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Abstract

Historical maps contain a wealth of valuable information and are widely adopted
as research sources in various fields. There is a need to find a proper approach to
automatically unlock the information from a large number of digital map images. This
thesis aims to contribute to the transformation of historical map scans into structured
geo-data. The author tested a U-Net based pipeline on automatically extracting and
recognizing the toponyms from the topographic map sheets from the Saxonian Land
Survey (1780 – 1825). The thesis computed a method to generate annotated map
patches that matches the unique style of map series, and applied it to train the detection
model. The results show that generating synthetic data for training text detectionmodels
can be an effective solution to data scarcity in deep learning. With the proposed deep
learning pipeline, the place names can be extracted with satisfactory accuracy. However,
the recognition model still needs to be improved.
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1 Introduction

1.1 Motivation and Problem Statement

Historical Maps are a treasure trove of valuable information about the past, and
uncovering them has continuing relevance to studies nowadays. They expand the
temporal extent for tracing back the dynamics of the earth, becoming a unique source
for recording the earth’s characteristics before modern earth observation techniques
mature (Wu, Heitzler, & Hurni, 2022). Especially after the technological innovation
of surveying in the 18th century, the precision of the national topographic maps
became more reliable. Because of this, they are already used as references in broad
academic domains. Researchers are adopting historical maps in reconstructing historic
geographic features (Dunesme, Piégay, & Mustière, 2020; Wu et al., 2022), historical
situations (Löki et al., 2020) and topographic patterns (Y.-Y. Chen et al., 2019; Ståhl &
Weimann, 2022), man-made territories and borders (Uhl et al., 2021), political claims
(Beatty, 2021), and many more fields of interest (Chiang, Leyk, & Knoblock, 2014;
Reckziegel, Wrisley, Hixson, & Jänicke, 2021).

Despite the widespread digitization of historical documents, there is still a gap between
scanned copies and the applicable data formodern research. A large number of scanned
historical maps in high resolution are now publicly accessible on many platforms,
such as Virtual Map Forum 2.0 (German: Virtuelle Kartenforum 2.0 der Sächsischen
Landesbibliothek, https://kartenforum.slub-dresden.de), Historical Topographic Map
Collection fromUSGS (https://ngmdb.usgs.gov/topoview/),Map of Switzerland (https://
map.geo.admin.ch/). Although many of those maps are already geo-referenced, and the
online portals allow the users to compare the historical maps with current landscapes
visually, the interpretation still requires sufficient knowledge of cartography and history
(Luft & Schiewe, 2021). This is especially when the legend is missing from the military
mapping survey. The commonly adopted formats such as digital images, paper maps or
Portable Document Format (PDF) of online copies of these historical maps can not be
directly interpreted by computers (H. Li, Liu, & Zhou, 2018). Therefore, creating structured,
tagged geo-data from scanned files is meaningful. Making the collections queryable
and machine-readable will unlock the potential for further utilization of historical maps
in modern analytic environments (e.g. GIS) (Chiang et al., 2014).

Text features, especially toponyms, are an essential component of maps. Jordan
(Jordan, 2009)mentioned in the paper of four primary functions of place names onmaps
that they help map users to identify the location quickly, make the places queryable,
enhance the understanding of geographical features, and indicate the change of local
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1 Introduction

(a) Place names on a very dark background (b) Place names in various orientation

Figure 1.1: Examples of some place names from one of the map sheets from Saxony, text were labelled in
blue bounding boxes.

culture and languages. In the information extraction process, the place names can be
an entry point of map digitization (Barbaresi, 2018).

Manually labelling such a large volume of maps one by one is impractical. Together
with the development of information technology, scientists have made a lot of efforts
to automate the extraction of textual information from maps. Researchers have
adopted traditional Optical Character Recognition (OCR) methods based on image
processing algorithms for graphic segmentation (Chiang et al., 2014; Leyk & Boesch,
2010) andmachine-learning using algorithms such as K-nearest neighbours and support
vector machines to identify the characters (Pezeshk & Tutwiler, 2010, 2011). This has
significantly improved the efficiency of digitization. However, for these approaches
to achieve an optimal result, a good design of complicated algorithms and manual
corrections are still needed. OCR is now well developed and can recognize modern text
with very low error rates, but most tools are designed for text on simple backgrounds.
The challenges for text detection and recognition in historical maps are unique. The
text can appear in any orientation, in various sizes and unique typefaces, with different
spacing and curvatures (see fig.1.1). The overlap of labels and other features, such as
slope hachures, which are similar in colour, shape, or textures, makes separating even
harder.

There is an increasing trend in using deep learning algorithms in historical map studies
(Can & Kabadayi, 2021; Y. Chen et al., 2021a, 2021b; Laumer, Gümgümcü, Heitzler, & Hurni,
2020; H. Li et al., 2018). These attempts have optimized the automated information
retrieving process by taking advantage of advanced computer vision techniques in
scene text detection and mature text recognition applications. Achieving accurate

2
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Figure 1.2: Deep Learning and Cartography relevant papers are shown in years, queried from Scopus.

generalization of predictive models requires sufficient training data (Lones, 2021).
Although many high-quality labelled training datasets are now available for training and
testing scene text detection models, their image distributions are clearly very different
from the textual information on historical maps. Deep learning for map text detection
still suffers from data scarcity. The cartographers tried to overcome the large dataset
needed by, on the one hand, making use of existing pre-trained models(Can & Kabadayi,
2021; Laumer et al., 2020; Milleville, Verstockt, & Van De Weghe, 2020), on the other
hand, artificially manufacturing synthetic data for training (Z. Li, Guan, Yu, Chiang, &
Knoblock, 2021; Schlegel, 2021; Weinman et al., 2019).

Deep learning is still a new paradigm in the cartographic domain (see fig.1.2a), even
less in historical map studies (see fig. 1.2b). Despite the inspiring work in recent years
mentioned above on using deep learning in toponym extraction and recognition (see
also section 2.2), a scientific paper is missing to look back at these efforts. Moreover,
handwritten place names on more complicated and dated historical map documents
were not tested. Therefore, the author would review the existing work and propose a
deep learning pipeline based on the relevant framework. The pipeline would experiment
on the map sheets from the Saxonian Topographic Survey (1780 – 1825).

1.2 Research Objectives and Questions

This thesis aims to contribute to research in the historic map semantics project. The
overall research objective is to develop a pipeline enabling a step-by-step automated
transformation of scans into collections of structured, tagged geo-data. This thesis
will be mainly focused on toponym extraction and recognition and has the following
sub-objectives:

3



1 Introduction

1. To explore the methods of synthetic training data generation and to compare the
performance using synthetic and real data

2. To review existing deep learning architectures applied in text extraction and
recognition and compare the performance of state-of-art pre-trained models
on selected map sheets.

3. To develop an end-to-end working example from toponym extraction to text
recognition on selected map sheets

4. To evaluate the performance of adapted models

The process would be divided into three main steps to meet the goal: For each part
following questions need to be addressed:

• RQ1: Separation of text and graphic

1. What are the existing deep learning pipelines for text extraction?
2. Can deep learning on synthetic data achieve compelling results on real-world

data?
3. How well can toponyms be separated from the background?

• RQ2:Text recognition

1. What are the existing text recognition methods?
2. How well is the performance of the adapted text recognizer?

• RQ3: Evaluation

1. How is the overall performance of the deep learning pipeline in toponym
detection and recognition?

1.3 Structure of the Work

In chapter 2, the author first introduced the theoretical background of the thesis, writing
about the OCR, deep learning, and semantic segmentation concepts. In the second part,
the development of text detection and recognition in natural scenes and maps would be
reviewed to answer research questions 1.1 and 2.1. In chapter 3, the writers talked about
the reasons for choosing maps of the topographic survey of Saxony and an analysis of
the type, placement and font characteristics of toponyms in this map series. Based on
that, the author described the overall workflow of proposed pipeline and the methods
used in each step. In chapter 5, the results were presented and discussed. In the last
chapter, the author would conclude the work and the future direction.

4



2 Theoretical Framework and Literature
Review

This chapter would cover the concepts and background of the work to offer a general
understanding of fundamental theories. The author briefly introduced the terminology
and definition of deep learning and image processing, including Semantic Segmentation
and OCR. In the second section, the related studies in OCR would be outlined through
the technology development timeline in order to answer the research questions about
existing work about deep learning pipelines for text extraction and existing text
recognition models. The focus would be on the applications, the performances and the
shortcomings of the models.

2.1 Theoretical Framework

2.1.1 Deep Learning

As this thesis is on the implementation of a deep learning model in text extraction and
recognition, the introduction of deep learning technology in this section would only
focus on relevant background and terms. The author would briefly present the history,
go through the advantage and challenges of applying deep learning, and then come to
the basic neuron model and the architecture of the convolutional neural network.

The deep learning concept can be traced back to Walter Pitts and Warren McCulloch’s
work of proposing a computer model based on neural networks in 1943 (Pouyanfar et al.,
2019). The main concept behind this was to mimic the structure of human brain. From
the 2000s, deep learning demonstrated a broad and profound impact in many fields,
proving its powerful predictive potential for data (Pouyanfar et al., 2019; Sarker, 2021).
But in the intervening seven decades, it has experienced lows and been questioned
many times. The slow but steady evolvement of deep learning to its current role mainly
benefited from the introduction of backpropagation by Paul Werbo, exploration of
models and architecture from shallow neural networks and deep neural network, and
important development of computer hardware, which support the processing of big
data(Sarker, 2021; Wang & Raj, 2017). Deep learning’s recent success is due less to
its earliest ambition, which was to simulate the human brain and more to its deep
architecture (Wang & Raj, 2017).

Many articles have already discussed the reasons deep learning became so popular
(Pouyanfar et al., 2019; Sarker, 2021;Wang &Raj, 2017). The researchers figured universal
learning approach, robustness, and generalisation are the main advantages of its ability

5



2 Theoretical Framework and Literature Review

Figure 2.1: Mathematical representation of a simplest artificial neuron is shown, with the input ( xm ),
weight ( wm ), bias ( b ), summation function (

∑
), activation function ( φ ), and output ( y ). (Rosenblatt,

1958)

to learn features on different tasks in various domains (Alom et al., 2018). However,
the extensive training data needed, hardware dependencies, long training time and
interpretability challenge the application, which needs to be taken into consideration
before use (Sarker, 2021).

Figure 2.1 shows the function of a simple artificial neuron of deep learning. The
mathematical modeling denoted the input data as a vector χ = {x1, x2, ..., xm}, and
designated weight vector as W = {w1, w2, ..., wm}. An adder would sum the input,
weighted by the weight vector. The operations described here constitute a linear
combiner (Sánchez-Ramírez, Segovia-Hernández, & Hernández-Vargas, 2020). A real
number called bias (b) can be added to the preliminary outputs of the linear combiner
to apply the affine transformation. An activation function (φ) would then be adopted to
convert the weighted input of the neuron to the output. Themain goal of deep learning is
to find the optimal weight elements by training. The best weight vector should produce
the results which have the least error or loss between the actual and the predicted
values across different samples in the data set (Sewak, 2019). This loss is calculated
by a chosen loss function.

Gradient descent approach is used in deep learning to minimise the loss function.
This first-order optimisation algorithm to find the local minima has the drawback of
a long processing time. Therefore, the deep neural networks are widely trained with
the Back-Propagation algorithm with Stochastic Gradient Descent (SGD) (Rumelhart,
Hinton, & Williams, 1986). The SGD, compared to the classic gradient decent algorithm,
only calculate for a single, randomly selected point at each step (see fig. 2.2), which
increases the efficiency.

6



2.1 Theoretical Framework

Figure 2.2: Stochastic gradient descent compared with gradient descent. (Carpenter et al., 2018)

Deep learning systems are usually classified into three categories based on the amount
of labelled data they use: supervised, semi-supervised or unsupervised (Sarker, 2021).
While there is a trend of developing unsupervised and semisupervised models, for
example, Generative Adversarial Networks (GAN), in order to reduce the human work of
labelling training data, the m majority of the existing deep learning implementations
are supervised algorithms (Wang & Raj, 2017). For image analysis tasks, Convolutional
Neural Networks (CNN) are commonly employed (Sarker, 2021).

Figure 2.3visualised a CNN architecture. A convolution neural network comprises three
types of hidden layers positioned between the input layer and the output layer. These are
convolutional layers, pooling layers, and fully-connected layers (shown as classification
in the figure). A CNN network may contain multiple instances of these kinds of layers
sequentially arranged in a particular order, with the convolutional and pooling layers
primarily interleaved before all fully connected layers (Sewak, 2019). The last fully
connected layer drives the final classification decision.

Figure 2.3: An example of a CNN architecture with two convolution layers in a feature extractor (Alom et
al., 2018)

7
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3 5 5 0

1 2 8 2 5 8

1 4 0 7 4 9

0 4 9 3

2*2 Max Pooling

(a) Example of max pooling with a pooling area
of size 2x2 and stride of 2.

3 5 5 0 1 1 1

11 22

1 2 8 2 * 1 1 1 =
12 39

1 4 0 7 1 1 1

0 4 9 3 Stride = 2

(b) Example of Convolution Operation with filter
3*3 with stride 2.

Figure 2.4: Illustration of downsampling operators

"Convolutional" in the term CNN comes from the convolution layer. Each convolution
layer will produce a set of feature maps generated from each band of the input
convolved with a kernel filter. The pooling layer, also known as the downsampling
layer, compresses the feature maps passed from the convolution layer. Its primary
purposes are first, to reduce the number of features, thus reducing the number of
parameters and simplifying the complexity of the convolutional network computation
and secondly, to achieve translation invariance (Yamashita, Nishio, Do, & Togashi, 2018).
While a majority of applications use either average-pooling or max-pooling layer, the
team of Springenberg (2014) proposed a new architecture, which removed all pooling
layers. To do subsampling, they used convolution with strides. This convolution net
was experimented with and proved to be concise and with good performance. As it
is shown in figure (2.4), the convolution filter with strides and max pooling can both
reduce the resolution of the in-between representation of networks. But the convolution
can keep learning the properties while pooling reduces the complexity.

2.1.2 Optical Character Recognition

Optical Character Recognition (OCR) is defined as the process of converting optical
patterns contained in a digital image into its constituent characters (Chaudhuri,
Mandaviya, Badelia, & Ghosh, 2017; Islam, Islam, & Noor, 2017). The history of character
recognition is even longer than the invention of the computer (Islam et al., 2017). The
earliest OCR appeared as amechanical device. Its development in the last eight decades
can be classified into four generations (Berchmans & Kumar, 2014). Only a few typefaces
and character forms can be recognised by the first generation. The second generation
can transcribe both handwriting and printed text, but only numerical, few letters and
symbols. The third generation has been created with significant advancements in
hardware technology. They work with a larger set of handwritten characters than before
and characters with low print quality. The fourth generation of OCRs can scan and
read characters from complicated documents that are mixed in with text, tables, and
mathematical symbols, as well as low-quality noisy documents, free-form handwriting,
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Figure 2.5: Components of a typical OCR system.

and colour documents. From its starting point, the efficiency, robustness and versatility
have largely improved.

A classical OCR system is composed of six phases, as shown in figure 2.5.

The initial step of OCR is image acquisition, which means the digitisation of documents
with the help of an electronic device. The dataset input affects the recognition accuracy
significantly (Islam et al., 2017). Despite the mature scanning technology today, which
produces near-lossless image coding, the distortion, low accuracy and noise problem
existing in images themselves, especially on historical and handwritten documents,
pose challenges for subsequent recognition steps.

Pre-processing is therefore one of the most important OCR procedures. The sequence
of adjustments made to the scanned images improves the image quality and has a
direct impact on the effectiveness and dependability of the next steps of recognition.
The most commonly adopted method is thresholding which binarises images (Lázaro,
Martín, Arias, Astarloa, & Cuadrado, 2010). Different types of filters, such as mean, and
median filters, are employed for noise removal. In some cases, various morphological
operators, including erosion, dilatation, opening, and shutting, are applied (Serra &
Vincent, 1992). Additionally, normalisation techniques are used to produce pictures
that are uniform in size and shape for segmentation and feature extraction (Avinash,
2018).

Segmentation comes next in the OCR process. Segmentation describes the process of
breaking the whole image into subparts to identify what is actually comprised in the
input image (Islam et al., 2017). Sequentially the document is divided into lines, then to
the word level, and finally to the character level to reduce the complexity and increase the
efficiency of further processing. However, as it’s a key step of the classic OCR system,
incorrect word segmentation causes problems. Segmentation is thought to be the
cause of around half of character recognition mistakes (C.-H. Chen & DeCurtins, 1993).
Therefore, segmentation-free systems were proposed and tested to be a promising
alternative (C.-H. Chen & DeCurtins, 1993; Sabbour & Shafait, 2013).
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For each segmented character, its various features are then extracted. An important
research topic is how to choose the appropriate characteristics and how many features
should be employed overall (Islam et al., 2017). The features extracted for their different
representation and purposes can be categorised into structural features, statistical
features, and global transformations (Sharma, Kaushik, & Gondhi, 2020).

Based on the feature retrieved in the previous stages, the characters will be classified
into the appropriate categories with the help of different classifiers. In the early
period, pattern recognition adopted template matching with a library of certain
predefined templates for each character of each font (Chaudhuri et al., 2017). Artificial
neural networks (ANNs), kernel methods, statistical techniques, and structural pattern
techniques are currently employed as other general recognition approaches (Memon,
Sami, Khan, & Uddin, 2020). These methods aren’t always distinct from one another or
independent of one another. On occasion, an OCR method in one approach may also be
regarded as a component of another approach (Chaudhuri et al., 2017).

Post-processing is a process to increase the accuracy of recognition results. Two
directions are, respectively, using multiple classifiers or conducting contextual analysis
(Islam et al., 2017). The probability of character sequences in words can be a hint to
correct errors. More directly, fuzzy searching in dictionaries helps to identify errors and
transfer to the most similar word (Chaudhuri et al., 2017).

The analysis (Memon et al., 2020) of OCR research between 2017 and 2019 shows that
the deep learning approach is a trend. Improved classification accuracy was achieved
using deep learning, but the cost was computing complexity, especially during the
training phase. Widely applied machine learning and deep learning architectures are
Support Vector Machine, Artificial Neural Networks, Naive Bayes and Convolutional
Neural Networks (Sharma et al., 2020). Among these, convolutional neural networks
are one of the most popular (Simonyan & Zisserman, 2014) and help to achieve
unprecedented accuracy (Meduri & Goyal, 2018). In section2.2.2, a few state-of-art
architectures would be reviewed.

2.1.3 Synthetic Data

The use of synthetic data started together with the history of computer vision (Nikolenko,
2021). Having a significant amount of training data is important to help the computer
vision algorithms to get a good performance (Gupta, Vedaldi, & Zisserman, 2016).
The preparation of manually labelled datasets for each one of the learning tasks is
time-consuming. Synthetic datasets provide an affordable and scalable alternative to
manually annotating (Gupta et al., 2016). The benefits of synthetic data generation and
enhancement techniques are twofold. On the one hand, it facilitates the acquisition of
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more data from a limited number of data sources, and on the other hand, it helps to
suppress overfitting errors (Khosla & Saini, 2020).

Artificially inserting text instances in appropriate semantic locations in a neutral image
background can produce large-scale comprehensive annotation for training (Khan,
Sarkar, & Mollah, 2021). The main principle is to render the proper font and colour on
background images. Shadow, noise and projective distortion are introduced to the image
to make the imitation more realistic (Grond, Brink, & Herbst, 2016).

Augmentation is another solution for data deficits. Data augmentation describes a
series of transforming techniques that are utilized to increase the quality and size
of images (Khosla & Saini, 2020). Based on data warping, common operations are
geometric transformations such as affine transformations, cropping, rotating, colour
space transformations such as RGB to HSV, and random erasing.

2.2 Literature Review

2.2.1 Early Work of Toponym Recognition from Maps

Morphological operators are one of the most popular image processing techniques,
which was also one of the starting points for the semantic segmentation of historical
maps. Different mathematical morphological operations have also been widely adopted
in text separation frommaps. Yamada (1993) extracted text and symbols on topographic
maps by employing directed feature planes for erosion-dilation processes, which is
computationally intensive. Based on this, Biswas and Das (2012) tested a procedure of
sequentially employing horizontal and vertical mathematical morphological operations
to line the text to an entity, combining with mean and standard deviations to separate
text elements. The authors also compared the method with text extraction based on
intensity analysis and pointed out that the morphology-based method performs better
under specific language contexts. These works, however, do not apply to the case of
text with multi-angle.

The connected component labellingmethodwas also one of the early efforts. Geometric
characteristics such as height, width, or area of the text were investigated to be
distinguished from other line features (Chiang et al., 2014). An example is one of the very
early works of Li et al. (2000) to locate and recognise street labels. The label boxes were
extracted by character alignment and size, together with the graphical background of
the label positions adjacent to the street lines. For recognition, the researchers manual
rotated the text to horizontal orientation and utilised a segmentation-free classifier to
recognise the entire string directly. This recogniser may use overlapping line information
and is tolerant of overlapping graphic segments. The obtained accuracy seems to be

11



2 Theoretical Framework and Literature Review

good enough to use context-based analysis. However, even after intricately planned
processing steps, many boxes still contain some graphical fragments, and some text
characters are missed from the detection. However, the concept of feature extraction
based on attributes-shape descriptors and pre-processing to improve recognition
accuracy is valuable.

Other early segmentation attempts also included clustering analysis and the image
pyramid method. Most of the earlier works were continuously improving based on
these above-mentioned categories of approaches. Pezeshk and Tutwiler (2011) Markov
models were operated to complete broken characters. Velázquez and Levachkine (2004)
used four imaginary directional lines (V-line) that allow slightly curved text labels to be
extracted. Pouderoux, Gonzato, Pereira, and Guitton (2007) added string analysis to
the connected component algorithm for concatenation. Chiang and Knoblock (2011)
employed morphology-based operators to determine the directional rotation of strings.
Weinman (2013) used information from supplementary sources such as gazetteers to
detect and correct errors. These steps are still valuable and effective image processing
methods today. However, they cannot accomplish the tasks in more complex map
contexts. They are not general solutions and require selecting appropriate structured
elements for the corresponding maps to achieve the goal.

2.2.2 State-of-art Deep Learning based OCR

Deep learning-based OCR always consists of two steps: text detection and text
recognition, i.e., the target image is input to the text detection algorithm to get a word
box, and each bounding box is fed to the text recognition algorithm to get the recognition
result.

Deep learning-based text detection algorithms are broadly divided into two categories:
proposal-based regression algorithms and segmentation-based algorithms (Qin &
Zhang, 2020). Additionally, to increase the detection accuracy, some studies also tried
hybrid methods, which combined these two types of algorithms (Khan et al., 2021).

In the proposal-based technique, rectangular or quadrilateral text boxes are convolved
in various directions over the whole image to identify text areas. This approach was
initially derived from a target detection algorithm and then tailored to the properties
of text boxes. CTPN (Connectionist Text Proposal Network) (Tian, Huang, He, He, &
Qiao, 2016) and SegLink (Shi, Bai, & Belongie, 2017) are two representative methods of
proposal-based methods.

Considering that the length of text boxes varies and text could exist in a long rectangle,
CTPN (Tian et al., 2016) split the detection task into two steps. The author suggested
first assessing whether a small part of the text belongs to a phrase and then merging
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the small text boxes to get the entire string. As contextual information is always crucial
for characters in the text, a Recurrent Neural Network (RNN) is used to enhance the
prediction further. The shortcoming of CTPN is that it can not detect non-horizontal
text. The SegLink (Shi et al., 2017) algorithm is similar to CTPN in that it also proposed
to first detects small pieces of text lines and then merge them together. But the network
structure adopts the single-shot detector (SSD), which detects text at multiple scales
of the feature map and then fuses the results. In addition, the researchers added the
regression of angular information to the output. However, SegLink is not working on the
text with large spacing or curved. DRRG (Deep Relational Reasoning Graph) (Zhang et
al., 2020) is another regression-based method which applies the concept of connected
component analysis. DRRP can detect the text in any shape and orientation. This
method treats positioned small rectangular components as nodes. It uses a graphical
convolutional network to infer the relationship between the nodes and thus correctly
connect the components to the text instance. The model was tested to perform well on
multi-directional and multilingual scene text.

In segmentation-based text detection, segmenting network structures execute pixel-
level semantic segmentation and use the segmented output to build text lines. A
representative algorithm is TextSnake (Long et al., 2018). The authors provided a
flexible way of representing text lines. The Fully Convolutional Network (FCN) is first
employed to predict text line centerlines, and to infer text line regions and their geometric
properties. The masked text centerlines help to obtain the feature map. Based on this,
the word instance can be separated with the help of the disjoint set. This method is
the first effective model to detect curved text. Traditional post-processing methods for
segmentation-based text detection are complicated. Therefore, DBNet proposed to add
differential binarization into the segmentation nets. The additional binarising step helps
simplify the post-processing and enhance the performance of text detection.

FCE (Zhu et al., 2021) is a very new text detection method that combined regression
and segmentation. The study suggested using regression to convert each pixel in text
instance to Fourier feature vectors. On the segmentation side, the mask of the text
region is predicted. The vectors are then embedded to mask the area through Fourier
Transformation. FCENet can effectively detect arbitrarily shaped text and proved to
have excellent generalization ability.

The deep learning-based text recognition algorithms have a relatively unified principle
(Qin & Zhang, 2020). The most dormant structure of the recognition framework consists
of CNN+RNN+CTC, which is commonly known as the CRNN structure. CTC in the
framework refers to the Connectionist Temporal Classification, which functions as a
step to find the best path decoding. The structure is proved to be stable and robust in
transcribing words. So most of the OCR software (for example, EasyOCR, KerasOCR,
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and PaddleOCR) adopts this structure and makes improvements to increase efficiency
and save computational memory.

The CITlab team at the University of Rostock developed a Handwritten Text Recognition
engine (HTR) based on TensorFlow (Michael, Weidemann, & Labahn, 2020). Bidirectional
long short-term memorys (BLSTMs) are applied as RNN layers to enhance context
modelling. Downsampling is added to reduce the model size, which increases the
processing speed and keeps the performance. The model CRNN-STN in the MMOCR
toolbox (Kuang et al., 2021) uses a spatial transformer network (STN) (Shi, Wang, Lyu,
Yao, & Bai, 2016) as a preprocessor, which optimizes the skewed text and automatically
detects skewed text boxes without special markup. Another direction of text recognition
is using attention-based methods. The main focus of this method is on the correlation
between the parts of the text sequences.

Another direction of text recognition is using attention-based methods. The main focus
of this method is on the correlation between the parts of the text sequences. ABiNet
(Fang, Xie, Wang, Mao, & Zhang, 2021) is one of the attempts. The researchers refine
the recognition results by Language Model, making full use of the contextual semantic
information. The BCN (Bidirectional cloze network) module is used there to predict
or correct the currently recognized characters. This makes the model have better
recognition ability under low-quality imaging conditions.

2.2.3 Recent Work of Toponym Extraction from Maps using Deep Learning

In recent years, cartographers have started to apply the achievements of robust reading
in computer vision area to the field of historical maps. Scholars have experimented
with different deep learning architectures on various types of map atlas in different
languages from different regions worldwide. The proposed methods were tested on
cases from cadastral maps to more complex topographic maps, from black-and-white
to colour images, and from contemporary to more dated hand-drawn maps. Mature
commercial and open source text recognition tools boosted these works. These studies
show excellent findings and a promising future of using deep learning to unlock the
potential of historical map resources.

The research from Li et al. (2018) proposed a state-of-the-art framework for map text
and feature recognition. The reader applied deep learning for text detection on maps,
followed by the separation via graph-based segmentation and clustering algorithms, an
OCR engine to interpret the text labels, and the use of a gazetteer as the source to add
contextual understanding. The outcomes confirmed the effectiveness of the proposed
approach for map text recognition and map content comprehension. The framework
demonstrated a promising structure for a deep learning-based OCR job on a map, even
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though additional technique development is required for more complicated and dated
map series.

The study of digitalmap processing benefits from the computer vision domain.Weinman
et al. (2019) proved in the paper that deep neural networks, which were originally not
designed for cartography, can be adapted and used on maps. The authors developed a
map text detection network from a CNN and an RNN framework to detect and recognise
the labels on USGS historical maps. A map text synthesiser was applied to generate
unlimited training data without overfitting. The paper provided insight into tailoring
non-domain-specific deep learning systems for automating map digitising.

Kartta Lab (Tavakkol et al., 2019) is an open-source and open-data project aiming to
develop a framework to generate vectorised, machine-readable data from historical
map images automatically. As a module of this framework, Z. Li et al. (2020) developed
an end-to-end approach using a consensus model combining the results from a textual
predictor and a visual predictor to extract location phrases.

Can and Kabadayi (2021) trained two CNN-based text detection models using pretrained
Resnet-50 andUNet architecture and tested themonAustro-Hungarian historicalmilitary
mapping survey. The results of this study show that the pre-trained Resnet-50 model
has a better performance in detecting text areas from historical maps. The Python
Tensorflow-based toolbox trained with IAM-database, however, has a 42% character
error rate, which needs further improvement.

Schlegel (2021) made use of an existing text detector, Strabo, which was designed to
detect and recognise the text on maps. The article suggested a series of adjustments
to transfer the universal approach to individual map series, which largely improved the
performance of the model. The F1 score was increased from 58% to 77% However, the
test case is relatively simple, without many interfering features in the background. The
alignment of labels to the current context in OpenStreetMap and validation with the
local gazetteers might only be feasible for modern street maps.

Laumer et al. (2020) used CNN to segment pixels into label and background. The single
characters were then clustered into phrases with the help of DBSCAN. For interpretation,
Google’s Vision API was used, and a local gazetteer helped to refine the result. Problems
occurred in the disparity of place names in different languages and time periods. The
author didn’t present a quantitative evaluation of pipeline performance.
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The target maps of this thesis are the selection sheets of the map series from the third
major survey of Saxony from 1780 to 1825 at a scale of 1:12.000. The entire map series
has no official map name, but for its units of measurement, they are widely called ’Saxon
mile sheets’ (German: Sächsische Meilenblätter).

The work of the Historical Map Semantics team at the Dresden University of Technology
and the Dresden University of Applied Sciences is the starting point for this thesis.
The team focused on the extraction of the polygon and line features from the Saxon
Mile Sheet. The data preparation of the maps by Dr Nikolas Prechtel also provided a
foundation for this thesis.

3.1 History and Characteristics of Saxonian Milesheet

The land survey was motivated by military needs. Accurate knowledge of the terrain
was essential to the command of troops, and the changes in warfare that took place
in the 18th century demanded topographical maps with very high accuracy(Stams &
Stams, 1981). During the Seven Years’ War, Saxony still lacked large, uniform maps
inside its territory. The existing official maps no longer met the requirements, so for
both military and post-war economic development purposes, the Saxon region and its
entrances were required to be surveyed in detail. The topographical maps wanted were
proposed to serve also for cameralistic purposes, especially as a reliable graphic basis
for mining, roads and water engineering (Stams & Stams, 1981). As a result, the Saxon
Milesheets are exceedingly detailed. All the terrain objects that could be of importance
were surveyed. According to the records of Nagel (1876), the objects of interest are in
the range of the complete network of roads from the roads to every country lane and
the smallest footpath, the entire hydrographic network down to the smallest streams
and drainage ditches, all forests, meadows, huts and ponds, and in the complex of the
villages, as far as the scale allows, every single building with its yard and garden.

A prerequisite for using the historical map series for today’s research topics is the
correspondence of the coordinate reference systems. At the time of the Saxonian
topographical land survey, the geodetic-mathematical knowledge, as well as the
instruments and measuring methods, corresponded to the contemporary level and
the state-of-the-art. Stams (1981) described the survey process in their paper. The
engineering corps started practical surveying in the autumn of 1780. The first work
was to secure a baseline on the flat area southwest of Pirna. The measurement of
the main trigonometric network followed the marked endpoints of the base. In the
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Figure 3.1: Reconstructed Reference System of the Berlin copy of Saxonian Map sheets. Figure fromMüller
(2018a)

beginning, neither an azimuth observation nor a geographic positioning was carried
out in connection with the triangulation. Therefore the calculated triangulation points
could only be referred to as the extended baseline in terms of coordinates (Stams &
Stams, 1981). The lateral boundary of the individual miles forms an angle of 42° W
with the north direction. The longitude measurements were not yet standardized, and
the orientation to the north was missing at the time of the Saxon triangulation. It was
only oriented much later by reference to the meridian of the Mathematical-Physical
Salon in Dresden. Hans Brunner’s work in the early 2000s helped to reconstruct the
historical system. As shown in the figure3.1, square map sheets are mosaicking and
georeferencing without overlapping (Walz & Berger, 2003).

The lasting value of the mile sheets lies in the accurate documentation of the state of
the country at the end of the 18th century. After the mid-18th century, the first series
of topographic maps based on geodesy were produced in various European countries.
This map series of Saxony occupies a top position in terms of scale as well as in
terms of surveying and cartographic execution. The maps are, for the circumstances
of the period, of high accuracy in their geometry. Their representations of the cultural
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Figure 3.2: Sheet System of Saxon Mile Sheets. Figure from Brunner (2005)

environment come out to be a solid foundation for determining regional placement and
modern cultural landscape features (Walz & Schumacher, 2011).

The dissertation used the Berlin copy of mile sheets. The sketching mapping was
finished on quarter sheets and then glued together to make a mile sheet. Each quarter
has information on the topographer and the sheet number written on the back (see
fig.3.2). The completed sheet was kept by the General Staff and later became the so-
called Dresden copy of themile sheets, which was held in the King’s cabinet and became
today’s Berlin copy. The figure shows the sheet system of the map copies(Brunner,
2005). The figure can also tell that map sheets of the northern Saxon territories are
missing in the Berlin copy (square pieces with yellow slashes), which were surveyed
between 1819 to 1825. They were added to the copy of Freiberg (square pieces with
blue slashes). 180 Berlin mile sheets documented the contents of the original surveys
and were better preserved than the Dresden copy. Therefore, in 2006, the Berlin copy
served as the basis for digitization in cooperation with the Sächsische Landesbibliothek
- Staats- und Universitätsbibliothek Dresden (SLUB) (Müller, 2018b).
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(a) Largest font size (b) Middle font size (c) Smallest font size

Figure 3.3: Examples of different levels of toponyms on Saxon Mile Sheets.

3.2 Toponym Hierarchy and Font

As introduced in the last section, the Saxonmile sheets include a large number of details.
All place and field names were well annotated and included in the copies. There can
be more than a hundred toponyms marked on one map sheet. Accurate identification
of the structure of the place names is of great help in improving the accuracy of the
place name classifier(Adelfio & Samet, 2013). The place names in the Saxonian map
series can be categorized into three levels, as shown in examples (see fig. 3.3). They
are distinguished in terms of font size and form.

The three orthogonal dimensions of prominence, geographic containers, and feature
types may be used to determine the categories of toponyms in hierarchies (Adelfio &
Samet, 2013). The class of objects in this map series can be described by the feature
type.

Cities and regions were labelled with the largest font size, all capitalized and on simple
backgrounds without much distraction from other geographical features. The shapes
are clear, and the strokes are mostly solid and in black or dark brown colour. The letters
are widely spaced apart, which makes them may be well segmented in text recognition.
They are all parallel to the mapping baseline, in other words, horizontally written on map
sheets.

Towns, large villages, districts and rivers are annotated in medium-sized type and with
thinner strokes. Place names are written next to settlements. The river nameswere often
placed in the middle of the channel, aligned to the direction. The words are capitalized
and are more handwritten, styled with thin to thick shades of strokes and interlocking
letters. The transition of stroke thickness involved the variation of colour from visually
black to light brown or grey. The classic character separation step in OCR cannot cut
out individual letters from such cursive joined text.
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Buildings such as brickyards, mills, different types of roads, landscapes such as
mountains, lawns, forests, ponds and so on are marked in the smallest font size. Text at
this level can only be recognized when the users zoom in on the region. The names are
written in any direction, especially for line features such as the footprint trails, where
the text is aligned along the path. The font style also varies from the larger text in order
to make the place names readable at this level of the font size.

Figure 3.4: Examples of toponym placement on Saxon Mile Sheets.

The placement of the text at the second and third levels mostly consciously avoids
intersection with the trees indicated by the dark dot feature but overlaps on linear
features such as paths and hatch lines (see fig. 3.4). This makes traditional OCR
methods to filter out non-textual features very difficult.

The text on the maps is in cursive handwriting, which challenges recognition. The
handwritten fonts are unique, and it is impossible to find similar calligraphy in the
existing font libraries. For example, the letters "s", "z", "ß", and many more are very

Figure 3.5: Extracted Font Samples generated with the help of a template from Calligraphr
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Figure 3.6: A set of ambiguous characters are depicted. (a) Letters that look similar (b) two different
written letter "s", and (c) an example of the word "Koßwig", which challenges the text recognition

different from the modern style (see fig. 3.4 and fig. 3.5). Also, since all the letters
are handwritten, the characters are non-standardized. Therefore, to generate synthetic
annotation for training, the author needs to first extract a collection of unified, simplified
text from the map to simulate the handwritten font. Figure 3.5 shows the customized
character template that mimics the antique font style of the Saxon Mile Sheets. The
template was created by the Historic Map Semantic team. Based on these, the author
generated the font file in TFF format with the help of an open-source font creation
website - Calligraphr. Proper spacing and italic formatting were set in the font file after
this.

The ambiguity associated with cursive handwritten text has always been a problematic
part of text recognition. Figure 3.6a shows some of the characters, such as uppercases
of "S", "T", and "J", which look similar to each other. The lowercase ’s’ is particularly
special in the map font, which has more than one variant (see fig. 3.6b). The letter "ß"
is usually written as "ss" with a combination of these two variants, but the sequence
of variants is random. In this case, contextual analysis can be a correction to identify
the actual result. For example, "sch" is a common letter combination in German, and
"-dorf" is a common ending of village names on maps. This can be an additional factor
to distinguish lowercase "s" and "f".

Because historical maps have been preserved over a long period of time, places written
in smaller font sizes and finer and lighter colours are challenging to separate from the
background. The names of streets, routes, andminor terrains have changed significantly
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over time and are relatively secondary for modern research topics and for generating
machine-readable maps. Therefore, this paper only focuses on the largest and second-
largest font sizes, which are almost always parallel to the map slices and does not
extract smaller texts.

3.3 Virtual Map Forum 2.0

The Map Forum of the Saxon State Library - The Saxon State and University Library
Dresden (German: Sächsische Landesbibliothek, abbr. SLUB) offers digital access to
over 20,000 historical maps. The early DFG project has helped to digitize these widely
covered cartographic masterpieces in high resolution (BILL, WALTER, & MENDT, 2014).
With the development of digital science, spatial and temporal research topics set higher
requirements for historical map service. First and foremost is the need to transfer the
digitized material into a spatial context with georeferencing. Therefore, to further open
the public access to the data and provide the possibility for the researchers to download
and integrate the data into their local working environments, in April 2013, the SLUB
initiated the project "Virtual Map Forum 2.0" (Mendt, 2014).

A visualization within georeferencing deals with the translation of data into customized
visual representations with related interaction options (Zimmermann, 2017). The design
of visualization should serve to convey complex information to academic users as well
as interested laypersons. The virtual map forum finished this task well. The portal offers
several controls (see fig. 3.7). A time slider can restrict the time period in which the
maps were drawn. The filters on the left allow the users to choose the types of map
and the search function allows the possibility to focus on specific locations and map
types. The essential function of the portal allowed the author to obtain the selected
map sheets by WMS or WCS interface or by downloading the TIFF file.

3.4 Pre-processing

Firstly, the colour of maps is homogenized. As the maps cover the wide state range
and, as described, are with large scale and incredible details, coupled with labour and
technical limitations at the period, the Berlin Copy was completed from 1780 to 1806 for
more than 20 years. The craft work with such a time span brings non-standardization.
Although the cartographers tried their best to ensure the aesthetics and readability
of the maps, the differences in colour and shape between the text and the maps will
undoubtedly bring a lot of challenges for generalization learning. Figure 3.8 offered
examples of two maps drawn in different time slots, where the background colour and
font variety are apparent. To homogenize the hue and increase the contrast, the Historic
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Figure 3.7: User interface of virtual map forum 2.0

Figure 3.8: Parts of two neighbored map sheets from Saxon Mile Sheets. The left one was mapped in
1803, and the right side is one from 1784. The place name "Groß Naundorf" was annotated on both parts
but in different sizes and styles.

Map Semantic group developed a script to automatically set the black area and white
area to stretch the colour histogram value.

Secondly, the maps are re-projected to an orthographic view. The maps retrieved from
the Virtual Map Forum are oblique images, which means distortion in features. So, the
colour-homogenized map scans are converted to the conformal projection system and
re-sampled to 1 meter.

Figure 3.9 shows amap sheet downloaded from the Virtual Map Forum and re-projected
and colour homogenized sheet ready for further processing.

Thirdly, the maps are selected and cropped into smaller patches to increase computa-
tional efficiency. The Historic Map Semantic team provided software for obtaining a
collection of patches from map sheets. To ensure the model can learn various features
sufficiently, the patches selection was performed automatically, accounting for the
full range of hues and densities found in one map sheet. Map samples composed of
patches of 250 by 250 pixels each can be created from the georeferenced map files
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Figure 3.9: An example of an original map sheet downloaded from the map forum (left) and after re-
projection and colour homogenization (right).

with a pixel dimension of 1m by 1m. For further use as training and testing data, the
individual patches can be regrouped from several map sheets according to demands.
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The author first tested the performance of the existing pre-trained test detection models
introduced in section 2.2.2. The author would introduce the main processing in section
4.1 and more details about the methods adopted in the following sections. The author
has documented the processing pipeline in a separate file as an instruction for further
usage.

4.1 Workflow

The related work in OCR domains and previous studies of deep learning-based methods
for text extraction from historical maps offered a solid foundation for this thesis. Based
on all the reviewed frameworks, this thesis proposed a procedure for unlocking place
names from Saxon Mile Sheet (see fig. 4.1).

The processing was divided into three parts in general (see fig. 4.1). From data
preparation (RQ1.2) to text detection (RQ1.3), then, at last, the recognition (RQ2.2), the
outcome of each part was taken as the input for the next. Since sequential execution
brings the potential problem that the downstream stages highly depend on the results
of upstream implementation, there are evaluation and calibration steps in each part.
Steps were revisited when the outputs were not satisfied.

4.2 Data Preparation

The processing map sheets were selected from different parts of Saxon to get sufficient
diversity. After reprojection and colour homogenization (see section 3.4), nine map
sheets were grouped into the training set, and four map sheets were used for testing.
The training maps were further cut into patches. The author ensured the training set
and testing set were independent.

4.2.1 Training Dataset

The 1.2 research question of the thesis was about whether synthetic data can help
improve the efficiency of data preparation while preserving the high performance of the
deep learning model. In order to answer this, the models were trained on both simulated
data and manually labelled actual map patches (see fig.4.2).

The ground truth data was from the selected training patches with annotation. The
toponym in the patches was manually pixel-wise extracted and binarized as foreground
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Figure 4.1: General Processing Workflow

(white) in image editing software (see 4.2a). The manual labelling was time-consuming
and can be error-prone in extracting the precise shape of the text.

The thesis applied themost straightforward synthesis to the data (see fig. 4.2b), merging
a text layer and a background image layer. To begin, the author filtered out neutral
background images covered with various feature types (see fig. 4.3). Those are patches
without any text information. Extremely dark backgrounds, for example, covered with
very dense slope shades, were excluded from generations of true positive patches but
were sorted into true negative training. This is because the place names on these kinds
of backgrounds can not even be recognized with human eyes. Also, the author decided
to focus on the large and middle-sized toponyms (see section 3.3), which mostly only
intersect with simple features. The text is randomly chosen from a list of possible place
names or a random sequence of letters, but ensure all letters in German are traversal.
The text was rendered with a customized antique font and at font size 80. The rendering
colour is randomly from dark brown to black, and a small part of light brown. The vector
graphic was then rasterized. As presented in section 3.4, the largest and middle-sized
toponyms are placed in roughly one direction. Therefore, the text was rotated 39 degrees
counterclockwise before being overlaid on the background layer using Python Imaging
Library. As antialiasing was not included in the font, and the author intended to have
binary images as training input, a morphological closing operator with a kernel of 1*2
was introduced to smooth the jagged edge.
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4.2 Data Preparation

True-negative patches were selected from the list of neutral images of each category
(see fig.4.3). The initial selection was even. After the first training was conducted, based
on the training results, if there are features with particularly problematic predictions, for
example, if a large number of tree elements are misclassified as text, then the training
data would increase the number of patches containing the feature.

Different augmentation strategies were applied respectively to true-positive and true-
negative data. For true-positive images, the author wanted to preserve the orientation
while all other non-textual features can be in any direction. So, the common augmenters
were adding random blurring effects, resizing and translating and random cropping. For
true-negative data, additional flipping, rotation and contrast modification were executed.
The operations were conducted with the help of the python library imaging.

In the implementation stage of model learning, the input data were further extracted
from augmented samples to match the size limit of the architecture. Part of extracted

(a) Manually labelled true positive patches

(b) Synthetic map patches

(c) Augmented true negative patches

Figure 4.2: Illustration of the data preparation procedure. The size of the images is not proportionally
scaled.
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Figure 4.3: Patches extracted from maps were classified into different feature groups (see section 3.4)

samples was saved separately and used as the validation set.

4.2.2 Testing Dataset

After reprojection and colour homogenization (see section 3.4), a piece of the Saxon
Mile Sheet is around 9600 to 10000 pixels in width and height. Due to the computational
limitation and to increase the efficiency of model tuning, the trained model was first
tested on a collection of clipped map sheets. The author cropped regions of text with
different features on the background from the selected testing maps and placed them
on a white background canvas. The actual map sheets were tested after optimal models
were selected. Figure 4.4 shows the image used to test the models.

4.3 Toponym Extraction

The overall processing steps of text extraction are as shown in figure 4.1. The processing
started by separating text from the graphical background using the principle of binary
semantic segmentation. The machine learned the features of text elements from input
augmented synthetic or manually labelled training patches. The map images were
transformed into black-and-white text masks. Then morphological operators helped to
merge the extracted dispersed characters to text regions and then from which to draw
the contour line. The image was then cropped to word boxes containing the detected
toponym.

4.3.1 Trained Models from Existing Framework

For testing text detection on off-the-shelf frameworks, models were selected based
on three factors. First is the availability of the model and code. The second was the
robustness, whether it has been tested on different datasets in general and has overall
good performance. Thirdly, the model’s computational cost was also considered to
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4.3 Toponym Extraction

Figure 4.4: A set of cropped text areas use for model testing.

avoid memory error due to hardware limitations. Therefore, the author was not able to
compare all the algorithms reviewed in section 2.2.2.

MMOCR (Kuang et al., 2021) is a powerful open source toolkit for text detection,
recognition and understanding. The toolbox is a part of the OpenMMLab project.
Comparedwith other open sourceOCRprojects (for example, PaddleOCR, and EasyOCR),
the available models are the most and the latest. Fourteen state-of-the-art algorithms
are integrated within a unified framework. The paper takes full advantage of the pre-
trained models built in the toolbox to test how well they can be tailored to complete the
text detection tasks on Saxon Mile Sheets.

The model for comparison is firstly the segmentation-based DBNet++ trained on the
ICDAR2015 dataset. ICDAR are a series of popular benchmark datasets published
through the International Conference on Document Analysis and Recognition (ICDAR)
organization. ICDAR2015 is one of it which contains incidental scene text data labelled
with quadrilateral text boxes in multi-orientation. Another segmentation-based model
tested was TestSnack trained on the CTW1500 dataset, which is a curved text database.
The third model chosen was the regression-based method DRRG also trained on the
CTW1500. The hybrid method, the FCEmodel, trained on ICDAR 2015, was also tested.
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Figure 4.5: The architecture of implemented U-Net

4.3.2 U-Net Architecture

The deep learning structure adopted in this thesis is the U-Net architecture (Ronneberger,
Fischer, & Brox, 2015). U-Net is one of the early algorithms developed based on fully
convolutional networks for semantic segmentation. The "U" in the name comes from
its symmetric U-shaped structure as visualized in figure 4.5. The right side of the model
is described as the encoder, the so-called contracting path in some studies, and the
left side is the decoder, the so-called expansive path. A crucial component connecting
each level of the encoder and decoder is the operation of copy and concatenation. This
aspect makes it a prominent difference to the fully convolutional network.

The encoder downsamples the feature maps, which means reducing spatial data and
extending feature data. The compressed path consists of four level blocks, each of
which uses two effective convolutions and one downsampling layer, and the number
of feature maps is multiplied by two after each downsampling, resulting in the feature
map size variation shown in the figure.

In order to gain location information, the decoder reconstructs the image to return
the segmentation map with the exact dimensions of the original image. The blocks
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4.3 Toponym Extraction

Time of ten runs
CPU 0.7597459
GPU 0.0271611

GPU speedup over CPU: 27x
Table 4.1: Time (s) to convolve 32x7x7x3 filter over random 100x100x100x3 images (batch x height x width
x channel).

of the expansive path start from the size expanding with the deconvolution layer. The
concatenation connection crops and carries the feature map from the corresponding
downsampling step to the decoder. In the block of the decoder, the two compressed
feature maps are merged together.

Each level block contains additionally batch normalization to reduce the internal
covariant shift and accelerate the training. A 50% dropout probability was added at the
deepest level to reduce overfitting.

UNet is chosen primarily for its ability to learn from a small training set. The feature
map acquired from the deeper network layer has a larger receptive field, so the shallow
layers are sensitive to texture and the deep layers concerned with the shared features,
and UNet is able to learn from both. UNet is effective with its lightweight and simple
structure.

The thesis uses aU-net architecture computedwith the Keras library, and the trainingwas
implemented on the GPU. The speed of the GPU and CPU processor was compared on
the local laptop shown in table 4.1. The standard max-pooling layers for downsampling
were replaced by convolutional layers with a stride of two, which further extended the
ability of feature learning. Same in upsampling, transpose convolutional layers were
executed.

The input image size for the network training was 128 * 128. The number of channels of
the first convolution was encoded to 8. Then following the sequentially downsampling,
with each convolutional block, the number of kernels doubled and went to 128 at the
deepest level. Compared to the 1024 feature maps in the original paper, the model
was simplified due to a trade-off between the complexity of the model and the size of
the input image. As the purpose of the network was to separate the text feature from
non-text, the final output is only one feature map.
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Figure 4.6: Model performance tracked and visualised on TensorBoard
.

4.3.3 Performance Tuning

Deep learning is complex, and even the relatively simple structure of the Unet architec-
ture has many hyperparameters. Choosing the already appropriate hyperparameters at
the beginning is undoubtedly impossible, so after the network architecture is built, the
researchers always have to tune the hyperparameters to improve the performance.

The tuning process of deep learning is more empirical than theoretical, which in other
words, is based on experts’ experience and can only achieve by repeating the iteration
until the optimal results are found. Therefore it’s important to track the performance
and have a direct comparison of the change in accuracy. Tensorboard is a visualization
toolkit that can host and track the training process of deep learning models. There are
diverse functions embedded in the platform, while for this thesis, the writer mainly used
the scalars dashboard, which visualizes the loss and metric of each run (see fig.4.6).

Table 4.2 records the training schedule of the network in this thesis. The author tried
to improve the model performance from three perspectives. Firstly, the author tune
parts of the hyperparameters; secondly, the amount and quality of training data were
explored; and thirdly, different loss functions were tested.

The most tuned model hyperparameters are learning rate and batch size.

The learning rate controls the magnitude of network gradient updates in training. The
optimal learning rate should accelerate the training of the model and obtain satisfactory
accuracy. If the learning rate is too large or too small, it will directly lead to the divergence
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4.3 Toponym Extraction

Experiment 1 2 3
Learning rate 1.00E-03 2.00E-03 1.00E-02
Batch size 5 5 5
Loss function Binary Cross Entropy (BCE) BCE BCE
Input data size (128, 128, 3) (128, 128, 3) (128, 128, 3)
Number of training patches
(true positive + true negative) 15 + 15 15 + 23 15 + 25

Experiment 4 5 6
Learning rate 5.00E-03 1.00E-03 1.00E-03
Batch size 5 3 5
Loss function BCE BCE Intersection over Union (IoU)
Input data size (128, 128, 3) (128, 128, 3) (128, 128, 3)
Number of training patches
(true positive + true negative) 25 + 25 35 + 37 49 + 37

Experiment 7 8 9 10
Learning rate 1.00E-03 1.00E-03 1.00E-03 1.00E-03
Batch size 5 5 5 5
Loss function Dice Loss BCE + 0.2 * IoU BCE + 0.2 * Dice BCE + 0.2 * IoU
Input data size (128, 128, 3) (128, 128, 3) (128, 128, 3) (128, 128, 3)
Number of training patches
(true positive + true negative) 49 + 37 49 + 37 49 + 37 49 + 37

Table 4.2: The training schedule of the recognition network

of the model. With the Adam optimizer, most projects tested the initial learning rate in
the range [1e-3, 1e-2]. The author tested the learning rate of 0.001, 0.002 and 0.01. The
optimal results were performed with 0.001.

The batch size determines the number of samples processed in one iteration. For small
data sets, full batch learning can be conducted, but for larger data, loading all the data
at the same time will cause memory pressure. The appropriate batch size can improve
memory utilization and speed up processing. The author tried to reduce the batch size
to prevent memory error, but the model was not able to converge inside the limit epochs
with a smaller batch size. The optimal batch size was tested to be 5.

The primary strategy of machine learning is to minimize the loss function, to have the
model reach a state of convergence and to reduce the error in the model’s predicted
values. Therefore, configuring the loss function is a crucial step to ensure that the model
works in an expected way. Different loss functions can have a significant impact on the
model.

The default loss function for binary classification questions is cross-entropy. Cross
entropy can be briefly summarized as a calculation of the difference between two
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probability distributions. It was built upon entropy, which is a measurement of
uncertainty in information theory. The Binary Cross Entropy Loss function is:

− (y log(p) + (1− y) log(1− p)) (4.1)

where y is the true value, can be 0 or 1, and p stands for predicted probability for the
class.

Dice loss is a function used to assess the similarity measure between two samples,
taking values in the range of 0 to 1. The larger the value, the higher the similarity of the
two values and its basic definition for binary classification is as follows

DICE = 2 ∗ |A ∩B|
A+B

(4.2)

Jaccard similarity index, also known as Intersection over Union (IoU), is widely used as
an evaluation metric, especially for the object detection task. It can also be computed
as a loss function for binary semantic segmentation when the element to be extracted
is much smaller than the background elements. The IoU score and loss are calculated
respectively as followed:

IoU =
|A ∩B|
|A ∪B|

(4.3)

LossIoU = 1− IoU (4.4)

where A and B are the ground truth set and prediction set.

The line chart in figure 4.7 compares the performance of the last three runs trained with
different loss functions. The models trained with all three loss functions show a very
high accuracy after iteration of several epochs. This is because, pixel-wise, compared
to the large non-text region, the text elements only occupy a tiny ratio. Therefore, the
accuracy can easily reach a high level statistically, even though many text features are
not extracted. That’s why the IoU score should be introduced to assess the model.

While the model trained with BCE shows the highest accuracy and lowest loss
statistically, the prediction of models trained with BCE and IoU showed strength in
precise shape extraction (see section 5.1.2). Therefore, the idea would be to combine
different models to get a prediction that outperforms all single results. Sarker (2021)
took model ensembling as a potential direction of deep learning research. A group of
neural networks can be trained with different parameters or independent subsampling
training datasets. A promising solution for model uncertainty can be hybridization or
ensembles of such models. By allocating weights based on each model’s performance,
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4.3 Toponym Extraction

the author attempted to optimize the predictions made by an ensemble of models from
several trained models. Selected predictions were calculated to weighted average as a
final extraction output.

The author also tried to train the network with 512*512 sized image input. As for 128*128
patches, some of the words were cut into strokes or points, which might cause different
feature maps. However, due to the computational capacity of local laptops, memory
errors interrupted the execution.

4.3.4 Post-processing

After segmentation results were acquired, the author intended to enhance the image
as a post-processing step of text extraction or from the text recognition side as a pre-
processing step to prepare the input for OCR tools. Morphology is a basic technique for
image enhancement. The primary operations are dilation and erosion. Having different
process sequences of these two basic operators, morphological opening and closing
operations perform with different effects. Opening operators conduct first erosion, then
dilation. It functions to break the connections and eliminate small isolated pixels. In
this thesis, it was applied to remove the non-textual noise. The closing can smooth the
contour and fuse the narrow breaks. For the characters, it helps to fill the holes inside
the text shapes. So, the author applied to open followed by closing to get a cleaner
shape of the extracted letters. Figure 4.8 shows an example of an extracted text element
and the image after enhancement.

4.3.5 Word Box Localization

The image masks were then processed to get the word box. For easier detection, the
image was first rotated to turn most of the text in the horizontal direction. Morphological
closing with horizontal kernel operated to fuse the disbanded text letters to a single word
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Figure 4.7: Comparison of model performance with different loss functions.
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Figure 4.8: Text extracted and after enhancement
.

region. Then the rotating calipers algorithm was implemented with the OpenCV library
to find the smallest bounding box of the word regions. In order to make the toponym
more completely extracted, the authors have performed a slight scaling operation on
the enclosing rectangle.

The outputs of this step were:

1. Visualization of detected word boxes on the original image. Text boxes were
marked on the original coloured map to help the viewer see the direct visual
results of the text detection.

2. A greyscale and an enhanced binary version of the text image were ready for text
recognition. The greyscale version contains more textual information, while the
enhanced binary version offers cleaner shapes. The selection of version using as
input data would depend on the requirement of the OCR tools.

3. Cropped slices were prepared for the OCR tool (MMOCR), which takes cropped
text tiles as input.

4. The location information of the text was also recorded. The authors extracted the
geographic coordinates of the text box’s central points and queried the address
through the open source geocoding API, Nominatim. This will prepare for possible
contextual analysis for text recognition correction or potential study of toponym
change in linguistics in the future.

4.3.6 Evaluation Metrics

To assess the performance text detection model, we employed three metrics. They are
precision, recall, F-Score and Intersection over Union. In the literature, these metrics
are frequently employed for object detection topics. The author was not interested in
pixel-level misclassification of the text elements but rather concerned with the word as
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an entity. So all the metrics were calculated at the object level based on the detected
word boxes.

The intersection over Union (IoU) metric was computed to evaluate how complete the
place names were extracted with bounding boxes. The ground truth is the actual text
regions marked manually. The prediction area is the area within the minimal bounding
boxes. The score was calculated by dividing the intersection of these two regions into
the union of these regions (see equation 4.3).

Recall, Precision and F-Score were calculated as follows:

Precision =
TP

TP + FP
(4.5)

Recall =
TP

TP + FN
(4.6)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(4.7)

4.4 Toponym Recognition

4.4.1 Training Datasets

For text recognition, the authors also attempted to use synthetic data for training. Text
of random font size was generated on the page using the customized antique font of
map series and rendered to graphic, and the random text was saved directly as labels.

The other set of training data came from one part of the manually labelled map patches
from the data preparation step. Another part was selected and annotated from the
prediction result of text detection.

The datasets created by the author were in small sample sizes. Although the samples
of synthetic data can be theoretically infinitely, training data lacked sufficient variation.
Therefore the author used pre-trained models from Transkribus’ database as a
supplement. This model trained on German historical documents from the National
Library of Australia claimed to have good accuracy in recognizing German fraktur from
the 19th to the 20th century.
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4.4.2 Deep Learning-based Text Recognition Tools

Although the existing deep learning-based OCR usually contains the function of text
detection already, they usually can only process the text on simple backgrounds. The
testing on trained detection models also proved that the end-to-end OCR systems are
not sufficient to finish the text extraction task on Saxon Mile Sheets. Therefore, the
pre-processing of maps to separate text and graphics and to remove the majority of
distraction noise is a necessary step before starting the recognition.

The recognition was conducted in MMOCR and Transkribus (Kahle, Colutto, Hackl,
& Muhlberger, 2017). The recognition was conducted in MMOCR and Transkribus.
Transkribus is a comprehensive platform for text recognition, having a particular focus
on historical documents. It is open source, has detailed user instructions, and is,
therefore, easy to use. Compared to MMOCR, the advantage of it is the multiple pre-
trained German transcription models publicly available.

The author used the HTR+ engine embedded in the Transkribus tool for recognition.
HTR+ is an improved version of the handwritten text recognition engine from the CITlab
team (see section 2.2.2). The author first train on the image with a small amount of
training data and on the base of the pre-trained model. As the error rate was high,
proving that the pre-trained model was not suitable for the task, the author started to
increase the training data input and trained the model from the beginning.

In mmocr, the classical CRNN+STN model was chosen for text recognition. A trained
ABiNet model was also tested to see the alternative option other than CRNN. Both
models are trained on the Syn90k dataset. This Syn90k (MJSynth) dataset contains 9
million images consisting of 90k English words.

4.4.3 Evaluation Metrics

For assessing text recognition systems, the character error rate (CER) and word error
rate (WER) were calculated. They measures how much text in the handwriting was
incorrectly interpreted by the HTR model.

F1 =
errors

correct+ errors
(4.8)

It is controversial to use WER for model evaluation. Because regardless of the length
of the word, if one letter of it is incorrectly interpreted, the entire word is marked as a
wrong recognition result. Even if the model has a low CER, its word error rate may be
high. Moreover, WER does not give comparative results for individual characters and
is therefore used relatively seldomly to evaluate recognition models. However, WER
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can imply whether the recognized text is possible to be successfully searched or fuzzy
matched in a database such as a gazetteer, so this thesis still calculated the WER.

Additionally, the author visualised the confusion metric for recognition of each letter
(case-insensitive) to analyse the error distribution. Confusion matrices are useful for
determining pairwise which letters are better distinguished and which of those cause
the most confusion.
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5 Results and Discussions

In this chapter, the authors presented the results of the workflow implementation with
graphs and discussed the results. The authors shown section by section, how well the
training of synthetic data performed, how well can the trained off-the-shelf models and
the proposed UNET model extract the place names, and how is the performance of
selected recognition models.

5.1 Text Extraction

5.1.1 Pre-trained Models

Figure 5.1 shows the detection results of the four selected models on the test images.
The detected text region is framed with green quadrilateral or irregular box lines. Due to
page limitations, the images are scaled to show only the more problematic areas of
each model prediction.

Text recognition does not distinguish size on the generic model because the general
models are not specifically trained. The smaller text should theoretically be recognized
as well.

Overall, the performance of the fourmodels varies and all have specific types of errors.

In the DBNet++ model (see fig.5.1a), black line elements such as some river banks,
slope lines, and red geometric elements of residential areas are incorrectly identified as
text. For the toponym in larger fonts and spacing, there are one-to-many errors, which
means the word entity is truncated into multiple text boxes. The bounding boxes do not
frame the text completely. Some characters of the place names are located outside the
detected bounding boxes. The false negative error happens on one test crop, and all
the other place names are at least partially detected.

TextSnake has a good performance on toponyms when the characters have similar
height. The minimal enclosing box are precise around the text region. For large text, not
all the character are correctly located. Type 2 errors are found on densly distributed
point features.

The DRRG model has a many-to-one error on the detection of smaller text, where
different place names are framed into the same text box. But it performs well on text
area detection of medium and large-sized place names. The text shapes in the box
are relatively the most complete. However, there are three slices on which the text is
ignored. No background elements were classified as text.
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5.1 Text Extraction

(a) Model DBNet++

(b) Model TextSnake

(c) Model DRRG

(d) Model FCENet

Figure 5.1: Detection Results using Pre-trained Models. Only problematic regions of test images are shown
due to space limitation.
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The detection of the FCE model is more problematic in comparison to the three. The
network is sensitive to smaller and densely distributed characters. The largest place
names are not detected or are just partially framed. In particular, the taller letters such
as "h" and "f" are not enclosed in the bounding contours. Incorrectly classifications are
found in slash stripe features and polygon features of settlements.

In comparison, DRRG performs best in separating text and non-text features. The two
segmentation-based models, DBPP and TextSnake, are able to correctly find more text
regions, but both interfered from other elements, and type II errors appear more often.

There is text not located in all of the four models. It can be seen that the direct use of
trained models for toponym detection on historical maps is not satisfactory. The results
are not sufficient to be the input into OCR tools for recognition. Thus, this motivates the
author to train a specific model for the Saxon Mile Sheets.

5.1.2 U-NET Pipeline

The U-Net training pipeline includes the stages of training a model, model tuning,
choosing the models to predict, ensembling predictions and extracting the word
boxes.

Figure 5.2 to figure 5.5 present the model tuning process and the predicted results.
Results were selected from one run of the total 30 epochs.

Figure 5.2 shows the text shapes are more precisely extracted using optimized training
data. A series of optimization applied to training data, including the adjustment of
augmentation algorithms, choice of binarization threshold, and a more diverse selection
of background features. This indicated the crucial role of synthetic data generation
approach in having a good segmentation result.

Figure 5.2: Predictions before and after improvement of training data
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(a) BCE (b) BCE + 0.2*IoU

Figure 5.3: Predictions from models trained with different loss functions (BCE and BCE+0.2*IoU).

A visual comparison ofmodels trainedwith different loss functions can be found in figure
5.3. BCE preserves the text shapes better, whereas the combination with IoU brings
a better background removal.The elements that are misclassified to the foreground
are mainly dark dot and line features that have similar colour and shape to the text.
The contradiction always exists that the more accurate the shape extracted, the more
noise is also classified as the text element. The same situation can be seen in the
trained models (see fig.5.1). On one side, the author has to find a balance between
shape extraction and background removal. On the other side, model ensembling can be
a solution to combine the strength of two models. In the thesis, predictions from both
BCE models and BCE+IoU models are kept and hybridized for post-processing.

In order to provide an impression of how synthetic generation can help to save the
effort in deep learning, the control group is the model trained on small amount of
manually labelled ground truth samples. Visually there is no significant improvement
in balancing background removal and shape extraction (see fig.5.4). The text strokes
are still defective in the segmented image. This also affirms the possibility of replacing
manual annotation with synthetic images. The automatically generated training data
is at least comparable to the small-scale manually annotated data. They do not differ
much in prediction performance, so the synthetic data can significantly reduce the
labour cost compared to the difficulty of data acquisition.

The defect shapes in prediction are usually faded coloured strokes on original map.
An example is the letter "w" and "z" in the toponym "Lockwitz", as framed out in figure
5.5. They can be an indicator of how well the model is performing in preserving the text
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(a) Synthetic training set (b) Manually labelled ground truth

Figure 5.4: Predictions from models trained with synthetic data automatically generated and trained with
manually labelled true map patches.

Figure 5.5: Prediction trained with manually labelled data
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5.1 Text Extraction

(a) Prediction 1 (b) Prediction 2 (c) Prediction 3

(d) Ensemble prediction of weighted average

Figure 5.6: Predictions from models trained with synthetic data automatically generated and trained with
manually labelled true map patches.

shape. The chosen model is expected to extract at least a fuzzy contour of stroke as
"z" in order to make it possible to be read and interpreted by the recognition.

Based on the results on the test image, the authors chose five BCE and BCE+IoU trained
models to conduct prediction on the actual map sheets. The figure 5.6 (a)-(c) depicts
parts of the results of a map sheet. The displayed sheet is mapping the region around
Niedersedlitz. The three predictions are the optimal ones among all the outputs, and
they are respectively strong in shape extraction or in text/graphic separation. The author
wanted to strengthen the text shape while keep the noise excluded from the foreground.
Therefore, the weights of 0.3, 0.5, and 0.2 were assigned to the prediction according to
their ability of background removal and then the mean values were calculated. Figure
5.6d shows the ensemble result. In the stacked result, the elements with a higher
probability of being predicted as textwere further highlighted and had a stronger contrast
with the noise. This allows easier differentiation in the subsequent post-processing
steps.
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Figure 5.7: Detection output for map "Neustadt".
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5.1 Text Extraction

Map Precision (%) Recall(%) F1 (%) IoU (%)
TestCrop 46.15 100 63.16 71.34
Neustadt 94.44 100 97.14 63.88
Woelckau 45.45 100 62.5 44.97
Nidersedlitz 62 100 76.54 57.19
Fuchshain 47.06 100 64 1.14

Table 5.1: The evaluation of text box detection on different map sheets. Map names are the major cities in
the mapping area of the pieces.

The ensemble results are processed to acquire the text regions. Defective text strokes
are further restored in post-processing. Both the enhanced bicolour shapes and the
original RGB image were cropped to separate image files. The figure 5.7 shows the
output of one of the maps sheet. The text box nicely frames out the detected toponyms.
Only the extraction of a few small place names is incomplete, which is also unexpected
as the model was trained only with larger font size. Only the middle part of those
tiny street names is intercepted in the text boxes. The background dots and lines are
removed. The extracted text shapes have good readability, but some of the "e" and "t"
letters are incomplete, and might cause confusion in the recognition.

5.1.3 Evaluation

Table 5.1 shows the evaluation of the prediction results for all tested maps. The
performance of the models varies on different maps. However, all recall scores are
100%, indicating that all the true positives are correctly detected as positives. The
mapping region of the sheet can be one of the factors that caused the gap. Map sheets
"Woelckau" and "Fuchshain" are spatially distant from the other maps and show a lower
evaluation score. The cropped collection in the testing image did not cover sufficient
diversity. This suggests that more various training data inputs and more extensive
testing on maps from wider regions are necessary. But even the lowest F1 score is
much higher than the performance of CNNs tested on Austro-Hungarian historical maps
(Can & Kabadayi, 2021).

The IoU result computed is inaccurate for different reasons. The bounding boxes
manually drawn might not be the minimal enclosing contour. The manual marking
is mostly horizontal to the visual text central line, while the minimal bounding box
computed could be rotated. The angular difference then brings the misaligned areas.
Secondly, manual labelling only focuses on the large and middle-sized toponyms,
whereas the deep learning model also extracts the small ones. The large percentage of
extra extractions marked as false positive caused the low value in IoU and precision.
Especially for the map sheet Fuchshain, where smaller annotations for routes and
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Figure 5.8: Detected small toponyms on map "Fuchschain"

landscape are written in the dark solid font. Even after filtering out the small text by
setting a threshold of the text area, the network located many small toponyms and
extracted the shape clearly (see fig 5.8). Therefore, the prediction for the map sheet
"Fuchshain" with extraordinarily low IoU cannot be claimed as a complete failure. Almost
all text boxes contain textual information. The mixture of toponyms in different font
sizes indicates that the proposed network cannot differentiate text with size variance in
the thesis implementation.

One adaptation for IoU in text detection is that use the over lap ration to measure the
true positive and false positive (Khan et al., 2021). True positive is considered when
the value of IoU ratio is greater than the selected threshold. This method is adopted in
the evaluation of ICDAR 2015 dataset. This might be also a good metric to assess the
model proposed.

5.2 Text Recognition

5.2.1 Models Performance

The extracted text images were then passed to the recognizors. Table 5.2 compares
the performance of selected recognition models. The implementation of CRNN+STN

Model Input CER (%) WER (%)
CRNN+STN RGB 16.24 76.92

Extracted Binary 17.95 76.92
ABiNet RGB 36.75 92.31

Extracted Binary 41.03 92.31
HTR+ Extracted Binary (whole page) 88.89 -> 70.09 -> 52.51 100 -> 100 -> 95.65

Table 5.2: The performance of trained models on reconizing the toponym. The arrow in HTR+ column
indicate the change of training dataset.
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5.2 Text Recognition

Figure 5.9: Learning curve of the recognition model trained with synthetic data and validated with toponym
patches. The character error rate decrease in runs but the gap between training and validation set is so
large.

and ABiNet model with MMOCR took cropped images as input. Transkribus software
could not recognize the text inside cropped text boxes, so we used the whole binary
image of the segmented result as input. The recognition results were then put into
a text comparison tool to calculate the error rate against ground truth from manual
transcriptions.

The HTR+ model was first transferred from a publicly available model with german
historical documents. Because of the bad performance observed, the author rejected
the existing training data and tried to train the model with pages of synthetic text and
validate it on map sets. The gap between training and validation accuracy (see the
learning curve in fig.5.9) became so large to conduct reliable predictions on segmented
images. The author further improved the training with more manual labelled text, and
the CER has significantly decreased with the increasing amount of training data.

The CRNN+STN trained on Syn90k achieved the best outcomes even without extra
training. HTR+, which is also using CRNN structure, shows unsatisfying results. The
main influence factor could be the training data used. The training data from the same
language at the same time age can not train the model better than a more diverse, much
larger volume of English database.

5.2.2 Error Analysis

The confusion matrix records the number of occurrences between characters recog-
nized and the true letters. In figure 5.10, two tables show the confusion matrix of the
HTR+ model and the CRNN model. The rows stand for the true letters and the columns
display model prediction. The main diagonal from top left to bottom right shows the
number of correctly classified letters.

None of the "z" is correctly interpreted by CRNN model. This can be because in the
unique font style of Saxon Mile Sheet, "z" is so uniquely written. The top error in CRNN
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5 Results and Discussions

(a) HTR Predictions (b) CRNN Prediction

Figure 5.10: Confusion matrix for character recognition. Each row is a frequency count of characters
recognized by the system, with darker colors associated with higher frequency counts. The matrix is
case-insensitive.

is the "t" and "l" confusion. In HTR+ model, the most common error was "t" and "l"
confusion, followed by "p" and "g" confusion.

Letter "t" has a specifically high possibility of being wrongly classified in both models.
The vague extraction of "o" and "e" may lead to confusion in both models.

Since only a small number of images were put into the recognition system for testing,
the sample size for recognition was not sufficient to show a significant distribution
trend. However, this operation can provide direction for subsequently increasing the
training samples. For example, in this paper, the recognition of "t" needs to be particularly
strengthening the training.

5.3 Overall Performance

Table 5.3 shows the results of detection and recognition of toponyms on a sheet
mapping around Dresden Neustadt. From left to right, the table contains the image
cropped from detected bounding box, ID, the Universal Transverse Mercator (UTM) co-
ordinates of the center point of image, the Geographic (latitude, longitude) coordinates,
the address found for location with Nominatim service, and the recognition results with
specifically trained HTR+ model in Transkribus and the trained CRNN model in MMOCR
(Recognition2).

The queried place names can serve as an auxiliary assessment of whether the text
matches the location, in other words, whether the text box is correctly localized. It
can be used to verify the accuracy of the text detection block. Moreover, from another
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5.3 Overall Performance

Table 5.3: Part of the extraction and recognition result of map sheet "Dresden Neustadt"

perspective, the address containing the true place names can compare against the
recognition results.

The bold letters in the address column are the true place name in the image. The place
names are mostly found on administrative levels as the names of the neighbourhood
or suburbs. Two third of the detected word box can be correctly located to the address
but not yet correctly transformed to text. Different reasons could cause the missing
place names.

First, the change of administrative border makes the point fall on the suburb in the
neighbourhood. For example, the third place name "Klein Pestitz" was also not correctly
found at the location. It was about a kilometre distant from today’s site (see fig.5.11).

Second, geographic bias can be caused by geocoding services. Most of the serving
geocoding tools claimed to be accurated down to street address precision. The
difference in positional accuracy is discovered by different providers. For example,
the second text, "Strehlen", was not found in the queried address. However, by switching
the geocoding service to Google API, the name "Strehlen" was found as the sublocality.
Third, the place’s namehas been lost in time. For example, the area "Scheunen" annotated
on the map is nowadays only found as a historical building and serves as cafe and
culture centre.

For these factors, if a gazetteer or geolocator tool is used to validate or refine the result
of toponym detection and recognition, the author would suggest firstly searching with a
spatial tolerance and secondly using different service providers.
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5 Results and Discussions

Figure 5.11: District "Klein Pestitz" on historical map outlined in green and today’s location on Open-
StreetMap marked with blue box.

From this integrated table, the performance of text detection and extraction is
satisfactory, but the recognition of text still needs much improvement. The existing
recognition results are even difficult to perform fuzzy matching for context analysis.
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6 Conclusion and Further Work

The thesis reviewed OCR systems and state-of-art deep learning-based techniques
(RQ1.1 and RQ2.1). After implementing a proposed deep learning pipeline on Saxon
Mile Sheets, the thesis evaluated the practical feasibility of deep learning-based text
detection (RQ1.2) and recognitionmethod (RQ2.2) on toponymextraction from a specific
type of historical topographic maps (RQ3).

The findings can be summarized as follows:

1. From the literature review, text extraction and recognition algorithms have
developed rapidly in recent years. Different genres of methods have been
computed and tested in practice. They have proved their effectiveness through
testing in various scene text databases. Transfer learning from these pre-trained
models would be a good option for the tasks in Cartography as map-specific
training data are normally very limited. However, each of these approaches has
its own strengths and towards better performance in a specific area under certain
contexts. The comparative experiments in this thesis also found that there is a
gap between the performance of different pre-trained extraction and recognition
models. Direct adoption of trained models in different contexts is not possible.
Manual intervention of tuning is still crucial for training. If an unsuitable model
is chosen, it will take the researcher much more effort in training to achieve an
acceptable result. So, how to choose the suitable method for historical maps from
all those approaches is certainly a discussable topic.

2. Synthetic data proved its feasibility of saving efforts for deep learning models
without much existing labelled data in text extraction. The extraction of text
shape can be comparable to the results trained with a small amount of manually
labelled ground truth. However, this approach didn’t perform well on the chosen
text recognition network. For text transcription, the model still need to be trained
on ground truth.

3. The proposed deep learning pipeline proved its efficiency in text localization.
Unlike traditional extraction approaches, which are type and size-sensitive, deep
learning methods may be able to extract text elements with variants. Compared
to the reviewed dl-based OCR work on historical maps, the f1 score and IoU score
achieved in this thesis are excellent, with relatively lowest effort spent on training.

4. For existing open-source text recognition tools, recognizing handwritten place
names on historical maps with unique font styles is still very challenging. Model
performance highly depends on the training data available. Most networks require
a large amount of labelled data to achieve a satisfactory prediction. The author
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has not found an effective solution in this paper to free the labour from the heavy
manual labelling tasks.

Based on the findings of this paper, the author would like to point out the potential future
steps of the study.

1. The data synthesis in the thesis used a straightforward method. The training
samples did not simulate the colour shade variations of cursive handwriting.
While usability has been demonstrated, extraction in higher precision can be
achieved by improving the quality of the synthesized data. A more refined mimic
strategy can be first generating a gradient colour space and then using a font
mask to extract a text shape with colour variation. The available font generation
tools also offer the possibility of randomizing the use of variant letters. Noise and
random erasing can be added to imitate the colour fading of scanned historical
documents.

2. The large size of the map sheet and complex features set relatively high
requirements on hardware. During the processing, the author encountered the run-
out-of-memory error many times. The limitation of computing power was solved
by reducing computational complexity, for example, cropping the input map into
smaller patches. The smaller size of the input image affects the receptive field
the feature map can learn from. Cloud computing through web service could be
an option to get aggregated supercomputing power. A hypothesis could be tested
on whether the efficiency and generalization of models can be improved with a
more complex network structure.

3. Gazetteer can be queried bazed on the localized word box. With the place
name database, from one perspective, contextual analysis can be conducted
to correct the recognition results. From another perspective, linguistic studies can
investigate the changes in place names through history.

4. The experiment, together with polygon and polyline extraction tested by the
Historical Semantic Segmentation Team, shows the possibility of developing
an integrated system for all feature extraction and interpretation on Saxon Mile
Sheets. The toolkit can help automatically translate the raster-format historical
map documents to structured geo-data in an effective way. An interface can be
developed to let the users input the map and get the required features.
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