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Abstract 

Fine-scale population mapping is of great importance to a wide spectrum of public 

interests. As census data is time-consuming and too expensive, many studies have 

been carried out to find other approaches as alternatives in the past decades. 

Especially in today’s big data era, the conduction of high-resolution population 

mapping with the participation of remote sensing products and big geo data has 

become an active field of study. Compared with remote sensing data, big geo data 

has higher temporal and spatial resolution thus complementing the lack of semantic 

information which can indicate various human activities with a more precise location. 

Therefore, some scholars have utilized POI information, location-based social media 

data, together with remote sensing data to help conduct population mapping at a finer 

scale, like 100m grid-cell level and building level. However, there are three main 

problems: 1) collecting social media data is not always possible due to data privacy 

and ethical concerns; 2) optimal scales are rarely discussed, ignoring the fact that 

different features may have different acting ranges; and 3) at the building scale, 

population mapping results are frequently the disaggregation result of census data, 

rather than estimation. As a result, the investigation into integrating multiple freely 

available remote sensing products and semantic data using machine learning 

methods while considering optimal scales contributes to the enrichment of fine-scale 

population mapping products. 

To accomplish this goal, a framework is proposed in Munich as the study area to 

incorporate collections of multi-source open remotely sensed products and semantic 

data to machine learning models. Following data preparation at the 100m and 50m 

gridded levels, the training process is carried out at the 100m gridded scale using five 

different machine learning models, followed by estimation at the 50m gridded scale 

using the best model Random Forest, and finally the results are allocated to building 

scale based on building volume. Additionally, Various visualization techniques were 

used on the final products, with the pros and cons of each method highlighted. 

Furthermore, the optimal scale for each POI category is identified, indicating that if 

POI is used in neighborhood environment investigation, the acting range difference 

should be considered. The significance of features and datasets has also been 

evaluated, with the result that OSM POI, OSM Building, and land use data help to 
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improve accuracy, implying that datasets with higher spatial resolution and more 

semantic information are more important in population mapping than other remotely 

sensed products, such as NTL and NDVI data. Furthermore, due to the high clustering 

of estimation errors, these variables do not perform equally well in different population 

density areas. However, it demonstrates the importance and characteristics of 

machine learning in population mapping by obtaining the spatial pattern of population 

distribution at a finer scale rather than the population value itself. 

Keywords: population mapping, grid cell, building level, machine learning, Random 

Forest  
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1 Introduction 

1.1 Motivation and Problem Statement 

Fine-scale population product is essential for many use cases. For example, it can 

largely support better resource allocation in urban-rural management, provides great 

help for natural disaster preparation, monitor human environment interactions and 

measure impactions of population growth (Stevens, Gaughan, Linard, & Tatem, 2015). 

Census data has always been the primary population product for fine-scale, however, 

the collection of census data is time-consuming and expensive. Most of the census 

data is conducted every ten years which makes it difficult to meet the increasing 

needs of more contemporary, and easily-updatable, as the use cases are far more 

complex than before. Moreover, census data is often based on administrative units 

which usually contains a large area thus hardly to allow a close look at detailed spatial 

distribution. Furthermore, many areas are not fully covered by census because of cost 

or privacy when comes to a finer scale. For example, the German Census 2011 stated 

that the reliability of some gridded-based data is limited due to statistical 

confidentiality under Article 16 of the Federal Statistics Law. 

Given that, many scholars have made large efforts to search other approaches as 

alternatives. Among them, gridded population mapping (Leyk, et al., 2019) became 

extremely popular nowadays with the help of increasing accessibility of geographical 

big data with varying spatial and temporal resolution, as well as the blooming of novel 

techniques such as machine learning. Many researches have been carried out with the 

integration of multi-sourced geo data and population mapping models. It has been 

proven that machine learning methods like random forest model can bring out good 

results with the help of ancillary data for population mapping. 

Most studies, however, use administrative unit level data as true values and assess 

modeling results at this level, making it difficult to examine real model performance 

because it often covers a much larger area than gridded cells. Alternatively, the 

evaluation is frequently carried out at the same gridded level by using the test dataset 

from the train-test-split method, which assesses performance on a very small subset 

of the data. Both methods have limitations in uncovering model performance, which 

may lead to incorrect conclusions. Because the German Census 2011 provides 

gridded results at the 1km and 100m levels, machine learning-based population 

mapping is possible on a very fine-scale of data training and evaluation, revealing 

more details about the machine learning method in population mapping. 

On the other hand, variable optimal scales are rarely discussed when applying them 

to population mapping. Take point of interest data (POI) as example, they were widely 
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used as semantic ancillary information in population mapping as it has higher spatial 

resolution which can indicate human activities in a more precise manner (Ye, et al., 

2019), however, most of previous studies chose the same scale when calculating its 

densities, ignoring the fact that POI has many types like accommodation, retail, 

hospital, and their neighbourhood characteristics vary in different acting ranges 

(Cheng, Zhang, & Huang, 2022). Therefore, the investigation of variable optimal scales 

need to be considered when integrating various data. 

Other than that, spatial heterogeneity is another area that haven’t been frequently 

talked in previous studies (Wang, Wang, Li, Cai, & Kang, 2022). Most of the existing 

studies are conducted within small areas which have less spatial heterogeneity, 

however, as different density population areas have different patterns, and different 

geospatial data captures different ground truth, especially when it comes to 

population distribution (Liu, et al., 2015), it is important to include it in the study thus 

increasing the credibility of the framework.  

Lastly, considering that building level population mapping products are not rich 

enough due to the limitations in acquiring sufficient information. For instance, the 3D 

building data does not exist in every context (Pajares, Muñoz Nieto, Meng, & Wulfhorst, 

2021). Nevertheless, the constantly growing volunteered geographic information (VGI) 

has enabled building level population mapping by providing various building attributes, 

like footprint and height. Therefore, it is possible to bring out a population mapping 

results at building level today. 

In accordance with the proposed scientific perspectives, this study selects Munich as 

the research site for the following reasons: 

• German Census 2011 published detailed population statistics at a 100-meter 

grid cell level, allowing for very fine-scale data modeling and results 

assessment rather than the administrative unit level;  

• Despite Munich's dense population, there are many areas with no population 

and low population density that can be used to investigate spatial heterogeneity 

discussion. 

As a result, the goal of this thesis is to map the population at fine-scale while 

optimizing the scale for corresponding variables and holding a discussion on spatial 

heterogeneity and data characteristics.   
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1.2 Research Identification 

1.2.1 Research Objectives 

The primary goal of this study is to propose a novel framework for estimating 

50m*50m grid cell level populations using widely available free data, such as night-

time light data, land use data, NDVI data, POI data, and building data, and then 

allocating the predictions to building scale. The final results will be visualizations of 

Munich's population at the building and 100m grid cell levels. Furthermore, it will 

investigate the significance and influence of various datasets in various areas, as well 

as machine learning methods for fine-scale population mapping. 

1.2.2 Research Questions 

It can be further detailed by following research questions: 

• What is the approach for fine-scale population mapping? 

• What is the optimal scale for each variable? 

• Does certain data improve the accuracy in population mapping? 

• Do they perform same level of accuracy in different areas? 

• Is the result derived from machine learning methods has reasonable spatial 

details? 

1.2.3 Innovation 

This study aims to provide an approach for obtaining high-precision population maps 

at the building level by integrating remotely sensed products and big geo data into 

machine learning models. 

Instead of disaggregating census data to gridded units and evaluating performance 

at the administrative unit level, the modeling process is based on 100m*100m grid 

cells, and the prediction is performed on 50m*50m grid cells, which are then 

aggregated to 100m gridded cell level to evaluate performance in a much larger area 

and at a much finer scale. Furthermore, the optimal scales for POI classes are also 

considered in the modeling process when using the OSM POI dataset, which is rarely 

discussed in population mapping. Finally, a wide range of result analysis is performed 

to gain insights on key features, datasets, and spatial heterogeneity. 

1.3 Thesis Outline 

The thesis is divided into six chapters that follow a logical structure that aims to 

establish a framework for fine-scale population mapping while discussing accuracies, 
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uncertainties, and spatial heterogeneity using an example to explain the entire 

process.  

Chapter 1 introduces the study's motivations and addresses the research objectives 

and research questions, providing a general overview of the background of this thesis 

and what needs to be accomplished in the subsequent steps. The second chapter 

summarized the most recent population mapping research, including methods, 

popular datasets, fine-scales, and visualization methods. By presenting the related 

work, it provides a detailed impression of what has been accomplished thus far, what 

gaps must be filled, and what we can do to enrich the field. Chapter 3 introduces the 

data and methodology used in this study, as well as the workflow. The experiment in 

the study area is presented in Chapter 4, which includes data modeling, estimation 

evaluation, and population visualization. In chapter 5, the findings are categorized as 

optimal scale, feature importance, spatial heterogeneity, and data inconsistency. 

Finally, in Chapter 6, there is a follow-up summary and discussion. 
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2 Related Work 

This chapter reviews the previous researches related to this study. It firstly introduced 

the methods in population mapping including conventional approaches and most 

recent popular procedures. Then the ancillary data widely used in population mapping 

is presented. Subsequently, the introduction of population mapping at building level is 

brought out which covered both of the data and methods in this field. Lastly, it 

summarized the fine-scale population visualization techniques. 

2.1 Methods for Population Mapping 

Spatial disaggregation methods are usually used to transform coarse scale spatial 

information to fine scales when facing a lack of high-resolution data (Qiu, Zhao, Fan, 

& Li, 2019). As census data is often available on administrative unit level, and normally 

municipality is the lowest level of official territorial division, these methods are also 

applied in fine-scale population mapping. Among them, areal interpolation and 

statistical modeling methods are the most widely used ones.  

2.1.1 Areal Interpolation 

Areal interpolation approach has developed for years, it means the transition of data 

from a source zone to many small subzones while intersecting with each other 

(Goodchild & Siu-Ngan Lam, 1980). It can be further classified into areal interpolation 

without and with ancillary data. Areal weighting approach without ancillary data 

assumes population is redistributed to all land surfaces cells evenly and does not use 

ancillary data (Doxsey-Whitfield et al., 2015). The Gridded Population of the World 

(GPWv4, https://sedac.ciesin.columbia.edu/data/collection/gpw-v4) released by the 

Center for International Earth Science Information Network (CIESIN) is the 

representative of this method while applying a water mask at the same time. The main 

advantage of this approach is the maintenance of the fidelity of the input data 

(Doxsey-Whitfield, et al., 2015) which helps to disaggregate census information in a 

large area especially at a global level. However, this approach does not perform as 

well when there are abrupt variations in value as it assumes homogeneity of 

population distribution whereas it is not in reality (Huang, Ottens, & Masser, 2007). 

Consequently, ancillary data such as land cover, road network data are integrated to 

this approach to improve the performance (Flowerdew & Green, 1994). Dasymetric 

mapping is one of most popular approaches of this category. It refines the weighting  

procedure by incorporating spatial ancillary data that is presumably related to 

population presence and density, therefore it involves redistribution weights in each 

cell (Eicher & Brewer, 2001).  
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More specifically, dasymetric mapping can be grouped to two classes, binary 

approach and weighted approach. Binary dasymetric approaches redistribute 

population using one or more ancillary layers that describe presence or absence of 

populated areas (Frantz, et al., 2021), the ancillary data is used to identify built-up cells 

that population can be redistributed to. In this way, on the basis of areal interpolation 

approach, it is done by discarding uninhabited areas reached from external data (Jain 

& Tiwari, 2017). Weighted dasymetric approaches assume that population density is 

unequally related to various variables (Nagle, Buttenfield, Leyk, & Spielman, 2014), 

such as road density, and population is then redistributed based on a cell-based 

weight. Large amount of literatures has proved that the spatial accuracy is improved 

by dasymetric techniques compared with conventional mapping techniques (Gallego, 

Batista, Rocha, & Mubareka, 2011; Langford, 2007)  

The following is a typical formulation of many dasymetric population mapping 

applications: 

𝑃𝑖
′ = 𝑃𝑠 ×

𝐴𝑖 × 𝑊𝑖

∑ 𝑖 (𝐴𝑖 × 𝑊𝑖)
 

where 𝑃𝑠 is the known population of the source zone s and 𝑃𝑖
′ means the estimated 

population in the target zone. The source zones are discrete geographical units used 

to collect and/or report statistical data, whereas the target zones are finer zones 

within each source zone formed by the intersection of the source zone and ancillary 

spatial data (e.g. land use polygons). Finally, 𝐴𝑖 denotes the target zone's area, and 𝑊𝑖 

is a weighting parameter related to the target zone's population density. It is important 

to note that the sum of the areas of the target zones within a source zone equals the 

area of the source zone, ∑ 𝑖 𝐴𝑖 =𝐴𝑠 (Batista e Silva, Gallego, & Lavalle, A high-resolution 

population grid map for Europe, 2013). 

In general, dasymetric mapping takes into consideration the spatial heterogeneity of 

population distribution to a cetain extent. However, dertermining population weights 

for each subdistrict remains difficult and does not capture the diversity of its 

subdistricts as the precision of the simple interpolation method is low and complex 

interpolation necessitates the use of multiple ancillary data sets. Therefore, although 

areal weighting method is simple and requires very few variables, it is hard to reflect 

the details at a grid cell location and actually population distribution is not 

homogeneous in reality (Luo, Zhang, Cheng, & Sun, 2019). 

2.1.2 Statistical Modeling 

Most recent studies propose combining several approaches to improve accuracy, 

commonly beginning with a dasymetric process, and then a statistical model. It is 
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founded on the notion that morphological characteristics such as the accessibility to 

the services, the transportation network influence the distribution in a region (Gallego, 

Batista, Rocha, & Mubareka, 2011). In short, this approach involves creating a 

regression model by using training data with the assumption that no population is 

assigned to places with no road network or built-up land cover (Langford, 2006). In 

this way, it simulates population spatial distribution by constructing fitted regression 

models with various variables, which then can both disaggregate population data to 

finer scales as well as estimate intercensal population or population of difficult-to-

enumerate places (Wu, Qiu, & Wang, 2005).  

The most common modeling technique is linear regression (Yao, et al., 2017). This 

approach is easy to model, and can easily identify meaningless negative population 

values in some rural areas due to this simple relationship between the variables which 

is impossible in reality (Chu, Yang, & Chou, 2019). However, it requires a linear 

relationship between the features and the population, and no covariance between the 

features can exist. As a result, it is usually applied to population disaggregation at 

large scales (Zeng, Zhou, Wang, Yan, & Zhao, 2011). Another popular model is 

logistical regression model (Gaughan, Stevens, Linard, Jia, & Tatem, 2013). However, 

if the predictors have a multivariate normal distribution, the solution may be more 

stable. Furthermore, as with other types of regression, even weak multicollinearity 

among predictors can result in biased estimates and inflated standard errors. (Nong 

& Du, 2011). 

Then applying machine learning algorithms to population mapping became a hotspot 

in the light of increasing accessibility of big data (Šimbera, 2020). A common way is 

Random Forest (RF) model which evolved from decision trees and has strong 

generalization ability, allowing it to handle high-dimensional features and effectively 

improve population spatialization accuracy (Breiman, 2001). In population mapping, it 

uses population counts from census data and a weighting scheme where each 

weighting variable is predicted by using ancillary data such as land cover information, 

nighttime lights data, topographic information or vector-based features (Stevens, 

Gaughan, Linard, & Tatem, 2015). Currently, RF based population estimation is an 

important direction for population spatialization research (Sinha, et al., 2019; Ye, et al., 

2019; He, Xu, & Li, 2020). As the accuracy of RF results is highly influenced by auxiliary 

data, most of these researches focus on how to effectively integrate multiple-sourced 

data and construct model features. Random Forest, on the other hand, typically 

models only numerical attribute information from the data and fails to take into 

account the potential influence of spatially data on each other. Furthermore, due to a 

lack of fine-scale training data, RF typically uses administrative unit data for modeling 

and then migrates the models to the grid for prediction, resulting in cross-scale 

problems between training and prediction (Mei, et al., 2022; Sinha, et al., 2019). 
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Deep learning has gradually been applied to the study of population spatialization in 

recent years (Robinson, Hohman, & Dilkina, 2017; Tiecke, et al., 2017; Zhao, Liu, Zhang, 

& Fu, 2020). It has been proven that deep neural networks outperform shallow 

machine learning models like Random Forest in national-level population 

spatialization with a higher estimation accuracy (Zhao, Liu, Zhang, & Fu, 2020). 

However, this method also involves many limitations. For example, Convolutional 

Neural Networks (CNN) can effectively capture the spatial autocorrelation properties 

of the learned grid population through convolutional operations, but this approach has 

not been widely used due to the difficulty of obtaining fine-scale population training 

samples (Robinson, Hohman, & Dilkina, 2017). The Facebook Connectivity Lab applied 

computer vision techniques to extract building outlines from high-precision remote 

sensing images and then assigned population to buildings, however, it is not easy to 

achieve accurate population-to-building assignment without better integration of 

more auxiliary information (Tiecke, et al., 2017).  

2.2 Integration of Ancillary Data for Population Mapping 

Without relevant geospatial data, fine-scale population mapping cannot be studied. 

Especially with the rapid advancement of remote sensing technology, volunteered 

geographic information, and global positioning technology over the past decades, 

many different types of ancillary data have been used in the above approaches 

(Murakami & Yamagata, 2019). 

2.2.1 Remotely Sensed Products 

As the increased availability and spatial granularity of remotely sensed information 

about vegetation and land cover (Frye, Wright, Nordstrand, Terborgh, & Foust, 2018), 

remote sensed products have been applied for years either as the main source for 

population estimation  (Schug, Frantz, van der Linden, & Hostert, 2021; Sutton, Roberts, 

Elvidge, & Baugh, 2001) or alternatively used as a supplementary data source for use 

in spatially refining census population estimates (Chen, 2002). 

The most popularly used remotely sensed product is land cover dataset. It was used 

to lessen the overglow effect and to differentiate between urban and rural 

environments (Sun, Zhang, Wang, & Cen, 2017). Furthermore, some fine scale 

products include precise information regarding land use that may be utilized to 

calculate population distribution, such as whether people would dwell in residential 

regions rather than sports areas. It is used as the primary mask in dasymetric mapping 

to filter out no-population regions.  

The night-time light (NTL) imagery is another widely used product. Nocturnal light has 

arisen as a characteristic of contemporary civilization, providing a distinct feature for 
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detecting the presence of human activity (Sutton, Elvidge, & Obremski, 2003). Several 

satellite sensors for NTL combines the benefits of RS with the unique feature of 

nocturnal light which acts as an alternate manner to efficiently to map worldwide 

human habitation and human activities. The visible infrared imaging radiometer suite 

(VIIRS) carried by the National Polar-Orbiting Operational Environment Satellite 

System is a new kind of satellite sensor that captures NTL data (Sun, Zhang, Wang, & 

Cen, 2017) and is widely utilized in research.  

Considering the limitations of some remote sensed products, like the underestimation 

of NTL in rural regions and saturation problem in high population density areas, some 

other products have been taken as supplements. For example, based on the concept 

that plant quantity is closely and inversely connected with impervious surface, 

vegetation index is used to combat the overglow impact of NTL images (Pozzi & Small, 

2005). With its help, exaggerated illuminated regions like lakes and woods that were 

lighted by light reflection from urban area can be diminished (Sun, Zhang, Wang, & 

Cen, 2017). One of the popularly integrated dataset is Normalized Difference 

Vegetation Index (NDVI) derived from satellite images (Luo, Zhang, Cheng, & Sun, 

2019).  

However, because most free remotely sensed products have a limited spatial 

resolution when compared to big geo data such as POI, it has limitations in showing 

various human activities occurring in a certain geographic place. (Ye, et al., 2019). 

2.2.2 Geospatial Big Data 

The utilization of enormous volumes of multi-sourced geospatial big data has 

attracted significant interest in numerous sectors, including population mapping, in 

the big data age. Geospatial data is used to describe objects and things in relation to 

geographic space, often with the use of location coordinates in a spatial reference 

system. Ground surveying, hotogrammetry, and remote sensing are common methods 

for gathering geospatial data, but more recently, laser scanning, mobile mapping, 

volunteered geographic information (VGI), and global navigation satellite system 

(GNSS) have emerged as new methods for gathering large amounts of geospatial data 

(Evans, Oliver, Zhou, & Shekhar, 2019). Compared with conventional geospatial data, 

big geospatial data has a higher temporal and spatial resolution which can be a good 

complement in population mapping study (Ye, et al., 2019). Because VGI and mobile 

mapping are the most commonly utilized geospatial data in population mapping, we 

have only mentioned the applications of these two geospatial data sources. 

1) Volunteered Geographic Information 
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Volunteers, rather than traditional data producers, create VGI through Web 2.0 

applications (Goodchild M. F., 2007). Though it has been critiqued for potential data 

quality issues (Jackson, et al., 2013), it is nonetheless a useful addition to official 

statistics and commercial data (Goodchild M. F., 2007). Consequently, numerous 

researchers in the field of population mapping regard it as a valuable data source, and 

combine it with other remotely sensed products to improve the accuracy of population 

mapping.  

Points of Interest (POI) is the most commonly used VGI. A point of interest (POI) is a 

map feature with precise point coordinates as well as rich spatial semantics, such as 

restaurants, hospitals, or hairdressers (Bakillah, Liang, Mobasheri, Jokar Arsanjani, & 

Zipf, 2014). POIs can be used to revise population estimates if a correlation can be 

established because certain types of places are associated with a higher population 

density (Zhang & Qiu, 2011), and high population density areas tend to have more 

POIs. For example, POI and multisensory remote sensing data are combined to assist 

in the disaggregation of population distribution from census to 250m*250m gird cells 

(Yang, et al., 2019). Additionally, temporal changes of population density in Europe is 

uncovered by applying POIs as well as land cover data in a multi-layered dasymetric 

approach at 1 km2 resolution (Batista e Silva, et al., 2020). 

Most studies, however, ignored the fact that different types of POIs have varying 

degrees of attractiveness to the population, and instead created quantity/density 

metrics based on POI data within a fixed same range (Cheng, Zhang, & Huang, 2022). 

For example, because a hospital is designed to cover a larger area than a restaurant, 

their densities cannot be calculated within the same acting range and then used to 

support population distribution estimation. 

2) Location Based Data 

Thanks to the global positioning system (GPS), Mobile location-based service (LBS) 

technology has advanced significantly in recent years which allows us to obtain a 

variety of position data, such as public transit trajectories, mobile communications, 

and check-in data. These data sets may be merged to uncover information about 

urban structures, economic vibrancy, and traffic congestion (Hu, Wang, & Li, 2014; Liu, 

et al., 2015) that are connected to numerous human activities at the microscale and 

accurately depict population distributions and human behaviors.  

Location-based data has also been used in population mapping to obtain finer scale 

findings, such as 100m*100m grid cell level, building level population distribution. For 

example, the Realtime Tencent User Density (RTUD) provided by one of China's largest 

internet companies records the locations of smart phone users using Tencent 
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applications such as WeChat, allowing the calculation of down-scaling the street-level 

population distribution to the 25m*25m grid cell level. (Yao, et al., 2017). Furthermore, 

there are also many studies directly applying these location data to dynamic 

population mapping (Deville, et al., 2014), especially real-time population during 

disasters. For example, as the RTUD is updated on a regular basis, it has also been 

used to map the monthly population distribution and variance across China at 1-km 

resolution. (Cheng, Wang, & Ge, 2022). Additionally, by combining phone signal data 

with building data, an estimated real-time population distribution map is created that 

can be used to aid in earthquake emergency rescue work (Xia, Nie, Fan, & Zhou, 2020). 

However, there are some clear drawbacks to mapping populations using cell phone 

data. First, a recent research found that the low correlation between call volume and 

underlying population demonstrates the insufficiency of considering mobile 

subscriber distribution as a representation of population distribution (Kang, Liu, Ma, & 

Wu, 2012). Furthermore, due to the government's personal privacy regulation, 

acquiring mobile phone data is difficult. 

2.3 Population Mapping at Building Level 

To date, most of population mapping studies focused on global population and upper 

level gridded population, few considered fine-scale population mapping at the local 

scale, largely because of a lack of reliable data and models (Yao, et al., 2017). A few 

studies conducted building level population mapping in small areas but using census 

data and detailed building information from city administration office (Lwin & 

Murayama, 2009) which has a lot limitations. With the improving of spatial resolution 

of remote sensing products, some scholars have extracted building footprints and 

heights in residential zones from aerial images thus conducting population mapping 

at building level (Ural, Hussain, & Shan, 2011).  

Meanwhile, as geospatial big data booms, volunteered geographic information (VGI) 

can now be used to solve this problem. For example, a satisfactory mapping result 

has been obtained in Hamburg by applying POIs, building footprints, and fine land 

use/land cover data (LULC) to an areal interpolation approach (Bakillah, Liang, 

Mobasheri, Jokar Arsanjani, & Zipf, 2014). Another approach is made in the City of 

Munich, Freising and Fürstenfeldbruck in southern Germany by utilizing census data 

on the district level, land-use data, OpenStreetMap (OSM) (Pajares, Muñoz Nieto, 

Meng, & Wulfhorst, 2021).  

However, most of the existing studies are conducted within small areas which is from 

disaggregating census data instead of estimations. Additionally, many are using 

location based social media data which is not always accessible and involves data 
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privacy. Therefore, we need to find another alternatives and can be applied to large 

areas as well. 

2.4 Population Distribution Visualization 

In a scientific setting, good visualizations help us comprehend the underlying data and 

capture the reader's attention without sacrificing truth for beauty (Riffe, Sander, & 

Klüsener, 2021) as the most commonly accepted argument says human brain 

processes visual information much faster than text (Healy, 2018). Visualizations are 

also frequently used to easily examine and uncover patterns in population data, as 

well as to assist viewers in gaining a better knowledge of the features to a large 

audience.  

As a typical use case of thematic mapping, various visualization approaches are 

applied in population distribution visualizations, such as choropleth map, dasymetic 

map, isarithmic map, proportional symbol map, cartogram, dot map, heat map, and 3D 

mapping. 

Choropleth mapping represents relative quantities in census or administrative areas 

using graded color or gray tone. A suitable color scheme should ideally represent the 

quantitative character of the data represented on choropleth maps (Slocum, 

McMaster, Kessler, & Howard, 2022). As a result, if the legend is improperly created, it 

may be rendered ineffective. To create an eye-catching image, an illuminated 

choropleth map is created by combining classic choropleth symbology with an 

illuminated 3-D prism view (Slocum, McMaster, Kessler, & Howard, 2022). 

When the phenomena are not equally distributed between enumeration units, the 

dasymetric map is an alternative to the choropleth map. A dasymetirc map, like a 

choropleth map, presents standardized data using areal symbols, but the borders of 

the symbols do not always match the bounds of enumeration units. A dasymetric map 

is most commonly used to depict the attribute population (Slocum, McMaster, Kessler, 

& Howard, 2022). Additionally, a dasymetric map of population density requires 

supplementary information for the redistribution process, such as land cover. For 

example, the population density of a water land cover will be set to zero if no people 

live on the water. 

The proportional symbol map is used to depict numerical data connected with point 

locations, whether those are genuine point locations or conceptual point locations 

such as the centroids of countries (Cabello, Haverkort, Van Kreveld, & Speckmann, 

2010). Although a vast range of geometric and pictographic symbols are possible, 

circles are the most widely used proportional sign. Classed proportional symbol maps, 

also known as range-graded or graduated symbol maps, do not reflect actual data 
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relations, but rather employ a set of symbols that clearly distinguish each class from 

one another. As a result, classed maps can improve spatial pattern perception. 

Cartographers may purposefully distort space based on attribute values, and the 

resulting map projection is known as a cartogram or value-by-area map. The area 

cartogram is the most commonly discussed type of cartogram in the geographic 

literature. It is generated by scaling enumeration units in response to the values of an 

attribute linked with the enumeration units (Sun & Li, 2010). For example, the size of 

the countries may be proportionate to their population. Cartograms have the unusual 

advantage of displaying small enumeration units with high attribute values that would 

be buried on a comparable projection. Population is a common attribute depicted on 

area cartograms. 

Dot map is a method of discovering spatial patterns or the distribution of data over a 

geographical region by distributing equally sized points over the region (Kimerling, 

2009). Dot maps are classified into two categories: one-to-one (one point indicates a 

single count or object) and one-to-many (one point represents a certain unit, such as 

1 point equals 20 people). Dot maps are great for seeing how items are dispersed 

throughout a geographical region and can reveal patterns when the points cluster on 

the map, however, they are not ideal for demonstrating precise values. 

Heat map depicts the magnitude of a phenomena in two dimensions with colors1. The 

color change may be via hue or intensity, providing the reader with apparent visual 

indications regarding how the occurrence is clustered or fluctuates across space. The 

cluster heat map and the spatial heat map are two fundamentally distinct types of heat 

maps. A spatial heat map depicts the magnitude of a geographical phenomenon as 

color on a map.  

An isarithmic map depicts a continuous field by connecting points of equal value with 

line and/or region symbols. In general, these maps are used to aid in the visualization 

of continuous data sets through the use of color, particularly hue and value. There are 

several ways to portray isarithmic maps; regardless of the design style used, the 

phenomena being represented must be a quantitative continuous field. It was initially 

employed in population distribution by Dane Ravn in 1857, but it has been heavily 

criticized by geographers, who believe that particular population is not a point function 

but an area function, and that population distribution does not fluctuate continuously 

(Nordbeck & Rystedt, 1970). Other cartographers and geographers, however, 

challenged the criticisms of the isarithmic mapping approach, claiming that the critics 

reached wrong conclusions from a logical position when they accused the designers 

                                                 
1 https://en.wikipedia.org/wiki/Heat_map 
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of isarithmic maps of logical mistakes. This debate over the existence of population 

isarithms continues to this day. Some researchers even refer to them as fake or 

pseudo-isarithms and advise geographers not to utilize them (Nordbeck & Rystedt, 

1970). 

Three-dimensional models offer a volumetric depiction of space, which is useful for a 

range of applications such as population density. Many map aficionados have been 

working hard in recent years to create attractive 3D visualizations of population 

distribution that emphasize demographic trends and physical limits. One of them is 

Alasdair Rae, who has created a series of 3D population density maps for various 

places across the world.  

 

Figure 2.1 An illuminated choropleth map showing 
population density of counties in the conterminous 

United States. 

Data Source: (Stewart & Kennelly, 2010) 

 

Figure 2.2 A dasymetric map of London population 
density in year 2011 using residential area only 

Data Source: 
https://jamesjgleeson.wordpress.com/2013/01/23/dasymetric
-map-of-londons-population-density-2011/ 

 

 

Figure 2.3 A proportional symbol map of global 
population distribution in year 2015 

Data Source: https://carto.com/blog/proportional-symbol-maps/ 

 

Figure 2.4 A cartogram map of global population 
distribution in year 2020 

Data Source: https://worldmapper.org/maps/grid-
population-2020/ 

 



 

15 

 

 

Figure 2.5 A bivariate dot density map showing the 
relative concentrations of the Black and Hispanic 

populations in the United States in 2010 

Data Source: https://en.wikipedia.org/wiki/Dot_distribution_map 

 

Figure 2.6 A heat map of population distribution in 
Guangzhou 

Data Source: (Zhao & Yang, 2020) 

 

 

Figure 2.7 An pseudo-isarithmic map of 
population density in Germany 

Data Source: Michael Bauer Research 
GmbH 

 

Figure 2.8 A 3D mapping of population density in Europe 

Data Source: http://www.statsmapsnpix.com/2020/04/population-density-in-
europe.html 

2.5 Summary 

In general, many studies have been carried out to find other approaches as 

alternatives for fine-scale population mapping in the past decades. Especially in 

today’s big data era, the conduction of high-resolution population mapping with the 

participation of remote sensing products and big geo data has become an active field 

of study. Compared with remote sensing data, big geo data has higher temporal and 

spatial resolution thus complementing the lack of semantic information which can 

indicate various human activities with a more precise location, and widely used while 

in participation of remotely sensed products. However, there are three major 

problems: 1) collecting social media data is not always possible due to data privacy 
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and ethical concerns, another approach by using open data needs to be found; 2) 

optimal scales are rarely discussed, ignoring the fact that different features may have 

different acting ranges; and 3) at the building scale, population mapping results are 

frequently the disaggregation result of census data, rather than estimation. As a result, 

the investigation into integrating multiple freely available remote sensing products 

and semantic data using machine learning methods while considering optimal scales 

contributes to the enrichment of fine-scale population mapping products.  
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3 Methodology and Data Preparation 

3.1 Workflow 

Based on the previously mentioned motivations, research identification, and state of 

the art, the planned approach is to conduct data training at the 500m grid cell level, 

followed by population density estimation at the 50m grid cell level, and then 

evaluating the result at the 100m grid cell level after aggregating 50m grid cell level 

estimations to 100m grid cell level. However, it is hampered by a data-hungry problem 

because there are many no population grids in census data at the 100m grid cell level, 

making it difficult to obtain sufficient training data at the 500m grid cell level. As a 

result, the workflow was modified to perform the data modeling section at the 100m 

grid cell level rather than the 500m grid cell level. The final workflow of this study is 

as follows: 

 

Figure 3.1 Flowchart of this study 

To answer the research questions, the framework mainly contains eight sections, data 

collection, data preprocessing, data modeling at 100m*100m grid cell level, model 

evaluation and analysis, gridded population estimation at 50m*50m grid cell level, 

result assessment and analysis, population assignment at building level, and 

population visualization.  

The general idea of the population estimation is to make a finer scale population 

prediction using machine learning models by integrating ancillary features. In this way, 



 

18 

 

following data preprocessing, two tables will be created, one of 100m*100m grid cells 

with features and population data, and one of 50m*50m grid cells with features. After 

being split into train and test datasets, the first table will be applied to the data 

modeling section to gain the weight layer of various features, which will then be used 

in the estimation process. The performance of the models is then assessed by 

comparing the prediction results of test data with actual data, as well as the difference 

between several machine learning models. This section will also go over the best 

feature scale and feature importance. Following that, population estimation is 

performed by applying the 50m*50m feature table to the model, followed by results 

assessment and analysis that takes into account spatial heterogeneity. Furthermore, 

population estimation at the building level is accomplished by assigning estimation 

results at the 50m grid cell level based on ancillary building information. Finally, all of 

the outcomes will be visualized and compared. 

3.2 Data Collection and Description 

This study takes Munich as the study area (Figure 3.2). Before collecting ancillary data, 

various levels of Munich administrative regions and grid cells, including Munich 

districts, 100m grid cells, 500m grid cells and 1km grid cells are gathered. All these 

data are stored as spatial vector data in Shapefile format or GeoPackage. Addtionally, 

50m * 50m grid cells which are used for the scale of estimation is created by Grid 

Index Feature function in ArcGIS. All of these data serves as the foundation for 

subsequent data preprocessing work. 

 

Figure 3.2 Munich Stadtbezirke and 500m Grid Cells 

Data Source: Federal Agency for Cartography and 
Geodesy 

 

Figure 3.3 Population Distribution of Munich 100m Grid 
Cells 

Data Source: Federal Agency for Cartography and Geodesy 

In addition to that, this study incorporates the most commonly used free external data 

in population mapping, including three remotely sensed products and OpenStreetMap. 
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3.2.1 Census Data 

The most recent public census data provided by the Federal Statistical Office and the 

statistical offices of the Länder is census 2011 2 . Its fine scales that can be 

downloaded are 1km and 100m grid-cell level. This is achieved by assigning geo-

coordinates available address level statistics to grid cells meeting INSPIRE 

requirements. In accordance with the INSPIRE Directive, the Lambert Azimuthal Equal 

Area Projection was used (ETRS89-LAEA Europe - EPSG:3035). Geographic shape-

files for this grid are the grid cells mentioned above. In this study, it is used as 

dependent values in modeling training and actual values in estimation assessment. 

The table below shows the sample of 100m grid cell census data. 

Table 3.1 Sample data of German Census 2011 at 100m grid cell level 

Gitter_ID_100m Gitter_ID_100m_neu Merkmal Auspraegun

g_Code 

Auspraegung_

Text  

Anza

hl 

Anzah

l_q 

100mN26891E43370 
CRS3035RES100mN2689

100E4337000 

INSGESAM

T 
0 

Einheiten 

insgesamt 
8 0 

100mN26891E43370 
CRS3035RES100mN2689

100E4337000 

ALTER_KU

RZ 
1 Unter 18 3 0 

100mN26891E43370 
CRS3035RES100mN2689

100E4337000 

ALTER_KU

RZ 
3 30 - 49 3 0 

100mN26891E43370 
CRS3035RES100mN2689

100E4337000 

ALTER_KU

RZ 
5 65 und älter 3 0 

100mN26891E43370 
CRS3035RES100mN2689

100E4337000 

FAMSTND_

AUSF 
1 Ledig 4 0 

100mN26891E43370 
CRS3035RES100mN2689

100E4337000 

FAMSTND_

AUSF 
2 Verheiratet 3 0 

100mN26891E43370 
CRS3035RES100mN2689

100E4337000 

GEBURTL

AND_GRP 
1 Deutschland 6 0 

100mN26891E43370 
CRS3035RES100mN2689

100E4337000 

GEBURTL

AND_GRP 
21 EU27-Land 3 0 

100mN26891E43370 
CRS3035RES100mN2689

100E4337000 

GESCHLEC

HT 
1 Männlich 4 0 

100mN26891E43370 
CRS3035RES100mN2689

100E4337000 

GESCHLEC

HT 
2 Weiblich 4 0 

100mN26891E43370 
CRS3035RES100mN2689

100E4337000 

RELIGION_

KURZ 
1 

Römisch-

katholische 

Kirche 

(öffentlich-

rechtlich) 

4 0 

100mN26891E43370 
CRS3035RES100mN2689

100E4337000 

RELIGION_

KURZ 
3 

Sonstige, keine, 

ohne Angabe 
3 0 

100mN26891E43370 
CRS3035RES100mN2689

100E4337000 

STAATSAN

GE_GRP 
1 Deutschland 5 0 

                                                 
2 https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html 
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100mN26891E43370 
CRS3035RES100mN2689

100E4337000 

STAATSAN

GE_GRP 
21 EU27-Land 3 0 

100mN26891E43370 
CRS3035RES100mN2689

100E4337000 

STAATSAN

GE_HLND 
1 Deutschland 5 0 

100mN26891E43370 
CRS3035RES100mN2689

100E4337000 

STAATSAN

GE_HLND 
8 Österreich 3 0 

100mN26891E43370 
CRS3035RES100mN2689

100E4337000 

STAATSAN

GE_KURZ 
1 Deutschland 5 0 

100mN26891E43370 
CRS3035RES100mN2689

100E4337000 

STAATSAN

GE_KURZ 
2 Ausland 3 0 

100mN26891E43370 
CRS3035RES100mN2689

100E4337000 
STAATZHL 1 

Eine 

Staatsangehöri

gkeit 

7 0 

Data Source: German Census 2011, https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html 

Table 3.1 shows the census information of grid cell “100mN26891E43370”. 

Gitter_ID_100m is the id of 100m grid cell of the Lambert Azimuthal Equal Area 

Projection which can be used to match spatial vector data of these grid cells. Anzahl 

is the number of people in this grid according to Census 2011. Merkmal is the attribute 

of the population number, and Auspraegung_Code, Auspraegung_Text describe the 

corresponding attribute. As we can see from the table, there are a lot of attributes here, 

including the total value, age, family status, etc. This study only takes the total value 

of the grid, therefore, here we use the first line. Fig 3.3 shows the population 

distribution in 100m grid cells after census data processing. 

3.2.2 Remotely Sensed Products 

The remotely sensed products used in this study include Nighttime Light (NTL) 

Images, Normalized Difference Vegetation Index (NDVI), and land use data. 

NDVI data is derived from the Terra satellite's MODerate Resolution Imaging 

Spectroradiometer (MODIS) at a spatial resolution of 250m. NTL data is from NPP-

VIIRS DNB with a spatial resolution of 15 arc-seconds (about 500m) provided by the 

National Geophysical Data Center, NOAA, USA. The annual mean composition was 

applied to create a mean NDVI image and NTL image of year 2014 which could reduce 

the sensitivity of seasonal variations in the earliest year available. Both datasets were 

downloaded and preprocessed using Google Earth Engine (GEE). GEE is a cloud-based 

geospatial processing platform powered by Google's cloud architecture that offers 

free global scale geoscience data at the PB level (Gorelick, et al., 2017). The 

computation of GEE is based on automatic parallel processing of Google 

infrastructure, which dramatically improves data processing efficiency (Xiong, et al., 

2017). 
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Figure 3.4 Munich NDVI Data of 100m grid cells 

Data Source: Google Engine 

 

Figure 3.5 Munich NTL Data of 100m grid cells 

Data Source: Google Engine 

Two different sourced land use data were collected. The dataset CORINE Land Cover 

5 ha (CLC5 2018) 3 represents a description of the landscape in vector format 

according to the nomenclature of CORINE Land Cover (CLC), which on the one hand 

reflects the land cover and on the other hand also includes aspects of land use. Urban 

Atlas 4  is part of Copernicus Land Monitoring Services, providing pan-European 

comparable land use and land cover (LULC) data derived from Very High Resolution 

(VHR) satellite imagery for Functional Urban Areas (FEA) with more than 50000 

inhabitants. Figure 3.7 displays Urban Atlas LULC information related to the FUA 

DE003L1 – München for the reference year 2012. Its thematic information is derived 

by means of semiautomatic Sentinel–2 time series classification combined with 

visual interpretation using VHR satellite imagery made available through ESA CSCDA 

mechanism. 

 

Figure 3.6 CLC5 2018 of Munich 

Data Source: Federal Agency for Cartography and Geodesy 

 

Figure 3.7 Urban Atlas of Munich 

Data Source: Copernicus EU Land Monitoring Service 

                                                 
3 https://gdz.bkg.bund.de/index.php/default/digitale-geodaten/digitale-landschaftsmodelle/corine-
land-cover-5-ha-stand-2018-clc5-2018.html 
4 https://land.copernicus.eu/local/urban-atlas 
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3.2.3 Semantic Products 

The semantic data used in this study is POI and OSM Building provided by 

OpenStreetMap with spatial locations. OSM POIs are geo-located features that are 

described by point, line, or polygon with other attributes given by tags. An example of 

tag describing a POI could be postbox, shops, schools, and so on. When adding POIs 

to OSM, contributors are advised to utilize the terminology provided in the OSM 

Feature Wiki. Other contributors can also modify POIs generated by a contributor. 

OSM POIs (Figure 3.8) are achieved from Geofabrik5 which is an open source website 

providing free data from OpenStreetMap. Building attributes (Figure 3.9) are collected 

from OSM Building6 which is a Free and open source web viewer for 3D buildings 

supported by OpenStreetMap tagging schema. It is based on XYZ tiles, with a 

GeoJSON dataformat and geometry projection EPSG:4326 (WGS84). Attributes of 

building in the dataset include building name, building type, building height, building 

levels, etc.  

Table 3.2 includes all data sources utilized in this analysis, along with the reference 

year for each. Because the proposed process works with data from various contexts 

representing the same objects, the mentioned data may be regarded a sample. 

 

Figure 3.8 OSM POIs 

Data Source: OpenStreetMap 

 

Figure 3.9 OSM Building Sample 

Data Source: OSM Building 

 

Table 3.2 Overview of Data Used in This Study 

Type Official Name Data Provider Reference Year 

Administrative Units 

Verwaltungsgebiete 1:250 000 

(kompakt), Stand 31.12. (VG250 

31.12.) 

Federal Agency for Cartography 

and Geodesy 
2011 

                                                 
5 https://download.geofabrik.de/europe/germany/bayern/oberbayern.html 
6 https://osmbuildings.org/ 
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Geographical Grids for 

Germany 

DE_Grid_ETRS89-LAEA_100m 

2018 DE_Grid_ETRS89-LAEA_500m 

DE_Grid_ETRS89-LAEA_1km 

NDVI data 
MOD13Q1.061 Terra Vegetation 

Indices 16-Day Global 250m 

NASA LP DAAC at the USGS 

EROS Center 
2014 

NTL data 

VIIRS Stray Light Corrected 

Nighttime Day/Night Band 

Composites Version 1 

Earth Observation Group, Payne 

Institute for Public Policy, 

Colorado School of Mines 

2014 

Land use 
CORINE Land Cover 5 ha, as of 

2018 (CLC5-2018) 

Federal Agency for Cartography 

and Geodesy 
2018 

 Urban Atlas 2012 - München 
Copernicus EU Land Monitoring 

Service 
2012 

Points of Interest OpenStreetMap data 
OpenStreetMap contributors 

 

Building attributes OSM Building 2022 

3.3 Data Preprocessing 

Raw data typically contains a lot of information that is not needed in the study as well 

as some non-structured data. Therefore, before data modeling and visualization, data 

pre-selection, data georeferencing, data aggregation, and data reclassification are 

critical procedures. 

3.3.1 Data Filtering 

This step filters out unnecessary datasets, areas and features. 

From the section above, we know that two land use datasets are collected for this 

study. As Urban Atlas has more detailed classification within a same area compared 

with CORINE Land Cover when display them in ArcGIS (Figure 3.10, 3.11), Urban Atlas 

is selected as the dataset for land use purpose. 

 

Figure 3.10 Sample of CORINE dataset 

Data Source: Federal Agency for Cartography and Geodesy 

 

Figure 3.11 Sample of Urban Atlas dataset 

Data Source: Copernicus EU Land Monitoring Service 
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Next, it is the area filtering as some of the data scope is not just within Munich but 

Germany. This is finished in ArcGIS by taking the Munich 100m grid cell Shapefile as 

the standard scope for the datasets of this study. 

The last step is feature selection. In OSM Building dataset, more than 15 attributes are 

listed, like name, type, height, area, color, material, roof angle, etc. As height, and type 

are relevant to population mapping (Schug, Frantz, van der Linden, & Hostert, 2021), 

these three features are taken at first. However, more than 50% of the building types 

are missing in the dataset, this attribute was discarded in the end. As for the OSM POI 

dataset, more than 100 categories are found. Considering some of them are 

landscape infrastructures, 18 of them are dropped and the rest of them are 

reclassified in the next steps. 

3.3.2 Data Referencing 

As Grid Cell bases German Census 2011 takes the Lambert Azimuthal Equal Area 

Projection (ETRS89-LAEA Europe - EPSG:3035), all vector data are transformed to this 

projection in this study. 

3.3.3 Data Aggregation 

Since the base map is grid cells of different levels, each grid cell is a basic entity with 

census data as the dependent variable and ancillary data as independent variables. In 

this way, all the features need to be integrated to grid cells of different levels, therefore, 

data aggregation step is applied here which is achieved by using Pairwise Intersect 

function in ArcGIS. Finally, table format with grid cells as entities and features from 

other datasets as fields are reached, Table 3.3 shows the sample of building 

information after data aggregation process. 

Table 3.3 Sample result of data aggregation 

FID_buildi Id Height Type Shape_Area id_100mmGrid 

203638 279257061 5 fire_station 727.294684 100mN27860E44432 

203639 279257060 4  28.8406134 100mN27860E44432 

203640 288095895 4 storage 97.5579286 100mN27860E44432 

203649 r57759 15  976.586378 100mN27860E44429 

203650 r57760 15 office 903.004776 100mN27860E44429 

3.3.4 Data Reclassification 

As Urban Atlas 2012 and POI data has too many categories, category reclassification 

is applied before area proportion of land use category and multiscale POI density 

generation.  
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There are 21 categories of land use in Urban Atlas 2012, which contains several 

different kinds of urban fabric, transportation area, farmland, and forests. In order to 

simplify the land use information, those 21 categories are reclassified to 11 classes 

in the end. 

According to the general attributes of POI information, the rest 108 categories are 

reclassified into 17 classes, including recycling services, education, leisure, sports, 

culture facilities, health services, green space, government, retail, food services, 

accommodation, life services, resorts, railway stops, public transport stops, airport 

and helipad.  

3.3.5 Data Transformation 

Data that has been properly transformed and verified enhances data quality and 

protects applications from potential landmines, such as incompatible formats, 

unexpected null values. Therefore, in order to better utilize the features, data 

transformation has been applied to OSM Building dataset, Urban Atlas dataset, and 

OSM POI dataset. 

OSM Building dataset. Another feature Volume is created by multiply building 

footprint area and building height. 

Urban Atlas dataset. As it only records the exact area of each category within a grid 

cell, the proportion of corresponding attribute is calculated by simply dividing its area 

with the total area of a grid cell. 

OSM POI dataset. Since each POI has an acting range, POI density instead of POI 

amount is widely used to reflect urban functions and characteristics of a region. As 

each kind of POI has its own influencing area, the density of each POI type was 

calculated within predefined distances of 400 m, 800 m, 1200 m, 1600 m, 2000m, and 

3000m which takes the neighbourhood scale and district scale, 5-15 minutes walking 

distance, 5-15 minutes riding distance into account. Finally, POI density of 17 types 

with 6 different scales are achieved by using ArcPy. 

 

3.4 Data Modeling 

Since machine learning has been shown to be effective for learning and discovering 

patterns in population mapping, several machine learning models are used in this 

study to model the complex and hidden relationships between a large number of 

factor variables and population data, and then to participate in a comparison. Some 
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most often used regression machine learning models are selected including linear and 

non-linear algorithms, such as linear regression, random forest, decision tree 

regression, support vector machine, and K Nearest Neighbors. 

The independent variable in this study is 100m and 50m grid cell level data with 

features, and the dependent variable is its corresponding population density. The 

population mapping model is built in Python using data from 100m grid cells, with 

training samples accounting for 80% of the total dataset. The trained model is then 

applied to gridded population estimation at 100m and 50m grid cell levels, 

respectively.  

3.5 Model Evaluation 

To evaluate the prediction ability and transferability of population mapping models, 

the model evaluation session is divided into two parts: evaluation at the 100m grid cell 

level using test data representing 20% of the total dataset, and another evaluation 

process at the 100m grid cell level comparing the population of 100m grid cells and 

the aggregation results of 50m grid cell estimations.  

Apart from R2, the correctness of each model and dataset is measured using the mean 

absolute error (MAE), mean relative error (MRE), and root mean square error (RMSE). 

The formulas are as follows: 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑃𝑖 − 𝑅𝑖|
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where 𝑃𝑖 is the estimated population of grid i, 𝑅𝑖 represents the census value of grid i, 

and N is the size of the grid cells. 

3.6 Visualization 

Some distinct visualization methods are used to illustrate trends in different 

aggregated levels to facilitate an intuitive and in-depth investigation of the properties 

of the population distribution. Choropleth maps, heat maps, and 3D extrusion, in 

particular, are widely utilized to aid in understanding population spatial trends. 

Different population density areas can be quickly and clearly identified using 
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choropleth maps and heat maps, however 3D extrusion perform better in presenting a 

direct idea of how significant the population disparity is. 
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4 Case Study and Results 

In this section, the modeling and visualization methods are applied in a case study of 

Munich to test the proposed population mapping approach as well as the estimated 

population results visualization. More specifically, the accuracy assessment and the 

comparison of several machine learning models are analysed. Additionally, different 

visualization methods are used in the final output of the results. 

4.1 Study Area 

Munich is chosen as the study area of this study. It is located in the south-east of 

Germany and consists of 25 districts. It covers an area of 310.71 km2 with around 1.56 

million inhabitants in year 20217 ranking as the third-largest city in Germany after 

Berlin and Hamburg. Munich is the seat of the Bavarian administrative area of Upper 

Bavaria and the most densely inhabited and populous municipality in Germany, 

straddling the banks of the River Isar (a tributary of the Danube) north of the Bavarian 

Alps (4,800 people per km2). As a result, urban spatial typologies have come to 

dominate many districts. However, the outlying districts also include low-density 

suburbs and high-rise housing complexes built in the 1960s and 1970s. 

4.2 Data Modeling  

The whole dataset contains 119 columns and 31783 rows in total after data 

preprocessing. 

Before modeling the dataset at 100m Grid Level, feature distribution and multilinearity 

analysis are performed as these are necessary steps to better understand data 

attributes and take measures to process data before selecting suitable models. 

In order to better visualize the result of the analysis, optimal scales of each POI 

category is chosen before visualizing them. In this way, the visuals contain 35 columns 

instead of 119 columns. 

4.2.1 Feature Distribution Analysis 

The mentioned 44 columns are comprised of two parts: the independent variables 

from NTL data (1 column), NDVI data (1 column), Urban Atlas 2012 (12 column), POI 

density in its optimal scale (17 column) and building information from OSM Building 

(3 column), and the dependent variable population data (1 column) from German 

Census 2011.  

                                                 
7 https://en.wikipedia.org/wiki/Munich 
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NDVI and NTL data are stored in the ndvi mean and ntl mean columns, respectively. 

Volume, build area (the area of the building footprint), and MeanHeight are the three 

columns of building information. The Urban Atlas 2012 data is divided into 12 

columns, with field titles beginning with "p." The remaining columns represent POI 

density values with their optimal acting range. As shown in the figure 4.1 below, the 

distribution of most features is highly skewed, particularly the urban atlas and poi 

data. Furthermore, we can see that there are many extreme values throughout the 

dataset, as well as many values close to 0.  

 

Figure 4.1 Distribution of all features 

Because some machine learning algorithms, such as Linear Regression and Gaussian 

Naive Bayes, assume that numerical variables have a Gaussian probability distribution, 

and the current dataset are highly skewed and contains many values close to 0, the 

input data is transformed to have a Gaussian or more-Gaussian distribution to achieve 

better modeling performance. As a result, before utilizing the dataset in the regressor, 

a power transform is implemented. Power transforms, such as the Box-Cox transform 

and the Yeo-Johnson transform, are available in the Scikit-Learn Python machine 
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learning package and provide an automated manner of conducting these 

transformations on data. 

As for the dependent variable, population density is calculated and acts as the y label 

in the modeling session instead of using the absolute amount of populations. Figure 

4.2 shows the distribution of the population density. It is clearly to see that there are 

some extreme values which contains a grid cell with a maximum value up to 98700 

/km2, and three other values greater than 63000/km2. 

 

Figure 4.2 Distribution of population density 

 

Figure 4.3 Information comparison from 
google map 

The overlay analysis was performed to determine whether the extreme population 

density values are outliers. To be more specific, two of the grid cells with the 

aforementioned values were examined by comparing them to a Google map (Figure 

4.3). The grid cell with the light blue color below has 987 people and the one above 

has 628 people, but they have far more residents than other grid cells even though 

they are in the same neighborhood. According to the documentation for the grid cell-

based German Census 2011, the population allocation to grid cells is based on 

address, however, an address may spread out into several 100m*100m grid cells, and 

the population is assigned to one cell rather than several. As a result, we can call these 

extreme values outliers and remove them from our samples. 

4.2.2 Feature Multilinearity Analysis 

Because some regression algorithms, such as linear regression, cannot deal with 

multilinearity, feature multilinearity is also checked when selecting suitable models. 

Specifically, when there is a problem with multicollinearity, least-squares is unbiased 

and variances are huge, resulting in projected values that are far from the actual 

values. The variance inflation factor (VIF) and the correlation between all independent 

variables are computed during the check process.  

1) Correlation matrix 
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Multilinearity is the condition in which many variables are highly connected and 

convey comparable information regarding variation within a particular dataset. In 

Python, this may be performed by using numpy's corrcoef function to obtain a 

confusion matrix of all variables. It may then be presented within a heat map. Figure 

4.4 and 4.5 show the result of all the 34 columns after choosing optimal scales of POI. 

 

Figure 4.4 Correlation matrix of features 

 



 

32 

 

 

Figure 4.5 Connection of features with strong correlation 

It is clear that NDVI has a strong negative collinearity with a variety of other features, 

including NTL, building information, restaurants, and retails. This corresponds to our 

perception, as these are highly urbanized areas with little vegetation. Another feature 

which has negative correlation with others is industrial, commercial area. Because 

census data only considers residents, it is understandable that there are no people 

living in those industrial and commercial areas. Other significant positive collinearities 

include NTL, building information, accommodation facilities, culture facilities, 

education, government, health care, leisure facilities, life services, railway stops, and 

restaurants, all of which are good representatives of urban areas.  

2) VIF 

VIF is a popular method for evaluating regression assumptions, especially 

multicolinearity, and unlike many statistical ideas, its formula is simple: It is equal to 

the ratio of the total model variance to the variance of a single independent variable 

model. Its formula is below:  

𝑉𝐼𝐹 𝑖 =  
1

1 −  𝑅𝑖
2 

where 𝑅𝑖
2 is the regression equation's coefficient of determination in linear regression, 

with Xi on the left and all other predictor variables (all other X variables) on the right. 

VIF ranges from 1 with no upper limit. The numerical value for VIF indicates the 

percentage by which the variance for each coefficient is inflated. For example, if the 

VIF of a feature is 1.8, it means that the variance of a certain coefficient is 80% more 

than what would be expected if there was no association with other variables. If VIF is 

equal to one, the variables are not correlated; if it is between one and five, the 
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correlation is moderate; and if it is greater than five, the variables are significantly 

connected. 

Table 4.1 displays the VIF results for all 35 features. The top 11 features all have a 

value greater than 5, indicating that they are strongly related to others. Area 

proportions of urban fabric, roads, POI density of leisure facilities, accommodation, 

life service facilities, building volume, railway stops, restaurants, and retail, as well as 

NTL, which are indicators of densely populated areas, have extreme values. 

Furthermore, many features have a value between 1 and 5, indicating that they have a 

moderate correlation. 

As a result, we can see that both the correlation matrix and the VIF show that there is 

strong multicollinearity between features that are closely connected within areas with 

high populations, and the number of them is large. Therefore, we must select machine 

learning algorithms that can produce good results even when there are collinerities.  

Table 4.1 VIF of features 

Id Variable Description VIF 

1 p_urban fa Area proportion of Urban fabric 91.18 

2 leis3000 Leisure facility density in 3km range 24.25 

3 acco3000 Accommodation density in 3km range 23.67 

4 life800m Life service facility density in 800m range 10.49 

5 p_Industri Area proportion of Industrial, commercial, public, military and private units 10.43 

6 volume Building volume in a grid cell 10.13 

7 rail2000 Railway stops density in 2km range 7.77 

8 rest400m Restaurant density in 400m range 7.46 

9 build_area Building footprint area in a grid cell 6.14 

10 ntl_mean Mean value of NTL in a grid cell 5.04 

11 reta400m Retail density in 400m range 5.04 

12 p_road & t Area proportion of Roads, port, airport, and associated land 4.87 

13 heal800m Health care facility density in 800m range 4.64 

14 p_Green ur Area proportion of Green urban areas 4.51 

15 MeanHeight Building mean height in a grid cell 4.04 

16 ndvi_mean Mean value of NDVI in a grid cell 3.85 

17 p_farmland Area proportion of Farmland 3.74 

18 p_Sports a Area proportion of Arable land 2.74 

19 spor3000 Sport space density in 3km range 2.41 

20 park3000 Green urban space density in 3km range 2.19 

21 p_forests Area proportion of Forests 1.90 

22 pubt400m Public transport stops density in 400m range 1.89 

23 cult400m Culture facility density in 400m range 1.76 
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24 gove800m Government density in 800m range 1.68 

25 educ400m Education facility density in 400m range 1.49 

26 heli3000 Helipad density in 3km range 1.42 

27 reso400m Resort density in 400m range 1.40 

28 recy400m Recycling facility density in 400m range 1.30 

29 p_Construc Area proportion of Construction sites 1.25 

30 p_Land wit Area proportion of Land without current use 1.22 

31 airp3000 Airport density in 3km range 1.07 

32 p_Isolated Area proportion of Isolated structures 1.06 

33 p_Water Area proportion of Water 1.06 

34 p_Mineral Area proportion of Mineral extraction and dump sites 1.03 

4.2.3 Modeling Results and Evaluation 

Finally, in addition to Random Forest (RF) Regression, four other models are chosen: 

Ridge Regression, Decision Tree Regression, Support Vector Regression (SVR), and K 

Nearest Neighbors (KNN) Regression. 

As mentioned in the literature review, Random Forest is the most often used model in 

statistical population mapping as it has a strong generalization ability, allowing it to 

handle high-dimensional features and effectively improve population spatialization 

accuracy (Breiman, 2001). Therefore, it is chosen in this study.  

Four different models, both linear and non-linear, are chosen to test the performance 

of the RF model and ensure that it is the best among shallow machine learning 

approaches. Ridge Regression8 is a type of linear regression that can analyze datasets 

with multicollinearity since it incorporates L2 regularization. Ridge Regression begins 

by normalizing the variables (both dependent and independent) by subtracting and 

dividing their means by their standard deviations, such that all calculations are based 

on strandardized variables (McDonald, 2009). Decision Tree Regression is the second 

model. To create regression models, Decision Tree employs a tree structure. It splits 

a dataset into smaller and smaller portions as it develops an associated decision tree. 

The resulting result is a tree with leaf and decision nodes9. Support Vector Regression 

is the third (SVR). SVR uses the same premise as Support Vector Machine techniques 

to predict discrete values. The primary principle of SVR is to locate the best fit line 

(hyperplane) with the most points10. Unlike other regression models, which seek to 

                                                 
8 https://en.wikipedia.org/wiki/Ridge_regression 
9 https://www.geeksforgeeks.org/python-decision-tree-regression-using-sklearn/ 
10https://towardsdatascience.com/unlocking-the-true-power-of-support-vector-regression-
847fd123a4a0#:~:text=Support%20Vector%20Regression%20is%20a,the%20maximum%20number%2
0of%20points. 
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minimize the difference between the true and projected values, the SVR seeks to fit 

the best line within a certain range. The threshold value is the distance between the 

hyperplane and the boundary line, making it difficult to scale to datasets with more 

than a few tens of thousands of samples. The KNN regressor, which predicts the 

values of new data points based on 'feature similarity,' is the last one. This implies that 

the new point is assigned a value based on how closely it resembles the points in the 

training set11.  

All of the models shown above were created using the Scikit-Learn Python library. 

Table 4.2 shows the results. We can easily see that RF has the best overall 

performance, with the highest R2 and the lowest mean absolute error and median 

absolute error. Ridge Regression and K Nearest Neighbors Regression outperform 

Decision Tree Regression and Support Vector Regression, while Support Vector 

Regression performs the worst in this case. Its R2 indicates that it learned nothing 

during the modeling process. 

Table 4.2 Evaluation of the applied five models 

Performance Random 

Forest 

Ridge 

Regression 

Decision Tree 

Regression 

Support Vector 

Regression 

K Nearest Neighbors 

Regression 

R2 0.77 0.58 0.49 -0.24 0.59 

Mean absolute error 

(/km2) 
1520 2815 2145 3774 2029 

Median absolute 

error (/km2) 
242 1647 0 452 200 

Max error (/km2) 42112 40086 43900 48947 51050 

 

 To be more specific in the evaluation 

of the RF model, in general, the RF 

regression model can explain the 

observed data well, revealing that the 

model explains 77% of the variability 

observed in the target variable. Figure 

4.6 shows the scatter plot of the 

distribution of true values and 

predicted values, and its trend line. 

While the distribution of real 

population density has a mean value 

of 3790/km2, the regression model's mean absolute error and median absolute error 

                                                 
11 https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html 

 

Figure 4.6 Scatter plot of true and predicted values 
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are acceptable because they are around ½ of the true values. As for the max absolute 

error, since the value evaluated is population density, it means that the maximum gap 

of real and predicted value is 421 people in one 100m*100m grid cell.  

As a result, RF is selected as the model to estimate population density at the 50m*50m 

grid cell level. 

4.3  Population Estimation 

The 50m*50m grid cells were created by dividing 100m*100m grid cells into 50m*50m 

grid cells, and they contain 127132 cells. All of the previous independent variables 

were aggregated to these cells and used as input data, which was then applied to the 

previously trained RF regression model. The estimations are then aggregated to 

100m*100m grid cells and compared with the 31783 true values, providing a larger 

number of test cases to evaluate model performance and investigate the causes of 

prediction errors. 

Figure 4.7 and 4.8 depicts the absolute error distribution of the true and predicted 

values, respectively. The mean absolute error is approximately 29, and the median 

absolute error is approximately 3. While the mean and median true values of the 

population are around 84 and 55, respectively, we can see that the distribution of 

absolute errors is acceptable because 76.4 percent of them are smaller than the mean 

population, and around 73% are smaller than 30, indicating that the estimation result 

is good.  

 

Figure 4.7 Histogram of Absolute Error between true and predicted population 
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Figure 4.8 Histogram of Population true values 

 

Figure 4.9 P Histogram of Error between true and predicted population 

Figure 4.9 depicts the distribution of errors between predicted values and population 

true data. 68% grid cells contain an error between -32.5 and 4.2. Furthermore, the 

majority of grid cells are clearly underestimated, resulting in negative values. We can 

also see that the distribution of negative errors is wider than the distribution of positive 

errors. While 25 percent of grid cells have positive errors less than 40, 21 percent of 

their negative errors are less than -40. Furthermore, the maximum negative error is 

904.8, which is much larger than the positive error of 165, indicating that the trained 

model makes more errors in underestimation as well. 

When we look at the spatial distribution of the error values in figures below, we can 

get more details on how well the trained model predicted.  

 

Figure 4.10 Estimation ABSE and population distribution 
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Figure 4.11 Scatter plot of population true values and estimated errors 

As shown in figure 4.10, it appears that the higher the ABSE, the more people there are 

in a grid cell. Despite the fact that the legend has nine colors, the majority of the grid 

cells in the figure are light purple, medium purple, and dark purple, which correspond 

to low-low, medium-medium, and high-high in the legend. There are also some 

medium-low and low-medium grid cells that are light blue and light blue in color, but 

far fewer than dark and light colored grid cells. Furthermore, we can see that the 

central area of Munich has the most of the darkest grid cells while also having the 

highest population density, and the low-low grid cells are widely distributed in the 

outskirts. It gives us a hint that high density areas have higher estimated errors. 

Looking at the scatter plot of estimated errors and the population (figure 4.11) 

confirms our previous conclusion. Positive error is represented by points above 0; 

negative error is represented by points below 0. We can clearly see that when the 

population approaches 100, the negative errors rapidly increase, implying that there 

are more underestimations in large population areas. 

 

Figure 4.12 Error distribution in no population area 
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Figure 4.13 Histogram of error distribution in no population area 

Another finding from the trained model is that many grid cells have an estimated 

population greater than one after being aggregated to 100m*100m grid cells, despite 

the fact that they have no population area in reality.  

The distribution of estimated population errors and land use in these areas is depicted 

in Figure 4.12. While 76% of grid cells in no population areas have an estimated 

population error of less than one, the majority of cells with larger estimation errors 

after the overlay analysis are in industrial, commercial, and military areas, as well as 

farmland areas. The land use data is from Urban Atlas 2012. According to the 

definition of the German Census 2011, it records residents who have a registered 

address in the city hall, and the registered address typically refers to a residential area 

that corresponds to the urban fabric in Urban Atlas 2012. Therefore, the industrial, 

commercial, farmland, forest, and water areas should not have any residents. 

However, many estimated positive errors still fall into those areas, indicating that the 

trained model cannot perform as well in these areas as reality. Because there are 

constructions (industrial, commercial, public, military and private units in Figure 4.14), 

buildings (Figure 4.15), a high nighttime light index (Figure 4.16), a low NDVI index 

(Figure 4.17), and a high POI density (Figure 4.18 and 4.19), the model may become 

confused in these cases. Furthermore, building features are critical in the regression 

model, as demonstrated by feature importance, and they are widely distributed in grid 

cells with no census data, such as industrial and commercial areas. However, because 

there is no such information in the building dataset, we do not assign any penalty if 

the building is not residential, which may have caused some misunderstanding in the 

model. This corresponds to the distribution of the errors, as the majority of them fall 

under the orange colored land use, which is industrial and commercial. As a result, we 

can conclude that the model cannot recognize population areas when there are 

numerous artificial constructions especially commercial areas. 
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Figure 4.14 Land use of no population area in Munich 

 

Figure 4.15 Building distribution in Munich 

 

Figure 4.16 NTL index distribution in Munich 

 

Figure 4.17 NDVI index distribution in Munich 

 

Figure 4.18 Retail POI density distribution in Munich 

 

Figure 4.19 Sport POI density distribution in Munich 

Furthermore, when the sum of the estimations is compared to the true population, 

there is a significant difference, indicating that the population is vastly 

underestimated. The spatial pattern of the estimations and the true values, however, 

are similar (Figures 4.20 and 4.21), indicating that the population values obtained by 
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the trained model are not reliable but their relationship is. As a result, to obtain the 

building population, first recalculate population values based on the estimated 

relationship and true data, and then allocate the results to the building level based on 

building volume. 

 

Figure 4.20 Spatial distribution of predicted population 

 

Figure 4.21 Spatial distribution of true population 
from Census 2011 

4.4 Population Visualization 

Following the estimation results, population visuals are created at the 100m*100m 

grid cell and building levels using ArcGIS and Kepler.gl (https://kepler.gl/), a free 

website for creating interactive maps.  

4.4.1 100m Grid Cell Level 

The 100m*100m grid cell level visuals are created based on real data, the German 

Census 2011. As there is lots of criticism on isarithmic map of population distribution, 

we just other six methods here for the visualization, including choropleth map, 

dasymetric map, dot map, proportional symbol map, heat map, and 3D hexbin map, 

from Figure 4.22 to Figure 4.27. 

Table 4.3 below lists the advantages and disadvantages of each method used in this 

study to help you compare the visualization results more effectively. As we can see, 

each of them has advantages and disadvantages. As a result, selecting the best one 

is dependent.  

Table 4.3 Pros and cons of the applied visualization methods at 100m*100m grid cell level 

Method Pros Cons 

Choropleth map 

(Figure 4.22) 

• Use grid cells as the primary unit. 

• Color levels represent a range of 

values, giving the audience a quick 

• Class sizes need to be carefully chosen. 

https://kepler.gl/
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impression of how many people are 

present. 

• Groupings can be flexible in order to 

accommodate a wide range of values. 

• Effective for gaining insights into 

broad patterns. 

• Assume that the entire unit has the same 

value. 

• It can be difficult to tell different shades 

apart. 

Dasymetric map 

(Figure 4.23) 

• Effective in conveying a large amount 

of information to the audience, such 

as the relationship between 

population distribution and nature.  

• Much closer to realistic population 

distribution than other methods. 

• More difficult to create. 

Dot map (Figure 

4.24) 

• It is easier to demonstrate variation in 

distribution. 

• Work well in black and white when 

color is not available. 

• If the dot has been aggregated, it is 

difficult to determine the exact number. 

• Under the sample size, it is impossible 

to see the distribution of populations. 

Proportional 

symbol map 

(Figure 4.25) 

• Excellent for illustrating differences 

between locations. 

• Simple to recognize distribution 

patterns. 

• It is difficult to read its value if the unit 

is too small because their symbols may 

overlap. 

Heat map 

(Figure 4.26) 

• Effective and efficient for gaining 

insights into spatial patterns such as 

clusters and population hotspot areas. 

• It is impossible to obtain true value. 

• It is difficult to define an appropriate 

radius. 

3D hexbin map 

(Figure 4.27) 

• Useful for providing a direct 

impression of value variations to the 

audience. 

• Greater efficiency in large areas with 

high variation. 

• More hardware support is required. 

• It is difficult to add additional 

information, such as city district. 

 

Figure 4.22 Choropleth map of population distribution in 100m*100m grid cells of Munich 
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Figure 4.23 Dasymetric map of population distribution in 100m*100m grid cells of Munich 

 

Figure 4.24 Dot map of population distribution of Munich 
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Figure 4.25 Proportional symbol map of population distribution of Munich 

 

Figure 4.26 Heat map of population distribution of Munich 



 

45 

 

 

Figure 4.27 3D hexbin map of population distribution of Munich 

4.4.2 Building Level 

Building level estimation is obtained by allocating 50m*50m grid cell level estimation 

based on building volume. Choropleth maps and 3D mapping techniques are used to 

visualize the results. The results are depicted in the figures below. 

 

Figure 4.28 Choropleth map of population distribution at building scale of Munich 
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Figure 4.29 3D hexbin map of population distribution at building level of Munich 

 

Figure 4.30 3D hexbin map of population distribution at building level of Munich (part) 

As can be seen in the figures above, the choropleth map preserves the architectural 

texture of Munich and can easily display population values within a specific range 

while displaying the general pattern of population spatial distribution at the building 

scale. As for the 3D mapping method, we use 3D hexbin instead because it requires a 

lot of hardware support if we choose to visualize it by its original shapes. As previously 

stated in visualization at the 100m*100m grid cell level, 3D mapping provides a more 

direct impression of the spatial pattern than choropleth maps, which have a greater 

visual impact. 
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5 Evaluation 

Because chapters 3 and 4 have already explained the approach used in this study, this 

chapter will only focus on the remaining research questions. 

5.1 Optimal Scale 

RQ2: What is the optimal scale for each variable? 

Because only POI data is calculated as density information, the optimal scale 

discussion is limited to the POI dataset. POI collected from OSM were reclassified into 

17 categories during data preparation, including transportation, retail, restaurants, and 

lodging, among others. Later, 6 different scales were confirmed based on the 

neighborhood design principle in urban planning. These distances are as follows: 

400m, 800m, 1200m, 1600m, 2000m, and 3000m. The density of retail points in those 

acting ranges is depicted in Figure 5.1. We can clearly see that there is a significant 

difference in various acting ranges, especially when the range exceeds 1200m, which 

increases the influencing area of the retail POI significantly. As a result, we can say 

the optimal scale discussion is critical when we use different types of POI information. 

 

400m 

 

800m 
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1200m 1600m 

 

2000m 

 

3000m 

Figure 5.1 Retail POI density in six different ranges 

The final input data used in the modeling process is the raster aggregation of these 

density values to previously obtained grid cells. The final input data contains 102 fields 

due to the 17 categories and 6 scales. 

We use variable importance to evaluate the optical scale of the corresponding 

category in the POI data because variable importance can directly tell how relevant 

and important a feature is to the model.  

In Random Forest algorithm, there is a built-in function to get the feature importance. 

Since Random Forest is tree based, it had a set of internal nodes and leaves. The 

selected feature is used to make decision on how to divide the data into separate sets. 

In regression model, the feature for internal nodes are selected based on how it 

decreases the impurity of the split. The average over all trees in the forest is the 

measure of the feature importance. This method can be directly achieved in calling 

rf.feature_importance_ function in the Scikit-Learn package.  

Table 5.1 shows the result of choosing the scale with the highest importance from the 

six options. They differ significantly on the corresponding optimal scale, but there is 

still some regularity. For the majority of the categories, the optimal scale is within an 

800m acting range, which is about a 10-minute walk. This means that these categories 

are more relevant at the neighborhood level than at the district level, and they serve as 

citizens' daily life infrastructure. Other categories, such as lodging, government, and 

leisure facilities, have a much larger influencing area that corresponds to our daily 

activities. 

As a result, when applying POI data to population mapping, it is obviously critical to 

consider the difference in acting range. 
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Table 5.1 POI category and its optimal scale 

Id Category Optimal Scale 

1 Accommodation  3000m 

2 Airport  3000m 

3 Culture Facilities 800m 

4 Education Facilities 400m 

5 Government  3000m 

6 Health Care Facilities 400m 

7 Helipad  3000m 

8 Leisure Facilities  3000m 

9 Life Services 400m 

10 Park  3000m 

11 Public Transport Stops 400m 

12 Railway Stops 1600m 

13 Recycling Facilities 400m 

14 Resorts  800m 

15 Restaurant & Beverages 400m 

16 Retail  400m 

17 Sport Area 400m 

5.2 Feature and Data Importance 

RQ3: Does certain data improve the accuracy in population mapping? 

1) Feature Importance 

As previously stated, because feature importance can directly tell how relevant a 

feature is in the weight layer, it is discussed here to identify the dataset's important 

variables and determine which one improves population mapping accuracy. 

Figure 5.2 depicts the top 15 features in the trained Random Forest model as 

determined by the built-in Random Forest algorithm in the Python library. We can 

easily see that the most important independent variable in the dataset, with a value 

of approximately 40%, is urban fabric. In this study, urban fabric is taken from the 

Urban Atlas 2012, and it refers to residential areas with densities ranging from 10% 

to 80%. Because our goal is to estimate residents, it is certain that citizens live in 

these residential areas. The next three significant variables are all about building 

information, implying that building data is critical for estimation. This is consistent 

with our assumption that residents live in rooms, and that the larger the volume of 
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the building, the more people it may house. Furthermore, sport areas, railway stops, 

recycling facilities, roads, education facilities, restaurants, resorts, and life servers 

are examples of POI data that are relevant to our daily lives. Since we are using 

Munich as the study area, these variables may differ in different use cases because 

people in different regions have different daily routines. NTL and NDVI are also 

important variables in this context, which corresponds to the meaning of these two 

indexes. 

 

Figure 5.2 Top 15 important features 

2) Data importance 

Several datasets with different source combinations are applied in the Random Forest 

model to evaluate the importance of each dataset and see if any of them help to 

improve the accuracy of the final result. In particular, input data without building 

information (OSM Building), land use information (Urban Atlas 2012), and so on are 

tested, and the results are shown below in Table 5.2: 

Table 5.2 Results of different datasets 

Attribute Datasets used R2 Mean absolute 

error (/km2) 

Median absolute 

error (/km2) 

Max error (/km2) 

--- 

NTL 

NDVI 

Urban Atlas 2012 

OSM Building 

OSM POI 

0.767 1520 242 42112 

Without building 

information 

NTL 

NDVI 

Urban Atlas 2012 

OSM POI 

0.720 1753 300 36382 

Without land use 

data 

NTL 

NDVI 

OSM Building 

0.703 1854 393 41794 
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OSM POI 

Without NTL 

data 

NDVI 

Urban Atlas 2012 

OSM Building 

OSM POI 

0.767 1517 232 42165 

Without NDVI 

data 

NTL 

Urban Atlas 2012 

OSM Building 

OSM POI 

0.766 1518 240 41890 

Without POI 

data 

NTL 

NDVI 

Urban Atlas 2012 

OSM Building 

0.708 264 1706 39606 

 

As shown in the table above, when the building information, land use data, and POI 

data are removed, the R2 decreases significantly when compared to the original value 

of 0.768. The overall errors increased the most when there was no land use data, 

indicating that land use is the most important information in population mapping. It's 

understandable because land use provides basic information about where people are 

located, serving as a fundamental mask. 

The second crucial dataset is OSM POI, which tells us which areas are more densely 

populated, assuming that dense areas have more infrastructure and facilities. The 

next important dataset is OSM Building, which differs from the previous result in that 

building information is the second most important feature after residential area 

proportion. 

When there is building data, land use data, and POI information in the input dataset, 

the NTL and NDVI datasets do not contribute much. However, because the variables 

are multicollinear, this does not imply that they are useless. As a result, it may not be 

the perfect one to reflect which area has higher population density if we have a more 

precise dataset, such as OSM POI with a higher spatial resolution, but it is still a good 

one if a better dataset is not available.  

5.3 Spatial Heterogeneity and Data Characteristics 

RQ4: Do they perform same level of accuracy in different areas? 

As previously stated in Chapter 4.3, our estimation tends to overestimate low-

population density areas while underestimating high-population density areas, which 

indicates that the level of accuracy differs in different areas. This can be related to a 

lack of spatial heterogeneity information. The estimation is hampered by an averaging 
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effect imposed by the calculation of global parameters such as regression 

coefficients, which hides intrinsic heterogeneity in population distribution features, 

which expresses itself notably at population density extremes (Cockx & Canters, 

2015).  

 

Figure 5.3 Spatial auto correlation report 

The spatial autocorrelation report from ArcGIS can help with the further identification. 

ArcGIS Pro's spatial autocorrelation tool compares feature similarity based on both 

feature locations and feature values at the same time. It determines whether the 

pattern displayed is clustered, scattered, or random given a collection of 

characteristics and an associated attribute12. The tool computes the Moran's I index 

value as well as a Z score and p-value to assess the index's significance. A Moran's 

                                                 
12 
https://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=How%20Spatial%20Autocorrelat
ion:%20Moran%27s%20I%20(Spatial%20Statistics)%20works#:~:text=In%20general%2C%20a%20Mor
an's%20Index,many%20possible%20versions%20of%20random. 
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Index bigger than 0 refers to positive auto correlation while smaller than 0 means 

negative auto correlation. In our result (Figure 5.3), the Moran’s index is around 0.6 

with a p-value of 0 and Z score about 148, indicating that the clustering patter of these 

errors exist and there is a less than 1% likelihood that this clustered pattern could be 

the result of a random choice. As a result, it confirms our previous findings and 

statements, there are clear patterns of overestimations and underestimations in the 

neighbourhood area. Therefore, the dataset does not have the same level of accuracy 

in different areas. 

Nevertheless, there are special problems lying in NTL data, and NDVI data. More 

information is presented when we overlay the significant features picked from the 

feature significance stage with the distribution of absolute error, providing us insights 

on the dataset's individual performance in different areas. 

Aside from problems in high population density locations, NTL data does not operate 

well in the surrounding areas of densely populated regions, as seen in Figure 5.4, 

where the majority of the substantial absolute errors reside in the light grey area and 

the border of white areas. This is consistent with previous study, which found that the 

overglow or blooming effect of light is one of the key constraints in estimating 

population density due to light reflection from nearby locations and the atmosphere 

(Yang, Yue, & Gao, 2013). As a result, it is preferable to employ auxiliary data such as 

land use data in addition to NTL data. 

As illustrated in Figure 5.5, the majority of the errors fall in the white area of the NDVI 

data, which refers to low vegetation regions, namely construction areas, indicating 

that the NDVI dataset works best in low population density areas. 
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Figure 5.4 Overlay of ABSE and NTL dataset 

 

Figure 5.5 Overlay of ABSE and NDVI dataset 
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5.4 Model Performance 

RQ5: Is the result derived from machine learning methods has reasonable spatial 

details? 

Random Forest has a good performance at 100m*100m grid cell level gridded 

population mapping by evaluating its R square and mean absolute error, as stated in 

Chapters 4.2.4 and 4.3, as well as a good result at 50m*50m grid cell level. To learn 

more about the model's performance, we used a scatter plot and a choropleth map to 

display the predicted and true values. 

The scatter plot in Figure 5.6 shows that the R square between predicted and true 

values is 0.57, indicating that the achieved regression model explains 57% of the 

variability observed in the target variable. Though not perfect, given that we are testing 

the model in the entire area using 50m*50m grid cells rather than a small portion of 

100m*100m grid cells as in previous studies that used training and testing split at the 

same level, it is adequate in this context. 

 

Figure 5.6 Scatter plot of true and predicted population 

As shown in Figure 4.20 and Figure 4.21 previously, though the estimated population 

is far fewer than the true values, it is clear that the spatial pattern of the population 

distribution has been learned by the regression model as the two map almost show 

the same pattern though there are some differences in detail. We can see that the 

central part of Munich is largely overestimated by the regression model. Moreover, the 

predicted values have a tendency to be distributed in patches in medium-density 

areas, but these areas are actually densely packed with cells in low-density intervals.  

In general, the result derived from machine learning methods has reasonable spatial 

details. Rather than population value itself, the population spatial distribution pattern 

can be well obtained, which helps us get a good population mapping result at a finer 

scale in another way while also recognizing feature characteristics.  
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5.5 Data Inconsistency and Quality Problem 

1) Reference Year Difference 

Six datasets were used in this study: The German Census 2011, MODIS NDVI data 

(2014), VIIRS NTL data (2014), Urban Atlas 2012, OSM POI (2022), and OSM Building 

(2022). They do not, however, have the same reference year due to availability. The 

MODIS NDVI and VIIRS NTL data were collected in 2014 as the earliest available year 

is 2014. Urban Atlas is available in three years: 2006, 2012, and 2018, so we chose 

2012 as it is the closest one to 2011. Because OSM information can be updated at any 

time by any volunteer, the downloaded data is always current. As a result, these 

inconsistencies cannot be eliminated, and some errors may have occurred.  

2) Inconsistency in Census Data and Land Use Data 

The biggest errors coming after the referencing year difference are that more than 350 

no population grid cells fall into residential area (shown in Figure 5.7 with light blue 

color), and around 100 grid cells with population data lie in non-residential area 

(shown in Figure 5.8 with light blue color), such as industrial, commercial, public and 

private units.   

 

Figure 5.7 Overlay of land use and no population area 
fall into residential area 

 

Figure 5.8 Overlay of land use and grid cells with 
population fall into non-residential area 

 

3) Inconsistency in Land Use Data and Building Data 

Figure 5.11 shows that there is inconsistency in both land use and building data. In 

Urban Atlas 2012, over 4000 buildings (in light blue color in Figure 5.9) are located in 

no-construction areas, which include forest, farmland, and water.  
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Figure 5.9 Overlay of land use and OSM Building 

 

Figure 5.10 Overlay of land use and grid cells with 
population fall into non-residential area 

4) Inconsistency in Land Use Data and NDVI Data 

Many urban fabric areas in the Urban Atlas 2012 dataset are actually high vegetation 

regions in the NDVI dataset, as shown in the red circle in Figure 5.10, which is 

obviously inconsistent. 
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6 Conclusion 

6.1 Summary 

This study proposed a fine-scale population mapping framework based on machine 

learning by combining five different free geo datasets, including remotely sensed and 

semantic products. Rather than disaggregating census data, the final product at the 

building scale is based on the allocation of 50m*50m grid cell level estimation from 

five datasets and the weighted layer from machine learning. We began by aggregating 

and transforming all of the features from five datasets into 100m*100m grid cells, the 

smallest unit of German Census 2011. Then, after training the dataset with five 

different machine learning models, we chose the best one to get the weight layer. 

Following that, 500m*50m grid cells with all of the aggregated features are combined 

with the weight layer to generate population predictions, which are then subjected to 

error distribution analysis. Subsequently, buildings are assigned the 50m*50m grid 

cell level estimation based on building volume. Finally, various visualization 

techniques are used to visualize the census data at the 100m*100m grid cell level and 

the estimations at the building scale. 

Furthermore, in the end, a wide range of results analysis is performed, including 

optimal scale for different POI categories, feature importance, dataset importance, 

spatial heterogeneity, data characteristics, machine learning performance, and data 

inconsistency. 

The optimal scale for each POI class, as well as the top 15 relevant variables in the 

weight layer, are discovered using the initial function Feature Importance of Random 

Forest algorithm in Scikit-Learn Python library. According to the findings, most POI 

categories (such as culture facilities, education facilities, and retails) are more 

relevant at the neighborhood level than at the district level, with 400m and 800m being 

more relevant than 2000m and 3000m. However, some categories, such as 

accommodation, parks, and leisure facilities, have a much larger influencing area, with 

a radius of 3000m. As a result, when using POI data, we must consider various acting 

ranges. The top five important features in the weight layer are urban fabric, building 

volume, building footprint area, building height, and sporting area facility density in 

neighbourhood area. The first two has coefficients greater than 20%. Because there 

is much collinearity in all of the 119 features, especially in densely populated areas, 

land use, building, and POI datasets are more important in the weight layer than NTL 

and NDVI datasets, but the first three datasets have much higher spatial resolution 

than the latter two, thus contributing more to the weight layer. Moreover, estimation 

errors tend to cluster, with overestimations common in low population density areas 

and underestimations common in high population density areas, indicating that the 
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dataset performs differently in different areas. NTL data, in particular, does not 

perform well in high population density areas, whereas NDVI data performs better in 

low population density areas. In general, machine learning aids in the recognition of 

significant features in population distribution; however, because this approach relies 

on multi-sourced open data, it encountered many inconsistency issues, which may 

have resulted in significant estimation errors. 

6.2 Discussion 

6.2.1 Achievements 

In general, the research objectives and research questions were met and widely 

discussed by evaluating the results from various perspectives. 

A completed framework for population mapping at 50m*50m grid cell level and 

building scale has been proposed and evaluated by integrating multi-sourced open 

data with a machine learning method. Random Forest was found to be the best model 

in population estimation when compared to the other four shallow machine learning 

algorithms: Ridge Regression, Decision Tree Regression, Support Vector Regression 

(SVR), and K Nearest Neighbors (KNN) Regression. Following that, various thematic 

visualization techniques were applied to population visualization at the 100m*100m 

grid cell level and building scale, which was then compared to determine the 

advantages and disadvantages of various visualization methods. 

Furthermore, optimal scales for each POI category are identified, indicating that the 

acting range difference between POI categories should be considered if it is used in 

neighborhood environment investigation. The importance of features and datasets 

has also been assessed, with the result that OSM POI, OSM Building, and land use data 

(Urban Atlas 2012) help to improve accuracy, implying that datasets with higher 

spatial resolution and more semantic information are more significant in population 

mapping than other remotely sensed products, such as NTL data and NDVI data. 

Moreover, because estimation errors are highly clustered, these variables do not 

perform at the same level of accuracy in different population density areas. However, 

as it shows the similar spatial pattern as true value, it indicates that machine learning 

can have a good result of pattern recognition instead of population value alone. 

Therefore, it demonstrates that the machine learning method is important in 

population mapping because it can help us get a good population distribution pattern 

at a finer scale while also recognizing feature characteristics. 
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6.2.2 Limitations 

The whole study encounters many limitations which are easy to point out from a 

hindsight. 

1) Limitations in Methodology 

Deep learning has been shown to be more capable than shallow machine learning at 

acquiring and learning multisource data, achieving higher quality population 

spatialization (Zhao, Liu, Zhang, & Fu, 2020), and capturing the spatial autocorrelation 

properties of the learned grid population via convolutional operations (Robinson, 

Hohman, & Dilkina, 2017). However, in this study, only shallow machine learning 

algorithms were used, which ignored the spatial heterogeneity discussion during the 

modeling process. Otherwise, a clearer spatial heterogeneity analysis result can be 

obtained. 

2) Limitations in Study area 

Due to limited hardware support, this study only includes Munich city as a study area, 

with no rural or suburban areas. The majority of grid cells are either too densely 

populated or very sparsely populated. According to the German Census 2011, the 

overall population density of grid cells in population area is 8643/Km2, while the rest 

of the grid cells have a density of 0, with a general population density in Munich of 

4254/Km2. As a result, the distribution of population density is not as broad as 

expected, preventing a good discussion of spatial heterogeneity as well as an 

examination of the performance of variables in different areas. 

3) Limitations in Data Uncertainty Discussion 

Although the rise of data-driven science and advanced computational capacity has 

enabled us to gain insights from various datasets and population mapping, we must 

acknowledge that much of the data explored is inherently uncertain due to limited 

knowledge, randomness and indeterminism, and vagueness (Chuprikova, 2019). A 

number of experiments in the population mapping field demonstrated that remote 

sensing data, such as land use and NTL data, cannot be used to conduct accurate 

population mapping at a fine scale, particularly in a complex urban environment 

(Bakillah, Liang, Mobasheri, Jokar Arsanjani, & Zipf, 2014). Therefore, it is critical to 

account for uncertainty when integrating big data into fine-scale population mapping. 

4) Limitations in True Population Data Obtain 

The majority of population mapping research uses census data, which refers to 

residents, as well as this study. Our modeling process predicted populations in areas 



 

61 

 

that did not appear to have residents based on census data documentation, such as 

commercial areas. However, due to data inconsistency in census and land use data, 

there are samples with populations that fall into non-residential areas, which could be 

true in most realistic cases. Because the spatial unit is so small in finer scale 

population mapping, we must have a complete understanding of true population data 

characteristics. 

6.2.3 Future Research Prospects 

Future research could go in the following directions, based on the limitations stated: 

Deep learning methods and algorithms can be used to overcome the spatial auto 

correlation problem, or the study area can be expanded because spatial auto 

correlation is much stronger at the local scale and in smaller areas. 

Conduct the research in a larger study area with a variety of urbanization patterns, 

such as urban, suburban, and rural areas. 

Integrate data uncertainty analysis, which includes embedding statistical methods in 

the interactive environment of visual analytics to assist analysts in understanding and 

exploring data, as well as modeling uncertainty in the interim.  
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8 Appendix 

8.1 Reclassification of OSM POI 

Table 8.1 Explanation of reclassification of OSM POI 

Id Classes after reclassification Classes aggregated 

1 recycling facility recycling_glass, waste_basket, recycling_paper, recycling,  

recycling_clothes, recycling_metal 

2 education facility school, university, college, kindergarten 

3 leisure facility theme_park, doityourself, nightclub, cinema 

4 sport area playground, swimming_pool, sports_centre 

5 culture facility library, museum, theatre, artwork, arts_centre 

6 health care facility dentist, hospital, clinic, doctors, pharmacy, chemist, optician, 

veterinary, nursing_home 

7 park dog_park, garden_centre, park, camp_site, picnic_site 

8 government town_hall, police, embassy, courthouse 

9 retail Supermarket, gift_shop, market_place, sports_shop, beauty_shop, 

bicycle_shop, kiosk, shoe_shop, mobile_phone_shop,  

furniture_shop, computer_shop, outdoor_shop, bookshop, mall,  

butcher, clothes, toy_shop, jeweller, florist, greengrocer, 

caravan_site, video_shop, car_dealership, stationery, 

department_store  

10 restaurant & beverages restaurant , bakery, beverages, bar, fast_food, biergarten, cafe,  

food_court 

11 accommodation hotel, guesthouse, hostel 

12 life services hairdresser, car_wash, bank, laundry, post_box, post_office, 

fire_station, car_rental, community_centre, toilet, travel_agent, 

newsagent, atm, water_works  car_sharing, bicycle_rental 

13 resorts castle, public_building, attraction, tower, ruins, observation_tower, 

monument, viewpoint, tourist_info, memorial 

14 airport airport 

15 public transport stop bus stop, tram stop 

16 railway stop railway station, railway stop 

17 helipad helipad 

Note: these classes have been deleted as they are not useful in this study from personal understanding: camera_surveillance, 

vending_cigarette, comms_tower, bench  vending_machine, shelter, pitch, vending_parking, convenience, vending_any, 

telephone, wayside_shrine, fountain, drinking_water, hunting_stand, wayside_cross, water_well, track . 



 

70 

 

 

Figure 8.1 OSM POI of Munich after reclassification 

Data source: OpenStreetMap 

 

8.2 Reclassification of Urban Atlas 2012 

Table 8.2 Explanation of reclassification of Urban Atlas 2012 

Classes after reclassification Classes aggregated  

Construction sites Construction sites 

Farmland  Arable land (annual crops) 

Permanent crops 

Pastures 

Complex and mixed cultivation patterns 

Orchards at the fringe of urban classes 

Forests Forests 

Herbaceous vegetation associations 

Green urban areas Green urban areas 

Industrial, commercial, public, military and private units Industrial, commercial, public, military and private units 

Isolated structures Isolated structures 

Land without current use Land without current use 
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Mineral extraction and dump sites Mineral extraction and dump sites 

Sports and leisure facilities Sports and leisure facilities 

Urban fabric Discontinuous very low density urban fabric (S.L.<10%) 

Discontinuous low density urban fabric (S.L.10-30%) 

Discontinuous medium density urban fabric (S.L.30-50%) 

Discontinuous dense urban fabric (S.L.50-80%) 

Continuous dense urban fabric (S.L.>80%) 

Water Water 

 

 

Figure 8.2 Urban Atlas 2012 of Munich after reclassification 

Data source: https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012 
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