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1. Motivation

Fine-scale population product is
essential for many use cases

The collection of census data is
time-consuming and expensive

Census data is often based on
administrative units

)

Other alternatives:

e.g. Gridded
population mapping

-
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Insufficient model evaluation

Variable optimal scales and spatial
heterogeneity are rarely discussed

Building level population  mapping
products are not rich

German Census 2011 provides gridded results at the Tkm and 100m levels

$ ¥ $

Map the population at fine-scale while optimizing the scale for corresponding
variables and holding a discussion on spatial heterogeneity and data characteristics.
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2. Research Identification

m Research Objectives

1) Population estimation at building level —

2) Investigate the significance and

v

influence of various datasets

3) Verify if machine learning helps in
population mapping

v
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m Research Questions

What is the approach for population mapping at building level?

What is the optimal scale for each variable?

Does certain data improve the accuracy of population
mapping?

Do they perform same level of importance in different areas?

Is the result derived from machine learning methods has
reasonable spatial details?
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3. Related Work
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Perspective Category

Summary

Without ancillary data: assumes evenly distribution

Areal Interpolation With ancillary data: dasymetric mapping, involves

weights calculation from ancillary data
Methods for Population

Mapping Conventional methods (Linear regression, etc.)
Statistical Modeling Machine learning (Random Forest, etc.)
Deep learning (CNN, etc.)

Remotely Sensed Land cover/ use data

Products Night-time light (NTL) imagery
Integration of Ancillary Volunteered Geographic Information (OSM PO, etc.)
Data for Population
Mapping

Geospatial Big Data
Location Based Data

Population Mapping at Building Level

Population Distribution Choropleth map, dasymetric map, proportional symbol map, dot map,
Visualization cartogram, isarithmic map, heat map, 3D map

Overcome multicollinearity, has strong generalization ability, allowing it to
handle high-dimensional features and effectively improve population
spatialization accuracy (Stevens, Gaughan, Linard, & Tatem, 2015).

Outperform shallow machine learning models like RF but difficult to obtain fine-
scale population training samples (Robinson, Hohman, & Dilkina, 2017).

Big geo data has higher temporal and spatial resolution thus complementing the
lack of semantic information which can indicate various human activities with a
more precise location, and widely used while in participation of remotely sensed
products (Sutton, Elvidge, & Obremski, 2003).

Most studies ignored the fact that different types of POIs have varying degrees
of attractiveness to the population, and instead created quantity/density metrics
based on POI data within a fixed same range (Cheng, Zhang, & Huang, 2022).
Some of the datasets used are not freely accessible.

Few studies.

Isarithmic map in population distribution receives a lot of criticisms as population
distribution does not fluctuate continuously (Nordbeck & Rystedt, 1970).
Cartogram is more useful in small scales, like global level, country level.
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4. Workflow,
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Data preparation

Remotely sensed data

NTL data

NDVI data

Semantic data

Urban Atlas

Filtering

Referencing

\ 4

Data collection

A

POI Building data

A 4

Aggregation

Demographic info of grid cells (Census 2011)

Data preprocessing

Transformation Reclassification

A

Data training

(100m*100m grid cells)

A 4

100m*100m grid cells
with features & population

\ 4
50m*50m grid cells

A 4

Y

with features

A 4

Result assessment & analysis

Test data Training data
A4 \ 4
Model evaluation, comparison, |_ Populaion modeling
& analysis D at 100m grid cell level

A

y

Population

at 50m grid cell level

estimation

Data prediction
(50m*50m grid cells)

Data visualization
(100m*100m grid cell level & Building scale)

A

y

Population visualization

A

y

Population

at building level

assignment

Data allocation
(Building scale)
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Overview of Dataests Used in This Study Nighttime light data NDVI data Urban Atlas
Type Official Name Data Provider Reference
Year
Population German Cencus 2011 Federal Statistical Office 2011

Verwaltungsgebiete 1:250 000 (kompakt), Stand

Administrative Units LI (e N2 Federal Agency for Cartography and 2o
Geographical Grids for S1E G EREERRHLRAZA, S0l Geodes seney sreey
o :‘ a: DE_Grid_ETRS89-LAEA_500m 4 2018
Y DE_Grid_ETRS89-LAEA_1km
NDVI data MOD13Q1.061Terra Vegetation Indices 16-Day x| p pAAC at the USGS EROS Center 2014
Global 250m
Data NTL data VIIRS Stray Light Corrected Nighttime Day/Night Earth Observation Group, Payne Institute 5014
Band Composites Version 1 for Public Policy, Colorado School of Mines
collection Land use CORINE Land Cover 5 ha, as of 2018 (CLC5-2018) | ceral Agency for Cartography and 2018
Geodesy
Urban Atlas 2012 - Miinchen Copernicus EU Land Monitoring Service 2012
Points of Interest OpenStreetMap data .
Building attributes 0SM Building OpenStreetMap contributors 2022

POI

Data

Part of the table after data preprocessing

filtering

id Anzahl ntl_Lmean  ndvi_mean build_area volume
1 | 100mN27777E44384 16 | 14.809857  5097.22042 3485.255449 ' 28299.312061
PO| & 6 6 o 2 100mN27779E44359 242 14419295 4188.467141 3107.902749 44461.748281
Urban Atlas 2012 3 100mN27834E44286 0 8.835617  5468.782609  522.365378  2463.521097
- 100mN27887E44304 0 5.182189 5754.366623 0 0
¢ ¢ 5 100mN27816E44255 0 10.402209 4061.64673 0 0
6 100mN27762E44440 0 24470251 3935.730531 0 0
Data Data » Data Data 7 100mN27913E44375 0 4907396 6624.058532 0 0
. . o . . . 8 100mN27839E44271 0 9974982 4061.652174 305.225338 2814.086694
referencing reclassification transformation aggregation | ———— e p— . :
10 | 100mN27830E44346 154 27.274048 3360.639779 2042.75161 27250.246131
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Methodology

Use five models to train and choose the best one

e Random Forest Regression
* Ridge Regression

Support Vector Regression
K Nearest Neighbors (KNN)

* Decision Tree Regression Regression
1 N
* R? MAE = NE- |P, — Ry
* mean absolute error (MAE) l
* mean relative error (MRE) IR = %ZN'PL';RL"

Proportional symbol map
Heat map
3D hexbin map

e Choropleth map
* Dasymetric map
* Dot map
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5. Case Study & Results M@ © @
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= Study area: Munich
= 31783 100m*100m grid cells
= 1.35M residents (Census 2011)

= Population density: 4254 /Km?
(Census 2011)

Munich population distribution at 100m gridded level of Census 2011

T KM

[~ munich_city_border
munich_district border
Anzahl
[0, 30]
(30, 90]
[ (90, 180]
I (180, 300]
I (300, 1000]
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5. Case StUdy & RESUItS Data modeling & evaluation (100m*100m grid cell level) TI_ITI m @
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= RF has the best overall performance.

Histogram of population density — Mean : 4,25458
— Median : 0
20,000

15,000

Evaluation of the applied five models 10,000
Performance Random Ridge Decision Tree Support Vector K Nearest Neighbors 5,000
Forest Regression Regression Regression Regression . -
R? 0.77 0.58 0.49 0.24 0.59 EEEOEI U I S S O PR SRR s PO
Mean Scatter plot of true and predicted values (RF)
absolute 1520 2815 2145 3774 2029 40000 -
error (/km?) y=0.770 x + 989.882 e
35000 A -
Median 30000 -
absolute 242 1647 0 452 200
error (/km?2) 25000 1
M 20000 -
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5. Case StUdy & ReSUItS Data estimation & evaluation (50m*50m grid cell level) TI_ITI m @

= 76.4% are smaller than the mean population, indicating = High density areas have higher estimated
that the estimation result is good. errors.
Histogram of Absolute Error Estimation Absolute Error and population distribution
— Mean: 28.9

26,816 — Median: 2.5
25,000

20,000
15,000

10,000

5,000 1,831
g’ 141 915 656 450 271 169 106 S5 28 8 10 8 4 1 0 0 0 0 0 0 1
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5. Case StUdy & ReSUItS Data estimation & evaluation (50m*50m grid cell level) TI_ITI m @
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= The population values obtained by the trained model are not reliable but their relationship is.

12

1 munich_city_border
[ munich_district border

Pop_pred
0-9
9-27
B 27-50
Bl s0-90
B 90300

Spatial distribution of predicted population Spatial distribution of true population from Census 2011

T Km

| | munich_city_border
[ munich_district border

Population from Census 2011
(0, 30]
(30, 90]

[ (90, 150]

B (150, 300]

I (300, 1000]
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5. Case StUdy & ReSUItS Data allocation to buildings & visualization TI_ITI m @
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Population recalculation of Choropleth map of population distribution at building scale of Munich

50m*50m grid cells

Milbertshofen Am Hart

50m*50m grid cell weight
calculation based on same level
prediction results

L 2

Allocation of census data to
50m*50m grid cells based on its

weight
+

Weight calculation of each building

N Km

Weight of each building in a

50m*50m grid cell based on O

bUIldIng volume 1 munich_district border
SumPopAssBuild
o 5]

(5, 20]
‘ (20, 60]
I (60, 200]

Population of each building I (200, 400]
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Population recalculation of 3D hexbin map of population distribution at building level of Munich
50m*50m grid cells

50m*50m grid cell weight
calculation based on same level
prediction results

. 2

Allocation of census data to
50m*50m grid cells based on its

weight
i

Weight calculation of each building

Weight of each building in a
50m*50m grid cell based on

o R A D NS A PERLACHER
building volume FORST

‘ UZLINGER

Population of each building
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5. Case Stl.ldy & RESUItS Data visualization (100m*100m grid cell level) TI_ITI M @
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Choropleth map Dasymetric map Dot map

Heat map 3D hexbin map

w
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5. Case StUdy & Results Responding to research questions

= RQ1: What is the approach for fine-scale population
mapping?

= RQ2: What is the optimal scale for each variable?

= For the majority of the categories, the optimal scale is within an
800m acting range, which is about a 10-minute walk.

= RQ3: Does certain data improve the accuracy in
population mapping?

= Land use is the most important information in population
mapping, following by POI.

w

16 | ¢

=

POI category and its optimal scale
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Category Optimal Scale Category Optimal Scale
Accommodation 3000m 3000m
Airport 3000m Public Transport 400m
Culture Facilities 800m Railway Stops 1600m
Education Facilities 400m Recycling Facilities 400m
Government 3000m Resorts 800m
Health Care Facilities 400m Restaurant & 400m

Beverages
Helipad 3000m 400m
Leisure Facilities 3000m Sport Area 400m
Life Services 400m

Results of different datasets

Attribute Datasets used R? Mean absolute Median absolute Max error
error (/km?) error (/km?) (/km?)

NTL
NDVI
Urban Atlas 2012 0.767 1520 242 42112
OSM Building
OSM POI

Without m&”

::::;:f:::ﬁon Urban Atlas 2012 0.720 1753 300 36382
OSM POI
NTL

Without land NDVI

use data OSM Building 0.703 1854 393 41794
OSM POI
NDVI

Without NTL Urban Atlas 2012

data OSM Building 0.767 1517 232 42165
OSM POI
NTL

Without NDVI Urban Atlas 2012

data OSM Building 0.766 1518 240 41890
OSM POI
NTL

Without POI NDVI

data Urban Atlas 2012 0.708 264 1706 39606
OSM Building

Fine-scale Machine Learning Based Population Mapping: A Case Study of Munich



5. Case StUdy & Results Responding to research questions TI_ITI m @
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= RQ4: Do they perform same level of accuracy in Spatial auto correlation report
different areas?

Moran's Index: 0.594385 Significarzce Lel'vel) Critical Value
- Clear patterns of overestimations and underestimations RS e PR o S
. . p-value: 0.000000 0.05 @E -2.58--1.96
in the neighbourhood area 010 £ 196-165
) . 0.10 [ 1.65-1.96
= RQS5: Is the result derived from machine oo mm 258
learning methods has reasonable spatial
details?
= The spatial pattern of the population distribution has — —

Significant Significant

been learned by the regression model.

Dispersed

Clustered

Given the z-score of 148.398758, there is a less than 1% likelihood that this clustered pattern
could be the result of random chance.
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6. Conclusions Summary MMl o @

« A framework for population mapping at 50m*50m grid cell level and building scale has
been proposed and evaluated.

» RF was found to be the best model when compared to the other four popular shallow
machine learning algorithms.

= Optimal scales for each POI category are identified.
= OSM POI, OSM Building, and land use data help to improve accuracy.

= Estimation errors are highly clustered, these variables do not perform at the same level of
accuracy in different population density areas.

= Machine learning can have a good result of pattern recognition instead of population value
alone.
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6. Conclusions Limitation TME @ @
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Limitations in Methodology

= Deep learning has been shown to be more capable than shallow machine learning at acquiring and learning
multisource data, achieving higher quality population spatialization (Zhao, Liu, Zhang, & Fu, 2020).

Limitations in Study Area
= Only includes Munich city as a study area, with no rural or suburban areas.

Limitations in Data Uncertainty Discussion

= Much of the data explored is inherently uncertain due to limited knowledge, randomness and indeterminism, and
vagueness (Chuprikova, 2019).

Limitations in True Population Data Obtain

= The obtained datasets have a broad meaning of population, not just registered residents.

19 | | :. Fine-scale Machine Learning Based Population Mapping: A Case Study of Munich
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