

Cartography M.Sc.

Soponym Extraction from Selected Historic Topographic Maps Using Deep Learning

Gongmingyue Tang Supervisors: Dr. Nikolas Prechtel Prof. Dr. Markus Wacker

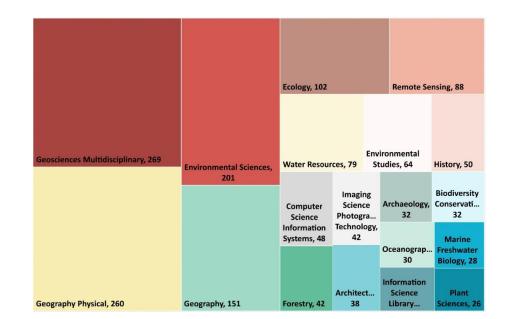
Toponym Extraction from Selected Historic Topographic Maps Using Deep Learning

Gongmingyue Tang Supervisors: Dr. Nikolas Prechtel Prof. Dr. Markus Wacker

Motivation

RQs

Literature Review


Material

Methods

Results

Conclusion

• Why historical maps?

Analysis Report graphic derived from Clarivate Web of Science, Copyright Clarivate 2022. All rights reserved.

• Why historical maps?

Motivation

- RQs
- Literature **Review**
- Material
- **Methods**
- Results
- Conclusion

- Why toponym?
 - Identify the location
 - Queryable Q
 - Understanding of geographical features

Р М

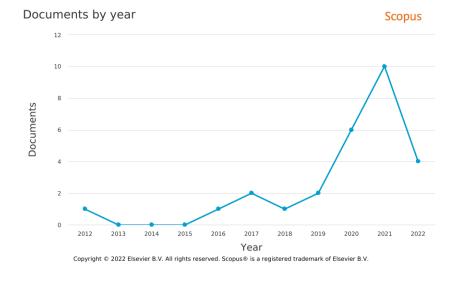
Linguistics and culture •

(Jordan, 2009)

- Why historical maps?
- Why toponym?
- Why deep learning?
 - Scanned historical maps -> structured data

Literature

Review


Motivation

RQs

Methods

Results

Conclusion

Research Objectives and Questions

Motivation

RQs

Literature Review

Material

Methods

Results

Conclusion

Automated transfer to structured, tagged Geodata:

- Separation of text and graphic
 - 1. What are the existing deep learning pipelines for text extraction?
 - 2. How can synthetic training data help optimize the model training process?
 - 3. How well can toponyms be separated from the background using deep learning?
- Text recognition
 - 1. What are the existing text recognition models?
 - 2. How well is the performance of the adapted text recognizer?
- Evaluation
 - How is the overall performance of the deep learning pipeline in toponym detection and recognition?

RQ1.1 & RQ2.1

Motivation

RQs

Literature Review

Material

Methods

Results

Conclusion

Existing deep learning pipelines for text detection:

• Proposal-based:

CTPN (Tian et al., 2016), Seglink (Shi et al., 2017)...

Segmentation-based:

TextSnake (Long et al., 2018), DBNet (Liao et al., 2020)...

Hybrid-based:

FCE (Zhu et al., 2021)

Existing deep learning pipelines for text recognition:

CRNN architecture

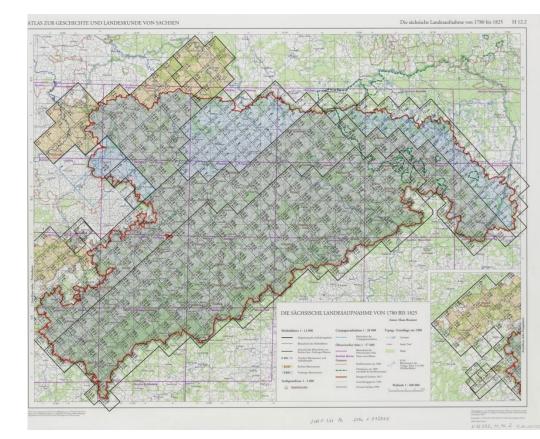
HTR+ (Michael et al., 2020), CRNN+STN (Shi et al., 2016)

• Attention-based methods: ABiNet (Fang et al., 2021)

Selected Topographic Map

Motivation

RQs


Literature Review

Material

Methods

Results

Conclusion

Overview Map of the Saxon Mile Sheets (Brunner, 2005)

- From Saxonian land survey between 1780-1826
- Scale: 1:12000
- 445 tiles
- Berlin Copies
- Accurate in geometry
- Very detailed

(Stams & Stams, 1981)

Toponym Hierarchy and Placement

Motivation

RQs

Literature Review

Material

Methods

Results

Conclusion

Cities and regions

Towns, large villages, districts and rivers

Buildings, roads, landscapes

Toponym Hierarchy and Placement

Motivation

RQs

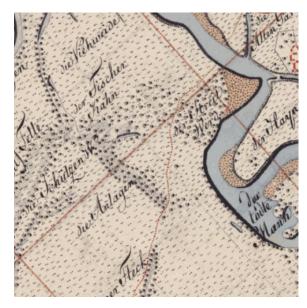
Literature Review

Material

Methods

Results

Conclusion


Cities and regions

Towns, large villages, districts and rivers

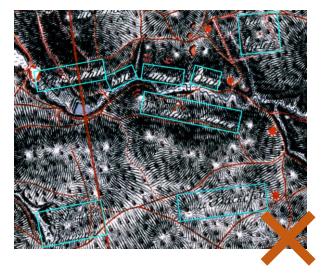
Buildings, roads, landscapes

Toponym Hierarchy and Placement

Motivation

RQs

Literature Review


Material

Methods

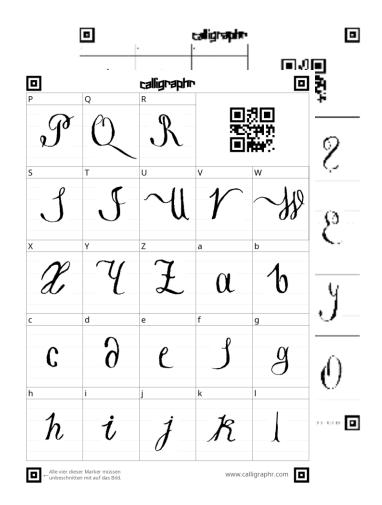
Results

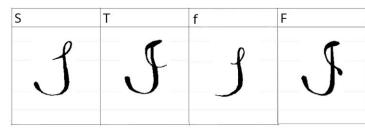
Conclusion

Font

Motivation

RQs


Literature Review


Material

Methods

Results

Conclusion

(b)

(c)

Pre-processing

Color Homogenization

Motivation

- RQs
- Literature Review
- **Material**

Methods

Results

Conclusion

2. Re-projection

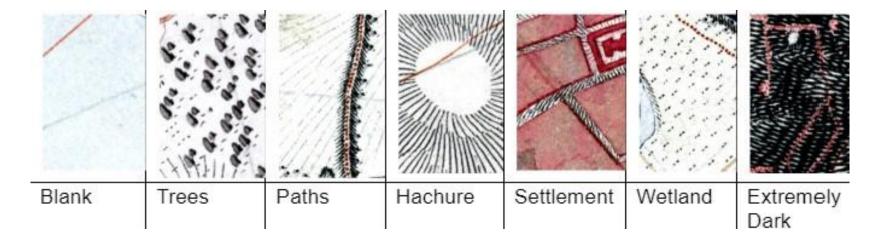
1.

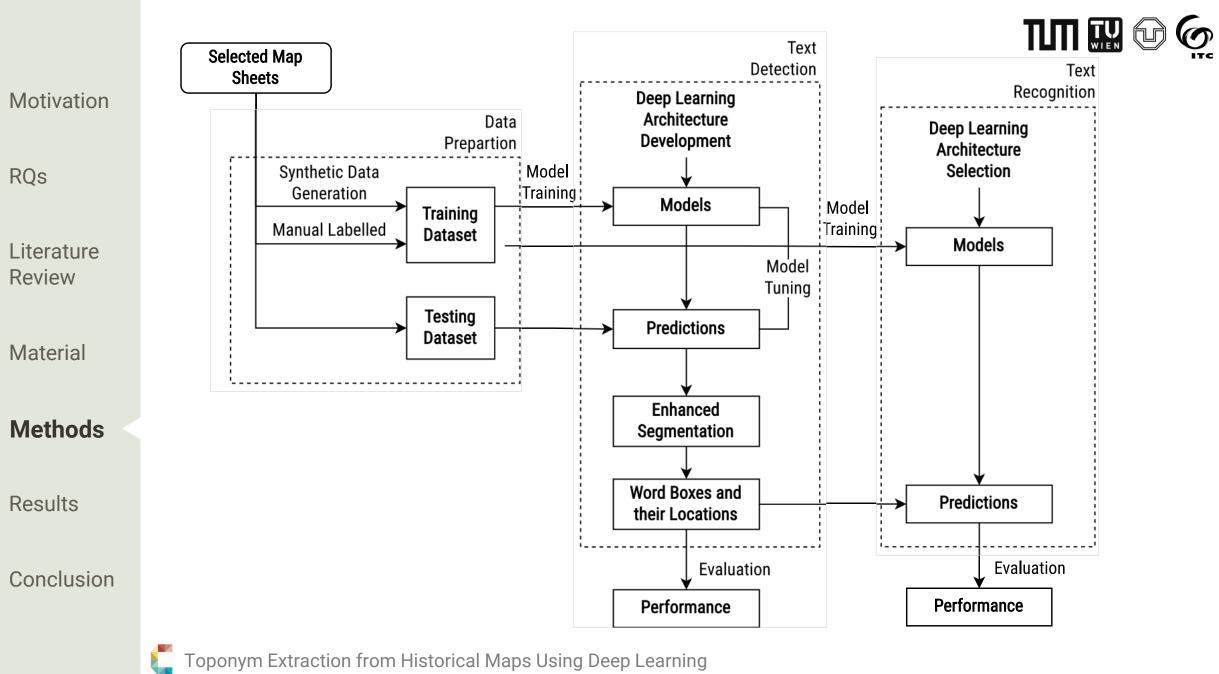
An

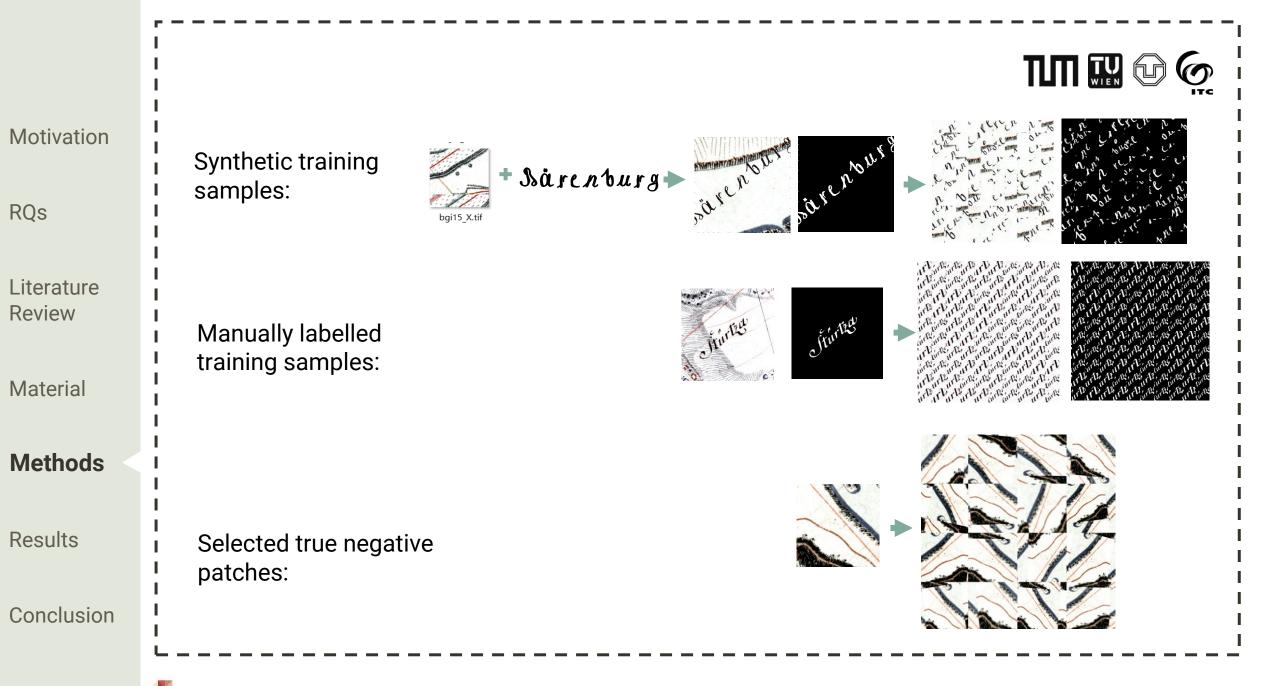
Pre-processing

1.

Motivation


- RQs
- Literature Review
- Material
- Methods
- Results


Conclusion




3. Patches Extraction

Color Homogenization

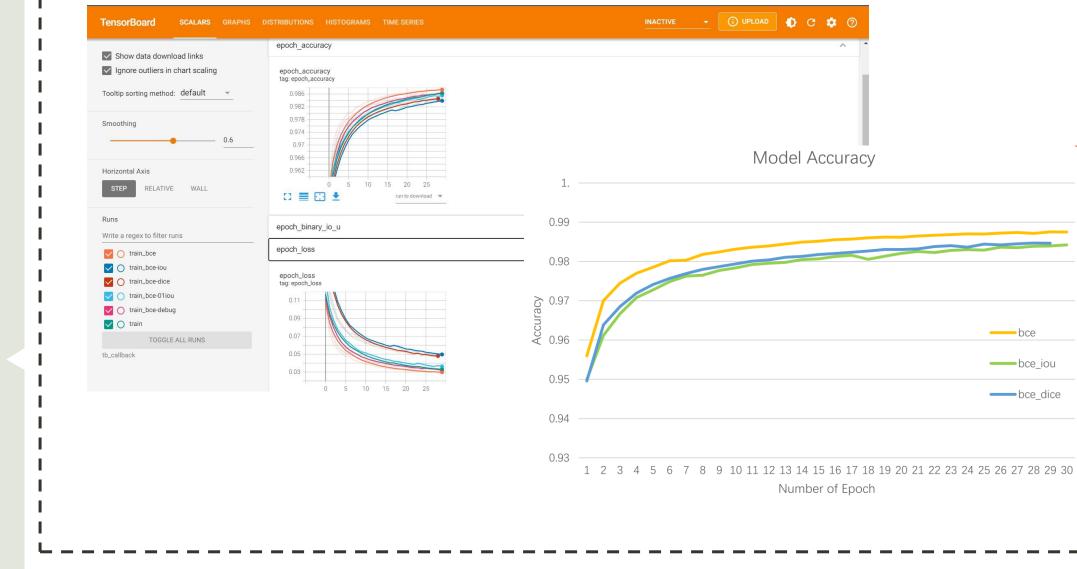
Hodel Tuning

Motivation	Experiment Learning rate Batch size Loss function	1 1.00E-03 5 Binary Cross Entropy (BCE)	2 2.00E-03 5 BCE	3 1.00E-02 5 BCE	
RQs	Input data size Number of training patches (true positive + true negative)	(128, 128, 3) 15 + 15	(128, 128, 3) 15 + 23	(128, 128, 3) 15 + 25	
Literature	Experiment	4	5	6	
	Learning rate	5.00E-03	1.00E-03	1.00E-03	
Review	Batch size	5	3	5	
	Loss function	BCE	BCE	Intersection over	Union (IoU)
	Input data size	(128, 128, 3)	(128, 128, 3)	(128, 128, 3)	
Material	Number of training patches (true positive + true negative)	25 + 25	35 + 37	49 + 37	
	Experiment	7	8	9	10
Methods	Learning rate	1.00E-03	1.00E-03	1.00E-03	1.00E-03
	Batch size	5	5	5	5
1	Loss function	Dice Loss	BCE + 0.2 * IoU	BCE + 0.2 * Dice	BCE + 0.2 * IoU
	Input data size	(128, 128, 3)	(128, 128, 3)	(128, 128, 3)	(128, 128, 3)
Results	Number of training patches (true positive + true negative)	49 + 37	49 + 37	49 + 37	49 + 37
i i	Training schedule				
Conclusion					

Hodel Tuning

Motivation

RQs

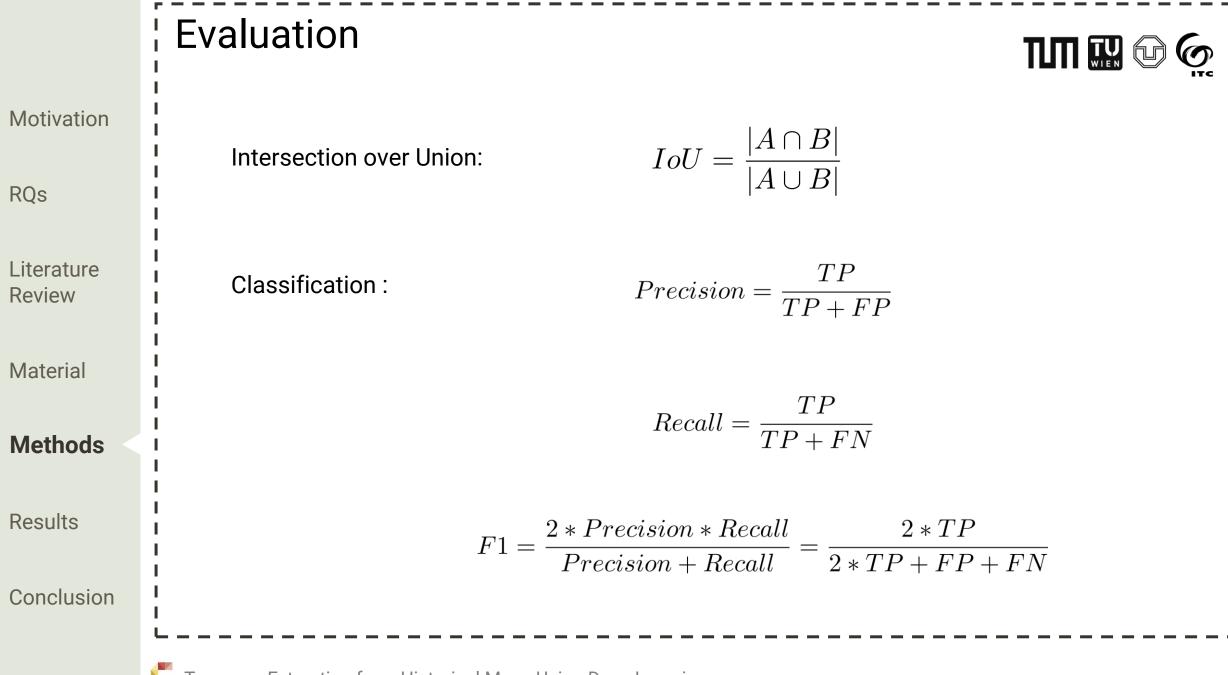

Literature Review

Material

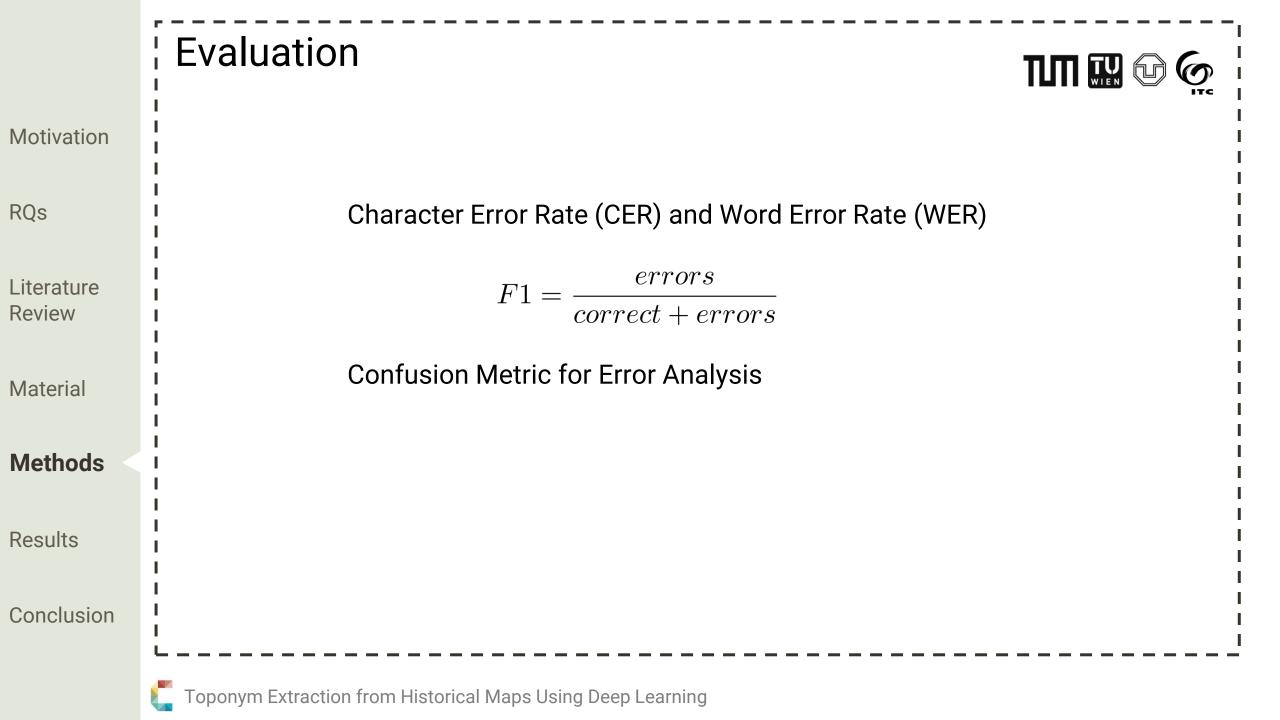
Methods

Results

Conclusion



Motivation	: :
RQs	
Literature Review	
Material	
	I .
Methods	
Methods Results	i


Post-processing

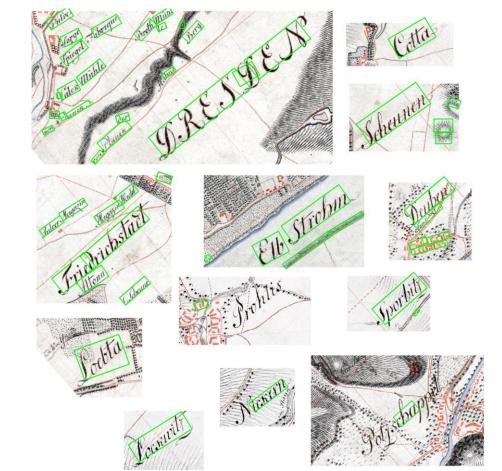
- 1. Ensemble predictions
- 2. Image Enhancement Morphological Opening + Closing
- 3. Word Boxes Localization and Extraction Morphological Closing Rotated Calipers Geocoding API, Nominatim

	Text Recognition
Motivation	
RQs	Transkribus: HTR+ engine trained on:
Literature Review	 Synthetic data Manually labelled samples German historical documents from the National Library of Australia
Material	
Methods	MMOCR: CRNN+STN model ABiNet model trained on: Syn90k dataset
Results	
Conclusion	

Motivation

RQs

Literature Review


Material

Methods

Results

Conclusion

Prediction FCE

Text detection – pre-trained weights

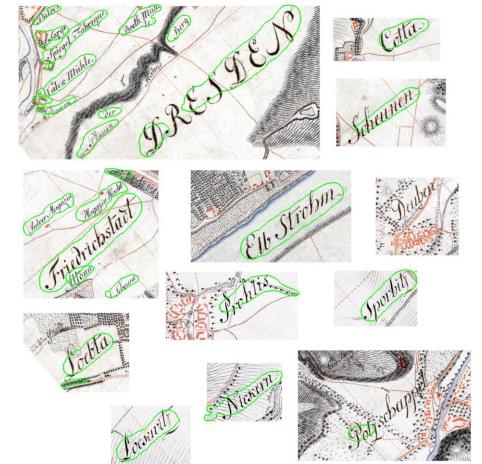
Motivation

RQs

Literature Review

Material

Methods


Results

Conclusion

Prediction DRRG

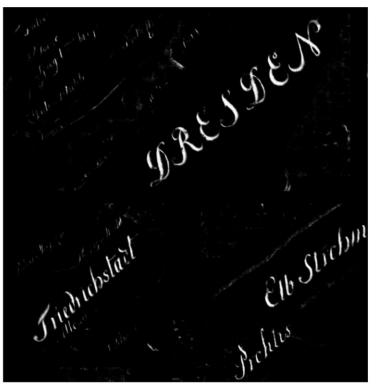
Prediction TextSnake

Т

Segmentation results

Motivation

RQs


Literature Review

Material

Methods

Results

Conclusion

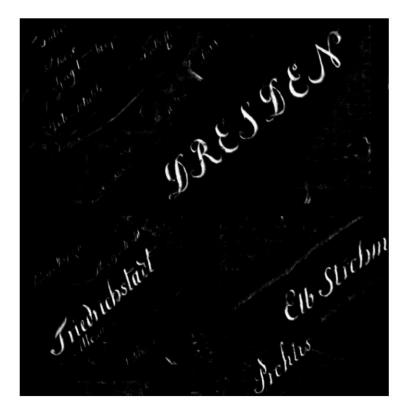
(a) BCE

(b) BCE + 0.2*IoU

Segmentation results – RQ1.2

Motivation

RQs


Literature Review

Material

Methods

Results

Conclusion

(a) Synthetic training set

(b) Manually labelled ground truth

Ensemble result

Motivation

RQs

Literature Review

Material

Methods

Results

Conclusion

(a) Prediction 1

(b) Prediction 2

(c) Prediction 3

Ensemble result

Motivation

RQs

Literature Review

Material

Methods

Results

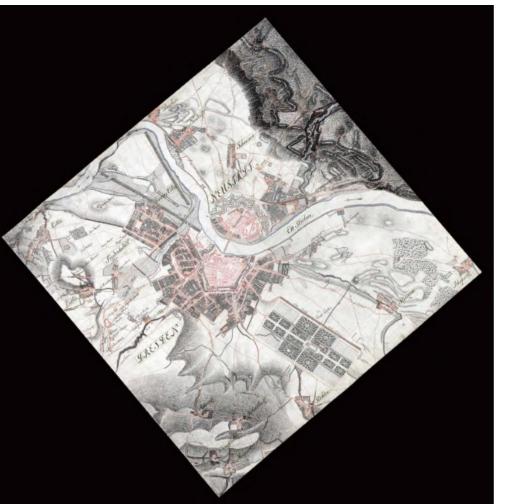
Conclusion

(d) Ensemble prediction of weighted average

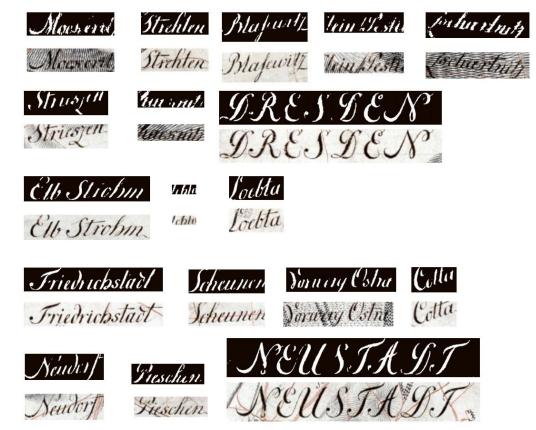
Word boxes

Motivation

RQs


Literature Review

Material


Methods

Results

Conclusion

Evaluation

Motivation

RQs

Literature Review

Material

Methods

Results

Conclusion

Мар	Precision (%)	Recall(%)	F1 (%)	loU (%)
TestCrop	85.71	100	92.31	71.34
Neustadt	94.44	100	97.14	63.88
Woelckau	45.45	100	62.5	44.97
Nidersedlitz	62	100	76.54	57.19
Fuchshain	47.06	100	64	1.14

Text Recognition

Motivation

Literature

Review

Material

RQs

Model	Input	CER (%)	WER (%)
CRNN+S	TN RGB	16.24	76.92
	Extracted Binary	17.95	76.92
ABiNet	RGB	36.75	92.31
	Extracted Binary	41.03	92.31
HTR+	Extracted Binary (whole page)	88.89 -> 70.09 -> 52.51	100 -> 100 -> 95.65

Results

Methods

Conclusion

Text Recognition

Motivation

Conclusion

	-																											
												F	re	dic	teo		hara	act	ers	5								
				a	b	с	d	е	\mathbf{f}	g	h	i	j	k	1	т	n	0	р	q	r	s	t	u	v	w	х	у
			a	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2	0	0
RQs			b	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0
RUS	8		с	0	0	7	1	0	0	0	0	0	0	0	0	0	0	2	0	0	0	1	0	0	0	1	0	0
			d	0	1	0	6	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0
			е	1	0	1	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			f	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.24	5		g	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Literature			h	0	0	0	0	0	0	0	8	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Review			i	1	0	0	0	0	0	0	0	10	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Review			j	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Characters	k	1	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		cte	1	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0	1	0	0	0	0
		ara	m	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
Matavial		S	n	0	0	0	0	1	0	0	0	0	0	0	0	0	11	0	0	0	0	0	0	0	0	0	0	0
Material	8	True	0	1	1	2	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	0	0
		Ē	p	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0
			q	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	11	0	0	0	0	0	0	0
			r	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	12	1	0	0	0	0	0
			s t	0	0	0	0	1	0	0	0	1	0	0	4	0	0	0	0	0	0	10	9	0	0	0	0	0
Methods	2		u u	1	0	0	0	0	0	0	0	0	0	0	1 0	0	0	0	0	0	0	0	0	1	0	1	0	0
			v	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			w	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0
			x	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Results			z	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
Results									_						-						-							_
									1	2)	Ш	т	C	D	ro	di	oti	in	n									

(a) HTR Predictions

Predicted Characters a b c d e f g h i j k l m n o p q r s t u v w x y z a 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **b** 0 4 0 0 c 0 0 d 0 1 0 e 0 0 1 0 0 f 0 0 0 0 0 0 0 0 0 h 0 0 0 0 0 0 0 0 0 0 0 0 0 aracters 0 0 0 0 0 0 ЧС 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 q **r** 0 0 1 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 s 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 w x 0 0 0 0 0 0 0 0 0 0 **y** 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(b) CRNN Prediction

Toponym Extraction from Historical Maps Using Deep Learning

z

0 0 2

Overall Performance

Motivation

RQs		ID I	UTM	lation	address	HTR+	CRNN
Literature	Macher	word_1.((41198	4 (51.0180953594537, 13.745162075845785	Kleinpestitz/ Mockritz , Zschertnitz, Plauen, Dresden	Bockerwitz	mouhered
Review	Juranal.	word_2	(41355	× (51.02863364008097, 13.76727630737129	128a, Wiener Straße, Seevorstadt-Ost/Großer Garten, Alts	Wrehlen	strchlen
Material	Bladewith	word_3 ((41633	9 (51.049619547963296, 13.8064412000307	19, Kretschmerstraße, Blasewitz , Dresden, Sachsen, 01	Blasewitz	bolafwng
Methods	Thein Seste	word_4.((41169	9 (51.02002789737003, 13.74105047686047	Räcknitz/Zschertnitz, Zschertnitz, Plauen, Dresden	Kein Gerlln	ppindursa
Results		word_5	(41225	o (51.026328234310014, 13.7487423048190	Räcknitz/Zschertnitz, Zschertnitz , Plauen, Dresden	LnuKe Wdruth	ntlurehnlz
Conclusion	Striggen	word_6 ((41524	r (51.04635719422944, 13.79086641035864	Striesen-West, Striesen , Blasewitz, Dresden	Bausen	struaytn

Conclusion

Motivation

RQs

Literature Review

Material

Methods

Results

Conclusion

RQ1.1 What are the existing deep learning pipelines for text extraction?

RQ1.2 How can synthetic training data help optimize the model training process?

RQ1.3 How well can toponyms be separated from the background using deep learning?

RQ2.1 What are the existing text recognition models?

RQ2.2 How well is the performance of the adapted text recognizer?

Motivation

RQs

Literature Review

Material

Methods

Results

Conclusion

RQ1.1 What are the existing deep learning pipelines for text extraction?

RQ1.2 How can synthetic training data help optimize the model training process?

RQ1.3 How well can toponyms be separated from the background using deep learning?

RQ2.1 What are the existing text recognition models?

RQ2.2 How well is the performance of the adapted text recognizer?

RQ3 How is the overall performance of the deep learning pipeline in toponym detection and recognition?

Motivation

RQs

Literature Review

Material

Methods

Results

Conclusion

RQ1.1 What are the existing deep learning pipelines for text extraction?

RQ1.2 How can synthetic training data help optimize the model training process?

RQ1.3 How well can toponyms be separated from the background using deep learning?

RQ2.1 What are the existing text recognition models?

RQ2.2 How well is the performance of the adapted text recognizer?

Motivation

RQs

Literature Review

Material

Methods

Results

Conclusion

RQ1.1 What are the existing deep learning pipelines for text extraction?

RQ1.2 How can synthetic training data help optimize the model training process?

RQ1.3 How well can toponyms be separated from the background using deep learning?

RQ2.1 What are the existing text recognition models?

RQ2.2 How well is the performance of the adapted text recognizer?

Motivation

RQs

Literature Review

Material

Methods

Results

Conclusion

RQ1.1 What are the existing deep learning pipelines for text extraction?

RQ1.2 How can synthetic training data help optimize the model training process?

RQ1.3 How well can toponyms be separated from the background using deep learning?

RQ2.1 What are the existing text recognition models?

RQ2.2 How well is the performance of the adapted text recognizer?

Future Work

Motivation

RQs

- Literature Review
- Material
- Methods

Results

Conclusion

- 1. Improving the data synthesis
- 2. Testing more complex model on cloud-based server
- 3. Contextual analysis to correct the recognition results
 - 4. An integrated tool to segment all features

📒 Toponym Extra

References

- Brunner, H. (2005). Atlas zur Geschichte und Landeskunde von SachsenBeiheft zu den Karten H 12.1 und H 12.2 Die sächsische Landesaufnahme von 1780 bis 1825 / von Hans Brunner. Verl. der Sächsischen Akad. der Wiss. zu Leipzig: Landesvermessungsamt Sachsen. https://katalog.slub-dresden.de/id/0-1473239567
- Jordan, P. (2009). Some considerations on the function of place names on maps. Proceedings of the 24th international cartographic conference, Santiago, Chile (ICC 2009),
- Liao, M., Wan, Z., Yao, C., Chen, K., & Bai, X. (2020, 2020). *Real-time scene text detection with differentiable binarization* Proceedings of the AAAI Conference on Artificial Intelligence,
- Long, S., Ruan, J., Zhang, W., He, X., Wu, W., & Yao, C. (2018). TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes. ECCV,
- Shi, B., Bai, X., & Belongie, S. (2017, 2017). Detecting Oriented Text in Natural Images by Linking Segments.
- Stams, M., & Stams, W. (1981). Die große topographische Landesaufnahme von Sachsen 1780 bis 1811 und ihre Folgekarten. Sektion Geodäsie u. Kartogr. d. Techn. Univ., Kartogr.techn. Einrichtung.

