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ABSTRACT 

Historical maps contain a vast amount of valuable geographic information that can be used to 
analyse the past. However, automatically extracting information from historical maps is challeng-
ing due to several factors, such as inferior graphical quality and inconsistency of cartographic sym-
bols. Deep learning technology has great potential to deal with such complex tasks because deep 
learning has already established its superiority in computer vision. In this study, the performance 
of different deep learning architectures was compared to extract area features from the historical 
topographic map series of Germany named “Milage Sheets of Saxony”. Deep learning based se-
mantic segmentation and object detection strategies were used to extract buildings, rivers, lakes 
and forest areas from map scans, and the performance was evaluated. In semantic segmentation, 
ResNet architecture showed the best performance in terms of accuracy and efficiency, achieving 
an IoU of 0.88 and a F1 score of 0.79. In object detection, YOLO v5 X architecture outperformed the 
rest by achieving a mAP of 0.92 and a F1 score of 0.89. A deep learning pipeline was developed to 
train, evaluate, and visualise the performance of the models. The major limitation of this study was 
the lack of training data. A simple yet effective software was developed to extract training data 
from map scans. This study demonstrates the unmatching capability of deep learning technology 
in performing complex feature extraction tasks in digital map processing. 
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1 INTRODUCTION 

1.1 Background 

Historical maps store valuable information documenting human activities and natural features on 
earth over long periods. They are a significant source of information providing historical geography, 
topographic changes, settlements, political claims, and the evolution of cartographic methods. His-
torical topographic maps are often the most prominent information source about the earth as sur-
veyed using past geodetic techniques. Such information is essential for studies that require de-
tailed, long-term historical geographic data. Considering the importance of historical maps, many 
digital map archives have been established worldwide to preserve these valuable documents. The 
United States Geological Survey historical topographic map archive (Allord et al., 2014) and the Map 
Forum of the Saxon State Library (Kartenforum der Sächsischen Landesbibliothek) (Mendt, 2014) 
are great examples of such archives. The Map Forum of the Saxon State Library provides over 
20,000 historical maps, including large-scale topographic maps of Germany, accessible to the public 
through an online portal (Mendt, 2014). 

Moving beyond the preservation aspects of these precious historical maps, they provide infor-
mation to analyse the historical geographic data to obtain insights into the history. In addition, the 
geographic information obtained by processing the historical maps can be used in spatiotemporal 
analysis in the fields of spatial, social, environmental, and health sciences.  

Modern GIS systems facilitate the analysis of historical and geographical data by providing neces-
sary analysing and visualising tools. However, the challenge lies in extracting the data from the 
scanned map documents. Digital conversion of map archives has widely progressed, but it got stuck 
in offering scans instead of structured geo-information. For quantitative analysis, it is essential to 
extract the information on the map scans in a structured format using digital map processing. The 
most straightforward way is manually digitising the map scans, which is highly time-consuming, 
inefficient and impractical to perform for an archive of historical maps due to the vast amount of 
available map sheets. A higher degree of automation for map processing is required, considering 
the millions of scanned maps stored in digital archives (Chiang et al., 2014). 

Understanding maps and extracting the features are highly complex tasks. For us as humans, un-
derstanding maps is a cognitively demanding task that needs to be learned and practised to master. 
A similar learning process needs to be carried out for a machine or a computer to understand a 
map and extract its features. In general, it is called machine learning. In the pre deep learning era, 
researchers and scientists have used traditional machine learning methods to attempt cognitively 
demanding tasks with little success. For a machine to successfully perform such a complex task, it 
must learn. This is where deep learning becomes significant.  

Deep learning is a subset of machine learning inspired by a human brain structure to develop sys-
tems that learn similarly to how humans learn (Glassner, 2021). Deep learning algorithms perform 
a task repeatedly, making adjustments each time to improve the results, much like how humans 
learn from experience. Because neural networks have several “deep” layers that facilitate learning, 
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this process is referred to as "deep learning". Deep Learning has significantly impacted many sci-
entific fields in recent years (Goodfellow et al., 2016). For example, it can train computer programs 
that outperform human players in games like Go, automatically drive a car on a busy road or win a 
fine art competition by artificially creating a painting. Before the invention of deep learning, many 
of these problems were regarded as being beyond the capabilities of computers, even in science 
fiction literature. 

1.2 Motivation and Problem Statement 

Digital map processing can be defined as computational methods to extract and recognise geo-
graphic features from scanned images of maps. Researchers from various disciplines, such as com-
puter science, cartography, and geography, have been working on inventing and improving digital 
map processing techniques since the early 1980s (Chiang et al., 2014). It is an emerging research 
field that grew out of image processing, computer vision, document analysis, and cartography. Mul-
tiple studies have adopted different digital image processing techniques to automate map pro-
cessing. The major limitation of the methods is scalability (Chiang & Knoblock, 2013; Drolias & 
Tziokas, 2020). These systems do not scale well for processing large numbers and varieties of historical 
maps. An overview and limitations of digital map processing techniques are provided in chapter2. 

Printed maps are considered complex documents visualising geospatial data that refer to the loca-
tion and attribute of the objects on earth or a phenomenon. Maps utilise different visual variables 
to convey the information to their reader. In a broader sense, topographic maps use colour to con-
vey thematic information, such as land cover types and symbols used to describe different geo-
graphic features. Furthermore, maps utilise many visual variables such as colour, texture, size and 
orientation for composing different symbols. Due to this complexity, it is more difficult to machine 
extract information from a map than from other written or printed documents (Groom et al., 2020). 
In addition, maps have overlapped symbology, increasing the degree of complexity in map pro-
cessing. A challenging aspect of digital map processing is to spatially isolate these overlapping lay-
ers of geographic information from each other and to filter out those map elements that obstruct 
the extraction of the geographical layer of interest. 

Historical maps raise unique challenges in digital map processing. General digital image processing 
techniques cannot be directly applied to historical maps due to the complexity induced by multiple 
factors. The graphical quality of the scanned historical maps is often adversely affected by ageing, 
which results in bleaching effects (Chiang et al., 2014). As these maps are produced manually, there 
are significant variations of cartographic symbols in colour, size, shape, orientation and placement 
(Groom et al., 2020).  

Considering the complexity of digital map processing for historical maps, a different approach is 
required to unlock the embedded geospatial data efficiently. Recent studies prove that deep learn-
ing provides a way forward in digital map processing due to its capability to handle large diversified 
input data (Chiang et al., 2020b; Ekim et al., 2021; Uhl et al., 2020). However, deep learning in digital 
map processing is still a young research field with challenges that must be addressed. This research is 
aimed to narrow the gap between the fields of deep learning and digital map processing. 
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(d) 

 

Figure 2-1 1 : Challenges in digital map processing on historical maps (a) Different graphical qualities (b) 
Overlapping symbols (c) Effects of ageing (d) Variation of cartographic symbols (Image Source: Map Forum of the Saxon 

State Library). 

1.3 Knowledge Gap and Contribution 

Compared to other machine learning methods, deep learning has the unique ability to perform 
computer vision tasks such as object recognition and classification with minimum user interaction 
by looking at the data and learning complex algorithms that can never be explicitly programmed 
by a human. Specific to feature extraction in digital map processing, deep learning methods can 
capture the underlying semantics of map features that are difficult to be captured by conventional 
feature extractors such as SIFT (Scale Invariant Feature Transformation) or SURF (Speeded Up Ro-
bust Features)(Kang, 2020). Also, it is proven that deep learning models can handle the complexity 
of maps in digital map processing. Despite all the advantages provided by deep learning and the 
availability of computational power, deep learning is not widely used to process archived maps on 
a large scale. 

Deep learning is still a new research field in cartographic domains, such as digital map processing. 
The full potential of deep learning in digital map processing has not been realised since the users 
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of scanned historical maps and computer scientists who invent deep learning algorithms come 
from different backgrounds and frequently operate in silos (Chiang et al., 2020b). Moreover, deep 
learning and cartography are separate paradigms. There is no established framework to merge the 
two sciences to work in harmony in the domains such as digital map processing.  

Deep neural networks are composed of a vast number of parameters, and they need massive train-
ing datasets to achieve an optimal performance in deep learning. Therefore, the availability of suf-
ficient training data is key to the successful application of deep learning methods. A significant rea-
son for the current advancements in deep learning for computer vision tasks such as object detec-
tion is the availability of publicly available training datasets. For example, MS-COCO, a rich object 
detection and segmentation dataset, contains 330,000 images with 80 object classes (Lin et al., 
2014). Such datasets facilitate the training of deep learning models by providing training data with 
good quality and sufficient quantity. Developers of cutting-edge deep learning applications take 
advantage of such datasets to build and fine-tune their models. However, there is no publicly avail-
able machine learning dataset in the context of digital map processing. Compared to the maps, 
which are documents with cartographic features denoted by symbols, all the publicly available ma-
chine learning datasets contain daily images. It is a significant setback to develop and train deep 
learning models to extract features from historical maps. In order to develop deep learning models 
for digital map processing tasks, developing a training dataset from ground zero is also required, 
which is a tedious and costly task. For the field of map processing, it is frequently impractical to 
obtain the resources needed to make a vast amount of training data for training deep learning 
models that work seamlessly with maps in different cartographic styles and scales (Chiang et al., 
2020a). 

1.4 Research Objectives 

The primary objective of this study is to evaluate different deep learning architectures for dig-
ital map processing focusing on areal feature reconstruction from historical topographic 
maps. 

The focus of the study has been set on the isolation of the best-performing architecture. However, 
the scope of the research will be limited to an exemplary class of cartographic features: area fea-
tures, i.e., buildings, water features and forests. 

The following sub-objectives further structure the primary objective of the research. 

1) Identify strengths, weaknesses and challenges of different deep learning architectures for 
feature recognition from historical map scans. 

2) Performance evaluation of selected deep learning architectures and their specific require-
ments in areal feature extraction from scanned historical topographic maps. 
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1.5 Research Questions 

1.5.1 [RQ1] What deep learning architectures are to be used in evaluation? 

In computer science, a large variety of deep learning models exist, each addressing a specific set of 
problems. A convolution Neural Network or CNN is a type of deep learning based artificial neural 
network developed explicitly for image processing and computer vision tasks (Goodfellow et al., 
2016). CNNs have proven so effective for image analysis tasks that they are the go-to method for 
prediction problems involving image data as an input. The class of neural networks used in this 
study would be CNNs. However, there are many cutting-edge CNN architectures such as UNet, Le-
Net, AlexNet, Inception, Xception and many more.  

It is impossible to implement and compare all the CNN architectures within this research scope. 
The deep learning architecture to be evaluated will be selected based on an extensive literature 
review and study of the CNN models in similar applications. 

1.5.2 [RQ2] How to create training datasets? 

In order to extract features from scanned maps using deep learning, the deep learning models are 
required to be trained with a labelled training dataset. However, most labelled training data from 
public datasets are daily images containing real-world objects, while maps are document images 
with geographic features represented by cartographic symbols. Due to this reason, it is not possible 
to use publicly available machine learning datasets for training the models. Therefore, a training 
dataset is created specifically for this research based on 1:20000 scale maps of the Saxonian Topo-
graphic Survey from 1780 to 1825. In addition, necessary tools are developed to make the task easy 
and efficient. 

1.5.3 [RQ3] How to adapt existing deep learning architectures for feature extraction in dig-
ital map processing? 

The scope of this study will be limited to the extraction of areal features. Therefore, a deep learning 
pipeline is developed for area feature extraction from historical maps incorporating training and 
evaluation of the model and visualising the results. In addition, selected deep learning architectures 
are included in the training phase of the pipeline so the user can select the architecture based on 
the requirement. 

1.5.4 [RQ4] How can the models be evaluated? 

Evaluation matrices of the selected deep learning models are selected to measure the segmenta-
tion/detection quality and computational time
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2 THEORETICAL BACKGROUND 

2.1 AI, Machine Learning and Deep Learning 

Artificial Intelligence, Machine Learning, and Deep Learning have become hugely influential tech-
nologies in computer science and current industries, as these technologies push the boundaries of 
computational problem solving (Goodfellow et al., 2016). The applications of these technologies can 
range from playing a chess game to state-of-the-art self-driving cars or a computer program which 
can turn a few sentences into a beautiful painting. Even though these technologies have nuance, 
these terms are often used interchangeably, which can lead to confusion. An easy way to under-
stand the difference between Artificial Intelligence, Machine Learning and Deep Learning is with a 
Venn diagram (figure 2-1). Deep Learning is a subset of Machine Learning, a subset of Artificial In-
telligence. Machine learning and deep learning are two specific subfields of Artificial intelligence. 

 

Figure 2-1 2: Venn diagram explaining artificial intelligence, machine learning, and deep learning. 

In general, Artificial Intelligence (AI) refers to a computation that mimics the cognitive capabilities 
of a human brain. Even though current AI models are far from the cognitive ability of the human 
brain (Glassner, 2021), AI conceptualises the creation of smart, intelligent machines. The primary 
objective of Artificial Intelligence is to create self-sufficient computers capable of thinking and acting 
like humans. These machines can learn and solve problems to replicate human behaviour and com-
plete tasks. More fundamentally, an AI model can simply be a programmed rule (set of If-else state-
ments) that instructs the machine to respond in a particular manner under specific scenarios. 

Machine learning is a discipline in computer science that falls under artificial intelligence that use 
computer algorithms and analytics to create prediction models. The Machine Learning book au-
thored by Mitchell, 1997 defines machine learning algorithms as "A computer program is said to 
learn from experience E with respect to some class of tasks T and performance measure P, if its 
performance at tasks in T, as measured by P, improves with experience E." Machine learning can 
utilise a large amount of both structured and unstructured data and learn from data using various 
algorithms and techniques to make predictions. Machine learning algorithms can be classified into 
three main categories (Alzubaidi et al., 2021). Supervised learning algorithms use labelled data 
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which means the outcome or the target variable is known, so the system predicts the future based 
on the past data. Linear regression, support vector machines and decision tree-based classification 
are some examples of supervised learning. Classical supervised machine learning requires more 
human assistance. On the other hand, Unsupervised learning uses unlabelled data to find patterns 
from data. Finally, in Reinforcement learning, an agent is trained to perform a task in an uncertain 
environment where the agent is rewarded by the environment based on how successful the agent 
is in completing the task. 

2.2 Deep Learning 

Deep learning is a subset of machine learning representing a network of compute units with three 
or more layers (Glassner, 2021). These compute units are often called neurons; hence the network 
of compute units is called an artificial neural network.  

In the machine learning field, deep learning has recently been recognised as the gold standard 
(Chiang et al., 2020a). Additionally, it has steadily grown to be the most popular computational 
strategy in machine learning, producing exceptional outcomes on several challenging cognitive 
tasks that are on par with or above human performance. The capacity to learn from enormous 
volumes of data and adapt to complex scenarios are the main advantages of deep learning. Deep 
learning is also referred to as scalable machine learning (Goodfellow et al., 2016) because of the 
ability to use massive datasets and improve as the dataset grows. Furthermore, deep learning ac-
complishes "end-to-end learning", in which a network is given raw data and a job to fulfil, such as 
classification, and automatically learns how to do so. 

Deep learning differs from non-deep or classical machine learning by the type of input data it works 
with and the learning methods (Sejnowski, 2020). Also, deep learning reduces most of the data 
preprocessing required by classical machine learning. These algorithms can ingest and analyse un-
structured data such as text and pictures and automate feature extraction, reducing reliance on 
human inputs. For example, in the context of digital map processing, If it is required to categorise 
buildings, trees and lakes from a scanned image of a map, a deep learning algorithm can decide 
which characteristics (colour, shape) are most essential in distinguishing one symbol from another. 
In contrast, a human expert in classical machine learning manually establishes this feature hierar-
chy. A limitation of deep learning is that it requires a massive amount of processing power 
(Goodfellow et al., 2016). High-performance graphics processing units (GPUs) are suitable since they 
can manage a massive volume of operations over numerous cores with enough memory. But ac-
quiring and managing such a demanding hardware environment is highly expensive.  

A deep neural network is constructed with an input layer that accepts data inputs, multiple hidden 
layers and an output layer that provides expected outputs. In a fully connected deep neural net-
work, such as the figure 2-2, a single neuron in a layer takes the previous layer's outputs as inputs 
(except for the first input layer).   

 



Theoretical Background  15 
 

 

Figure 2-2 3: An Illustration of a deep neural network (Dertat, 2017). 

An intuitive way to understand the underlying principles of deep learning is by understanding a 
single neuron of a neural network. The computation of a single neuron is followed by these steps. 

 

Figure 2-3 4: An illustration of a neuron in a Neural Network (Dertat, 2017). 

1. The input of the neuron is taken as the vector ! = ($!, $", $#, …… , $$) and the corresponding 
weights to each input are taken as ( = ((!, (", (#, …… ,($). At the initial stage, the weights 
are assigned randomly.  

2. The weighted sum of the inputs is calculated ) =	∑ $%(%$
%&!  

3. The calculated weighted sum is passed through an activation function ,. The activation 
function decides whether the neuron should be fired or not. The activation function takes 
the weighted sum ) and a bias $' as the inputs and gives the output -. In a multi-layer, 
multi-neuron neural network, this output - denotes the significance of the particular neu-
ron to the final output. In a single neuron neural network, output - represents the predicted 
output. 
The ability of an activation function to bring non-linearity to a neural network is its most 
essential attribute in training a neural network. Due to the non-linearity introduced by the 
activation function, neural networks can learn complex non-linear patterns from the data 
(Glassner, 2021). Therefore, a neural network is just a linear regression model without an 
activation function.  
The following are commonly used activation functions in deep learning and artificial neural 
networks with reference to the study done by Nwankpa et al., 2018 comparing differing 
activation functions. 
 
Sigmoid Function 
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Sigmoid activation function, also called logistic function, is generally used in binary classifi-
cation. Sigmoid transforms the input value providing outputs in the range of 0 and 1. How-
ever, the sigmoid function is only used in shallow neural networks because it hinders per-
formance when training a deep neural network. This is due to the vanishing gradient prob-
lem and not being zero-centred caused by the nature of the sigmoid function. 

.($) = 	
1

1 + 1() 

Equation 1: Sigmoid function 

Hyperbolic Tangent Function (Tanh) 
The hyperbolic Tangent Function or the Tanh function is zero centred function which has a 
range of -1 and 1. Compared to the sigmoid function, the Tanh function gives better training 
performance because it is zero-centred but does not solve the vanishing gradient problem. 
Therefore, it is possible to use the Tanh function in multi-layer neural networks and is 
mainly used in recurrent neural networks for natural language processing and speech 
recognition tasks. 

2($) = 	
1) − 1()

1) + 1() 

Equation 2: Hyperbolic Tangent Function 

Rectified Linear Unit Function (ReLU) 

Rectified Linear Unit or ReLU activation function is another non-linear, computationally sim-
ple activation function that has gained prominence in deep learning. The key benefit of the 
ReLU function over sigmoid and Tanh activation functions is that it does not activate all 
neurons simultaneously and yields faster performance. Since it does not compute expo-
nents or divisions, the computation of the neural network is highly enhanced. ReLU was 
introduced in 2010 and has been the most widely used activation function in deep learning 
due to its efficiency and effectiveness (Krizhevsky et al., 2017). ReLU and its variants are 
used in many deep learning architectures, especially in convoluted neural networks. 

2($) = max(0, $) = 	 8
$, 92	$ ≥ 0
0, 92	$ < 0 

Equation 3: Rectified Linear Unit Function 

Sigmoid, Tanh and ReLU are the activation functions used in this study for the selected pre-
defined deep learning architectures. However, there are many more activation functions 
being used in the domain of deep learning. 
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Figure 2-4 5: : Graphs of different activation functions. 

4. The predicted output - is compared with the actual output -*(ground truth) using a loss 
function <, and the loss is calculated =>?? = <(-, -*). The loss function measures how well 
the neural network performed in relation to a given training sample and predicted output. 
Total loss is a measure of the total error. 

5. Training of the neural network is performed to find the optimal weights that minimise the 
loss. Then, the weights are updated using a method called backpropagation by minimising 
the loss. The significance of backpropagation in neural networks was first recognised after 
the study by Rumelhart et al., 1986. The research discusses various neural networks in 
which backpropagation works far quicker than prior ways of learning, allowing neural nets 
to handle previously intractable tasks. Today, the backpropagation algorithm is the back-
bone of neural network learning. The partial derivative +,+- of the loss function < with respect 

to any weight (% in the network is at the base of backpropagation. The partial derivative 

describes how rapidly the loss changes when the weights are changed. With the help of +,+-, 

it is possible to adjust the weights of the neural network and learn the best possible weights 
that minimise the loss. 
Training is an iterative process, so multiple iterations over the same input dataset will be 
used to find the optimal weight values. Training is stopped when the loss reaches or gets 
significantly closer to its minimum. 
 

2.3 Convolution Neural Networks (CNNs) 

Convolution Neural Network or CNN is a well-known architecture of deep learning techniques com-
monly employed in image processing applications. The visual system of the brain served as inspi-
ration for CNN's architecture.  

Similar to a conventional neural network, a CNN has an input layer, one or more hidden layers, and 
an output layer. At the start of the model training phase, each neuron is given a weight adjusted to 
minimise the loss function with backpropagation. However, there are several architectural differ-
ences in CNNs compared to conventional neural networks. CNN comprises three unique types of 



18 Theoretical Background 
 

layers (Albawi et al., 2017): convolutional, pooling, and fully connected. Due to the availability of 
these special layers, CNNs scale well to analyse images where regular neural networks do not. For 
example, if we take a RGB image of 16px by 16px, the input dimension of a traditional neural net-
work would be 16x16x3 = 768 input units which is acceptable. But when the image size increases 
to 512px by 512px, the input size of the network would increase to 786,432, so the number of pa-
rameters of the network and the complexity increases exponentially. With convolution neural net-
works, it is possible to scale for image data without exponentially increasing the complexity of the 
neural network. 

 

Figure 2-5 6: Illustration of a CNN architecture (O’Shea & Nash, 2015). 

Convolutional layers serve as CNN's input layers, while fully connected layers serve as output layers. 
A series of convolutional and pooling layers make up the hidden layers of the neural network. CNN 
uses the first hidden layers to find basic visual patterns like edges, colours, etc. However, when it 
goes deeper into the network, the complexity of the extracted features rises, and filters are used to 
isolate more prominent elements (O’Shea & Nash, 2015), such as facial features or symbols, de-
pending on the application domain. Finally, features are recognised, and class predictions are given 
using the combined output of all the layers. 

2.3.1 Convolution Layer 

Convolutions are often used in digital image processing for various purposes, including sharpening, 
enhancing, and intensifying. Convolutions are used in CNN to extract the key features from the 
image, making convolution the CNN's building block (Alzubaidi et al., 2021). Each convolution layer 
comprises learnable filters known as kernels which are basically two-dimensional arrays. These ker-
nels are moved over the input images, generating output feature maps. This step is known as con-
volution. Since the weights of the kernels are learnable through the training phase of the neural 
network, the kernels are automatically adjusted to extract the required features. 
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Figure 2-6 7: Example of Convolution Operation (Introduction to Convolutional Neural Networks Architecture, n.d.). 

2.3.2 Pooling Layer 

In a single convolution layer of CNN, multiple convolution filters generate multiple feature maps 
resulting in a higher dimensional stack. The task of the pooling layer is to reduce the dimension of 
the feature maps by aggregating and decreasing the dimensions of the feature maps (Alzubaidi et 
al., 2021). Two types of pooling are used in CNNS, max pooling and average pooling. In max pooling, 
the input pixel with maximum value is taken, whereas, in average pooling, the average value of the 
input pixels is taken. Pooling is done to reduce the complexity of feature maps, improving CNN's 
efficiency. However, pooling operation results loss of some information but highly decreases the 
computational power required to process large datasets. 

 

Figure 2-7 8: Max Pooling and Average Pooling (Introduction to Convolutional Neural Networks Architecture, n.d.). 

2.3.3 Fully Connected Layer 

The tasks of convolution and pooling layers are to extract features and reduce the dimensions of 
feature maps where the features are not yet classified. The task of the fully connected layer is to 
perform the classification process. This layer is often found near the end of each CNN architecture 
and serves as the CNN’s classifier (Alzubaidi et al., 2021). Flattened output from the convolution 
layers and pooling layers are fed to the fully connected layer where all the input units are connected 
to all the activation units of the consecutive layer (thus the name "full connected"). The final fully 
connected layer gives the probabilities for each label, hence finalising the classification. 
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2.4 Semantic Segmentation and Object Detection 

This thesis is focused on applying deep learning based computer vision methods to extract features 
from map scans. Object detection and semantic segmentation are the computer vision techniques 
employed in the study. In object detection, the CNN algorithm finds the objects within the images 
and their location using bounding boxes (Alzubaidi et al., 2021). Multiple objects in a single image 
were identified and defined with a bounding box consisting of four parameters, the centre X, Y 
coordinates, width and height. So, in object detection, no information about the object's shape is 
given as the output. 

In contrast, semantic segmentation classifies each pixel of an image to a particular class outputting 
a pixel-wise mask. Semantic segmentation methods are used in applications where a more granular 
understanding of the boundary and shape of the object is necessary. 

Object Detection 

• Input is a RGB (3 channel) or greyscale (single channel) image matrix 
• Output is a collection of bounding boxes defined by centre x, y coordinates, width and 

height 

Semantic Segmentation 

• Input is a RGB (3 channel) or greyscale (single channel) image matrix 
• Output is an image mask with the same width and height as the input image, where the 

class label is assigned to each pixel 

Both object detection and semantic segmentation are complicated tasks, but deep learning-based 
computer vision systems have succeeded in both. However, there is a substantial difference in per-
formance between the two procedures. Semantic segmentation is more challenging (Chiang et al., 
2020b) than object detection because semantic segmentation provides a more in-depth compre-
hension of the image, whereas object detection provides abstract output. Furthermore, generating 
a training dataset for semantic segmentation is a complex and time-consuming operation because 
it requires the creation of accurate borders. With the understanding of the requirements and limi-
tations, this study utilises both object detection methods and semantic segmentation. 
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Figure 2-8 9: Comparison of input and output of object detection and semantic segmentation. 
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3 LITERATURE REVIEW 

3.1 Early Days of Digital Map Processing Techniques for Feature Extraction 

Since the establishment of digital map archives to preserve historical maps, researchers from vari-
ous domains have established computational methods to extract geographical features from map 
scans. Therefore, it was necessary to develop automated or semi-automated strategies to extract 
the information from historical maps considering the vast amount of map documents scanned and 
stored in map archives (Chiang et al., 2014). Digital Map processing for information extraction from 
maps has been developed since the 1980s (Ebi et al., 1994) and has grown in intensity with the 
improvement of scanning technology, storage capacities, and computational power (Chiang et al., 
2014). 

In the early days of digital map processing, colour image segmentation was a technique adapted 
from the image analysis domain in computer science to extract features from map scans. Image 
segmentation divides images into homogeneous regions or objects (Khattab et al., 2014). With im-
age segmentation, an image is split into more representative sections and is easier to study. In 
colour image segmentation, it is assumed that homogeneous colours of image pixels correspond-
ing to homogenous segments, representing meaningful objects of the image. Colour image seg-
mentation is an obvious choice of method in digital map processing because the same colour com-
bination represents the same thematic information of the maps. An example of such representa-
tion in topographic maps can be taken from USGS topographic product standard written by Allord 
et al., 2014. According to the USGS standard, green is used for areas of vegetation, blue for water 
features and brown to represent topographic features. This standard can vary slightly from one 
topographic map series to the other. But since colour remains the most prominent attribute in 
describing area features of a topographic map, colour image segmentation can be considered a 
simple automated way to map processing (Chiang et al., 2014). Histogram-based thresholding 
(Glasbey, 1993) and colour space clustering (Khotanzad & Zink, 1996) are commonly used colour 
image segmentation techniques used in digital map processing. 

 

Figure 3-110: Example of histogram thresholding technique in colour image segmentation to extract roads 
from a map scan [Left: Original RGB Map Scan; Middle: Conversion to monochrome image; Right: Extracted 
roads] (Chiang et al., 2014). 

However, in practice, applying colour image segmentation methods is highly inefficient on historical 
maps. It is identified with the study by Chiang et al., 2014 that the colour of historical maps varies 
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drastically mainly due to the manual process of creating the maps and ageing. Colour image seg-
mentation requires homogenous colours in scanned maps belonging to the same class based on 
the colour characteristic of image pixels. The homogeneous zones that are classifiable must also 
be spatially contiguous. As a result, colour image segmentation methods fail to extract composite 
cartographic symbols that combine point, line and area symbols to denote a single class (ex: forest, 
wetland). Furthermore, as explained in work done by Jiao et al., 2020, colour image segmentation 
methods are unable to extract marsh regions (figure 3-2) where the area is symbolised by strokes 
which makes the symbol not area-filling in colour while forming a continuous texture. 

 

Figure 3-211: Non-continues cartographic symbol of marsh regions from a Swisstopo map (Jiao et al., 2020a). 

Edge detection is another technique used in the early days of digital map processing to extract line 
symbols like roads, contour lines, railways etc., from map scans. Edge detection is used in image 
processing to determine the borders of objects inside images. It operates by detecting changes in 
brightness (Oskoei & Hu, 2010) which usually works by applying filters such as Sobel, Canny, and 
Prewitt (Basu, 2002) applied to the converted greyscale image of a map. However, as explained in 
the study by Chiang et al., 2014, map scans with low contrast or unconnected features have limita-
tions in using the above-mentioned edge detection techniques to extract features. Also, noise is 
induced in the results due to the small kernel size of the applied local differential filters.  

Another approach often employed in computer vision applications that paved the way to digital 
map processing is template matching. The book by Brunelli, 2009 extensively analyses template 
matching techniques and their applications. Traditional template matching algorithms compare 
raw pixel values inside a searching window to identify a match between a template and a target 
image. The objective of template matching is to find similar objects in the template inside the target 
image. When it comes to digital map processing, template matching is successfully used to extract 
point symbols from map scans when the symbol is consistent in shape and size throughout the 
map (Xia et al., 2022). However, classic template matching techniques cannot handle complicated 
scenarios effectively when the transformation between the template and the target picture is non-
rigid or involves overlaps, which is common in maps (Chiang et al., 2014). 
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Figure 3-312: Use of template matching to extract road intersections (Chiang et al., 2014). 

3.2 Influence of GIS in Digital Map Processing 

With the establishment of Geographic Information Systems (GIS), the interest in extracting data 
from map scans has increased drastically (Drolias & Tziokas, 2020) as GIS is a versatile tool to visu-
alise, analyse, and store the data. GIS provides a centralised system to georeference, digitise, clas-
sify and post-process the extracted data. The most straightforward strategy to use GIS tools for 
digital map processing is to extract the features manually by one or more users who digitise (redraw 
the map features in vector format) and assign one or more labels to each feature. Manually digitis-
ing the content of a historical map is a complex, time-consuming and costly task. An example given 
in the book by Budig, 2018 shows that it takes an expert 15 to 30 hours to extract and georeference 
building footprints of a single map. Another study by Chiang et al., 2014 provides an example of 
labelling a nautical chart just by drawing bounding boxes would take around 6 hours to complete. 
Modern GIS applications also offer crowdsourcing capability, where experts can work 
collaboratively on a single task. However, considering the factors of complexity and time, a manual 
digitisation approach with GIS tools would be acceptable only when processing a small number of 
map sheets. It will be practically impossible to manually digitise the vast amount of historical maps 
available in today's archives.  

Modern GIS solutions facilitate tools for manual digitisation. Also, they are equipped with versatile 
image processing tools which can be utilised in digital map processing. The work done by Gobbi et 
al., 2019 showcases the use of Object-Based Image Analysis (OBIA) tools in the GRASS GIS package 
to extract features from historical maps. The authors also utilise GIS tools to preprocess the map 
scans, which remove unwanted texts, symbols and boundary lines. The procedure was tested with 
three different historical maps with different characteristics (one cadastral map and two forest 
maps) and reached an average classification accuracy of 97%. The object-based image analysis tech-
nique combines region-based segmentation with rule-based machine learning. OBIA differs from 
traditional pixel-based classification because it first breaks the image into objects (group of pixels), 



Literature Review  25 
 

followed by rule-based classification that utilises the geometric and colour information of the ob-
jects. The classification ruleset needs to be defined by an expert, and it is subjective to input data. 
The study by Gobbi et al., 2019 shows the potential of object-based image analysis applied in digital 
map processing, obtaining a high accuracy when map symbolisation is simple, but this is also be-
cause of the manual definition of the classification rule set by an expert for each map sheet. 

 

Figure 3-413: Application of object-based image analysis on cadastral map sheet  
[left: input map sheet; right: output] (Gobbi et al., 2019). 

The power of GIS in digital map processing lies not only in feature extraction but also in establishing 
an end-to-end pipeline. The study by Drolias & Tziokas, 2020 has established such pipeline using 
open source GIS tools (QGIS, GRASS, and SAGA) to extract building footprints. The overview of the 
pipeline is shown in the figure 3-5. First, the scanned map is manually georeferenced using control 
points. The feature extraction was done next by applying a manually defined ruleset to perform a 
binary classification by thresholding. This method extracts a single feature class, in this case, build-
ings. The extracted budlings are still in raster format and are then converted to vector using the 
raster to vector conversation tool available in GIS software. The main advantage of such a pipeline 
is that the whole process can be programmed using GIS tools and executed automatically only with 
a few inputs from the user. The main disadvantage is that the input parameters to this pipeline 
change from one map scan to another, in particular in the stage of feature extraction. 

 

Figure 3-514: Overview of a GIS-based pipeline for Digital Map Processing (Drolias & Tziokas, 2020) 

3.3 Deep Learning Based Feature Extraction in Digital Map Processing 

In recent years, deep learning based supervised learning algorithms have demonstrated their su-
premacy in automated feature extraction from historical maps. Several studies have proven that 
deep learning is the way forward to digital map processing outperforming the traditional and GIS-
based approaches. Recent research has moved away from laboriously creating tailor-made ma-
chine learning rulesets and toward the use of deep learning (DL) techniques to extract features 
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from historical maps (Chiang et al., 2014; Drolias & Tziokas, 2020; Ignjatić et al., 2018; Jiao et al., 2020b; Uhl 

et al., 2020). It has been identified that convolution neural networks are versatile and the most suit-
able technique for feature extraction by today's standard. The advantages of deep CNNs described 
in the literature are scalability (Petitpierre et al., 2021) and the ability automatically learn and extract 
complex symbols (Xia et al., 2022) in challenging environments (Uhl et al., 2020) such as in maps with 
different quality as well as variation of cartographic symbols. 

Even though the deep learning approach solves most of the limitations of classical feature extrac-
tion methods, it has challenges in digital map processing. The study done by Chiang et al., 2020 on 
training deep learning models for feature extraction from historical maps gives a comprehensive 
analysis of the subject discussing strengths and weaknesses. This study focuses more on a chal-
lenging aspect of deep learning, which is the requirement of an extensive training dataset. The au-
thors have identified the lack of cartographic training data as the most limiting factor in applying 
CNN methods in feature extraction in digital map processing. 

All deep learning methods including CNNs, require a large amount of training data to train a model 
successfully. Since there are no publicly available machine learning datasets for historical maps, the 
training data need to be created from scratch, which involves a lot of manual work. To overcome 
the issue of limited training data, the study by Chiang et al., 2020 adopts a technique called transfer 
learning. Transfer learning is a machine learning technique in which a model trained on one task is 
repurposed for another related task where the pre-trained model serves as the starting point to 
train the new model (Pan & Yang, 2010). The authors have compared four deep learning convolu-
tion neural networks (CNNs) to extract railroads from the United States Geological Survey (USGS) 
historical topographic maps. The CNN models used in this study are PSPNet, FCN-VGG16, FCN-
GoogLeNet, and FCN-ResNet. The transfer learning strategy is used where PSPNet was pre-trained 
using the PASCAL VOC 2012 dataset and the rest with the ImageNet dataset. The reason for choos-
ing two different pre-trained datasets is not explained. This study's highest achieved accuracy was 
62.22% using PSPNet architecture. The lowest accuracy was 4.689% using the FCN-VGG16 architec-
ture, followed by FCN-GoogLeNet and FCN-ResNet. The authors of the study mention that the 
achieved calcification accuracy would still be insufficient to obtain useable railroad data from his-
torical maps. More refined approaches are necessary to extract features from historical map scans 
properly. 

Table 3-11: Accuracy comparison of different deep learning architectures  
in the study done by Chiang et al., 2020 

Deep Learning Architecture Transfer Learning Dataset Accuracy 
FCN-VGG16 ImageNet 4.689% 
FCN-GoogLeNet ImageNet 11.79% 
FCN-ResNet ImageNet 23.09% 
PSPNet PASCAL VOC 2012 62.22% 

 

It is assumed that the source and destination tasks are comparable in transfer learning. However, 
in this study, the domains of the pre-trained models used as a starting point and the final model 
are very different. The domain of the pre-trained models used in the transfer learning approach 
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(both ImageNet and PASCAL VOC) represent day-to-day objects, but the domain of the final models 
is cartographic symbols. Due to this reason, the transfer learning approach does not yield a better 
classification accuracy compared to a model trained from scratch, but it may trigger faster training. 

Another approach to overcome the limiting factor of the unavailability of cartographic training data 
for digital map processing is to use a technique in machine learning called weak supervision. Weak 
supervision uses high-level or less accurate supporting data to provide labels for a significant quan-
tity of unsupervised data, allowing for the generation of a large amount of training dataset much 
faster than creating it manually (Chen, 2019). 

 

Figure 3-615: Various approaches compared to weak supervision for structuring the unstructured data to 
train deep learning models (Sharma, 2020). 

The study by Uhl et al., 2020 uses a weakly supervised deep learning-based classification to extract 
human settlement patterns from USGS historical topographic map series. The authors face the lack 
of training data to be fed to a convolution neural network; so, as a solution, they have used a weakly 
supervised approach where current geospatial data is used as ancillary data to gather training sam-
ples. The method described was inspired by an application of deep learning in remote sensing, 
where the training data is efficiently generated using supporting geospatial data such as land cover 
maps. However, the authors describe that using such ancillary data in the context of historical maps 
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to create training data only results in approximated boundaries due to temporal change, map dis-
tortions, high positional error and inaccurate georeferencing present in the historical maps. Since 
the training data generated with ancillary data only provides low-quality training labels, a weakly 
supervised training method was adopted to train CNN.  

 

Figure 3-616: Examples of spatial offset (left) and temporal offset (right) between building locations in histor-
ical maps and current building locations (blue dots) (Uhl et al., 2020). 

The study was based on USGS topographic maps (1893-1954) and the ancillary spatial data used to 
create training samples are accurate settlement locations in 2016. First, the ancillary spatial data is 
preprocessed, and training data is made at the map patch level for settlement symbols using the 
preprocessed ancillary data. Second, the CNN model was trained using weakly supervised approach 
for patch-based classification to identify settlement patches, followed by pixel-level semantic seg-
mentation to extract settlement areas. Three widely used CNN architectures (LeNet, AlexNet, VGG-
Net-16) were tested in this study to compare the performance in patch-based classification to as-
sign patches of the map to settlement class or other land use. The highest classification accuracy 
was achieved with VGGNet-16, with an overall accuracy of 0.92. Since VGGNet-16 is the best-per-
forming architecture in the image classification step, the authors have chosen VGGNet-16 to per-
form pixel-level semantic segmentation to extract building footprints. Semantic segmentation was 
performed using VGGNet-16 in a weakly supervised manner where the CNN is patch-level trained 
to output pixel-level segmentation. Despite the high accuracy in patch-level classification, the pre-
cision of pixel-based semantic segmentation drops to a level of 0.29. This study shows that weakly 
supervised CNNs can be applied successfully in a patch-based classification where a map is divided 
into small patches. The target is to tag each class to each patch (ex. urban, non-urban). But weakly 
supervised deep learning method does not yield acceptable performance in pixel-level classification 
for semantic segmentation since the model is trained using data with low granularity than the out-
put.  

Another interesting finding of the study by Uhl et al., 2020 is that the feature extraction accuracy 
increases with the graphical quality of the maps. This is because older maps generally have de-
graded graphical quality due to ageing compared to newer maps, and there is a trend of increasing 
accuracy over the time of the creation of the map. 
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The performance of semantic segmentation is highly dependent on the quality of the training da-
taset. Therefore, selecting proper deep learning architecture also plays a significant role in success-
fully applying semantic segmentation. The study by Ekim et al., 2021 and Heitzler & Hurni, 2020 
elaborate on the above factors. The study by Heitzler & Hurni, 2020 used U-Net CNN architecture 
to extract building footprints from the Swiss Siegfried map resulting in a remarkable precision of 
0.985. The high-quality training dataset is a major contributing factor to the high accuracy achieved 
in this study compared to the rest. Manual creation of a training dataset is a costly and time-con-
suming task, but the studies by Ekim et al., 2021; Heitzler & Hurni, 2020 proves that using a manually 
created high-quality training dataset will produce a high-quality deep learning model.  

3.4 Selection of CNN Architectures  

The focus of this study is to evaluate different deep learning architectures to extract area features 
from historical map scans. Two strategies are used in this study to extract area symbols which are 
explained in detail in next chapters. The semantic segmentation approach is taken to extract fea-
tures where the area of the symbol has topographic meaning, and the object detection approach 
is taken when only the location of the symbol is important. 

Since Convolution Neural Network methods are the state-of-the-art deep learning technology for 
image processing, CNN architectures were chosen for each approach to compare the performance 
in semantic segmentation and object detection. Many CNN architectures are available today, devel-
oped by scientists improving the existing architectures and inventing new methods to overcome 
limitations. Selection among these architectures must be made with a clear understanding of the 
application and the available resources. In this study, 3 CNN architectures were selected based on 
a literature review considering their performance in digital map processing or similar tasks such as 
feature extraction from remote sensing data. 

3.4.1 Semantic Segmentation Architectures 

UNet 

The researchers Ronneberger et al., 2015created the UNet architecture for biomedical image seg-
mentation in 2015. It is currently one of the methods used the most frequently for semantic seg-
mentation tasks. It is a fully convolutional neural network built with a smaller training sample size 
in mind. A contracting path and an up-sampling path define the ability of the UNet architecture to 
perform semantic segmentation. The contracting path has pooling and convolution layers which 
generate an abstract representation of the input image. These abstract representations are com-
bined by the up-sampling path that generates pixel-level inference.  

UNet is the architectural choice for the previous work carried out by the historical map semantic 
group, which became the foundation of this research. It was selected as the first choice for semantic 
segmentation in this study because UNet has proven to work well with historical map data for fea-
ture extraction. There are several studies demonstrating this fact. Heitzler & Hurni, 2020 have used 
UNet architecture to successfully extract building footprints from the Swiss Siegfried map series 
with an average accuracy of 88.2%. In ICDAR 2021 Competition on Historical Map Segmentation, a 
team using a modified version of UNet won the segmentation task by achieving 74.1% accuracy. 
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ResNet 

ResNet stands for Residual Network, which is the winning architecture of the ILSVRC 2015 compe-
tition. ResNet was introduced in the paper "Deep Residual Learning for Image Recognition" by He 
et al., 2016 achieving the objective of designing a very deep convolution neural network free of 
vanishing gradient problem. The basic concept of solving the vanishing gradient problem is intro-
ducing bypasses to the computations. ResNet is a feedforward CNN architecture with the bypass 
connections named "residual connections". 

ResNet holds the first place for the SpaceNet benchmark of 2022, which is for building detection 
from satellite images with an achieved accuracy of 78.48%. The study was done by Chiang et al., 
2020 compared different CNN architectures in challenging environments to extract rail roads from 
map scans. In the results, the ResNet architecture outperformed the competitors by achieving twice 
the accuracy in comparison, but all the compared architectures haven't reached acceptable perfor-
mance due to data limitations. Finally, the study by Petitpierre et al., 2021 uses ResNet architecture 
for generic semantic segmentation of historical maps of Paris. The CNN model could classify build-
ings with very high accuracy of 91% and road networks with 75%. 

InceptionResNet 

InceptionResNet CNN architecture was developed by Szegedy et al., 2016 as an upgraded version 
of the original Inception architecture. Original Inception architecture was developed by Google 
(Szegedy et al., 2014) and was the winner of the 2015 ImageNet challenge with an error rate of 
6.67%. The improvement made to the original architecture is intended to minimise the computa-
tional cost with less effect on the depth of the architecture. This improvement was driven by the 
introduction of residual blocks and bringing them together with inception blocks. The developers 
of InceptionResNet have demonstrated that introducing residual blocks to the original architecture 
will significantly increase the processing speed while achieving similar results.  

InceptionResNet is successfully used by Xu et al., 2019 to develop a feature reconstruction model 
for building segmentation using remote sensing data. They have compared the developed model 
performance with UNet architecture and have achieved a 3.7% improvement. The study by Erdem 
& Avdan, 2020 shows promising performance in InceptionResNet architecture to extract buildings 
from satellite images with 86% accuracy. 

3.4.2 Object Detection Architectures 

YOLOv5 

YOLO stands for You Only Look Once, which is a CNN architecture that made a turning point in 
deep learning for object detection. It is designed to be simple yet effective in object detection, so it 
is most popular in real-time object detection applications. The architectural implementation of 
YOLO broke the traditional CNN implementation at its invention (Du, 2018) by combining two sep-
arate neural network processes into one process. In YOLO, detection and classification are done 
simultaneously, whereas the models before YOLO use two neural networks to perform the task in 
two steps and combine it at the end. The YOLO algorithm uses the concepts of residual blocks, 
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bounding box regression, and intersection over union (IOU) (Redmon et al., 2016) to train and per-
form predictions by dividing an image into smaller grids and classifying each grid. 

YOLOv5 is used by the researchers Ding & Zhang, 2021 to detect buildings from remote sensing 
imagery with a detection accuracy of 88.5. A similar study was carried out by Kim & Hong, 2021 
have achieved an accuracy between 88% and 98% in various scenarios of satellite images.  

In this research, we have used the fifth iteration of YOLO for object detection tasks. The architec-
tures chosen are YOLOv5_m, YOLOv5_l and YOLOv5_X. The main architectural difference here is 
the depth of the neural network. YOLOv5_X is a deeper network with 86.7M parameters, while 
YOLOv5_l and YOLOv5_m having 46.5M and 21.2M parameters. 
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4 DATASET 

4.1 Mileage Sheets of Saxony 

This study is based on the dataset Mileage Sheets of Saxony (or "Sächsische Meilenblätter" in Ger-
man), a series of historical topographic maps created between 1780 and 1825. The Saxon mile 
sheets were compiled for the Saxony region of Germany with a military topographic survey. The 
survey was based on a national geodetic triangulation starting from a baseline between Pirna and 
Königstein. The baseline distance was measured to a precision of 1cm using a cubit rod, whereas 
angle measurements of the triangulation made use of the theodolite. By adapting to the natural 
orientation of the baseline, the survey and the resulting maps were not aligned to the north but 
rotated about 42 degrees to the west. So, the mileage sheets point roughly in a northwest direction. 
Each map sheet is about 56.6 × 56.6 cm in size, corresponding to one Saxon Square Mile (approxi-
mately 6.8km × 6.8km) hence the name "Mileage Sheets" of Saxony. The original series consists of 
445 individual map sheets. Two additional copies were made during the survey in addition to the 
original map series named Dresden copy which is named after the place where it was kept. The first 
copy, named Berlin copy, also called the royal specimen, was intended for the king, and the second 
copy is named Freiberg copy. The maps were created manually and drawn with ink in black, red, 
blue and brown. (Walz, 2002; Witschas, 2002). 

 

Figure 4-117: Overview and the Saxon mile sheets topographic map series (Witschas, 2002). 
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The maps have a high degree of information and were created at a relatively large survey scale of 
1:12,000. Even though the maps were primarily made for military purposes, it was also intended to 
meet several other needs, such as building roads and canals, mining, and public administration. 
The primary content of the maps shows borders, buildings, road networks, and water bodies, in-
cluding streams, forests and meadows. The relatively large scale of 1:12,000 allowed representation 
of individual buildings and even the courtyards when scale allows. The maps show detailed infor-
mation on the smallest features such as footpaths, drainage ditches, gardens, stone blocks, etc. 
However, no legend explains the symbology used in the map sheets. A clear understanding of the 
cartography symbology in the map series is required in this study. A description of the majority of 
map symbols used has been published by the Saxonian agency "Geobasisinformation und Ver-
messung" and has been used to interpret the topographic maps. 

In Saxon mile sheets, hatching was used to designate the relief. Hachures are small lines drawn to 
represent slopes. The lines are drawn thicker for steeper slopes, while for a gentler slope, they are 
drawn thinner. This is noteworthy because it is an early method of depicting relief, but it also visu-
ally dominates the map. It is a challenging aspect of this study because symbols overlapped by 
hachures are hard to distinguish even to the human eye. By 1870, hatching had been replaced by 
contour lines in so-called "equidistant maps," which significantly updated the content of the Saxon 
mile sheets. 

Virtual Map Forum of the Saxon State Library (https://kartenforum.slub-dresden.de/) provides pub-
lic access to the high-quality scanned maps of the Saxon mile sheets. Virtual Map Forum serves as 
a web-based interface to access the digital map archive of the Saxonian State Library, which has 
more than 20,000 historical maps preserved in digital format (Mendt, 2014). Georeferenced map 
sheets of the Saxony topographic survey were made available through the web client, where users 
can filter, visualise and download. In addition to publishing the georeferenced maps on the virtual 
map forum's web page, standardised spatial data infrastructure interfaces (WMS/WCS/CSW) are 
made available to the public. Researchers can use Web Mapping Service (WMS) and Web Coverage 
Service (WCS) to easily integrate historical maps into local or web-based geographic information 
systems. However, vectorisation of the map content is not available for the maps; hence the ser-
vices are only provided with the scanned raster images. Due to this reason, only visualising the 
maps in GIS systems is possible, but to perform spatial analysis, it is required to extract the data 
locked in the map scans. 

The Saxon mile sheets provide a sound cartographic basis for the historical landscape of Saxony in 
the 18th century. The historical map series allows for the investigation of landscape change over 
the last 200 years and offers adequate resolution in geometry and content for the research. How-
ever, historical maps should only be used in analysis with caution because survey techniques, ac-
curacy, map details, and production methods are significantly different to today's standards hence 
inducing some limitations such as the shift in buildings (Haase et al., 2007). 

4.1.1 Selected Data Set and Study Area 

The original map series of the Mileage Sheets of Saxony consist of 445 map sheets. In this study, 
ten map sheets from the Mileage Sheets of Saxony were selected considering the challenging as-
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pects of deep learning in feature extraction from historical maps. Studies have shown that the qual-
ity of the map scan affects the quality of the feature extraction. Historical maps have different 
graphical qualities due to ageing and the manual process of creating the maps where the scans of 
the Mileage Sheets of Saxony show no exception. As shown in the figure 4-2, the graphical quality 
changes from one sheet to another. In this study, the variation factor in the graphical quality of 
historical maps was considered when selecting the dataset. Available map sheets were visually ob-
served, and ten maps were selected concerning varying graphical quality. All the maps were down-
loaded in the highest available resolution in GeoTIFF format that were available to the public 
through the Virtual Map Forum of the Saxon State Library. 

Each map scan has a width of 12500 pixels, a height of 8000 pixels, and an approximate spatial 
resolution of 1.1 m/pixel. The dimensions and the spatial resolution changes from one map scan 
to another. All the selected map scans were already georeferenced using DHDN geographic coor-
dinate system. 

 
Figure 4-218: Spatial distribution of the selected map sheets. 
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(a) (b) (c) 

   
(d) (e) (f) 

   

(g) (h) (i) 

   

 (j)  
 

 

 

Figure 4-319: Selected Map Sheets [index, location, sheet number in Virtual Map Forum] (a) Torgau, No 050; 
(b) Zehren, No 161; (c) Groszenhain, No 163; (d) Annaberg, No 181; (e) Coswig, No 211; (f) Arnsdorf, No 285; 
(g) Hohnstein, No 321; (h) Gauszig, No 324; (i) Bautzen, No 326; (j) Lampertswalde, No 164. 

4.2 Data Pre-Processing 

Pre-processing of the dataset was carried out with one goal in mind. To make the selected map 
images consistent in terms of colour and map geometry. Pre-processing is necessary to make a 
consistent dataset in the context of historical map processing to train deep learning models. 

There are two main issues to be addressed.  

1. Variation of the graphical quality in different map sheets.  
2. Geometric error in map symbols  
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4.2.1 Colour Homogenization 

The dataset is chosen to represent a general scenario of historical maps where the graphical quality 
of the maps is not consistent. Specifically, to the Mileage Sheets of Saxony, the period to create all 
the maps took nearly fifty years, starting in the late 18th century. All the maps created are subjected 
to technological limitations of the time and subjective variations due to the manual cartographic 
process. Different cartographers have worked on making this topographic map series, so as a re-
sult, the cartographic style and colour vary. The variation of the colour is also a result of ageing. 
Since the map sheets are more than two centuries old and since all the paper maps are not ageing 
the same way, variation in the graphical quality of the scans is unavoidable.  

Colour homogenisation is carried out to decrease the variation of the graphical quality of the se-
lected map sheets. The working group developed an in-house algorithm to homogenise the colour 
of maps. The algorithm uses the principle of histogram equalisation to balance the hue between all 
the map images and increase the contrast. The figure 4-4 shows the output of two map scans with 
varying graphical quality before and after colour homogenisation. 

Original map scan After colour homogenisation 
Map No: 164 

  
Map No: 324 

  

Figure 4-420: Comparison of visual variation of the original map scans and colour homogenised maps. 

 

4.2.2 Re-Projection of the Dataset 

The dataset of this study downloaded from Virtual Map Forum are georeferenced scans of the Mile-
age Sheets of Saxony. The scanned copies of the original map sheets did not initially contain digital 
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geographic coordinate information. Instead, they were just scanned images of map sheets. Later, 
the Saxon State and University Library Dresden (SLUB) performed georeferencing of the scanned 
map sheets to DHDN coordinate system (Mendt, 2014). Georeferencing is the process of assigning 
geospatial coordinates to raster data based on the defined coordinate system. This process involves 
finding a set of control points on the scanned map with known geographical coordinates and trans-
forming the image based on the identified control points. This transformation permanently affects 
the image pixels based on the selected coordinate reference system, which results in re-sizing and 
re-shaping the original image. 

The original map sheets of the Mileage Sheets of Saxony are square in shape with a height and 
width of 56.6 cm. However, digital georeferenced maps provided by the Virtual Map Forum do not 
preserve the square shape of the maps (figure 4-4), which is caused by georeferencing to the DHDN 
geographic coordinate system. This induces an error in the shapes of cartographic symbols that 
adversely affect the end goal of digital map processing.  

Let's take an example from the building symbols. Small buildings are represented in the maps as 
red colour rectangles or as a composition of rectangles depending on the actual shape of the build-
ing. However, due to the geometric change that occurred at georeferencing, the building symbols 
have a skewed shape. Figure 4-5 is an exaggerated representation of the effect of georeferencing 
with the DHDN coordinate system on building symbols. 

  

(a)  (b)  

Figure 4-521: Comparison of the geometric shape of buildings in (a) original maps and (b) georeferenced 
map scans available in the Virtual Map Forum. 

Accurate geometric representation of the cartographic symbols is important because the end goal 
of digital map processing is to create meaningful vector data from the map scans that can be used 
in the geospatial analysis (Chiang et al., 2014). Creating vector data for building symbols in a 
scanned map can be broken into two general steps. The first is to extract the buildings as raster 
masks, and the second is to convert the raster masks to vectors. The rectangular shape of the build-
ing symbols becomes essential in the second step. When converting the extracted masks to vectors, 
a ruleset can be developed to detect the corner points and enforce the perpendicularity of the 
edges. Heitzler & Hurni, 2020 have successfully used such an approach to vectorise buildings. To 
use such an algorithm, the building symbols of the input need to have the characteristics mentioned 
above. 

The geometric error in cartographic symbols can be corrected by reprojecting the dataset to the 
appropriate conformal projection system. Conformal projection is defined in cartography as pro-
jection systems which preserve local angles (Grafarend & Krumm, 2014). As a result, the shapes of 



38 Dataset 
 

the features appear to be true. Explained with a real-world example of a right-angle road intersec-
tion mapped in a conformal projection system, the line symbols representing the road will cross at 
a 90-degree angle.  

Considering the importance of the correct geometric shape of the map symbols, a workflow is de-
veloped and implemented in Python to reproject the dataset to the intended shape of the original 
maps. Universal Transverse Mercator (UTM) was selected as the target coordinate system to repro-
ject the maps. UTM is a conformal map projection system based on Transverse Mercator, where 
the earth is divided into 60 zones, each zone with a 6-degree longitudinal width (Field, 2018). De-
pending on the location of the earth, an appropriate zone needs to be selected when projecting 
data into UTM coordinate system. The python program written for reprojecting the dataset auto-
matically identifies the appropriate UTM zone by calculating the centre coordinate of each map 
sheet. Each map sheet is individually analysed by the program. The only user input required is the 
folder path containing the map rasters. Python GDAL (Geospatial Data Abstraction Library) library 
was used in the program to open, read and reproject the raster images. The results of reprojecting 
the data can be seen in the figure 4-6. The complete workflow of pre-processing is provided in the 
figure 4-7. 

 

 

Input Data 
Original Coordinate System (DHDN) 

Output 
Reprojecting to UTM Coordinate System 

Effect on building symbols 
Scale: 1:2000  

  
Scale: 1:1000  
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Effect on entire map sheet 

  

Figure 4-622: Output of reprojecting the map scans to the UTM coordinate reference system. 

 

 

Figure 4-723: Data pre-processing workflow. 
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5 METHODOLOGY 

5.1 Selection of Map Features 

In the mileage sheets of Saxony, a very detailed representation of the geographic features can be 
seen on the maps. To fully use the high degree of information available in the Saxony milage sheets, 
it is required to define subcategories of the symbols as different classification classes. Merging the 
classes in the classification (ex: small buildings + complex buildings as a single building class) is not 
a good option because the symbology of the sub-classes is significantly different in terms of size, 
shape, colour and texture. It will make it difficult for the deep learning algorithm to learn the ruleset 
to map the semantics between significantly different symbology. This hypothesis is backed up by a 
study done by Uhl et al., 2020 as the authors did not achieve a good performance in their deep 
learning model to extract large buildings when small and large building symbols were taken as a 
single classification class. The authors have suggested considering small buildings, large buildings 
and building blocks as separate classes as a solution to increase the accuracy of the model.  

The scope of this research is limited to extracting three main geographical feature categories rep-
resented by area symbols, buildings, vegetation and water bodies. According to the symbology var-
iation, six classification classes were selected, as shown in the table 5-1. 

Table 5-12: Selected classification classes and relevant symbology. 

Geographical 
feature Class 

Classification class Symbol Description 

Buildings 

Small buildings 

 

Red rectangles or composition of 
red rectangles 

Building complex 

 

Light red area with a red border 
(according to the actual size and 
shape of the building complex) 

Water bodies Lakes 

 

Blue coloured area with a black 
dash line 
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Rivers 

 

Light blue area 

Vegetation 

Forest 

 

Cluster of single black tree sym-
bols 

Meadow 

 

Cluster of black dots or small 
black lines 

 

5.2 Feature Extraction Strategy 

Extracting features from map scans using deep learning can be identified as a computer vision task 
of convolution neural networks. There are four main computer vision methods in deep learning: 
image classification, object detection, semantic segmentation and instance segmentation. In image 
classification, the deep learning model categorises images into different classes. Object detection 
identifies intended features in images, usually by using bounding boxes. In semantic segmentation, 
pixelwise classification is performed, where each pixel is assigned a class. Semantic segmentation 
produces numerous image regions referred to as image segments. Finally, instance segmentation 
goes one step further by performing pixelwise classification with localising objects in the image that 
belongs to the same class. (An overview of semantic segmentation and object detection was given 
in chapter 2). 

In this study, the feature extraction strategy was selected based on the characteristics of symbology 
in Saxony mileage sheets. Buildings and waterbodies are symbolised by area symbols on the maps. 
The symbol's location, area and shape have a geographical meaning in the real world as it corre-
sponds to the actual location, area and shape. In order to extract all this information, a pixelwise 
classification is necessary. Semantic segmentation is used to extract buildings and water bodies to 
fulfil this requirement. 

Regarding the symbology of vegetation class, both forest and meadow symbols are composite sym-
bols. The Forest symbol comprises a cluster of tree symbols (a point symbol), and the meadow 
symbol by a cluster of black dots or lines. In the symbology of forest and meadow, the individual 
point symbols do not have a geographical meaning regarding their area and shape. The geograph-
ical area of the symbol is visualised by clustering individual symbols. Due to this reason, forest and 
meadow areas were extracted with an object detection approach where a deep learning algorithm 
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only detects the location of the individual symbols. Detected locations are used to reconstruct the 
area using a clustering algorithm. As a result, it is possible to generate vectorised output which 
makes it one step further to the end goal of digital map processing. The workflow of the two se-
lected feature extraction strategies is shown in the figure 5-2. 

 

 

  
(a) (b) 

Figure 5-124: Composite symbols used to represent (a) meadows and (b) forests. 

 

 

5.3 Creating Training Dataset 

A high-quality training dataset is the key to successfully training any deep learning model. Unfortu-
nately, creating a training dataset for deep learning from scratch is a costly, time-consuming and 
challenging task. Several literatures (Chiang et al., 2020a; Uhl et al., 2020) in the context of historical 
map processing have explained that the major limitation of using deep learning technology in fea-
ture extraction is the lack of publicly available training datasets. Researchers (Chiang et al., 2020a; 
Uhl et al., 2020) have attempted to solve this issue of deficiency in training data with alternative 
approaches like transfer learning and weakly supervised learning, but the end results were insuffi-
cient to apply in practice. Considering the facts, it was decided to create the required training da-
taset manually. The created training dataset is only valid for maps of the Saxony milage sheets 
topographic map series. 
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Figure 5-225: Semantic segmentation and object detection workflows for feature extraction. 
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The process of creating the training dataset can be broken into several steps. 

1. Selection of candidate training patches from the map scans for each feature class. 
2. Extraction of the training patches from the map sheets. 
3. Manually annotate the extracted patches to create an initial training dataset. 

a. For semantic segmentation: accurate boundaries of the features are annotated, 
which were then converted to raster masks. 

Input Training data 

 
 
RGB image patch            RGB image patch                       +         Binary Mask 

 
b. For object detection: accurate bounding boxes are annotated.  

Input Training data 

 
RGB image patch            RGB image patch         +     Coordinates of bounding box  

 
4. Data augmentation. 
5. Splitting the training dataset. 

The selected map sheets from the Milage sheets of Saxony are the primary data source for creating 
the training dataset. Since all the maps are georeferenced, they can be treated as any other geo-
spatial data source in raster format (ex. satellite image, aerial image) in GIS software. Selection of 
the candidate patches was made, taking advantage of functions available in GIS software. The loca-
tions of the candidate training patches were randomly selected from all ten maps, and the centre 
coordinates along with the attributes were recorded in the shapefile (shapefile is a form to store 
geospatial data).  

A script was written using Python to extract the training patches from map scans. The script takes 
the locations saved in the shapefile, classification class name, and required patch size as the input 
parameters. Then, it automatically extracts the training patches and appropriately names each im-
age patch so it can be identified later in the map scans. 
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The extracted training patches are just raw RGB images. They do not contain any labelled infor-
mation so that the deep learning model can understand the features in the images. Therefore, im-
age labelling must be performed to add context to the raw training images. In the machine learning 
field, the process of creating the labelled data for images is called annotating. The labelled data 
created for semantic segmentation are binary feature masks. For object detection, the labels are 
bonding boxes drawn around map features.  

In order to annotate raw training patches, a simple GUI was developed using Python. The tool was 
developed with simplicity in mind and to speed up the tedious process of creating a training da-
taset. At the initialisation, the user must select the annotation mode and the classification class. 
After that, the software automatically verifies and loads the image patches so the user can navigate 
through and annotate.  

When creating labels for semantic segmentation, annotation can be done in two ways with the de-
veloped software. The first method is to draw polygons manually, marking the boundaries of the 
features in images. The second method uses the assistive tools programmed into the software to 
draw the polygons semi-automatic way. A tool named "magic tool" is implemented where this tool 
can be used to automatically draw polygons over the image features, which can significantly speed 
up the process of annotation. The magic tool works with the following principle using two well know 
algorithms in image processing and GIS named flood fill (Y. He et al., 2019), and Ramer-Douglas-
Peucker (Douglas & Peucker, 1973). Both algorithms are implemented using the Scikit-Image, an 
open-source image processing library for Python. When the user clicks on an image with the "magic 
tool", the corresponding pixel is taken as a seed point. The flood fill algorithm then detects pixels 
similar to the seed point. The detected pixels are then converted to a closed polygon by creating 
contours around the pixels. The Ramer-Douglas-Peucker algorithm finally simplifies the polygon. 
The manual polygon creation tool and the "magic tool" can be used interchangeably as the user 
desires. After annotating all features of an image patch, the user can submit the annotations and 
the software automatically creates a binary mask with an appropriate naming convention. 

To create labelled data for object detection, a third-party framework called Roboflow-Annotate was 
used. Using the framework, it is possible to load the raw training patches and annotate bounding 
boxes of image features by drawing rectangles. The created bounding boxes are saved in a text file 
recording the centre x, y coordinates, width and height of the bounding boxes. 

When creating a deep learning training dataset for feature extraction, there is no hard and fast rule 
to decide the amount of required training data. Training a deep learning model is an iterative pro-
cess. The training data amount is increased if the result of the model indicates a lack of training 
data. 
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Figure 5-326: The user interface of the annotating tool. 

5.4 Data Augmentation 

Since the training dataset is created manually, it takes a vast amount of time to generate adequate 
training data to train and evaluate deep learning models. Using the developed annotating tool takes 
approximately 5 minutes to create a single semantic segmentation training sample. Considering 
the time required to manually create a sufficient amount of training data, a method called data 
augmentation (Shorten & Khoshgoftaar, 2019) is used to increase the quantity of training data arti-
ficially. Many deep learning developers use data augmentation as a low-cost and successful strategy 
to lessen reliance on the manual preparation of a large amount of training data (Taylor & Nitschke, 
2018). Data augmenting expands the size of the existing training dataset, allowing the creation of 
new training data without manually creating it. The methods used in this study to augment the 
training data are 1. Rotate 2. Geometric transformation 3. Rescaling 4. Adding Gaussian noise 5. 
RGB shift. Data augmenting was implemented using the Python library named Albumentations and 
integrated directly into the developed deep learning pipeline.  
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(a) Manually created training data 

 
(b) Artificially created training data by augmentation 

 

Figure 5-427: Data augmentation applied on a data sample for lakes class. 

5.5 Splitting the Training Data 

In order to successfully train a deep learning model, the accuracy of the model needs to be evalu-
ated during the training to monitor overfitting and at the end of the training to evaluate the final 
model performance. This evaluation must be done with a dataset unseen by the model in the learn-
ing phase. For a successful evaluation, the best practice is to split the training data into three cate-
gories. By convention, the categories are named Train, Dev, and Test sets.  

 



48 Methodology 
 

Train Set: Training a deep learning model is an iterative process where the model needs to go over 
the same dataset multiple times (epochs), finetuning its parameters. This is referred to as learning 
in deep learning terminology. Train set is training data that is used to train and make the model 
learn the features in the data. In each epoch, the train set is fed to the neural network repeatedly, 
and the model continues to improve by adjusting model weights and biases. 

Dev Set: During the training process, the Dev set (development set) is used to produce validation 
metrics such as validation-mAP (mean average precision) and validation-loss after each epoch. 
These measures are used to determine whether the model performs well or if the model over-
fits/underfit the Train data set. In addition, the model's hyper-parameters are adjusted based on 
the performance of the Dev set.  

Test Set: After the completion of training, the model is tested using a different set of data called 
the test set. Since the test set's data were never seen by the model before, the final model perfor-
mance is unbiased. In other words, performance in the test set answers the question, how well 
does the model perform in the real world? 

In this study, the training data for each class was split into Train, Dev, Test sets with 70%, 20%, and 
10% ratios, respectively. There is no general rule to calculate the allocation percentages to split the 
training data. Split percentages are decided based on the availability of training data. A significantly 
large portion of the training data is assigned to the Train set because the model is learned with the 
Train set. Splitting the training data was performed randomly, and this step is directly integrated 
into the deep learning pipeline. 

 

Figure 5-528: Workflow with Train/Dev/Test data sets. 
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5.6 Implementation of Deep Learning Pipeline 

The Deep learning pipeline to extract map features is the essential software created in this study. 
The deep learning pipeline is implemented with Python to automate training a deep learning model 
and evaluate its performance. The developed pipeline automates multiple steps such as input data 
validation, data augmentation and loading, training of deep learning model, model validation and 
generating visual outputs. As this study compares different deep learning architectures, the se-
lected architectures are integrated into the pipeline. For object detection YOLO V5m, YOLO V5l and 
YOLO V5x architectures are integrated, and for semantic segmentation, UNet, InceptionResNetV2 
and ResNet. 

The backbone of the developed deep learning pipeline is the PyTorch (Paszke et al., 2019) machine 
learning framework (https://pytorch.org/). Since its introduction in 2017 by the Facebook AI Re-
search team, PyTorch has become a widely popular and efficient framework for developing deep 
learning models. This open-source machine learning library is intended to boost the flexibility and 
speed of deep neural network research and implementation. PyTorch is one of the industry's most 
popular libraries among artificial intelligence researchers and practitioners (Paszke et al., 2019).  

In addition to the PyTorch library, several key python libraries are used to develop the pipeline. 
Albumentations (https://albumentations.ai/) is the library used to implement data augmenting. In 
order to handle the vast image data and perform image visualisation Python Image Library (PIL) 
(https://pillow.readthedocs.io/en/stable/). The NumPy library (https://numpy.org/), the library of 
choice to most Python programmers for numerical computing, is used for the computation of ma-
trices and tensors, which is required on numerous occasions in the pipeline. 

In general, training and implementing deep learning models are computationally intensive pro-
cesses. Therefore, it is recommended to the reader to use a high-performance PC with a dedicated 
Nvidia GPU (Graphical Processing Unit) or a cloud computing platform such as Google Colab 
(https://colab.research.google.com/). Google Colab is a free Jupyter notebook "like" environment 
that runs entirely in the cloud on a virtual machine. The free tier is equipped with Nvidia GPU, which 
makes it possible to train the deep learning models used in this study with adequate performance. 
The pipeline is designed to work with both PC and Google Colab environments. This study used 
Google Colab to perform all the heavy computing required in the pipeline.  

5.7 Evaluation Methods 

When training deep neural networks, descriptive evaluation measures must be used to capture the 
model performance. Therefore, in addition to presenting visual results, the performance of all the 
models used in this study was evaluated using widely used evaluation criteria. Following is a de-
scription of the evaluation methods implemented in the pipeline. 

 



50 Methodology 
 

 

Figure 5-629: An overview of the deep learning pipeline 

5.7.1 Pixel Accuracy 

Pixel Accuracy is the percentage of pixels in images that are correctly classified. In this study, pixel 
accuracy is only used to evaluate semantic segmentation models. Since a single class classification 
approach is taken in the study for semantic segmentation, the resulting binary mask is evaluated 
against the ground truth. In the binary mask, true positive (TP) represents a pixel that is correctly 
classified, and true negative (TN) represents a pixel correctly classified as not belonging to the class 
(correctly classified negative case). Furthermore, false positives (FP) and false negatives (FN) are the 
number of misclassified positive and negative cases. 

Equation 4: Pixel Accuracy 

@9$1A	,BBCDEBF = 	
G@ + GH

G@ + GH + I@ + IH 

5.7.2 F1 score 

F1 score is defined as the harmonic mean between precision and recall. Precision is the fraction of 
true positives in an image classified correctly among all the positive predictions. On the other hand, 
recall is the fraction of true positives in an image classified correctly among all the positive ground 
truths. So, precision represents the purity of the classification, whereas recall represents complete-
ness. The F1 score considers both precision and recall and harmonises the two measures. 
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Equation 5: F1 Score 

@D1B9?9>J = 	
G@

G@ + I@ 

K1BEAA = 	
G@

G@ + IH 

I1	LB>D1 = 	
2	 × 	@D1B9?9>J	 × 	K1BEAA
@D1B9?9>J + 	K1BEAA  

 

5.7.3 IoU (Intersection over Union) 

In the context of semantic segmentation, Intersection over Union measures the fraction of overlap 
between the predicted mask and the ground truth.  

Equation 6: Intersection over Union 

O>P =	
@D1Q9BR9>J	SE?T ∩ 	VD>CJQ	RDCRℎ	SE?T
@D1Q9BR9>J	SE?T ∪ 	VD>CJQ	RDCRℎ	SE?T 

 

Figure 5-730: Illustration of Intersection over Union. Figure by (Tiu, 2020). 

In object detection, the predictions are made in terms of a bounding box and a class label.  

The IoU in object detection is measured by the area of overlap between the actual and predicted 
bounding boxes. Furthermore, in object detection, precision and recall are calculated based on the 
IoU value for a given IoU threshold. The prediction becomes true or false based on the IoU thresh-
old that determines how much area the predicted and actual bounding box should overlap. In the 
pipeline, IoU is not used to evaluate object detection because a better matrix named mean average 
precision is implemented, which uses the IoU value as its main parameter. 

5.7.4 mAP (Mean Average Precision) 

Mean Average Precision is a metric used to evaluate object detection specifically, and It is defined 
as the area under the precision-recall curve (Yohanandan, 2020). mAP value is based on several 
sub-matrices such as confusion matrix, IoU, precision and recall (mAP is not the average value of 
precision measures). The higher the mAP, the more accurate the detections. 
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5.8 Hyperparameter Tuning 

Hyperparameters are variables whose values govern the learning process of a deep neural network. 
The learning algorithm uses hyperparameters when learning, but they are not part of the produced 
model. They can be recognised as top-level parameters that regulate the learning process. The val-
ues for the hyperparameters need to be set before starting the training process because hyperpa-
rameters are external to the model and cannot be changed during the training process.  

Hyperparameter tuning is the process of selecting the appropriate hyperparameters for the model, 
and it is a highly iterative process. At the end of the training process, the model results are exam-
ined and based on the results, the hyperparameters are tuned, and the model is re-trained. The 
process continues till the resulting model performance is acceptable to the needs. There is no 
straightforward way to decide the hyperparameters correctly at the initial stage of developing a 
deep learning model. There are several advanced automated methods to speed up hyperparame-
ter search (Feurer & Hutter, 2019), such as grid search or random search to find the initial learning 
rate and Bayesian optimisation. Implementing these techniques requires extensive knowledge, 
which is beyond the scope of this study. Manual search is used in the pipeline to find appropriate 
hyperparameters. 

The following are the hyperparameters that were used in the pipeline. 

5.8.1 Learning Rate 

Learning rate defines how quickly the neural network updates its model parameters (weights, bi-
ases and kernel values). The learning process is slowed by selecting a low learning rate, yet it con-
verges smoothly. Also, there is a risk of selecting a low learning rate because overfitting can occur. 
A faster learning rate accelerates learning, but if it is too large, the model will not converge. Due to 
this reason, the selection of a proper initial learning rate is crucial. A common practice when training 
a deep neural network is starting with a large learning rate and automatically reducing it when the 
model progresses using a learning rate decay function. Comparatively simple learning rate decay 
functions were used in this study. For semantic segmentation tasks, a function named step decay 
(learning rate is reduced by a constant amount after a certain number of epochs) is used. The de-
fault cosine learning rate decay function (starting with a large learning rate and rapidly decreasing 
to a minimum value before increasing again) is used for object detection. The initial learning rate 
was decided with a trial-and-error method. 

5.8.2 Loss Function 

The learning process tries to find the optimum model parameters that generalise the input data to 
a complex ruleset to make predictions on the unseen data. This generalisation process involves 
learning the weights and biases (or kernel values in CNNs) of all computing units, which was done 
by measuring the model's error. The model parameters are then adjusted to minimise the error. 
The loss function measures this error. 
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5.8.3 Optimisation Algorithm 

The objective of the loss function is to provide a way to calculate the model error, which can then 
be used to update the model parameters. In order to update the model parameters, the value of 
the loss function needs to be minimised. Therefore, the objective of the optimisation algorithm is 
to minimise the loss. The definition of the loss function significantly affects the speed of training 
the model as well as the accuracy of the model. 

Two commonly used optimisation algorithms are used in the deep learning pipeline used in this 
study.  

Stochastic Gradient Descent (SGD): In this technique, the parameters are adjusted after each 
training sample. The training data is randomly sampled in each epoch before training. This tech-
nique is more memory-efficient and much faster than Batch Gradient Descent (model parameters 
are only updated once after considering all training data) for large-sized training datasets. 

Adaptive Moment Estimation (Adam): This optimisation approach is an extension of the optimi-
sation technique used in stochastic gradient and developed to update network weights during train-
ing. Unlike SGD, which maintains a single learning rate, Adam optimiser modifies the learning rate 
for each network weight individually. The process of Adam is to calculate an adaptive learning rate 
for each parameter in the model.  

The Adam optimiser has various advantages over other optimisation algorithms. Adam is explicitly 
developed for deep learning. It has been adopted as a benchmark for deep learning papers and is 
suggested as the default optimisation approach. Furthermore, the algorithm has a faster running 
time, consumes less memory, and requires less tuning than any other optimisation technique. It 
also tries to compensate for the effects of selecting a large learning rate. 

Considering the advantages of the Adam optimisation algorithm, it is selected as the default opti-
miser in the pipeline. It shows a high level of performance in all deep learning architectures used 
in this study except for YOLOv5. In YOLO, SGD shows superior performance where Adam optimiser 
suffered with high fluctuations of the loss value between the performance of the Train set and Dev 
set (figure 5-8). This was an indicator that the model was not converging and generalising well. 
Compared to Adam, SGD generalises the data better, and performance improvement has been 
observed in YOLO. 

5.8.4 Number of Epochs 

It is the number of iterations the optimisation algorithm runs over the whole training dataset. The 
number of epochs was decided for each model based on observing the convergence of the model. 
The error in the Training set and Dev set indicates convergence. The number of epochs was in-
creased in case of errors indicating the possibility of improving the model by increasing the number 
of iterations. If both Train and Dev set errors have reached their minimum and maintain their min-
imum at successive epochs, it indicates convergence. If the errors are still decreasing, the model 
can be improved by increasing the number of iterations. 
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(a) (b) 

Figure 5-831: Variation of loss values in YOLOv5 in extracting tree symbols (a) with Adam optimiser (b) with 
SGD optimiser. 

5.8.5 Mini Batch Size 

Mini batch size denotes the number of samples taken at a time during the training process. Since 
deep learning is a computationally intensive process, it is required to manage memory efficiently. 
Therefore, dividing the samples into mini-batches and feeding them to the network one at a time 
is one way to reduce the computational requirements.  

During the workflow, the mini-batch size is decided by the size of the training images and by the 
demand of the deep learning architecture. Due to the efficient model architecture of YOLO, it is 
much faster compared to semantic segmentation architectures, regardless of the number of model 
parameters. 

Table 5-23: Number of model parameters in different architectures used in the study. 

Task Architecture 
Number of Model Param-

eters 

Semantic segmentation 
UNet 45.6M 
InceptionResNetV2 54M 
ResNet 23M 

Object Detection 
YOLOv5-m 21.2M 
YOLOv5-L 46.5M 
YOLOv5-X 86.7M 

 

In this study, the implemented deep learning pipeline was deployed in the Google Colab cloud com-
puting environment for training and testing the models. In the free tier, Google Colab provides a 
virtual machine with 16gb of RAM (Random Access Memory) and 16gb of GPU memory. Therefore, 
the training image size and mini-batch size were selected to fit the memory availability.  
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There are several other essential hyperparameters in a deep learning model. Hyperparameters 
such as the choice of activation function, number of hidden layers, number of computations units 
in each layer, kernel size, and pooling size are based on the architecture of the deep neural network. 
Changing these parameters will change the neural network architecture. As well-established pre-
programmed CNN architectures are used in this study, changing the aforementioned hyperparam-
eters was not required. 
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6 RESULTS AND DISCUSSION 

After the training phase, the test set data were used to evaluate the model's performance qualita-
tively and quantitatively using the evaluation metrics implemented in the pipeline. Successfully 
training a deep neural network is an iterative process. As explained in the previous chapter, hy-
perparameter tuning and solving bias and variance errors required repeatedly running the training 
process after tweaking the settings. The results presented in this section of the thesis are based on 
the best-obtained models after many iterations. 

In this study, it is proposed to evaluate deep learning architectures to extract six symbol classes from 
historical maps. However, due to time limitations and the more extensive scope of the study, the models 
were trained and evaluated only for four classes, i.e. small buildings, lakes, rivers, and forests. A similar 
approach can be used to train and evaluate extraction for building complex and meadow classes.  

6.1 Results of Semantic Segmentation 

The models for extracting small buildings were trained with the highest number of training samples 
compared to other classes. All three models indicated exceptional performance when classifying 
small buildings in terms of accuracy. Even though all three models show nearly 100% pixel accuracy, 
the F1 score and IoU are better measures because the class imbalance in the training data is not 
affecting F1 score and IoU. The highest F1 Score and IoU were obtained by the ResNet model out-
performing other architectures only with a slight margin in terms of accuracy.  

No significant overfitting is shown in the results (figure 6-2) for all three models. In the Inception-
ResNet model, there is a slight deviation of the Dev set performance and Train set performance, 
indicating overfitting after the 35th epoch. This separation can be neglected because the model 
achieved convergence in the early stage of training and maintained it for an extended period of 
epochs.  

However, when considering the training performance, ResNet could complete it in just over 30 
minutes, far sooner than its competitors. This is due to its superior architectural design that reduces 
complexity while maintaining good performance. Furthermore, because ResNet is lightweight in 
terms of memory usage, it was possible to use a minibatch size of 64. It means at each step in each 
epoch, the pipeline feeds 64 samples to the neural network, effectively reducing the time to com-
plete a single epoch and speeding up the training.  

The cartographic symbol for small buildings class in the maps is visually simple. Therefore, it can 
be assumed that the deep learning architectures used here achieved high performance in extract-
ing small building symbols due to the simplicity of the task and primarily due to having a good 
training dataset. 

Few misclassifications appeared in the results and were identified with visual analysis. The visual 
analysis was performed by comparing the prediction outputs of the Test set. It was observed that 
all three models have some difficulty distinguishing between the symbols for rocks and small build-
ings. However, ResNet architecture showed the lowest number of misclassifications in contrast 
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 InceptionResNet indicating the most. It was also observed that some building complexes are mis-
classified as small buildings in all three models. However, this error was most prominent in the 
ResNet model and minor occurrences in the InceptionResNet model.  

After observing the misclassifications, it was found that there are very few images in the training 
data that contain rock symbols. An approach to solve the misclassification is by including more 
samples of rocks in the training data and making them true negatives. To solve the misclassifica-
tions between small buildings and building complexes, a multi-class semantic segmentation ap-
proach can be taken where single model is trained for both classes.  

UNet InceptionResNetv2 ResNet 

   

   

Figure 6-132: Misclassifications of the buildings class. 

  



58 Results and Discussion 
 

Classification Class: Small Buildings 
(a) UNet (b) InceptionResNetV2 

  
(c) ResNet  

 

 

Figure 6-233: Visualisation of the model performance in extracting small buildings. 

 

Table 6-14 : Model and accuracy information: Small Buildings. 

Architecture UNet 
InceptionRes-

Netv2 
ResNet 

Input Parameters 
Input image size (px) 256 256 256 
Number of images in Train Set 1664 1664 1664 
Number of images in Dev Set 608 608 608 

Hyper Parameters 
Number of epochs 40 40 60 
Mini batch size 32 32 64 
Initial learning rate 0.001 0.001 0.003 
Learning rate decay Step Step Reduce on Plateau 
Optimiser Adam Adam Adam 
Loss function IoU+BCE loss IoU+BCE loss IoU loss 
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Accuracy Parameters 
Best epoch 25 25 40 
Pixel accuracy 0.985 0.984 0.985 
F1-Score 0.878 0.876 0.884 
IoU 0.782 0.779 0.792 

Performance Parameters 
Time to compute one epoch 00:02:21 00:01:40 00:00:39 
Total time to train 01:34:15 01:06:47 00:38:31 

 

UNet InceptionResNetv2 ResNet 

 
 

  

 
 

  

 
 

  

Figure 6-334: Extraction results of small buildings. 
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The classification of lakes and rivers shows a different scenario compared to the buildings' results. 
The computation was intensive due to the larger image size used to accommodate the significant 
size variation in lake and river symbols. Image size of 512px was used in both cases, making the 
training images four times larger than the training images of buildings. So more computation time 
was required even though rivers and lake classes use a smaller number of training data. In both 
river and lake classes, the ResNet architecture shows superior performance in terms of accuracy 
matrices and performance time (table 6-2 and table 6-3). By visual analysis of the test set results, it 
was confirmed that the ResNet model produced significantly better results in extracting lakes and 
rivers. There were only a few misclassifications where parts of large rivers were classified as lakes 
and vice versa. In UNet and InceptionResNet, the misclassification rate was higher.  

The poor performance in UNet and ResNet can be explained by visualising the accuracy matrices. 
When classifying lakes, UNet shows the worst performance indicated by high fluctuations of the 
loss, IoU and F1 score (figure 6-5) that indicate difficulty for the model to converge. However, all 
three models show significant separation between the Train set and Dev set, which indicates over-
fitting. This is explained by the fact that lakes and river classes have significantly less training data. 
The figure 6-5 and figure 6-7 show that all three models fit well into the Train set but cannot fit into 
the untrained Dev set. The significantly low number of training data is at the heart of this problem. 
To overcome this problem, creating and including more training data is required, which is a highly 
time-consuming task. In addition, variance reduction techniques such as Drop Out can be used, but 
it requires modification of the deep learning architecture, which is beyond the scope of this study.  

By analysing the model's performance and visualising the results, it can be confidently stated that 
the ResNet model provides better performance even in the challenging circumstances of insuffi-
cient training data. Furthermore, the performance of all three models will significantly increase 
when more training data is included. 

UNet InceptionResNetv2 ResNet 

   

   

Figure 6-435: Misclassifications in Lakes (top) and River (bottom) classes. 
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Classification Class: Lakes 
(a) UNet (b) InceptionResNetV2 

  
(c) ResNet  

 

 

Figure 6-536: Visualisation of the model performance in extracting lakes. 

 

Table 6-25: Model and accuracy information: Lakes class. 

Architecture UNet 
InceptionRes-

Netv2 
ResNet 

Input Parameters 
Input image size (px) 512 512 512 
Number of images in Train Set 800 800 800 
Number of images in Dev Set 104 104 104 

Hyper Parameters 
Number of epochs *41 60 60 
Mini batch size 8 12 16 
Initial learning rate 0.0007 0.001 0.0007 
Learning rate decay Step Step Step 
Optimiser Adam Adam Adam 
Loss function IoU + BCE IoU + BCE IoU + BCE 

Accuracy Parameters 
Best epoch 40 55 40 
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Pixel accuracy 0.996 0.996 0.997 
F1-Score 0.865 0.885 0.909 
IoU 0.763 0.794 0.833 

Performance Parameters 
Time to compute one epoch 00:03:30 00:02:38 00:01:41 

Total time to train 03:30:08 02:38:00 01:41:18 

 

UNet InceptionResNetv2 ResNet 

 
 

  

 
 

  

   

Figure 6-637: Extraction results of lakes. 

  



Results and Discussion  63 
 

Classification Class: Rivers 
(a) UNet (b) InceptionResNetV2 

  
(c) ResNet  

 

 

Figure 6-738: Visualisation of the model performance in extracting rivers. 

 

Table 6-36: Model and accuracy information: River class. 

Architecture UNet 
InceptionRes-

Netv2 
ResNet 

Input Parameters 
Input image size (px) 512 512 512 
Number of images in Train Set 352 352 352 
Number of images in Dev Set 88 88 88 

Hyper Parameters 
Number of epochs 40 40 40 
Mini batch size 8 12 16 
Initial learning rate 0.0005 0.001 0.0005 
Learning rate decay Step Step Step 
Optimiser Adam Adam Adam 
Loss function IoU+BCE IoU+BCE IoU+BCE 

Accuracy Parameters 
Best epoch 35 20 10 
Pixel accuracy 0.987 0.988 0.988 
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F1-Score 0.789 0.796 0.813 
IoU 0.651 0.661 0.685 

Performance Parameters 
Time to compute one epoch 00:02:07 00:01:19 00:00:45 
Total time to train 01:24:42 00:53:00 00:30:01 

 

UNet InceptionResNetv2 ResNet 
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Figure 6-839: Extraction results of rivers. 

6.2 Results of Object Detection 

An object detection approach is proposed in this study to extract forest areas from the map scans. 
The first step is to detect the individual tree symbols and extract the centre coordinates, which was 
done using deep learning. The second step is to use a clustering algorithm to cluster the extracted 
points and polygonise the cluster to extract the forest area. 

The family of algorithms used to extract tree symbols is YOLO. YOLOv5_m, YOLOv5_l, and YOLOv5_x 
are evaluated in the task. The significant architectural difference between these three models is 
their size. YOLOv5_l has the smallest model parameters, whereas YOLOv5_x has the largest.  

The object detection performance of all three architectures shows remarkable accuracy and faster 
training time. To train the models, 213 images were used in the Train set with approximately 80 
annotations per image, whereas 31 images were used in Dev set with 86 annotations per image. It 
creates a total number of 17102 training data labels and 2661 evaluation labels. This large amount 
of training data is the key to successfully training the models. Training data preparation for object 
detection is much simpler and less time-consuming than creating a training dataset for semantic 
segmentation. To prepare a semantic segmentation dataset, the object's boundaries need to be 
accurately marked as a polygon which is then converted to a binary mask. However, in object de-
tection, the training data is prepared by making the objects in the images with a simple bounding 
box. 

(a)Train Set (b)Dev Set 

  

Figure 6-940: Distribution according to the number of annotations in the training data of the forest class. 
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Compared to semantic segmentation, object detection is computationally less expensive. Each 
model took less than half an hour to successfully build a fully trained neural network to extract tree 
symbols from the maps. All the models converge well to the data, and there is no indication of 
overfitting (figure 6-11). Regarding accuracy matrices, all three models are on par with each other. 
When considering the accuracy values, the YOLOv5_l model is marginally ahead of its competitors. 
On the other hand, YOLOv5_m has fewer model parameters to train, and it was a few minutes faster 
to complete training.  

When visually observing the test set results, it was found that there is a negligible number of mis-
classifications in all the models. For example, the meadow symbol is misclassified in a few locations 
as tree symbols in YOLOv5_m and YOLOv5_x models, but the misclassifications were even less in 
YOLOv5_l. However, the error of omission is less in the YOLOv5_l model. Both scenarios can be 
seen in the figure 6-10.  

YOLOv5_x is a larger model (with deeper neural network architecture) than the rest. As it has more 
model parameters to learn, it can learn complex data patterns. The tree symbol in the Saxony mil-
age sheet has many variations in shape, colour, and size. YOLOv5_x can leverage the availability of 
a high number of parameters to learn such varying and complex patterns of data. Due to this rea-
son, YOLOv5_x shows overall superiority compared to the other models. 

YOLOv5_m YOLOv5_l YOLOv5_x 

   

Figure 6-1041: Misclassification in extracting tree symbols. 
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Classification Class: Forest 
(a) YOLOv5_m (b) YOLOv5_l 

  
(c) YOLOv5_x  

 

 

Figure 6-1142: Visualisation of the model performance in extracting tree symbols. 

Table 6-47: Model and accuracy information: Forest class. 

Architecture YOLOv5_m YOLOv5_l YOLOv5_x 

Input Parameters 
Input image size (px) 416 416 416 
Number of images in Train Set 213 213 213 
Number of images in Dev Set 31 31 31 
Average annotations per image in Train Set 80 80 80 
Average annotations per image in Dev Set 86 86 86 
Total annotations in Train Set 17102 17102 17102 
Total annotations in Dev Set 2661 2661 2661 

Hyper Parameters 
Number of epochs 200 200 200 
Mini batch size 32 32 32 
Initial learning rate 0.01 0.01 0.01 
Learning rate decay Constant Constant Constant 
Optimiser SGD SGD SGD 
Loss function CIoU CIoU CIoU 
Early stopping after (epochs) 100 100 100 

Accuracy Parameters 
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Best epoch 100 119 101 
F1-Score 0.891 0.896 0.894 
mAP @0.5 0.917 0.92 0.916 

Performance Parameters 
Time to compute one epoch 00:00:27 00:00:31 00:00:38 

Total time to train 00:17:46 00:20:53 00:25:31 

 

YOLOv5_m YOLOv5_l YOLOv5_x 

 
 

  

   

   

Figure 6-1243: Extraction results of individual trees. 

The next step in object detection workflow the extract forest areas from the map is to perform 
clustering based on the extracted locations of the tree symbols. As a proof of concept, a clustering 
workflow is created for point symbols to convert into area polygons.  
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1. Extracting centre coordinates of each detected bounding box 
2. Perform spatial clustering using the DBSCAN algorithm. The clustering is controlled by two 

parameters. 1. maximum distance between two samples for one to be considered as in the 
neighbourhood of the other. 2. minimum number of samples in a cluster 

3. converting the clusters to polygons using a concave hull 
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Figure 6-1244: Figure: vectorising workflow to convert detected tree symbols to polygons. 0. Original image 
1. Centre coordinates extraction 2. DBSCAN clustering 3. Converting cluster to polygon. 

This workflow has many significant limitations, and evaluation methods are not implemented in 
this study. The first limitation is calculating DBSCAN parameters. The distance between tree sym-
bols varies throughout map scans. The second is separating tree symbols belonging to the forest 
class and individual trees. These questions need to be answered to effectively complete the work-
flow of forest area extraction, which is left for future research due to time limitations. 
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6.3 Limitations and Future Work 

6.3.1 Lack of Training Data 

Data are the foundation of every deep learning project, so the issue of data scarcity is crucial. The 
poor performance in many deep learning models is due to the small size of the training dataset. 
The lack of training data is the main limitation of this study as well. It was identified that object 
detection models for detecting tree symbols and the semantic segmentation model for building 
classification works remarkably well compared to the other classification models obtained in this 
study. The better performance in tree detection and building classification is mainly due to having 
a high number of training data. However, creating such a large training dataset is tedious and costly. 

To speed up the process of creating training data for this study, simple yet effective software is 
developed where a user can load unlabelled training images and manually generate training data 
by annotating. The developed software is at its early stage with several limitations. The geotagged 
map scans are first pre-processed in GIS software to extract the candidate training patches. How-
ever, there is no link between the GIS process and the annotation software. Currently, it runs by 
executing several pieces of code independently. As the next step, the GIS process and annotating 
tool can be harmonised to make it more efficient and effective. Another improvement to the anno-
tating tool is to develop it further to work with multiple users working on a single task.  

Crowdsourcing is another approach to creating training data efficiently at a low cost (Sheng & 
Zhang, 2019). Crowdsourcing is not new in the geospatial domain. OpenStreetMap is the most out-
standing example that uses crowdsourced volunteered geographic information (VGI) to build a 
global geospatial database. In the context of historical maps, the milage sheets of Saxony historical 
map series, which is the same dataset used in this study was successfully geo-referenced using a 
crowdsourced approach (Mendt, 2014). However, obtaining error-free crowdsourced training data 
can be challenging, making it more difficult in a cartographic context as the users need to have a 
specific understanding of the maps they have to work with.  

6.3.2  Lack of Computational Power 

Another limitation of this study is the lack of computational power. Training deep learning models 
demands a lot of computational power, which cannot be fulfilled with a consumer-grade computer. 
Cloud computing is one solution to these limitations. In this study, the free tier of Google Colab 
cloud computing service is used, which comes with resource limitations such as limited memory, 
GPU and time limitations. It was sufficient for the scope of this study, but higher computation power 
is necessary when bringing this research further to evaluate more sophisticated and new deep 
learning architectures. As a solution, there are several service providers, such as Google, Amazon, 
and Microsoft, that provide subscription-based cloud computing services that offer more compu-
tational power for AI applications.  
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6.3.3 Digitisation Error 

 

 

Figure 6-1345: Digitisation error. 

This study uses manual digitisation to create semantic segmentation training data. However, it is 
impossible to perform perfect pixel-level digitisation manually. The effect of this error when training 
deep learning models is unknown. It can be further examined by synthetically creating training data 
and evaluating the resulting deep learning models. 
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7 CONCLUSION 

This study demonstrates a deep learning based workflow to extract the data from historical maps. 
It began with investigating different deep learning architectures and feature extraction strategies 
that have promising capabilities to employ in digital map processing tasks. A thorough deep learn-
ing experiment on comparing different architectures was presented in this study using historical 
maps of the Saxonian topographic survey. The main goal of the experiment was to find the best 
performing deep learning architectures for effectively extracting geographic features from histori-
cal maps.  

A pipeline was developed to train deep learning models, evaluate the performance, and visualise 
the results to achieve this goal. Simplicity was kept in mind when designing the pipeline so cartog-
raphers could quickly adapt it to deep learning research in digital map processing. Several deep 
learning architectures were compared using the pipeline to extract areal features from historical 
maps. The results were presented, discussing its strengths, challenges and limitations in extracting 
area features. To address the issue of lack of training data, a tool was developed to create labelled 
training data rapidly. 

The experiment showcased that selection of a proper deep learning architecture has a significant 
influence in terms of performance and accuracy, which is an impactful factor when deploying the 
models in real-world applications. However, this study also demonstrates that solving the funda-
mental challenges of deep learning, such as scarcity of training data, should be addressed first to 
unlock the technology's full potential.  

With the findings of this study, It can be concluded that deep learning is the technology that can 
make a change in digital map processing to unlock the vast amount of data hidden in historical map 
archives. 
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