility 
strategy, which involves a shared use of bicycle fleet, emerges as a potential mobility 
solution to tackle these challenges and promote sustainable urban environments 
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(Bachand-Marleau et al., 2012; Shaheen et al., 2010). For example,  according to 
research in Shanghai, it was found that bike-sharing usage resulted in a fuel saving of 
8358 tonnes which contributed to a reduction in the release of harmful gases, 
subsequently enhancing the quality of air (Eren & Uz, 2020). Moreover, Shared bicycle 
systems, offer a promising solution for short-distance trips and address the first/last 
mile problem. In addition, bike-sharing systems represent a mode of physical activity 
that can be seamlessly integrated into everyday routines, offers cardiovascular 
advantages for individuals, reducing the travel times and costs of their users 
(Bachand-Marleau et al., 2012; Bauman et al., 2017; Eren & Uz, 2020; Fishman, 2016). 
Thus, many cities have recognized community bike sharing as an efficient method for 
augmenting urban transportation systems and contributing to urban sustainability (Z. 
Chen et al., 2020; Eren & Uz, 2020; Lin et al., 2020; L. Zhang et al., 2015). Shaheen et 
al. (2010) define the concept behind bike-sharing is straightforward. People use 
bicycles when they need mobility, without the expenses and responsibilities of 
owning a bike. Bike-sharing allows temporary access to bicycles, as an eco-friendly 
option for public transportation for its users and this temporary access to the system 
focuses on daily mobility, enabling individuals to conveniently benefit from public 
bikes. 

Historical Evolution of Bike Sharing 

During the 1960s, the concept of "bike-sharing" emerged as a response to growing 
interest in bicycle usage. This led to the rapid expansion of Bike Sharing Programs 
across European cities. The initial attempt at bike-sharing, known as the 1st 
generation, was seen with "White Bikes" in Amsterdam in 1965. Users can take a bike, 
ride it to an intended destination, and leave it for the other users. Unfortunately, this 
system was short-lived because of issues like vandalism and theft. The 2nd 
generation, coin-deposit-based systems, was born in Denmark's Nakskov and 
Copenhagen in 1993 and 1995, respectively. While being more structured than the 
previous generation, with docks and a nonprofit system to operate the program, the 
bikes again experienced stealing because of the anonymity of the rider. This period 
emphasized the necessity for enhanced bicycle tracking, which became a core 
concentration for the innovations in 3rd generation bike-sharing programs (Z. Chen et 
al., 2020; DeMaio, 2009; El-Assi et al., 2017; Eren & Uz, 2020; Fishman, 2016; Shaheen 
et al., 2010). 

The 3rd generation of BSPs, characterized by telecommunication systems, 
smartphone access, smart cards, kiosks, and computer-aided systems, gained 
prominence in the 2000s. This new type of bicycle-shared system authorizes the 
operator to identify the user and provides the ability to track its use. These 
innovations led to a significant reduction in bicycle robbery and vandalism. Programs 
like "Call a Bike" in Munich and "Velo'v" in France illustrated this generation, with 
steady growth throughout the decade. Their better-than-expected success changed 
the trajectory of bike-sharing history and created immense interest in this transit 
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mode from around the world. Starting in 2008, bike-sharing initiatives emerged in 
countries such as Brazil, China, and the USA (Albiński et al., 2018; Z. Chen et al., 
2020; DeMaio, 2009; El-Assi et al., 2017; Eren & Uz, 2020; Fishman, 2016; Reiss & 
Bogenberger, 2015; Shaheen et al., 10/20212).  

The development did not end at this point. The 4th generation of bike-sharing 
programs called “Multi-Modal Systems”, is identified by incorporating intelligent 
systems aimed at achieving sustainability, efficiency, and quality. Many modern 
public bike-sharing systems enable temporary bike rentals to go from one docking 
station to another. These docked systems are utilized with dynamic pricing schemes 
and are usually IT-based with credit card payments. The challenge of accessing 
docking stations is a barrier that prevents the incorporation of station-based bike-
sharing services, and the number of docks is often constrained by space limitations 
in a city. Convenience in accessing a docking station is still one of the obstacles in 
bike-sharing systems (Shen et al., 2018). The most recent generation dockless bike-
sharing systems have the capability to overcome this barrier. These new systems, 
called “dockless” or “free floating”, combine cashless mobile payments and GPS 
tracking and, ensure customers with enhanced flexibility, allowing bikes to be 
conveniently parked anywhere within the designated service area and eliminating the 
need for dedicated stations. The bikes can be parked at any suitable location within 
the operation area and the fleet size isn’t limited by the docking station (Albiński et 
al., 2018; Shen et al., 2018). Recently, hybrid approaches like Norisbike in Nuremberg 
or MVGRad in Munich have emerged. These systems enable users to both park and 
rent bikes either to docks or anywhere within the operational zone (Albiński et al., 
2018). 

 

Figure 1. Docking Station of MVG Rad Munich (MVG Rad, 2023) 
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Intelligent systems marked a new era in bike sharing, emphasizing advanced features 
and a holistic approach to address modern urban transportation challenges (Albiński 
et al., 2018; W. Chen et al., 2022; Z. Chen et al., 2020; Reiss & Bogenberger, 2015; 
Shaheen et al., 10/20212). As a result, over the past years, the attention to the idea of 
bike-sharing systems has extended worldwide (Bachand-Marleau et al., 2012; Z. Chen 
et al., 2020; Eren & Uz, 2020; Fishman et al., 2015; Liao et al., 2023; Shaheen et al., 
2010). According to The Meddin Bike-Sharing World Map Report (2022), in August 
2022, bike-sharing systems were present in 1590 cities and 92 countries. In the same 
report, it is also stated that there are 1914 schemes that have 8.967.122 bikes all 
around the world.  

2.2 Bike-Sharing Systems & Users’s Travel Behavior 

The main factors influencing users' travel behavior within bike-sharing systems such 
as user demographics, land use & built environment, public transportation 
accessibility, station locations, and temporal aspects are heavily studied in the 
literature. This complex interaction is important in understanding the dynamics of 
bike-sharing systems and usage patterns. 

Temporal Factors 

The trip duration of shared bikes is uniform, ranging from 16 to 22 minutes. Bike-
sharing trends display consistent patterns across various cities. Weekdays witness 
peak usage from 7 am - 9 am and 4 pm - 6 pm, serving primarily commuting 
purposes. However, on weekends, there's a shift with higher activity around midday, 
indicating leisurely rides (Z. Chen et al., 2020; Fishman et al., 2015). Moreover, bike-
sharing systems also integrate with public transit, especially during the morning 
hours. Trips start from residential areas around 6:00 to 8:00 a.m. and transition to 
subway stations by 8:00 - 10:00 a.m., highlighting the role of bike-sharing as a "last 
mile solution" (Z. Chen et al., 2020). Weekends and public holidays show reduced 
bike activity, particularly during morning hours, while park visits increase significantly 
compared to weekdays. This points to a recreational trend during weekends (Eren & 
Uz, 2020). Beyond daily and weekly patterns, bike-share usage also shows seasonal 
differences in various cities. According to Z. Chen et al. (2020), in 2013, Barcelona 
maintained high year-round bike usage, while others like New York City and Paris 
experienced notable peaks both in September. In comparison, Washington, D.C. 
consistently achieves stable utilization, even during harsh winters, overtaking 
Australian cities like Melbourne and Brisbane. All in all, these findings emphasize the 
relevance of bike-sharing as a comprehensive transportation solution, meeting both 
commuting and leisure mobility needs across urban places. 
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User Demographics 

There's a notable link between bike-sharing usage and demographic factors like 
gender, age, education, and income. Users of bike-sharing systems are typically 
young males with higher education, working professionals, and middle to higher 
incomes, primarily aged between 25 and 37 (Eren & Uz, 2020; Fishman, 2016; 
Fishman et al., 2015; Ji et al., 2020). Females mainly opt for shorter distances in the 
system, forming a smaller user group. Price levels significantly affect demand, 
especially in lower-income regions (Eren & Uz, 2020; Fishman, 2016). However, it's 
essential to recognize that these patterns are not universal, and variations can exist. 

In their study, L. Zhang et al. (2015), classified the main users of bike-sharing 
programs within five Chinese cities. In Beijing, users are formed by commuters and 
tourists, Hangzhou is marked by mostly tourists and commuters, Wuhan's user base 
is mainly formed by commuters and shoppers, and Zhuzhou's bike-sharing users are 
predominantly city residents. It can be understood that although there are various 
groups of users in different cities, bike-sharing systems are mainly utilized by 
commuters.  

As highlighted by Fishman (2016), bike-share user characteristics are influenced by 
various aspects such as higher income, education, and employment status. These 
characteristics can differ based on cultural backgrounds and geographic contexts. 
Gender participation in bike sharing varies across countries, with lower rates in 
regions with less cycling occurring, while countries with developed cycling cultures 
tend to exhibit more balanced gender participation. This emphasizes the role of 
cultural and geographical factors in structuring the demographic composition of 
bike-sharing program users.  

While there are common patterns of user preferences, these preferences are shaped 
by cultural backgrounds and geographic contexts. Thus, a critical outcome should be 
evaluating each bike-sharing system must include its unique set of variables. The 
combination of various factors highlights the need for an adopted approach to 
understanding and harnessing the potential of bike-sharing programs within the 
complex structure of urban mobility. 

Effects of Built Environment & Land Use 

The influence of the built environment and land use on bike-sharing usage is 
extensively documented across various studies. In their study, Eren & Uz (2020), who 
evaluated factors that influence bike-share usage, stated that separated bike paths 
have been fundamental to establishing a safe and dependable environment for 
cyclists, encouraging bike usage, and attracting individuals who are not members. In 
the same study, they also mention that cyclists prefer paths & systems with devoted 
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infrastructure and enhanced safety illustrated with the lighting of the streets, secure 
parking, and rental options to increase access to the transit points at night time.  

Population density, employment opportunities, and mixed land use exhibit positive 
correlations with bicycle usage. Commercial areas experience significantly higher 
demand on weekdays without rain compared to residential zones, while parks also 
show elevated demand. Proximity to amenities such as green spaces, educational 
institutions, commercial centers, and transit hubs positively influences bike-sharing 
program utilization (El-Assi et al., 2017; Eren & Uz, 2020; Ji et al., 2020; Lin et al., 
2020; L. Zhang et al., 2015). The built environment factors such as encompassing 
density, land use diversity, bike lane length, and the distribution of points of interest, 
are shown to mold bike-sharing preferences (Lin et al., 2020). 

Public transportation systems like subways and buses play a crucial role in driving 
bike-sharing usage. Demand is positively correlated with land use features including 
residential, office, and entertainment zones, while the impact of leisure and education 
areas is comparatively lower (Lin et al., 2020). Bike sharing can be a complementary 
mode of public transportation. In short distances, buses and bikes complement each 
other. In longer trips, highlight the substitution of buses for bikes. And bike-sharing 
systems emerge as an alternative solution particularly when public transport isn't 
available at night or in areas with weak transport options (Z. Chen et al., 2020; Eren & 
Uz, 2020). Bike-sharing systems also extend the reach of public transit, effectively 
serving as companions to walking transfers, which are usually shorter distances, 
while bike-based transfers cover slightly longer distances (Z. Chen et al., 2020). 

The appeal of bike-sharing systems for first/last mile trips and the greater inclination 
of private bike owners to use these systems due to perceived safety advantages are 
highlighted by Fan et al. (2019). Access distances of 500 meters or less further boost 
the likelihood of travelers opting for bike-sharing over alternative transportation 
modes (Fishman, 2016). The importance of docking station proximity at home 
locations is a recurring theme across studies, reflecting its impact on promoting 
shared bicycle use (Bachand-Marleau et al., 2012). Station-level factors further shape 
bike-sharing demand. Station proximity to one another strongly influences usage, and 
factors like proximity to restaurants, museums, transit stops, schools, sports 
facilities, and shopping centers play significant roles. The availability of stations 
around users substantially boosts demand, particularly in affluent neighborhoods 
(Eren & Uz, 2020). 

Shen et al. (2018) studied land use density across categories such as public 
residential, private residential, commercial, and industrial areas. They found that 
public residential density exhibited a negative correlation with bike usage, potentially 
due to an oversupply of bikes. In contrast, private residential density had a small 
positive effect, and higher commercial land use density was linked with increased 
usage, possibly due to last-mile trips. Land use diversity demonstrated a positive 
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correlation with bike usage. Cycling facilities and transportation infrastructure were 
found to significantly encourage dockless bike usage (Shen et al., 2018). 

In conclusion, interactions between the built environment, land use, transportation 
infrastructure, and station attributes have an important impact on bike-sharing usage 
patterns. The emphasis on safe infrastructure, integration with public transit, 
strategic station placement, and proximity to key destinations collectively contribute 
to promoting sustainable transportation choices and enhancing urban mobility. 

2.3 Spatiotemporal Analysis of Bike-Sharing Systems 

In their study, Y. Zhang et al. (2017) employed a multiple linear regression model to 
investigate the influence of built environment factors on travel demand and the 
demand-to-supply ratio (D/S) at bike stations. They combined station attributes, 
accessibility, cycling infrastructure, public transport facilities, and land use 
characteristics as major factors in their analysis. They also assessed the spatial 
correlations of bike share usage between nearby stations using a spatial weighted 
matrix. The researchers have found that population density, bike lane length, 
secondary road length, mixed land-use types, and the number of nearby stations 
positively affected both trip demand and D/S, while the range to the city center had a 
negative influence. 

In the study by Rixey (2013), where the author investigated station-level effects in 
three different U.S. cities' bike-sharing systems, multivariate linear regression and 
network effects analyses were conducted to reveal the connections between bike-
sharing ridership and various factors. The findings displayed that a range of 
variables, including total population, job types, income levels, alternative commuting 
habits, education, parks, bikeways, and more, significantly influenced bike-sharing 
ridership. The study also evaluated the impact of the bike-sharing station network, 
finding that network effects played a crucial role in shaping ridership patterns across 
the analyzed systems. 

Albiński et al. (2018) analyzed Munich's hybrid bike-sharing performance under 
censored demand. In their study, the operation area is partitioned into hexagons, and 
a data-driven approach for estimating bike-sharing demand is implemented. Two 
service level metrics are identified to measure the performance of the system: the α-
service level, which measures the availability of the system, and the β-service level, 
which measures the fill rate or the portion of requests that can be satisfied in a zone. 
They have found that reservations are mainly made for free-floating bikes which 
indicates that customers prefer to use bikes close to their location rather than going 
to stations. Moreover, the average α-service levels and β-service levels across the 
operating area reveal the differences between highly-used districts and low-used 
districts. The availability and fill rates are generally higher in highly used districts and 
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at bike stations and the system performs better in highly utilized areas in comparison 
to low-utilized regions. 

In another study, Reiss & Bogenberger, (2015) studied Munich's first public bike-
sharing system, "Call a Bike" of German Railways, to reveal insights by employing 
Temporal and Spatial Analysis Methods. The study analyzes the number of trips per 
day, the spatial distribution of rentals and returns, and the frequency of rentals per 
user to reveal trends, spatial patterns, and user behavior. It is found that heavy users 
which is approximately %20 of all customers, account for %80 of all trips, and more 
than %50 of customers ride a bike less than 5 times a year. Regarding temporal 
aspects of the system, the majority of the trips occur during the summer months due 
to good weather conditions. Weekdays show peaks during morning and evening 
hours due to commuters while weekends exhibit smoother activity patterns. 
Furthermore, it is also found that stationless bikes show more complex spatial 
patterns than docked ones, and bikes tend to move from residential areas to the city 
center in the mornings and vice versa in the evenings. 

Zhou (2015), analyzed spatiotemporal patterns of the bike share system in Chicago, 
and bike flow patterns are revealed by identifying neighboring flows for each trip and 
similar flows grouped into clusters with the community detection algorithm. To study 
the spatiotemporal demand of the system, hierarchical clustering methods were used 
to cluster stations with similar patterns. The author found that the bike flow patterns 
varied based on time, weekdays/weekends, and user types. Inbound trips dominated 
during morning peak hours, with many trips traveling into downtown areas. Outbound 
trends were observed during afternoon peak hours. Different clusters of trips were 
identified, indicating distinct travel patterns. For example, on weekends, customers 
show clustered trips in recreational areas. 

McBain & Caulfield (2018), analyzed influencing factors of trip duration variation in 
the public bike-sharing system of Cork, Ireland. The researchers applied Multinomial 
Logistic Regression to analyze journey data and identify patterns. Journey time 
variation accounted as the dependent variable and multiple independent variables 
such as spatial and temporal variables are used. The results indicated that the 
busiest bike-sharing stations were located on the city outskirts and near major 
destinations. Temporal patterns showed morning and evening peaks, along with 
substantial inter-peak and weekend usage. The regression models stressed that 
variables like one-way streets, station types, cycle-friendly routes, nearby amenities, 
public transport links, and user type as influential factors in trip duration variations. 
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2.4. Community Detection 

2.4.1. Basic Concepts 

The theory of graphs evolved with Euler's Königsberg bridges puzzle solution in 1736 
(Euler, 1736, 1953).  Over time, a lot of progress has been made in understanding 
mathematical properties, and, in the 20th century, graphs found application in diverse 
domains like biology, social sciences, engineering,  technology, and information 
networks (Fortunato, 2010). Graphs were utilized as representations for real-world 
systems, and analysis methods became crucial. Recently, computer-related 
innovations allowed scientists to deal with big data, and computational resources to 
analyze these data. This shift prompted new approaches to studying graphs (Danon 
et al., 2005; Fortunato, 2010; Fortunato & Hric, 2016). 

A community is a group or cluster of elements where elements inside are closer to 
the other elements of that community than the elements outside of it. Consequently,  
in an interacting event that is depicted, groups of elements that supposedly share 
prevalent features and/or play similar roles are called communities. Community 
detection is crucial in many aspects such as the classification of nodes in a network 
which causes uniform clusters, group leaders, or crucial group connectors. For 
example, they can resemble World Wide Web pages with related topics, groups of 
connected people in social networks, and so on (Coscia et al., 2011; Danon et al., 
2005; Fortunato & Hric, 2016). 

Community identification can reveal underlying patterns and hidden structures in a 
network. It enables us to concentrate on parts of the graph holding a certain level of 
autonomy. Moreover, it helps to categorize the vertices of the network according to 
their role within the community(Fortunato & Hric, 2016). To illustrate, it is possible to 
differentiate vertices that are deeply integrated within their cluster and vertices that 
are on the boundary. The boundary vertices might have an important role due to 
defining both holding the modules together and information spreading across the 
network (Fortunato & Hric, 2016).  

2.4.2 Fundamentals of Graph Theory 

The theory of graphs evolved with Euler's Königsberg bridges (Figure 2) puzzle 
solution in 1736 (Euler, 1736, 1953; Fortunato, 2010; Gribkovskaia et al., 2007). In the 
18th century, there was a debate among citizens of the city Königsberg, now called 
Kaliningrad, Russia, if it was possible to have a closed walk by visiting seven bridges 
of the Pregel River only once and returning to the starting point. Swiss Mathematician 
Leonhard Euler (1707 – 1783), was chair of mathematics at the St. Petersburg 
Academy of Sciences, and solved the problem (Euler, 1736, 1953; Gribkovskaia et al., 
2007). The city is divided by the River Pregel into four pieces and these landmasses 
are connected by seven bridges. To be able to solve the problem, Euler, abstracted 
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the geography by utilizing a graph, which has nodes referring to landmasses, and 
bridges as edges (Euler, 1736, 1953; Gribkovskaia et al., 2007). He found that to have 
a closed walk, each landmass in the city must have even numbers of bridges. Since 
four landmasses have an odd number of bridges, it is proven that it is not possible to 
have a closed walk. Such closed path is now called unicursal or Eulerian Path. The 
Bridges of Königsberg is one of the most well known problem in mathematics, a 
foundation for graph theory and is a classic practice for topology (Euler, 1736, 1953; 
Gribkovskaia et al., 2007).  

 

Figure 2. Illustration of Seven Bridges of Königsberg (Giuşcă, 2011) 

 

Figure 3. Simple Graph Representation 

Graphs can be defined as a set of objects and relations between pairs of objects. A 
graph G is a pair of two sets (V, E), where V is the group of vertices or nodes, and E, a 
subset of V^2, is the group of disorganized pairs of elements of V. Elements of E 
connects vertices, named edges or links, and vertices at the two ends of an edge 
called endpoints. An edge is always adjacent to each of its vertices. If edges are 
ordered pairs of vertices, then it is a directed graph where (v, w) shows an edge from 
v to w. Graphs can be visualized as points connected by lines (Figure 3). In their real-
world examples, numbers can be assigned to their edges and thus, graphs are 
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weighted. Moreover, graphs do not include self-loops where an edge starts and ends 
at the same vertex (Dao et al., 2021; Fortunato, 2010; Kulikov, n.d.). 

The complete knowledge regarding the topology of a graph with N nodes 
encompassed in the adjacency matrix A, where A is a N x N matrix, and component 
Aij is equivalent to 1 if vertices i and j are joined by an edge,  if not, it is zero. Because 
there are no loops present, the diagonal entries of the adjacency matrix are all 
assigned zero (Barthélemy, 2011; Fortunato, 2010; Phillips et al., 2015). If A belongs 
to an undirected graph, A is a symmetric matrix, and Aij is equal to Aji. If the graph is 
unweighted, components of the adjacency matrix can only be equivalent to either 0 
or 1. If the graph is weighted, one can derive the weight matrix W, whose component 
Wij could have different values than 0 or 1 as the weight (Fortunato, 2010; Phillips et 
al., 2015). 

2.4.3 Community Detection and Network Representation 

Many real-world networks are very broad therefore, one must facilitate their structure 
before useful information can be derived about the systems they represent (Rosvall 
et al., 2009). The initial problem in graph clustering is to search for a quantitative 
description of the community. There is no description that is globally accepted. The 
definition usually relies on the certain system at hand and/or application. In other 
words, communities are algorithmically defined, the final result of an algorithm, and 
without a certain theoretical definition (Fortunato, 2010). The main goal of 
community detection is to partition vertices of a network into several k groups, where 
the number of edges within these groups is maximized and the number of edges 
between vertices of groups are minimized (Coscia et al., 2011; Danon et al., 2005; 
Fortunato, 2010; Song et al., 2021). 

In order to facilitate analysis within networks, a definition of basic concepts of 
community detection is necessary. If one considers a subgraph 𝐶𝐶 of a graph 𝐺𝐺, with 
|𝐶𝐶| =  𝑛𝑛𝑛𝑛 and |𝐺𝐺| =  𝑛𝑛 represents the total number of vertices. Each vertex 𝑣𝑣  in 𝐶𝐶, 𝑣𝑣 ∈
 𝐶𝐶, has an internal degree 𝑘𝑘𝑖𝑖𝑖𝑖𝑡𝑡𝑣𝑣 , as the number of connections within 𝐶𝐶, and external 
degree 𝑘𝑘𝑒𝑒𝑒𝑒𝑡𝑡𝑣𝑣 , representing connections to the rest of the graph 𝐺𝐺. In this case, if the 
external degree of a vertex v equals zero, 𝑘𝑘𝑒𝑒𝑒𝑒𝑡𝑡 

𝑣𝑣 =  0, the vertex has neighbors only 
within the subgraph 𝐶𝐶, which indicates a good cluster for v. On the other hand, if  
𝑘𝑘𝑖𝑖𝑖𝑖𝑡𝑡𝑣𝑣 =  0, the vertex is not in 𝐶𝐶, and would be better to assign it to a different cluster. 
The sums of internal and external degrees in 𝐶𝐶 are kintC  and 𝑘𝑘𝑒𝑒𝑒𝑒𝑡𝑡𝐶𝐶  respectively. The 
total degree is 𝑘𝑘𝐶𝐶 = 𝑘𝑘𝑖𝑖𝑖𝑖𝑡𝑡𝐶𝐶 + 𝑘𝑘𝑒𝑒𝑒𝑒𝑡𝑡𝐶𝐶  (Fortunato, 2010). The intra-cluster density 𝛿𝛿𝑖𝑖𝑖𝑖𝑡𝑡(𝐶𝐶) of 
the subgraph C could be defined as ratio of the internal edges of C and the number of 
all possible internal edges. Similarly, the inter-cluster density 𝛿𝛿𝑒𝑒𝑒𝑒𝑡𝑡(𝐶𝐶) is the ratio 
between vertices connecting outside of the C and the maximum possible inter-
cluster edges (Fortunato, 2010). Two notations can be formulized as; 
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δ𝑖𝑖𝑖𝑖𝑡𝑡(𝐶𝐶) =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 interna𝑙𝑙 𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑖𝑖 𝑛𝑛 𝐶𝐶

nc(𝑛𝑛𝑛𝑛 − 1)
2

 

Equation 1 Intra Cluster Density of Subgraph C (Fortunato, 2010) 

 

𝛿𝛿𝑒𝑒𝑒𝑒𝑡𝑡(𝐶𝐶) =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 inter − cluster 𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒 𝑜𝑜𝑛𝑛𝑜𝑜𝑛𝑛 𝐶𝐶

𝑛𝑛𝑛𝑛(𝑛𝑛 − 𝑛𝑛𝑛𝑛)  

Equation 2 Inter Cluster Density of Subgraph C (Fortunato, 2010) 

 

If C is considered as a community, it is anticipated that 𝛿𝛿𝑖𝑖𝑖𝑖𝑡𝑡(𝐶𝐶) prominently surpass 
mean link density δ(𝐺𝐺) of the graph G. 𝛿𝛿(𝐺𝐺) can be defined as the ratio between the 
actual number of edges in G and the number of maximum possible edges within G 
(Fortunato, 2010). Conversely, 𝛿𝛿𝑒𝑒𝑒𝑒𝑡𝑡(𝐶𝐶) should be much smaller than 𝛿𝛿(𝐺𝐺). Many 
community detection algorithms try to find stability between high 𝛿𝛿𝑖𝑖𝑖𝑖𝑡𝑡(𝐶𝐶) and low 
𝛿𝛿𝑒𝑒𝑒𝑒𝑡𝑡(𝐶𝐶), and one of the main approaches is maximizing the difference 𝛿𝛿𝑖𝑖𝑖𝑖𝑡𝑡(𝐶𝐶)  −
 𝛿𝛿𝑒𝑒𝑒𝑒𝑡𝑡(𝐶𝐶) across clusters (Fortunato, 2010). 

The process of community detection is instructed by a quality function, that helps to 
determine how well a distinct clustering captures the underlying structure of the 
network. The aim is to observe meaningful clusters and consistent algorithms are 
needed for this procedure. Describing what forms a good clustering is fundamental. 
For this purpose, specific attributes are required, that are widely agreeable 
(Fortunato, 2010; Fortunato & Hric, 2016). Various algorithms exist that can locate 
valuable clustering, some only few, and others deliver a large number of clusters. 
However, not all partitions are equally good. Therefore, a quantitative criterion is 
necessary that is represented in a quality function to evaluate the effectiveness of 
community detection (Fortunato, 2010; Fortunato & Hric, 2016). The quality function 
assigns a numerical value to each clustering, allowing for the ranking of partitions 
based on their scores. Ultimately, the clustering with the highest score is considered 
the best representation of the partition (Fortunato, 2010; Fortunato & Hric, 2016).  
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Figure 4..  A simple graph representation with three communities (Fortunato, 2010). 

Social networks have been studied widely for decades, representing relationships 
among individuals. These networks can be broad, such as scientific collaboration, 
mobile calls, and online interaction, offering valuable insight. Communities in these 
networks can be friend circles, interest groups, etc. Social networks symbolize 
individuals as nodes and interactions as edges. To illustrate, Blondel et al. (2008), 
analyzed mobile call networks and revealed linguistic divisions. Tyler et al. (2003), 
studied email exchanges that match company departments. Traud et al. (2011) used 
Facebook data where authors linked students based on friendships. Social networks, 
thus, offer insights into human connections, visualized as graphs with nodes and 
edges (Fortunato, 2010). 

The availability of broad data allows quantitative research and modeling of spatial 
networks. The main examples of spatial networks are transportation, infrastructure, 
and mobility networks (Barthélemy, 2011). Transportation systems can be abstracted 
as graphs where nodes display certain features such as airports, stations, 
administrative units (neighborhood, municipality, city, country, or continent), or ports. 
Links (edges) between nodes indicate flows or connections between these entities. 
The edges between nodes can be directed and weighted as they can show direction 
and the number of flows in between entities (Barthélemy, 2011). Thus, the network 
representation of transportation systems provides an understanding of the structure, 
connectivity, and spatial relationships. Infrastructure networks can be mapped as 
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graphs, where nodes symbolize key elements such as intersections, power plants, 
routers, or distribution hubs (Barthélemy, 2011). The connections or flows between 
these nodes are presented as links in the graph. For road and street networks, links 
represent roads, while for power grids and water distribution networks, links indicate 
transmission lines or distribution pathways. In the case of the Internet, routers are 
nodes connected by links. This graph-based representation provides a brief way to 
analyze the spatial structures, topological attributes, and interactions within these 
crucial infrastructure systems (Barthélemy, 2011). 

Human mobility data is crucial for understanding spatial economics, disease 
transmission, and optimizing business strategies, and helps to optimize mobility 
systems based on people's movement patterns. To reveal human travel behavior, a 
common approach is to divide the study area into zones labeled as i = 1, ..., N and 
measure the number of individuals moving between zones i to j, forming an origin-
destination (OD) matrix (Barthélemy, 2011). This matrix adopts the logic of an 
adjacency matrix and supports transportation models and network analysis. 
Technological advancements such as GPS, mobile phones, and geosocial apps have 
allowed more accurate measurements on broad datasets and offer a better 
understanding of urban movement patterns (Barthélemy, 2011). 

�
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Figure 5. A simple example of an Adjacency Matrix 

2.5. Community Detection  & Bike – Sharing Systems 

Community Detection in bike-sharing systems is crucial for gaining insights into 
travel patterns, operation optimization, and decision-making in urban planning. The 
technique includes building spatial networks by using users' bike trip data and 
implementing complex algorithms to identify clusters or communities of closely 
connected traffic zones. These clusters reflect unique travel behaviors, demand 
distribution, and interaction patterns within the system. Bike-share operators and 
urban planners can customize their plans on specific areas, times, and user groups to 
improve the efficiency, resource allocation, and infrastructure of the systems (W. 
Chen et al., 2022; Lin et al., 2020; Lu et al., 2023). 

Song et al. (2021), implemented a spatiotemporal dynamic analyses approach that 
focuses on analyzing cycling activities in a dockless bike-share system, aiming to 
enhance decision-making for system operation and transportation planning. The 
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research comprises three main components: data preprocessing, spatial traffic 
distribution modeling, and analysis of traffic spatiotemporal variations. They examine 
cycling patterns in Singapore's bike-share system using an eight-day dataset divided 
into peak and non-peak hours. For community detection, they employ the Louvain 
algorithm which has two iterative phases. The algorithm first assigns each node to a 
community. Next, node i is removed from its community and assigned to neighboring 
nodes’s communities based on the modularity calculations. The results show stable 
spatiotemporal origin-destination (OD) demands, clustered cycling trip distributions, 
and robust community structures. The top 15 largest communities' scale varies 
significantly between weekdays and weekends, indicating temporal variations. 
Spatial communities remain stable throughout the day, with weekday' communities 
having more consistent shapes than weekends'.  

W. Chen et al. (2022), studied delineating urban activity zones using free-floating bike 
sharing (FFBS) journey data from Nanjing, China, to better understand travel patterns 
and urban spatial structure. They employ the Leiden algorithm as the community 
detection method to build an FFBS spatial interaction network and identify activity 
zones. The results indicate the presence of 22 activity zones, with tight connections 
within each zone and looser connections between zones. This division of activity 
zones provides a more rational separation of FFBS travel flows compared to 
traditional administrative districts. The study highlights the potential for improved 
bike rebalancing algorithms, better evaluation of urban policies, and an 
understanding of the influence of different types of activity zone borders on travel 
flows.  

Lu et al. (2023), recently studied the spatiotemporal characteristics of Dockless Bike-
Share trips and proposed a research framework for large-scale bike rebalancing at 
the city level. The framework integrates tools like GPS data visualization, 
management-area detection, virtual-station identification, and rebalancing-scheme 
generation. The research uses 1-week bike-sharing data from Shanghai and explores 
phenomena and conclusions regarding bike-sharing travel behavior and rebalancing 
strategies. Key findings include higher travel volume and riding speed during peak 
weekdays, division of Shanghai into 28 management sub-areas based on geographic 
features, identification of 1,190 virtual stations in the central urban area, and the 
efficiency of management-area-based rebalancing compared to administrative 
divisions. The proposed framework aids policy implementation, system management 
improvements, and insights for bike-sharing companies.  

Lin et al., (2020), analyzed the temporal and spatial patterns of dockless bike-sharing 
trip demand using various data sources, including Mobike trip data, POI data, and 
smart card data. They employ the Infomap algorithm as a community detection 
method to understand the spatiotemporal usage patterns of bike sharing. 
Furthermore, they utilize Gradient Boosting Decision Tree (GBDT), a machine learning 
technique, to uncover the factors influencing bike sharing demand, considering 
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aspects like the built environment, public transit ridership, and temporal factors. The 
results revealed the imbalanced distribution of bike-sharing trips, with hotspots 
around core areas within the city. Community detection reveals a polycentric pattern 
of trip demand distribution with self-contained subregions. The GBDT model 
uncovers the impact of factors on bike sharing demand, with public transit ridership 
being a significant contributor, along with built environment variables. The study 
provides insights for operators and planners to optimize bike redistribution, parking 
locations, and overall system efficiency.  

Zhou (2015) focused on analyzing the spatiotemporal patterns of bike-sharing 
behavior in Chicago using massive bike-sharing system data from July to December 
2013 and 2014. They use the fast-greedy algorithm to detect unique travel patterns 
on weekdays and weekends, as well Lin et al., (2020), analyzed the temporal and 
spatial patterns of dockless bike-sharing trip demand using various data sources, 
including Mobike trip data, POI data, and smart card data. They employ the Infomap 
algorithm as a community detection method to understand the spatiotemporal usage 
patterns of bike sharing. Furthermore, they utilize Gradient Boosting Decision Tree 
(GBDT), a machine learning technique, to uncover the factors influencing bike sharing 
demand, considering aspects like the built environment, public transit ridership, and 
temporal factors. The results revealed the imbalanced distribution of bike-sharing 
trips, with hotspots around core areas within the city. Community detection reveals a 
polycentric pattern of trip demand distribution with self-contained subregions. The 
GBDT model uncovers the impact of factors on bike sharing demand, with public 
transit ridership being a significant contributor, along with built environment 
variables. The study provides insights for operators and planners to optimize bike 
redistribution, parking locations, and overall system efficiency.  
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3. Methodology 
The methodology section presents a systematic approach for the detection and 
analysis of bike-sharing communities within mobility networks. It involves several key 
stages, beginning with data preprocessing, where relevant parameters are selected 
and data is cleaned to ensure consistency and reliability. The subsequent steps 
encompass static community detection, employing the InfoMap algorithm to reveal 
communities at different time snapshots, thereby shedding light on temporal 
patterns. Additionally, dynamic community detection is introduced, leveraging 
consensus clustering to identify evolving communities throughout the day. Afterward, 
a dynamic sub-community detection process that applies the InfoMap algorithm to 
the result of consensus clustering is introduced. Finally, the methodology 
incorporates quality criteria, with a focus on modularity as a quantitative measure to 
evaluate the effectiveness of community detection. Through this comprehensive 
process, the study aims to uncover and analyze bike-sharing communities, offering 
valuable insights into the intricate patterns of human mobility. 

3.1. Data Preprocessing 

In this section, we provide an overview of the data preprocessing methodology 
undertaken to prepare the collected datasets for the subsequent analysis of bike-
sharing communities. The preprocessing steps are designed to enhance data quality 
and consistency across various data sources. The raw bike-sharing mobility data 
typically includes various parameters and non-structuralized records. Before 
processing the data, data selection and cleaning are important steps 

Parameter Selection 

The selection of relevant parameters from the collected datasets is a crucial initial 
step in the data preprocessing process. The chosen parameters serve as the 
foundation for community detection analysis. The proposed framework can be 
adopted to any type of mobility data as long as the following parameters are 
selected: 

• Location Information: Origin-Destination (OD) data, which 
encompasses the spatial locations of mobility trips. 

• Time Record: Date and time information associated with each 
mobility transaction. 

• Spatial Units: The spatial granularity at which we analyze the data. 
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Data Cleaning 

Data cleaning is a crucial step because raw data is frequently flawed with missing 
entries, discrepancies, and outliers. Ensuring data consistency and accuracy is vital, 
so we clean each data source in the following manner: 

Table 1 Community Detection with Mobility Data Parameter Selections 

Field Name Field Value Description 

Start Time/End Time 1/1/2022 0:36   string 

Origin/Destination Latitude 48.15791  Double float 

Origin/Destination 
Longitude 

11.52835 Double float 

Spatial Unit 1, …, N  (N = Total Number of 
Districts ) 

Object ID 

Figure 6. Workflow of the proposed framework 
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Mobility Data: 

• Cleaning GPS Errors: Identification and removal of trips with origin 
and destination points falling outside the predefined study area, 
eliminating GPS errors. 

• Deleting Missing Values: Removal of data points with missing or 
incomplete information. 

• Eliminating Duplicate Trips: Removal of trips with identical origin 
and destination locations, which may not contribute meaningful 
insights and could be indicative of bike malfunctioning. 

Spatial Units: 

• Combination of Spatial Levels: The study area should be partitioned 
into spatial units according to intended spatial resolution. Either 
with spatial grids or with pre-defined authoritative administrative 
districts, one should generate or select units only within the study 
area.  

Land Use Information: 

• Data Selection: Careful selection of relevant land use information to 
incorporate into our analysis. Selected land use information will be 
assigned to spatial units. 

3.2. Static Community Detection on Snapshots 

The first part of the proposed method is to detect static communities at snapshots. 
We partition 24 hours of a day into 𝜏𝜏 =  24/∆ snapshots using a pre-given interval, 
e.g., ∆= 2 hours. Accordingly, the dynamic OD network 𝐺𝐺 = {𝐺𝐺1, … ,𝐺𝐺𝑡𝑡, … ,𝐺𝐺𝑡𝑡+𝑒𝑒} are 
constructed. Each snapshot 𝐺𝐺𝑡𝑡 is represented as a directed and weighted graph, and 
each weight represents traffic flows between the OD pair during 𝑡𝑡𝑡𝑡ℎ time interval. The 
well-developed static community detection method, InfoMap, is employed in this 
study for detecting communities 𝐶𝐶𝑡𝑡 = {𝐶𝐶1𝑡𝑡 , … ,𝐶𝐶𝑖𝑖𝑡𝑡 , … ,𝐶𝐶𝑘𝑘𝑡𝑡} at each snapshot 𝐺𝐺𝑡𝑡.  
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Figure 7.  Graphic abstract of the proposed framework. 

Division of Mobility Trips 

The entire year's worth of bike-sharing data is divided into time intervals, enabling the 
analysis of temporal patterns and variations in community detection. The 2-hour time 
interval is defined as an iterative process during the development of the proposed 
workflow. We have tried different intervals such as 30 minutes, however, in static 
community detection, the best results were acquired via 2-hour intervals. (Please 
note that, the time unit we have decided while detecting static communities is 
different than what we applied in the dynamic sub-community detection part.) 

Spatial Join & District Assignment 

A spatial join operation is employed to determine which spatial unit (neighborhood or 
administrative) a given origin or destination point belongs to. This operation 
facilitates the spatial analysis of bike-sharing communities based on location data. 

Land use information is assigned to specific spatial districts based on their 
respective area coverage within each spatial unit. This assignment helps correlate 
land use characteristics with bike-sharing activity within specific regions. 

OD Matrix Generation 

To be able to detect communities in our bicycle network, first, we need to create a 
graph that consists of nodes and edges. At this point, as we discussed, nodes are our 
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spatial units with no weights, and, edges are traffic flows between districts with 
weights of the number of trips. To assign these bicycle trips as weights to our edges, 
first, we need to define possible trip directions between districts (from their index) 
and then we need to count how many trips occurred between each district pair. This 
is achieved with adjacency matrix A, where A(i,j) records the weight of the edge from 
node I to node j. The size of the matrix is defined with the square of the district count. 

Graph Generation 

After having the adjacency matrix, a graph that consists of nodes and edges can be 
created. This can be achieved by using functions of the networkx library. A directed 
graph is created by passing the dataframe version of the adjacency matrix as input. A 
graph is automatically created by iterating over each OD pair and assigning counts of 
bicycle trips to each possible edge. 

Community Detection with InfoMap Algorithm 

There are various algorithms developed for the detection of communities within the 
network. The selection of an appropriate community detection algorithm is based on 
specific applications or intended results. Moreover, community detection within 
networks is a computationally difficult task therefore, one should utilize the most 
reliable and efficient algorithm to find meaningful structures within a network 
(Fortunato, 2010; Fortunato & Hric, 2016). In our study, the InfoMap algorithm 
(Rosvall et al., 2009; Rosvall & Bergstrom, 2008) is utilized to detect community 
structures. The algorithm was selected for the proposed framework due to 
showcasing the best trade-off between accuracy and computational performance 
based on benchmark tests that are conducted in several studies (W. Chen et al., 
2022; Fortunato, 2010; Fortunato & Hric, 2016). 

In their study, Rosvall and Bergstrom (2008) introduced the Map Equation, a 
fundamental concept in community detection within complex networks. They aimed 
to find the most efficient way to describe an infinitely long random walk on a graph, 
where information content is quantified by the number of bits required. Initially, a 
simple description involves listing all vertices reached by the random walker, each 
with a unique codeword. However, if the network exhibits a community structure, a 
more concise description can be achieved, similar to how geographic maps reuse 
street names across regions. In this context, communities act as regions, and 
vertices with the same name are distinguished by specifying their community 
(Lancichinetti & Fortunato, 2012). 

The Map Equation quantifies the description length of an infinite random walk, 
consisting of two terms representing the Shannon entropy within and between 
clusters (Figure 6). The objective is to find a partition that minimizes this description 
length, a method known as Infomap. Infomap can be applied to weighted networks, 
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both undirected and directed. For directed networks, a teleportation probability is 
introduced to ensure a nontrivial stationary state. Infomap has also been extended to 
detect hierarchical community structures and overlapping clusters (Lancichinetti & 
Fortunato, 2012; Rosvall et al., 2009; Rosvall & Bergstrom, 2008). 

 

 

Figure 8. Maps of Random Walks.  

Note. A method for efficiently encoding the trajectory of a random walker on a network using a two-level 
description approach. The first level uses codewords from a Huffman codebook, while the second level involves 
switching between module codebooks to reduce the description length. Retrieved from “The Map Equation” by 
Rosvall et al., 2009), The European Physical Journal Special Topics, 178(1), 13–23. 
https://doi.org/10.1140/epjst/e2010-01179-1 

3.3. Dynamic Community Detection Throughout the Day 

The second stage of the proposed method is to develop a consensus clustering 
method to detect the consensus structures as the dynamic communities of human 
mobility networks throughout the day.  

Community Membership Graphs  

This stage aims to build a consensus network using the snapshots of static 
communities, {𝐶𝐶1, … ,𝐶𝐶𝑡𝑡 , … ,𝐶𝐶𝑘𝑘}, detected in the first stage. For every identified 
community 𝐶𝐶𝑖𝑖𝑡𝑡 ∈ 𝐶𝐶𝑡𝑡, a community membership graph is generated by attaching an 
undirected edge between any two nodes within the same community. This 
community membership graph is undirected and unweighted (Zhao et al., 2023). In 
our methodology, there need to be 12 community membership graphs generated for 
12 snapshots of 2-hour intervals.  

Consensus Network 

https://doi.org/10.1140/epjst/e2010-01179-1
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Subsequent to community membership graphs for all communities at all snapshots 
are constructed, they are reflected in the geographical space to produce a consensus 
network, represented as 𝐺𝐺𝐶𝐶. The consensus network 𝐺𝐺𝐶𝐶 = (𝑉𝑉𝑐𝑐,𝐸𝐸𝑐𝑐) is an undirected 
but weighted graph, where 𝑉𝑉𝑐𝑐 =∪∀𝑖𝑖,∀𝑡𝑡 𝐶𝐶𝑖𝑖𝑡𝑡 is the union of all nodes within all 
communities ∀𝐶𝐶𝑖𝑖𝑡𝑡 ∈ 𝐶𝐶𝑡𝑡 at all snapshots ∀𝐶𝐶𝑡𝑡 ; and 𝐸𝐸𝑐𝑐 is the unions of all edges in all 
community membership graphs at all snapshots (Zhao et al., 2023). The weighting of 
an edge 𝑛𝑛𝑖𝑖𝑖𝑖𝑐𝑐 ∈ 𝐸𝐸𝑐𝑐 , denoted by 𝑤𝑤𝑖𝑖𝑖𝑖

𝑐𝑐  , can be expressed as 

𝑤𝑤𝑖𝑖𝑖𝑖
𝑐𝑐 =

∑ ∑ δ�𝑣𝑣𝑖𝑖𝑡𝑡, 𝑣𝑣𝑖𝑖𝑡𝑡 , 𝑛𝑛𝑖𝑖𝑡𝑡�∀𝑐𝑐𝑖𝑖
𝑡𝑡∈𝑐𝑐𝑡𝑡∀𝑐𝑐𝑡𝑡

τ
 

Equation 3.  Weight of an Edge in Consensus Graph (Zhao et al., 2023) 

where δ�𝑣𝑣𝑖𝑖𝑡𝑡, 𝑣𝑣𝑖𝑖𝑡𝑡� is the binary index; δ�𝑣𝑣𝑖𝑖𝑡𝑡, 𝑣𝑣𝑖𝑖𝑡𝑡 , 𝑛𝑛𝑖𝑖𝑡𝑡� = 1 means that both nodes 𝑣𝑣𝑖𝑖𝑡𝑡 and 𝑣𝑣𝑖𝑖𝑡𝑡 
within the community 𝐶𝐶𝑖𝑖𝑡𝑡 ; and δ�𝑣𝑣𝑖𝑖𝑡𝑡, 𝑣𝑣𝑖𝑖𝑡𝑡 , 𝑛𝑛𝑖𝑖𝑡𝑡� = 0 otherwise. This 𝑤𝑤𝑖𝑖𝑖𝑖

𝑐𝑐  represents the time 
duration of edge 𝑛𝑛𝑖𝑖𝑖𝑖𝑐𝑐  holding community membership and therefore quantifies the 
strong interaction between two nodes from the temporal perspective. This wij

c  is 
standardized by the total number of snapshots, i.e., 𝜏𝜏 (Zhao et al., 2023).  

Dynamic Community Detection 

The following step is to identify consensus structures as dynamic communities of 
human mobility networks throughout the day. These consensus structures are 
detected by applying the InfoMap algorithm on consensus network 𝐺𝐺𝐶𝐶 that are 
obtained in the prior step. Accordingly, a set of consensus communities, denoted by 
𝐶𝐶𝐶𝐶  = {C1C, … , CtC, … , CkC} , is determined on 𝐺𝐺𝐶𝐶  (Zhao et al., 2023).  

3.4. Dynamic Sub-Community Detection 

The next step is to detect sub-communities within each 𝐶𝐶𝑖𝑖𝐷𝐷 and quantify the time 
series of evolving events of sub-communities. Within a snapshot 𝐶𝐶𝑖𝑖

𝐷𝐷,𝑡𝑡, we can 
establish a equivalent sub-graph of 𝐺𝐺𝑡𝑡 = (𝑉𝑉𝑡𝑡,𝐸𝐸𝑡𝑡) denoted by as 𝐺𝐺𝑖𝑖

𝐷𝐷,𝑡𝑡 = (𝑉𝑉𝐷𝐷,𝑡𝑡,𝐸𝐸𝐷𝐷,𝑡𝑡) 
where 𝑉𝑉𝐷𝐷,𝑡𝑡 = 𝐶𝐶𝑖𝑖

𝐷𝐷,𝑡𝑡 , sub-graph holds same vertices of the original graph while 𝐸𝐸𝐷𝐷,𝑡𝑡 
contains all edges 𝑛𝑛𝐷𝐷,𝑡𝑡 ∈ 𝐸𝐸𝑡𝑡 whose origin 𝑣𝑣𝑖𝑖

𝐷𝐷,𝑡𝑡 and destination 𝑣𝑣𝑖𝑖
𝐷𝐷,𝑡𝑡 belong to 𝐶𝐶𝑖𝑖

𝐷𝐷,𝑡𝑡 
(Zhao et al., 2023). 

 𝑤𝑤𝑖𝑖𝑖𝑖
𝐷𝐷,𝑡𝑡 is the number of journeys between OD pair during the 𝑡𝑡𝑡𝑡ℎ time interval. 

Specifically, this step again employs the InfoMap algorithm to detect a set of sub-
communities, 𝑆𝑆𝐶𝐶𝑖𝑖

𝐷𝐷,𝑡𝑡 = {𝑒𝑒𝑛𝑛𝑖𝑖,1
𝐷𝐷,𝑡𝑡, … , 𝑒𝑒𝑛𝑛𝑖𝑖,𝑝𝑝

𝐷𝐷,𝑡𝑡, … , 𝑒𝑒𝑛𝑛𝑖𝑖,𝑘𝑘
𝐷𝐷,𝑡𝑡}  on the above 𝐺𝐺𝑖𝑖

𝐷𝐷,𝑡𝑡 (Zhao et al., 2023). 

Dynamic Graph Generation 
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Since spatially & and temporally connected consensus communities identified, now 
we can find community shifts (sub-communities) within each consensus community. 
To be able to find sub-communities we need to generate separate graphs for each 
community and for each snapshot. In this part, we partition 24 hours of a day into 
τ  =  24/∆ snapshots using a pre-given interval, e.g., ∆= 0.5 hours. We have chosen 
30-minute time intervals to considering the average usage times of shared bicycles 
that are stated in the literature and to capture significant changes in human mobility 
patterns throughout the day (Eren & Uz, 2020; Zhao et al., 2023). Therefore if we have 
6 consensus communities and have 48 time intervals than we will have 6 x 48 = 288 
graphs at the end. The nodes of the dynamic graphs are identical to nodes of the 
corresponding consensus community, however, to be able to find community shift, 
edges are assigned from actual trips for each snapshot. 

Sub-Community Detection  

In the last step, once again infomap algorithm is applied to each dynamic graphs 𝐺𝐺𝑖𝑖
𝐷𝐷,𝑡𝑡 

separately to detect community shifts (sub-communities) throughout the day. The 
result of the infomap algorithm reveals connected regions within a certain period in 
the study area. Subsequently, we can finally combine detected sub-communities 
𝑆𝑆𝐶𝐶𝑖𝑖

𝐷𝐷,𝑡𝑡 = {𝑒𝑒𝑛𝑛𝑖𝑖,1
𝐷𝐷,𝑡𝑡, … , 𝑒𝑒𝑛𝑛𝑖𝑖,𝑝𝑝

𝐷𝐷,𝑡𝑡, … , 𝑒𝑒𝑛𝑛𝑖𝑖,𝑘𝑘
𝐷𝐷,𝑡𝑡}  within 𝑡𝑡𝑡𝑡ℎ time interval. 

3.5. Quality Criteria   

Modularity 

The process of community detection is instructed by a quality function, that helps to 
determine how well a distinct clustering captures the underlying structure of the 
network. The aim is to observe meaningful clusters and consistent algorithms are 
needed for this procedure. Describing what forms a good clustering is fundamental. 
Therefore, a quantitative criterion is necessary that is represented in a quality 
function to evaluate the effectiveness of community detection. The quality function 
assigns a numerical value to each clustering, allowing for the ranking of partitions 
based on their scores. Ultimately, the clustering with the highest score is considered 
the best representation of the partition (Fortunato, 2010; Fortunato & Hric, 2016).  

Modularity, a quality function, evaluates both the internal intensity of a community 
and the absence of edges among communities (Coscia et al., 2011). The primary 
quality function is the modularity by Newman and Girvan (Newman & Girvan, 2004). It 
approximates the quality of a partition of the network in communities (Fortunato & 
Hric, 2016). According to Coscia et al. (2011), Newman's modularity maximization 
strategy repeatedly merges the two communities whose join produces the utmost 
increase in quality function 𝑄𝑄. The general expression of the modularity is: 
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𝑄𝑄 = 1
2𝑚𝑚

∑ �𝐴𝐴𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑖𝑖𝑖𝑖�δ�𝐶𝐶𝑖𝑖,𝐶𝐶𝑖𝑖�𝑖𝑖𝑖𝑖 , 

Equation 4.  Modularity Function (Coscia et al., 2011) 

where m is the number of edges of the network, the sum iterates over all vertice pairs 
of i and j, 𝐴𝐴𝑖𝑖𝑖𝑖 is the component of the adjacency matrix, 𝑃𝑃𝑖𝑖𝑖𝑖 is the null model notation, 
and the delta δ at the end 𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑖𝑖 indicate communities i and j of the network. If two 
nodes are in the same community �𝐶𝐶𝑖𝑖 = 𝐶𝐶𝑖𝑖� , δ�𝐶𝐶𝑖𝑖,𝐶𝐶𝑖𝑖� =  1, if not the delta is zero. The 
𝑃𝑃𝑖𝑖𝑖𝑖 corresponds to the mean adjacency matrix of the combination of networks which 
is derived by randomising the original graph while preserving some of its attributes. 
Thus, the quality function (modularity) calculates the difference between the original 
graph from its randomization. In such randomization, communities are eliminated, 
consequently, the comparison among the original structure and its randomization 
uncovers how non-random the cluster structure is (Coscia et al., 2011; Fortunato, 
2010; Fortunato & Hric, 2016; Newman & Girvan, 2004).  

𝑘𝑘𝑖𝑖 and 𝑘𝑘𝑖𝑖 are the degrees of i and j, the likelihood 𝑝𝑝𝑖𝑖 select at the random endpoint 
with i is 𝑘𝑘𝑖𝑖

2𝑚𝑚
 , since there are 𝑘𝑘𝑖𝑖 endpoint incidents with i out of a total of 2m. The 

likelihood of a link between i and j is the product 𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖 since edges are positioned 

independently of each other. The outcome is 𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗
4𝑚𝑚2, which delivers a predicted number 

𝑃𝑃𝑖𝑖𝑖𝑖 = 2𝑛𝑛𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗
2𝑚𝑚

 of edges between i and j (Fortunato, 2010). Thus, modularity 
expression becomes  

𝑄𝑄 = 1
2𝑚𝑚

∑ �𝐴𝐴𝑖𝑖𝑖𝑖 −
𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗
2𝑚𝑚

� δ�𝐶𝐶𝑖𝑖,𝐶𝐶𝑖𝑖�𝑖𝑖𝑖𝑖    

Equation 5. Improved Modulariy Function (Fortunato, 2010; Fortunato & Hric, 2016) 
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4. Case Study  
4.1. Test Data & Study Area 
4.1.1. MVG Rad 2022 Bike-Share Mobility Data 

The core of our case study lies in the MVG Rad Bike Sharing Mobility data (MVG Rad, 
2023), big data stored in CSV (Comma-separated values) format. Each entry in this 
dataset represents a unique bicycle trip within the Munich area. These entries are 
structured with attributes separated by commas, and the dataset is encoded in UTF-8 
for compatibility and readability. 

Here is a glimpse of the data, with an illustrative example: 

Table 2. Example of MVG Rad Bike-Sharing Mobility Data 

 

The MVG Rad system, owned by Munich's public transport provider MVG, represents 
a combination of station-based and free-floating bike-sharing systems. MVG, a 
subsidiary of Stadtwerke München GmbH, operates this service across an expansive 
area covering 110 square kilometers. MVG Rad is a significant component of 
Munich's transportation landscape, offering approximately 4,500 rental bikes adorned 
in the distinctive silver and blue MVG Bike livery (Albiński et al., 2018; MVG Rad, 
2023). These bikes are available not only in Munich itself but also extend into nearby 
districts such as Starnberg and the municipality of Poing. Accessing these bikes is 
made easy through the official MVG website and the MVGO app. To utilize the 
service, users need to register (Albiński et al., 2018; MVG Rad, 2023). The app helps 
users locate the nearest MVG bike, facilitates bike reservation up to 15 minutes in 
advance, and issues a unique PIN for unlocking the bike directly from the onboard 
computer. Users can conveniently drop off their MVG bikes anywhere within the city's 
business area. In the surrounding districts, returns can be made only at designated 
bike stations. As an added incentive, anyone returning an MVG bike to a city station 
receives up to 5 free minutes as a token of appreciation (Albiński et al., 2018; MVG 
Rad, 2023). 

The dataset (Table 2) captures various aspects of each bike trip, including bike IDs, 
geographic coordinates (latitude and longitude), station IDs (if the bike was parked at 
a station), and timestamps marking the journey's start and end. 
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4.1.2. Land Use & Population Data 

 

Figure 9. Population & Land Use Data projected on neighborhood level spatial unit of Munich 

Addressing how semantic information is assigned to communities enables a richer 
understanding of the structures identified. By assigning land use & and population 
information to our communities, we have defined spatial characteristics. Thus, this 
semantic information aids in the interpretation of community behavior. 

The population data was retrieved from https://data.humdata.org/dataset/kontur-
population-germany and, is openly available under Creative Commons attribution 
international license. The dataset was built based on the Hexagonal Hierarchical 
Spatial Index. Calculation of population is based on overlapping Global Human 
Settlement Layer (GHSL) with Facebook High-Resolution Settlement Layer (HRSL) 
population data where available. 

The land use data is part of ALKIS® and retrieved from 
https://www.ldbv.bayern.de/produkte/kataster/tat_nutzung.html. It describes the use 
of the earth's surface in four main groups (settlement, traffic, vegetation, and water). 
They divide these main groups into almost 140 different types of use such as 
residential building areas, road traffic, agriculture, or rivers enabling detailed 
evaluations and analyses of the use of the earth's surface. In Bavaria, the offices for 
digitization, broadband, and surveying (ÄDBV) are responsible for the collection of 
data. The current aerial photos from the surveying administration, data from the 
agricultural and forestry administration as well as on-site surveys as part of cadastral 
surveys serve as the basis for the recording. 

https://data.humdata.org/dataset/kontur-population-germany
https://data.humdata.org/dataset/kontur-population-germany
https://www.ldbv.bayern.de/produkte/kataster/tat_nutzung.html
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4.1.3. Munich, Germany 

Our case study centers on Munich, the capital and most populous city of the Free 
State of Bavaria, Germany. This metropolis serves as a compelling scene for our 
research, offering a rich economic dynamism, cultural diversity, and geographical 
significance. As of May 2022, Munich is home to approximately 1,578,132 
inhabitants, making it the third-largest city in Germany, trailing only Berlin and 
Hamburg. Furthermore, it ranks as the 11th largest city within the European Union 
(City of Munich, n.d.). Munich is famous for its rich cultural heritage, architectural 
landmarks, sports events, exhibitions, and the world-renowned Oktoberfest, which is 
the largest Volksfest (beer festival and traveling  

 

Figure 10. MVG Bike Sharing Operation Area 2022 (MVG Rad Karte, 2022) 

funfair) in the world, attracting significant tourism. Geographically, Munich is situated 
in Upper Bavaria, about 50 kilometers north of the northern edge of the Alps. The city 
is characterized by the presence of the Isar and Würm rivers. It lies within the 
Northern Alpine Foreland, with its topography consisting of sandy plateaus, fertile 
flint areas, morainic hills, and fluvio-glacial out-wash fields (City of Munich, n.d.). 
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Cycling plays a significant role in Munich's transportation, accounting for 18% of all 
traffic in the city. Munich led the way in bicycle usage among major German cities, 
earning itself the title of "Germany's Bicycle Capital" in 2010. 80% of Munich's 
population owns a bicycle. From 1992 to 2010, the city invested €32 million in 
improving its cycling infrastructure, including bike parking facilities. Munich is 
committed to promoting cycling, aiming to increase its share to 20% of all trips by 
bike by 2015 (Cycling in Munich, n.d.). To achieve this goal, additional funding has 
been allocated for infrastructure development, public awareness campaigns, and 
community events. Starting in 2010, the annual budget for cycling promotion tripled 
to €4.5 million, underlining the city's dedication to sustainable transportation (Cycling 
in Munich, n.d.). 

4.2. Dynamic Community Detection of Bike-Share Mobility 
Data 
4.2.1. Data Preprocessing 

Data preprocessing was a critical step in our project, primarily due to a significant 
number of errors (Figure 11) in the initial dataset. We conducted this preprocessing 
using ArcGIS Pro, and it involved several key stages to ensure data accuracy and 
relevance. Firstly, we imported district and traffic data into ArcGIS Pro. This formed 
the foundation of our data preparation process. 

Next, we visualized the traffic data as a point layer, focusing on origin locations. This 
step helped us better understand the data's spatial distribution. To narrow down our 
analysis to the meaningful journey areas around central Munich, we used the "Select 
by Attribute" tools to choose origin locations in the vicinity.  Ensuring that our data 
remained within the designated operation area was essential. To achieve this, we 
employed the "Select by Location" tool, using both versions of district data and 
bicycle traffic data as input. This step allowed us to select only the origin locations 
within the operation area.  Following that, we conducted a reverse select process to 
remove origin locations that fell outside the operation area, further refining our 
dataset.  

To validate the consistency of destination locations, we visualized them (Figure 12) 
and addressed any remaining errors in the data. We repeated the selection and 
validation process for destination locations to ensure data consistency across the 
data. To focus our analysis on weekdays, we separated the data into weekday and 
weekend categories, considering only the data from weekdays. Through the 
application of GIS tools such as "Select by Location" and "Select by Attribute," we 
performed data cleaning, significantly reducing the total number of trips from an 
initial 709,000 to 485,000. Finally, we employed spatial join operations to assign land 
use information to the respective spatial districts, enriching our dataset with 
additional contextual information. 
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4.2.2. Static Community Detection on Snapshots 

To detect static communities, we adapted existing Python code and applied it to our 
data using Jupyter Notebook. We constructed graphs with nodes representing spatial 
units and edges representing traffic flows between districts. The edge weights were 
determined by counting the number of bicycle trips between district pairs. 

 

Figure 11. Visualization of Raw Mobility Data via Kepler.gl 

The preliminary step for detecting dynamic communities is to transform our data into 
a mobility network. As stated in the previous chapter, to be able to create a network 
one should generate an adjacency (OD) matrix to map traffic flows between districts. 
To be able to identify which spatial unit each origin and destination location belongs 
to we need to apply a spatial match. The "sjoin()” function from the Geopandas 
library is used for this step. The function matches each entry of two input tables 
based on the geometry information. As geometry information, we have coordinates 
of each OD location and also districts of Munich. Since we would like to keep every 
bicycle trip and assign corresponding district index to them, we have applied “left 
join” where the bicycle trip data is kept as it is and spatial matches assigned from 
district data. Additionally, due to having two coordinate sets as OD for each bicycle 
trip, spatial matches are done separately for origins and destinations. 

To be able to detect communities in our bicycle network, first, we need to create a 
graph that consists of nodes and edges. At this point, as we discussed, nodes are our 
spatial units with no weights, and, edges are traffic flows between districts with 
weights as the number of trips. To assign these bicycle trips as weights to our edges, 
we need to define possible trip directions between districts (from their index) and 
then we need to count how many trips occurred between each district pair. This is 
achieved with adjacency matrix A, where A(i,j) records the weight of the edge from 
node i to node j. The size of the matrix is defined with the square of the district count. 
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First, we have created a zero matrix by utilizing the “numpy” libraries’s “zeros” 
function. We have passed the total number of spatial units as dimensions to the 
matrix. Since we have a total number of 475 districts, the size of the matrix became 
475x475. Then, entries of two tables which we have generated after spatial match, 
are iterated to get the spatial unit index of origin and destination locations for each 
trip, respectively. On each iteration, the code matches the origin and destination 
indexes for a trip, it passes this information to the adjacency matrix and, increases 
the corresponding element by one. For example, if a bicycle trip occurred from 
District 1 to District 2, the algorithm increases the corresponding element 𝐴𝐴12 of the 
matrix A by one. To be able to process bike-sharing flows, the algorithm converts the 
matrix into 3 column OD list where columns are “Origin”, ”Destination”, and ”Weight”. 

In the next step, we have utilized the “DiGraph()” function from Pythons’s “netwokx” 
library. The DiGraph() function initializes a directed graph object that can store nodes 
and edges with optional attributes. After initializing the graph, the algorithm iterates 
over each entry of the OD list, adds an edge, and the weight of the edge is assigned 
using the corresponding value from the 'weight' column of the OD list. After assigning 
the edges, the DiGraph function automatically generates nodes from the endpoint 
information of the edges. 

Figure 12. Data After Pre-Processing via kepler.gl 
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In the last step of this section, the InfoMap algorithm is implemented to detect bike-
sharing communities. Python’s “InfoMap” library was utilized for this step. The 
working principle of the algorithm is defined in section 3.2. In our code, we simply 
initialize an InfoMap instance, and load our mobility network into this instance. By 
implementing the “infomap.run()” function, the algorithm calculates communities 
within the given network. Then, the output of the infomap algorithm is formatted into 
a CSV file which has two columns as “Node” and “Community”. In this way, we were 
able to identify which district belongs to which community at the end. The 
community assignment table of each snapshot is then aggregated into one shapefile 
for visualization and analysis purposes. 

4.2.3. Dynamic Community Detection Throughout the day 

To capture dynamic community structures, we built a consensus graph based on 
community membership graphs (CMGs). We iteratively updated the consensus 
matrix (CM) to reflect the strength of connections between edges across 12 
snapshots. This allowed us to assess how strongly a community is connected 
throughout the day. 

The first step of the dynamic community detection is to generate community 
membership graphs using the time series of static communities {𝐶𝐶1, … ,𝐶𝐶𝑡𝑡 , … ,𝐶𝐶𝑘𝑘}, 
detected in the first stage. For each detected community 𝐶𝐶𝑖𝑖𝑡𝑡 ∈ 𝐶𝐶𝑡𝑡, a community 
membership graph is constructed by connecting an undirected edge between any 
two nodes within the same community. 

The algorithm iterates over nodes of detected static communities of each snapshot 
and generates an empty community membership graph consisting of community 
nodes but without edges. Then, it does a pairwise conditional check if the two nodes 
are in the same community. If the condition is met, then an edge is added to the 
corresponding community membership graph. The resulting graph is undirected and 
unweighted.  

In the second step, we have created a consensus graph (referred to as "GC") that 
represents the dynamic community structure of a mobility network. The consensus 
graph will reveal how strongly edges are connected throughout multiple snapshots.  

To start, an empty consensus matrix, denoted as "CM" is initialized. This matrix 
stores information about the connections between nodes (or edges) across different 
time snapshots. The code iterates over the set of community membership graphs 
(CMGs). Each CMG represents the community structure of the network at a specific 
time snapshot. Within each CMG, the code checks if an edge (connection) exists 
between nodes. If an edge exists in the CMG, it updates the corresponding element in 
the consensus matrix "CM" by adding "1" to that element. This update reflects the 
presence of the edge at that particular time snapshot. Here, the maximum value of 
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an element of CM can be 12 since we have 12 snapshots. This process allows us to 
consider how strongly an edge is connected throughout time. 

Finally, we have applied the InfoMap algorithm to the consensus network GC. As a 
result, we have defined dynamic communities of bike-sharing usage within the city of 
Munich. The resulting communities reflect the parts where dense connections 
occured both spatially and temporally.   

4.2.4. Dynamic Sub-Community Detection 

The final stage of the workflow that we have proposed is the detection of dynamic 
sub-communities to reveal daily mobility patterns. Since we have generated strongly 
connected consensus communities, now we can find community shifts within each 
community. To be able to reveal sub-communities, we have generated separate 
graphs from each detected consensus community. First, an empty dictionary object 
is generated to store dynamic graphs in the following steps. Next a nested for loop,  
iterates on nodes of the consensus networks “GC” to collect the nodes with the same 
community assignment and it generates empty dynamic graphs such as “GD1, .., GDi” 
to store community nodes accordingly.  Similar to section 4.2.2. first, we divided our 
mobility data into 48 intervals of 30 minutes, then OD matrixes for each community 
and each snapshot is generated. Edges that occur within certain communities and 
snapshots are added to the corresponding graph. In the following step, the infomap 
algorithm is applied to all dynamic graphs that are generated. Since we have revealed 
6 consensus communities above GC, and have 48 snapshots, the infomap algorithm 
has applied to 288 graphs separately to reveal sub-communities.  

4.3. Summary 

Our study involves dynamic community detection of bike-sharing mobility data, 
focusing on data preprocessing and community detection. Data preprocessing 
involves cleaning and matching spatial information. For community detection, we 
employ static and dynamic approaches. The static approach involves constructing a 
mobility network, generating an adjacency matrix to map traffic flows, and applying 
the InfoMap algorithm for community detection. In the dynamic approach, we build 
consensus graphs based on community membership graphs (CMGs) across 12 
snapshots to assess the strength of connections between edges throughout the day. 
Subsequently, dynamic graphs are derived from consensus communities to identify 
shifting communities throughout the day. This comprehensive methodology enables 
us to identify dynamic communities within Munich's bike-sharing network, reflecting 
both spatial and temporal patterns of usage. 
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5. Results & Discussion 
In this chapter, the proposed dynamic community detection workflow is evaluated 
based on results and quality metrics.  

Static Communities of Munich’s Bike-Sharing System 

As a result of static community detection, we can see that communities in different 
time slots vary significantly. A total number of communities within each snapshot is 
used to quantify varying temporal characteristics of static communities (Table 3). It 
can be seen that the number of communities significantly increases from interval T2 
(02:00 – 04:00) to interval T4 (06:00 – 08:00). These findings also align with Figure 6 
and Table 3 where bike-sharing communities change significantly throughout the 
time.  

 

Figure 13. Static Community Detection on Each Snapshot 

Since the data only consists of bike trips that occurred on weekdays, we can see 
from snapshots T4 and T9 (06:00 – 08:00, 16:00 – 18:00) that there are increase in 
the number of communities before, and a significant drop after the rush hour periods. 
In addition, we can see a consistent distribution of communities during afternoon 
and evening times (Figure 13). The findings of the static community detection 
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algorithm reveal that even though it is good at finding partitions on a certain time 
interval, we can see that from Figure 13, human mobility is dynamic and one should 
consider temporal aspects of human mobility while finding meaningful clusters 
within a mobility network.  

 

Dynamic Community Detection Throughout the Day 

In the next step, detected static communities utilized to generate consensus graph 
GC, and by applying the infomap algorithm we have found both spatially and 
temporally, densely connected dynamic communities of bike-sharing mobility in 
Munich. As a result of dynamic community detection, 6 communities have been 
defined within the study area. It can be seen from Figure 14 that detected dynamic 
communities show good spatial clustering patterns. Moreover, we have applied the 
modularity function to evaluate how good the partition of the network is. We have 
calculated the modularity function of consensus communities and found that Q = 
0.4786. This result indicates that the resulting partition significantly differs from a 
random graph and shows good clustering. The calculated Q value also aligns with the 
visualization of the consensus communities.  However, there are certain parts of the 
graph where communities are spatially discontinuous. In the eastern part of the city, 
some districts are connected to communities 1 and 2. These regions seem to mostly 
consist of green space and a small portion of residential area. We can understand 
that people who live in this area tend to travel mostly to the city center. Since the data 
consists of weekday travel data, we don’t expect to see leisure-related trips from or to 
the city area.  

Table 3. Number of Communities within each 2h time interval 
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Table 4. Number of nodes (Spatial Units) within each community 

 

In addition, we can see from Figure 16 that the borders of the community partitions 
show certain patterns just in the city center area. To illustrate, the border of the 
community 1 and 2 display parallelity with the Central Train Station of Munich. The 
community border between 1 – 4, 2 -4, and 2 – 6 displays parallelity along the river 
Isar. The border between communities 4 and 6 splits over the intersection of the train 
line and highway. This pattern is also similar between communities 1 and 3 which is 
divided by a highway. So we can conclude from visual analysis of the dynamic 
communities that, bike-sharing usage is highly relevant to the built environment. 
People can not overcome physical barriers such as train lines, rivers, and highways 
and tend to travel between regions covered by these natural and artificial barriers. 
Therefore, RQ 1.2.2. and RQ 1.3.1. can be answered as follows; combining 
community structures with built environment information indeed provides us with 
understanding regarding human mobility and travel patterns.  

Additionally, to be able to identify characteristics we have assigned land use 
information to detect dynamic communities.  The following Figure 15 shows the 
percentage of areal coverage of land use information within the study area. 
Community 1 mainly consist of residential area and is followed by 
industrial/commercial areas.  

For Community 2, the region mainly consists of residential characteristics but unlike 
Community 1, residential areas are followed by recreational and leisure-related areas. 
Community 3 mainly consists of residential areas followed by areas with agricultural 
functionality. Community 4 includes industrial and leisure-related functionality after 
residential areas. For community 5 second main land use attribute forest regions 
while for community 6, the residential area covers almost the whole community area. 
We can conclude from the findings that each community represents distinct 
characteristics, bike share users have different travel purposes among communities. 
So, we can define travel purposes with the community patterns and these findings 
also answer the RQ 1.3.1. 
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Figure 14. Visualization of Dynamic Communities around the city center area 
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Figure 16. Visualization of Dynamic Communities around the city center area 

Figure 15. Resulting Dynamic Communities of Munich with land use and population distribution information. 
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Dynamic Sub-Communities  

In the final stage, we have defined dynamic sub-communities throughout the day 
(Figure 15) and revealed the daily rhythms of human mobility. The detected 
communities allow us to understand human mobility patterns in the context of bike-
sharing systems. We have evaluated our results under two different scales that are 
global & local.   

- Global Scale 

It can be seen from the results (Figure 17 & Table 5) that the number of connected 
spatial units within each dynamic community changes significantly in short time 
intervals. To illustrate, within Community 1,  there are 12 connected regions around 
06:00 AM (T12) in the morning, and this number drastically increases to 84 around 
09:00 AM (T18). After morning rush hour, the number of connected units fluctuates 
throughout the day as it decreases to 57 around 11:00 AM (T22) and, in the evening 
rush hours it again increases to 85 at 17:30 (T35) while it reaches its daily peak to 86 
at 19:00 (T38) (Table 4) This pattern shows parallelity among all communities which 
reveal humans travel behaviors within the city of Munich.  

 

Figure 17. Dynamic Sub-Communities Throughout the Day (Between T7 and T30  ) 
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Table 5. Time Series of Node Counts within Detected Consensus Communities 

  

Moreover, certain regions stay connected throughout the day. For example, in 
community 1 Olympiapark & Maxvorstadt, community 2  Ludvigsvorstadt & 
Untergiesing, community 3 Laim & Nymphenburg, community 4 Berg am Laim & 
Zamdorf, community 5 Moosach & Olympia – Einkaufzentrum, and community 6 
Stadelheim & Giesing. There is either a tram, train, or a subway station in the middle 
of these regions. We can conclude that on a global scale, bike-share users prefer to 
use bicycles mainly as a complementary mode to public transportation and for 
commuting purposes during the weekdays. 

Dynamic Sub-Communities  - Local Scale 

To illustrate the significance of the detecting dynamic sub-communities we have 
focused on Community 1 in this section. Evaluating each spatial unit with underlying 
land use information allowed us to reveal travel purposes during certain time 
intervals.  

Figures 18 and 19 show sub-communities within Community 1 during time intervals 
of T13 to T16. We have identified that certain regions stay connected during rush 
hours. For example, the spatial unit that includes Olympiadorf and Olympiazentrum 
subway station stays connected to the spatial unit that includes Hochschule 
Mücnhen and the Northern part of the Milbertshofen that includes industrial 
amenities such as BMW campuses. In addition, spatial units of Oberföhring and 
Schwabing fall into the same community during rush hours. In the center of the 
spatial unit of Oberföhring, there is Grundschule, and Schwabing mainly consists of 
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residential settlements. We can understand that people in these regions are mainly 
using these bicycles for commuting and they are either traveling to their job or their 
school of education. Considering the fact that students are the main residents of the 
Olympiadorf, they were using these bicycles to regions without subway or tram 
stations and the purpose of these trips might be to go to their internship or their 
lectures.  

 

Figure 18. Detected Sub-Communities of Community 1 between 06:30 – 07:30. Orange boxes refer to Olympiadorf on 
the west, and BMW Campuss on the Northern part. 

 

 

Figure 19. Detected Sub-Communities of Community 1 between 07:30 – 08:30. 



46 

 

 

 

5.1. Discussion 

The objectives and research questions of this study have been successfully 
addressed through the development of a comprehensive spatiotemporal analysis 
workflow for modeling dynamic community structures of hybrid bike share usage.  

RQ 1.1.1: By investigating the current spatial pattern analysis methods of hybrid bike 
share system usage, we have gained insights into the existing approaches for 
understanding how these systems are utilized. This evaluation has informed our 
subsequent analyses. 

RQ 1.2.1: Determining the most suitable temporal time unit for the adopted method 
was essential for capturing meaningful spatiotemporal patterns. This choice has 
been made to ensure the accuracy and relevance of our dynamic community 
detection. 

RQ 1.2.2: Identifying additional attributes or parameters such as community 
detection algorithms and modularity functions that could enhance our network 
analysis allowed us to extract more meaningful information. These enhancements 
have improved the depth of our community detection. 

RQ 1.2.3: Addressing how semantic information is assigned to communities enables 
a richer understanding of the structures identified. By assigning land use information 
to our communities, we have defined spatial characteristics. Thus, this semantic 
information aids in the interpretation of community behavior. 

RQ 1.3.1: The application of community detection methods has proven to be valuable 
in extracting travel purposes, shedding light on why and how hybrid bike share 
systems are used within urban areas. This contributes to urban transport planning. 

RQ 1.3.2: Identifying dynamic communities offers insights into both spatially and 
temporally connected clusters of bike share usage over time. This understanding is 
crucial for adapting urban transport planning strategies to meet planning needs. 

In summary, by addressing these research questions within the context of their 
respective sub-objectives, we have successfully achieved the overarching objective 
of developing a spatiotemporal analysis workflow for modeling dynamic community 
structures of hybrid bike share usage. This workflow can be applied to Urban 
Transport Planning and offers valuable insights into travel patterns and community 
behavior within hybrid bike-share systems. 
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5.2. Limitations & Future Work 

The developed workflow and algorithm allow us to gain insights about community 
structure and according to quality metrics, it performed well. However, the algorithm 
has many sub-steps for manipulating the big data which reduces the efficiency of 
computation. Moreover, in these sub-steps, only spatial district indexes are taken into 
account. This means that we extracted the spatial units and converted them to 
topological space. Then, after finding communities in topological space, we 
converted this information into geographical space by assigning community labels to 
spatial units. Therefore, future studies should also focus on how we can conduct 
community detection algorithms in geographical space. In this way can compute 
more spatial parameters along with temporal aspects such as distance or elevation.   
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6. Conclusion  
In this research, we have presented a comprehensive methodology for the detection 
and analysis of bike-sharing communities within mobility networks. We began by 
preprocessing the data, selecting relevant parameters, and cleaning the datasets to 
ensure data consistency and reliability. Subsequently, we applied static community 
detection using the InfoMap algorithm to identify communities at different time 
snapshots, shedding light on temporal patterns in bike-sharing usage. Furthermore, 
we introduced dynamic community detection by developing a consensus clustering 
method that identified evolving communities throughout the day. This approach 
allowed us to uncover and analyze the dynamic nature of bike-sharing communities, 
providing valuable insights into the complex patterns of human mobility. 

To evaluate the quality of our community detection results, we employed the 
modularity quality criterion, which quantifies the effectiveness of the clustering 
process. Modularity assesses both the internal cohesion of communities and the 
absence of edges between communities, helping us determine the quality of our 
detected communities. 

In conclusion, this research has provided a robust methodology for the analysis of 
bike-sharing communities, considering both spatial and temporal aspects. By 
applying dynamic community detection to mobility data, we can better understand 
how these communities evolve throughout the day and gain valuable insights into 
urban mobility patterns. This methodology has the potential to inform urban 
transport planning and contribute to our understanding of how bike-sharing systems 
can be optimized for sustainable and efficient transportation in cities. Overall, the 
study contributes to the fields of Geographic Information Science, Cartography, and 
Urban Transport Planning by offering a systematic approach to analyzing human 
mobility patterns within bike-sharing systems, with a focus on dynamic community 
structures. Further research and applications in this area could lead to more effective 
and sustainable urban transportation solutions. 
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Appendix B – Supplementary Material 
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Figure 20. Borders of Consensus Communities 2, 4, 6. 

 

 

Figure 21. Borders of Consensus Communities 1, 2, 3, 6. 
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Figure 22. Borders of Consensus Communities 1, 3, 5. 

 

Figure 23. Static Community Detection Results for 12 intervals. ( T1 = 00:00 - 02:00) 
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Figure 24. Dynamic Sub-Community Detection Results on 48 intervals. (T14 = 06:30 – 07:00) 
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