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1. Motivation
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 Fine-scale population product is
essential for many use cases

 The collection of census data is
time-consuming and expensive

 Census data is often based on
administrative units

Other alternatives:
e.g. Gridded 
population mapping

• Insufficient model evaluation

• Variable optimal scales and spatial
heterogeneity are rarely discussed

• Building level population mapping
products are not rich

Map the population at fine-scale while optimizing the scale for corresponding 
variables and holding a discussion on spatial heterogeneity and data characteristics.

German Census 2011 provides gridded results at the 1km and 100m levels 



2. Research Identification

 Research Objectives

Fine-scale Machine Learning Based Population Mapping: A Case Study of Munich4

 Research Questions

1) Population estimation at building level

2) Investigate the significance and 
influence of various datasets

3) Verify if machine learning helps in 
population mapping

What is the approach for population mapping at building level?

Does certain data improve the accuracy of population 
mapping?

Do they perform same level of importance in different areas?

Is the result derived from machine learning methods has 
reasonable spatial details?

What is the optimal scale for each variable?



3. Related Work
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Perspective Category Summary

Methods for Population 
Mapping

Areal Interpolation

Without ancillary data: assumes evenly distribution

• Overcome multicollinearity, has strong generalization ability, allowing it to 
handle high-dimensional features and effectively improve population 
spatialization accuracy (Stevens, Gaughan, Linard, & Tatem, 2015).

• Outperform shallow machine learning models like RF but difficult to obtain fine-
scale population training samples  (Robinson, Hohman, & Dilkina, 2017).

With ancillary data: dasymetric mapping, involves 
weights calculation from ancillary data

Statistical Modeling

Conventional methods (Linear regression, etc.)

Machine learning (Random Forest, etc.)

Deep learning (CNN, etc.)

Integration of Ancillary 
Data for Population 
Mapping

Remotely Sensed 
Products

Land cover/ use data

• Big geo data has higher temporal and spatial resolution thus complementing the 
lack of semantic information which can indicate various human activities with a 
more precise location, and widely used while in participation of remotely sensed 
products (Sutton, Elvidge, & Obremski, 2003).

• Most studies ignored the fact that different types of POIs have varying degrees 
of attractiveness to the population, and instead created quantity/density metrics 
based on POI data within a fixed same range (Cheng, Zhang, & Huang, 2022).

• Some of the datasets used are not freely accessible.

Night-time light (NTL) imagery

Geospatial Big Data

Volunteered Geographic Information (OSM POI, etc.)

Location Based Data

Population Mapping at Building Level • Few studies.

Population Distribution 
Visualization

Choropleth map, dasymetric map, proportional symbol map, dot map, 
cartogram, isarithmic map, heat map, 3D map

• Isarithmic map in population distribution receives a lot of criticisms as population 
distribution does not fluctuate continuously (Nordbeck & Rystedt, 1970). 

• Cartogram is more useful in small scales, like global level, country level.
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Remotely sensed data Semantic data

Urban AtlasNTL data NDVI data POI

100m*100m grid cells 
with features & population

Aggregation

Building data

Data preprocessing

50m*50m grid cells 
with features

ReclassificationFiltering Referencing Transformation

Populaion modeling
at 100m grid cell level

Demographic info of grid cells (Census 2011)

Population estimation
at 50m grid cell level

Population  assignment
at building level

Model evaluation, comparison, 
& analysis

Result assessment & analysis

Population visualization

Data collection

Data training
(100m*100m  grid cells)

Test data Training data

Data prediction
(50m*50m grid cells)

Data allocation
(Building scale)

Data visualization
(100m*100m grid cell level & Building scale)

Data preparation
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Type Official Name Data Provider Reference 
Year

Population German Cencus 2011 Federal Statistical Office 2011

Administrative Units
Verwaltungsgebiete 1:250 000 (kompakt), Stand 
31.12. (VG250 31.12.)

Federal Agency for Cartography and 
Geodesy

2011

Geographical Grids for 
Germany

DE_Grid_ETRS89-LAEA_100m
2018DE_Grid_ETRS89-LAEA_500m

DE_Grid_ETRS89-LAEA_1km

NDVI data
MOD13Q1.061 Terra Vegetation Indices 16-Day 
Global 250m

NASA LP DAAC at the USGS EROS Center 2014

NTL data
VIIRS Stray Light Corrected Nighttime Day/Night 
Band Composites Version 1

Earth Observation Group, Payne Institute 
for Public Policy, Colorado School of Mines

2014

Land use CORINE Land Cover 5 ha, as of 2018 (CLC5-2018)
Federal Agency for Cartography and 
Geodesy

2018

Urban Atlas 2012 - München Copernicus EU Land Monitoring Service 2012

Points of Interest OpenStreetMap data
OpenStreetMap contributors

Building attributes OSM Building 2022

Building infoPOI data

Urban AtlasNighttime light data NDVI data

Population densityData 
collection

Data 
filtering

Data 
referencing

Data 
reclassification

Data 
transformation

Data 
aggregation

POI & 
Urban Atlas 2012

POI

Overview of Dataests Used in This Study

Part of the table after data preprocessing
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Data 
modeling

Model 
evaluation

Population 
visualization

Use five models to train and choose the best one

• Random Forest Regression
• Ridge Regression
• Decision Tree Regression

• Support Vector Regression 
• K Nearest Neighbors (KNN) 

Regression

• R2

• mean absolute error (MAE)
• mean relative error (MRE)

𝑀𝐴𝐸 =
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• Choropleth map
• Dasymetric map
• Dot map

• Proportional symbol map
• Heat map
• 3D hexbin map 
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 Study area: Munich

 31783 100m*100m grid cells

 1.35M residents (Census 2011)

 Population density: 4254 /Km2 

(Census 2011)

Munich population distribution at 100m gridded level of Census 2011



5. Case Study & Results

 RF has the best overall performance.

10

Data modeling & evaluation (100m*100m grid cell level)

Performance Random 
Forest

Ridge 
Regression

Decision Tree 
Regression

Support Vector
Regression

K Nearest Neighbors 
Regression

R2 0.77 0.58 0.49 -0.24 0.59

Mean 
absolute 
error (/km2)

1520 2815 2145 3774 2029

Median 
absolute 
error (/km2)

242 1647 0 452 200

Max error 
(/km2)

42112 40086 43900 48947 51050

Evaluation of the applied five models

Scatter plot of true and predicted values (RF)

Histogram of population density



 76.4% are smaller than the mean population, indicating 
that the estimation result is good.

5. Case Study & Results
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Data estimation & evaluation (50m*50m grid cell level)

Histogram of Absolute Error
Mean: 28.9
Median: 2.5

Estimation Absolute Error and population distribution

 High density areas have higher estimated 
errors.



5. Case Study & Results

 The population values obtained by the trained model are not reliable but their relationship is.

Fine-scale Machine Learning Based Population Mapping: A Case Study of Munich12

Data estimation & evaluation (50m*50m grid cell level)

Spatial distribution of predicted population Spatial distribution of true population from Census 2011
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Data allocation to buildings & visualization

Weight of each building in a 
50m*50m grid cell based on 
building volume

50m*50m grid cell weight
calculation based on same level
prediction results

Population of each building

Population recalculation of
50m*50m grid cells

Allocation of census data to
50m*50m grid cells based on its
weight

Weight calculation of each building

Choropleth map of population distribution at building scale of Munich
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Data allocation to buildings & visualization

Weight of each building in a 
50m*50m grid cell based on 
building volume

50m*50m grid cell weight
calculation based on same level
prediction results

Population of each building

Population recalculation of
50m*50m grid cells

Allocation of census data to
50m*50m grid cells based on its
weight

Weight calculation of each building

3D hexbin map of population distribution at building level of Munich
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Data visualization (100m*100m grid cell level)

Choropleth map Dasymetric map Dot map

Proportional symbol map Heat map 3D hexbin map



5. Case Study & Results
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Responding to research questions

 RQ1: What is the approach for fine-scale population 
mapping?

 RQ2: What is the optimal scale for each variable?

 For the majority of the categories, the optimal scale is within an 
800m acting range, which is about a 10-minute walk. 

 RQ3: Does certain data improve the accuracy in 
population mapping?

 Land use is the most important information in population 
mapping, following by POI.

Category Optimal Scale Category Optimal Scale
Accommodation 3000m Park 3000m

Airport 3000m
Public Transport 

Stops
400m

Culture Facilities 800m Railway Stops 1600m
Education Facilities 400m Recycling Facilities 400m

Government 3000m Resorts 800m

Health Care Facilities 400m
Restaurant & 

Beverages
400m

Helipad 3000m Retail 400m
Leisure Facilities 3000m Sport Area 400m

Life Services 400m

Results of different datasets

Attribute Datasets used R2 Mean absolute 
error (/km2)

Median absolute 
error (/km2)

Max error 
(/km2)

---

NTL
NDVI
Urban Atlas 2012
OSM Building
OSM POI

0.767 1520 242 42112

Without
building
information

NTL
NDVI
Urban Atlas 2012
OSM POI

0.720 1753 300 36382

Without land 
use data

NTL
NDVI
OSM Building
OSM POI

0.703 1854 393 41794

Without NTL 
data

NDVI
Urban Atlas 2012
OSM Building
OSM POI

0.767 1517 232 42165

Without NDVI 
data

NTL
Urban Atlas 2012
OSM Building
OSM POI

0.766 1518 240 41890

Without POI 
data

NTL
NDVI
Urban Atlas 2012
OSM Building

0.708 264 1706 39606

POI category and its optimal scale



5. Case Study & Results

 RQ4: Do they perform same level of accuracy in 
different areas?

 Clear patterns of overestimations and underestimations 
in the neighbourhood area

 RQ5: Is the result derived from machine 
learning methods has reasonable spatial 
details?

 The spatial pattern of the population distribution has 
been learned by the regression model.

Fine-scale Machine Learning Based Population Mapping: A Case Study of Munich17

Responding to research questions

Spatial auto correlation report



6. Conclusions

 A framework for population mapping at 50m*50m grid cell level and building scale has 
been proposed and evaluated.

 RF was found to be the best model when compared to the other four popular shallow 
machine learning algorithms.

 Optimal scales for each POI category are identified.

 OSM POI, OSM Building, and land use data help to improve accuracy.

 Estimation errors are highly clustered, these variables do not perform at the same level of 
accuracy in different population density areas.

 Machine learning can have a good result of pattern recognition instead of population value 
alone.

Fine-scale Machine Learning Based Population Mapping: A Case Study of Munich18

Summary



6. Conclusions

 Limitations in Methodology

 Deep learning has been shown to be more capable than shallow machine learning at acquiring and learning 
multisource data, achieving higher quality population spatialization (Zhao, Liu, Zhang, & Fu, 2020).

 Limitations in Study Area

 Only includes Munich city as a study area, with no rural or suburban areas.

 Limitations in Data Uncertainty Discussion

 Much of the data explored is inherently uncertain due to limited knowledge, randomness and indeterminism, and 
vagueness (Chuprikova, 2019).

 Limitations in True Population Data Obtain

 The obtained datasets have a broad meaning of population, not just registered residents.

Fine-scale Machine Learning Based Population Mapping: A Case Study of Munich19

Limitation



Thank you :)
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