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Abstract

Social media is ubiquitous in the modern world and its use is ever-increasing. Similarly,
the use of emojis within social media posts continues to surge. Geo-social media
produces massive amounts of data that can provide powerful insights into thoughts
and reactions of individual users as well as large groups of people. Currently, artificial
intelligence is often used to derive meaning from the text content of social media posts.
However, this technique meets obstacles in the form of spelling mistakes, grammatical
errors, slang, and sarcasm. This study seeks to use emojis, which are mostly language-
independent, as an alternative medium to detect relevant topics within a Twitter dataset
that is not thematically pre-filtered.

This research aims to 1) detect spatial-temporal change in emoji usage over time, 2)
investigate whether significant changes in emoji usage over time and space corre-
spond with significant events, and 3) assess the suitability of existing geovisualization
techniques and adapt selected methods to generate static or interactive maps. The
dataset used consists of approximately 4 million Twitter posts that were geotagged
within Europe during the year 2020. Both the original data and data in the privacy-aware
HyperLogLog data format are leveraged to explore the social, spatial, temporal, and
topical facets of the data. Emojis were found to correlate with relevant topics including
the COVID-19 pandemic, several political movements, and leisure activities. The spatial
and temporal developments of these topics were approximated through the variations
in use of corresponding emojis. Ultimately, map matrices depicting the spatial-temporal
evolution of emoji use were created for emojis that were found to be topically consistent.

Keywords: geo-social media, location-based social media, emoji, spatial-temporal anal-
ysis, typicality
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1 Introduction

1.1 Motivation and Problem Statement

Social media plays an increasingly large role in the lives of over half of the world’s
population, with an additional 227million new users creating accounts in the last year
alone (Strick, 2022). Social media can therefore be seen not only as a platform through
which users express thoughts and ideas, but also as a powerful source of data generated
by billions of users. The content of social media posts can provide valuable insights
into individual and, when analyzed in large quantities, collective reactions to events,
products, and people (Gabarron, Dorronzoro, Rivera-Romero, & Wynn, 2019; K.-S. Kim,
Kojima, & Ogawa, 2016; Kruspe, Häberle, Kuhn, & Zhu, 2020; C. Li, Sun, & Datta, 2012).
General mood and public perception can also be gauged by analyzing social media data
at large scales and, in the case of geotagged geo-social media data, can reveal thematic
trends across space (Hauthal, Dunkel, & Burghardt, 2021; Imran, Daudpota, Kastrati, &
Batra, 2020; K.-S. Kim et al., 2016).

Currently, geo-social media data is analyzed to inform everything from assessing cus-
tomer satisfaction to predicting results of elections (Ayvaz & Shiha, 2017; Hauthal,
Burghardt, & Dunkel, 2019). Doing so can lead to meaningful conclusions about current
events and topics that attract large numbers of users (Andersson & Öhman, 2017; C. Li
et al., 2012).

Many studies use text-based analysis approaches including Natural Language Process-
ing to derive semantic meaning and detect topics of discussion in social media data.
However, due to the inherent complexities of language, this method is subject to errors
arising from jokes, sarcasm, negations, and slang (Hauthal et al., 2021). The quality
of text-based analysis is further degraded when applied to social media data such as
Twitter posts because of the prevalence of spelling, grammatical, and punctuation errors
(Wiesław, 2016). Text-based analyses are also often restricted to a single language
and are highly susceptible to inconsistencies arising from cultural differences (Kejriwal,
Wang, Li, & Wang, 2021).

The analysis of emojis for the identification of local topics circumvents many of the
downfalls of purely text-based analysis, since it can be conducted independent of
language (Hauthal et al., 2019; Kejriwal et al., 2021). For example, the semantic meaning
of emojis are less likely to be influenced by negation and slang than results derived from
text-based analysis. Emojis are widespread, pervasive, and present in an ever-increasing
portion of social media posts and communications (Barbieri, Espinosa-Anke, & Saggion,
2016; Ljubešic & Fišer, 2016). They are a valuable resource that can play a vital role in
interpreting meaning expressed in social media data (Guibon, Ochs, & Bellot, 2016).

Social media data can already be seen as a supplement to official data sources; in
the same way, emojis can be seen as an additional enriching supplement (Hauthal
et al., 2019). However, despite the prevalence of emojis in social media (Barbieri et
al., 2016; Broni, 2022), research regarding their use and interpretation remains limited
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(Ayvaz & Shiha, 2017; Guibon et al., 2016). In studies that have incorporated emojis into
text-based analyses of social media data, many have found that the addition of emojis
has significantly enriched their results (Chen, Yuan, You, & Luo, 2018; Guibon et al., 2016;
Kejriwal et al., 2021). However, studies that only look at the absolute frequency of emoji
use are limited in their ability to differentiate regions from one another (Barbieri et al.,
2016; Kejriwal et al., 2021). Typicality is a normalized statistical measure that has been
proposed to solve this issue with promising results (Hauthal et al., 2021), however more
research needs to be conducted in order to confirm the efficacy and reliability of this
measure.

This study therefore seeks to determine the ability of emoji-based analysis to identify
both relevant topics and their spatial-temporal evolution within a Twitter dataset. K.-
S. Kim et al. (2016) proposed a methodology for identifying local topics in geo-social
media using latent spatial-temporal relationships. Similarly, this thesis uses emojis
contextualized with hashtags to identify topics ithin the dataset. As in Kruspe et al.
(2020), the dataset will be unfiltered by topic in order to explore the full thematic diversity
of the dataset. Typicality calculations will be implemented and compared with other
standard statistical measures to derive meaningful results.

1.2 Research Objectives and Questions

The overarching research objective for this study is to investigate the extent to which
emojis can be used to identify relevant topics as well as their spatial-temporal evolution
in a geo-social media dataset that is originally not pre-filtered thematically.

Although emojis have not yet been widely researched within the realm of cartography,
studies from other fields such as linguistics and computer science can provide mean-
ingful insights into the way geo-social media posts, and more specifically the emojis
within them, are used to express thoughts and ideas across time and space. Based on
a thorough review of such existing literature, the following Research Objectives (RO)
were selected for exploration:

RO1: Develop a means for detecting change in emoji usage over time.
RO2: Determine whether significant changes in emoji usage over time and
space correlate with significant topics.
RO3: Visualize the results in a meaningful and comprehensive way.

Whereas other studies select specific topics and filter their datasets to contain only
thematically relevant tweets (Andersson & Öhman, 2017; Chandra & Krishna, 2021;
Gabarron et al., 2019; Imran et al., 2020;Mukherjee, 2021), this analysis will purposefully
use a dataset unfiltered by topic to detect changes in general emoji usage over time
and space and across topics. This research does not follow the traditional workflow
of a sentiment analysis and is not directly intended as such. Rather than revealing the
emotions or opinions of large groups of people, this study seeks to identify relevant
topics discussed within the dataset.
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The three main research objectives in this project each have corresponding Research
Questions (RQ) that should be answered in order to achieve the overarching goal of the
project.

RQ1: Do significant changes in emoji use happen over time and space?
RQ2: Do spatial and temporal changes in emoji usage have thematic con-
nections?
RQ3: What are the most appropriate visualization methods to represent
these thematic, temporal and spatial changes?

The conducted analysis should describe changes in emoji usage over time and space if
they exist. The suitability of emojis for answering the given research questions should
also be assessed and the advantages, disadvantages, and special qualifications of the
approach should be discussed.

1.3 Innovations Intended

Emojis have been widely studied in disciplines including computer science and linguis-
tics, but they are still under-researched within the realm of cartography. This study
contributes to the broader understanding of emojis within the applications of cartog-
raphy. Most studies that currently exist on the use of emojis in geo-social media aim
to analyze emoji use either over time or space, but seldom both. In this study, a three-
fold analysis will be conducted to identify trends in emoji usage over time, space, and
space-time.

Furthermore, this study uses an exploratory approach to analyze trends across topics,
rather than filtering the dataset to restrict analysis to a specific topic as is often done in
existing literature. This approach differs significantly from the vast majority of studies
analyzing spatial-temporal changes in emoji use; most of these existing studies analyze
emoji usage only as it pertains to a particular subject and use keywords and other filters
to narrow the thematic diversity of the dataset.

Essentially, the research performed in this thesis is notable for the dataset, which is not
pre-filtered based on topic, and for the threefold analysis of this dataset at temporal,
spatial, and spatial-temporal dimensions. The visualization of trends in emoji usage
over both time and space is seldom found in existing literature. The final visualizations
of this research are therefore also novel contributions.

1.4 Thesis Structure

The thesis will begin with a thorough review of existing literature pertaining to several
main concepts present in the study. Section 3 will provide a brief introduction to the
datasets used. Then the three main sections of the workflowwill be presented in roughly
chronological order and presented alongside specific results, including emoji-specific
trends and analysis. These specific results will be synthesized and contextualized with
regard to the posed research questions in Section 4. This section will also include a
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discussion of the relative benefits, limitations, and necessary considerations of the
methodology. Finally, the thesis will conclude with a summary of major findings and
recommendations for further investigation. A link to supplementary materials including
Python code, results, visualizations, and a PDF version of this thesis can be found in
Appendix E.
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2 Background

2.1 Geo-Social Media

Social media platforms such as Twitter, Instagram, and Flickr are conduits for users
to express their emotions and reactions to various ideas and current events (Dunkel
et al., 2019; Kruspe et al., 2020). The subjective nature of social media makes it ideal
for gaining insights into public opinions and sentiment, and indeed many studies exist
that leverage social media data expressly for sentiment analysis in response to a given
topic (Chandra & Krishna, 2021; Gabarron et al., 2019; Imran et al., 2020; Kruspe et al.,
2020). In these contexts, social media allows for the collection of subjective and user-
related information on a scale that would be impossible to replicate using traditional
survey-based data collection methods (Hauthal et al., 2021).

Social media data has high volume, veracity, and velocity (McKitrick, Schuurman, &
Crooks, 2022) which can act as both an advantage and disadvantage during analysis.
One advantage is that the sheer volume of data allows for trends to be analyzed across
large groups of people. Indeed, Dunkel et al. (2019) proposed a methodology for the
characterization and comparison of collective reactions, which are defined as a series
of posts referencing the same event or idea. When location information is available for
individual posts, it is also possible to gain a spatial understanding of where reactions to
a specific event occur and if they differ from place to place. Goodchild (2007) famously
described how individuals act as sensors when they contribute volunteered geographic
information (VGI) to public platforms like OpenStreetMaps. Similarly, social media data
can be seen as a form of volunteered information when posted to a public interface like
Flickr or Twitter.

While the majority of social media data is aspatial and contains no geographic informa-
tion, some geo-social media posts contain geographic information when users decide
to geotag their posts. Geotagging refers to the recording and subsequent publication
of the exact coordinates of a user at the time the post is published. The coordinate
information is stored as an attribute of the social media post within the post metadata.
OnTwitter, precise geolocation is turned off bydefault -only userswho actively alter their
settings and change this function are able to post geotagged posts. This requirement
means that only about 0.85% of all tweets are geotagged and that this subset is not
necessarily representative of the wider Twitter population or of the global population
(Malik, Lamba, Nakos, & Pfeffer, 2021; Sloan & Morgan, 2015).

Although only a very small percentage of posts are geotagged, with approximately 200
billion tweets published per year, this fraction still encompasses approximately 1.7billion
posts per year. These 1.7 billion posts can be considered as passive crowdsourced
geographical information (See et al., 2016). Passive crowdsourcing involves the oppor-
tunistic use of data which is generated by non-professionals and published on sites
other than formal citizen science projects (Ghermandi & Sinclair, 2019). This includes
information that is uploaded to web-based social media platforms like Twitter. Indeed,
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geotagged Twitter data is an extremely popular source of volunteered geographic in-
formation (VGI); in a a survey of 59 papers using VGI for disaster management, an
overwhelming majority of data-centric studies were found to use Twitter as a data
source.(Granell & Ostermann, 2016).

2.2 Emojis

Emoji is a Japanese word meaning picture character (Guibon et al., 2016). Originally
developed in the 1990s by Shigetaka Kurita for Japanese mobile phone providers (Lin
& Chen, 2018; Ljubešic & Fišer, 2016), emojis can represent not only faces, but also
concepts and objects (Guibon et al., 2016). They are widely used in internet communi-
cation, and their popularity has even led to the laughing-crying emoji ( ) being named
the Word of the Year by the Oxford English Dictionary in 2015 (Bai, Dan, Mu, & Yang,
2019). Their popularity is only increasing; both June and July 2022 were record-breaking
months for emoji usage, with the highest instances of emojis-per-tweet on record. In
June 2022, over 22% of all tweets contained at least one emoji (Broni, 2022).

Emojis are just one of many non-verbal cues used to aid computer-mediated communi-
cation, along with capitalization, exclamation points, and emoticons (Bai et al., 2019). It
is essential here to note the difference between emojis, which are Unicode characters
rendered differently depending on a device’s operating system, and emoticons, which
are ASCII character sequences that mostly resemble facial expressions either horizon-
tally (Western) or vertically (Eastern) (Guibon et al., 2016; Wiesław, 2016). While both
are considered paralinguistic cues (Prada et al., 2018), some emoticons have no emoji
equivalent, and vice versa (Guibon et al., 2016).

Studies have indicated that emojis are not included in tweets arbitrarily. Feldman,
Barach, Srinivasan, and Shaikh (2021) found that a compensatory relationship between
emojis and lexical diversity exists; when posts not containing emoji were compared
with posts containing emojis, emoji posts have less variation in vocabulary. M. Li, Chng,
Chong, and See (2019) determined that emojis convey clear semantics that can be used
to supplement and fill in the gaps from sentiment analyses conducted with Natural
Language Processing. This suggests that emojis are not simply used as afterthoughts,
but play a significant role in online communication.

2.3 Facets of Location-Based Social Media

The four facets of Location Based Social Networks (LBSN) as presented by Dunkel et al.
(2019) provided a conceptual framework with which to understand reactions to events
in geo-social media posts. The four facets are social, temporal, spatial, and topical.
These facets refer to the user creating the post, the time at which the post was created,
the geotagged location of the post, and the topic discussed in the post, respectively.

Individual facets can be analyzed on their own. For example, Sloan and Morgan (2015)
specifically investigated the social facet by analyzing the factors that determine which
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demographics are most likely to geotag their geo-social media posts. Malik et al. (2021)
similarly identified distinct users in the contiguous United States to determine whether
geotag users are representative of their surrounding population. Facets can also be
analyzed in tandem; Barbieri et al. (2016) explored both the topical and spatial facets of
Spanish emoji usage by investigating both the meanings of various emojis as well as
their usage across Barcelona and Madrid. Y. Kim, ki Kim, Lee, woo Lee, and Andrada
(2019) leveraged the social and spatial facets of a Flickr dataset to quantify the number
of distinct users in various parks. In this way, even studies that do not directly reference
the four facets framework of LBSN tend to implement this logical division of attributes
for data analysis.

2.4 HyperLogLog

HyperLogLog (HLL) is an algorithm and data abstraction format that can be used to
efficiently estimate the number of distinct elements in a large dataset. The process
of determining unique elements is called cardinality estimation (Dunkel, Löchner, &
Burghardt, 2020). HLL is often used for scenarios involving Big Data, when counting
the number of distinct elements could require large amounts of memory. For example,
in order to count the exact cardinality in a dataset of approximately 4 billion elements,
gigabytes of memory would be required. In contrast, counting 4 billion distinct elements
with HLL requires only 5 bits(Flajolet et al., 2016). This benefit comes with a sacrifice of
3 to 5 percent accuracy in the final cardinality calculations. Because of this significant
advantage, HLL is currently used by Google, Facebook and Apple to make sense of
increasing data collections (Dunkel et al., 2020). The mathematical mechanics of the
algorithm are explained thoroughly in Flajolet et al. (2016).

When working with geo-social media data, it is essential to account for both user over-
representation and non-human users including bots (McKitrick et al., 2022). HLL helps
to address both of these obstacles by reducing the influence of overactive users in
the dataset. By counting only distinct users, a user that posts 30 times per day, for
example, is counted the same as a user that posts only once per day. This helps to
avoid instances in which hyperactive users may be over-represented in the dataset due
to the sheer number of tweets they generate over time.

While other forms of VGI traditionally require some intention by the author to contribute
to a scientific platform (Goodchild, 2007), geo-social media data, even when voluntarily
geotagged, is often postedwithout this intent and explicit consent for data collection and
analysis is usuallymissing (Löchner, Dunkel, & Burghardt, 2019). Therefore, althoughgeo-
socialmedia data is publiclyavailable, personal informationshould at least be abstracted
to obscure sensitive user information since the data is being used in a way not originally
intended by the author (Dunkel et al., 2020). HLL therefore suits research purposes
in which absolute anonymity is not a requirement. Indeed, Desfontaines, Lochbihler,
and Basin (2019) investigated the privacy retention of cardinality estimators like HLL
and found that total privacy preservation using HLL is incompatible with accurate
aggregation. It is therefore inaccurate to refer to HLL as a privacy-preserving algorithm.

9



Rather, the HLL data format can be used in combination with other data abstraction
strategies, such as cryptographic hashing and spatial data aggregation, to improve the
protection of private user information in comparison with raw data.

2.5 Typicality

Absolute and relative frequency are popular tools in studies that work with social media
data. However, although many existing studies make use of these standard statistical
measures for data analysis, many also point out that these metrics are sufficient only for
general trend analysis and are limited in their use with emojis. This is because, although
the absolute or relative frequency of word occurrence may offer some meaningful
results, emojis are vastly more limited in their diversity and therefore the absolute
and relative frequency of their occurrence provides results of only limited significance
(Hauthal et al., 2021).

For example, M. Li et al. (2019) used absolute frequency to determine the most popular
emojis used onTwitter globallyand bycountry. Although this studywasable to find some
differences in emoji usage by country, the use of absolute frequency was insufficient
for identifying other influential factors for emoji usage, such as the semantic meaning
of emojis or the thematic context of the posts containing the emojis. In an analysis of
emoji usage on Twitter in both Barcelona andMadrid, Barbieri et al. (2016) demonstrated
that very few differences between emoji usage in the two cities were able to be revealed
with the use of absolute frequency. Both studies highlight the insufficiency of absolute
frequency for analysis over space and turned to other statistical measures including
nearest-neighbor calculations in order to contextualize emoji usage.

Typicality is an alternative statistical measure that determines how typical a given emoji
is within a subset of a given dataset. This measure was first introduced by Hauthal et al.
(2021) and is calculated as the normalized difference of relative frequencies and the
result is a proportional number indicating the typicality of the emoji occurrence. Figure
1shows the equation for typicality, where n s represents the number of occurrences of
a specific emoji in a subset, N s represents the number of all emojis in the subset, n t

represents the number of a specific emoji in the total dataset, and N t represents the
number of all emojis in the total dataset.

t = (ns/Ns) − (n t/N t)
n t/N t

Figure 1: The mathematical definition of typicality.

If a given emoji’s typicality is positive for a subset, the emoji is considered typical and if
the typicality is negative, the instance is considered atypical. The greater the absolute
value of the result, the more significant the result. Of course, other statistical measures
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exist with which relative differences and normalization can be calculated, such as the
tf-idf or chi-squared tests, but these metrics are “comparatively complex and partly
bound to preconditions” (Hauthal et al., 2021). Typicality as a metric therefore offers
a middle ground between simplistic absolute and relative frequency values and more
sophisticated but computationally intensive measures.

2.6 Visualizations

Although data collection and analysis are integral to the overall output of research,
visualizations often have the largest impact on reader communication (McKitrick et
al., 2022). Effective visualization techniques are therefore essential for properly com-
municating the results of any study. In addition to basic visualization outputs such as
graphs and tables, cartographic representations in the form of maps serve as significant
vehicles of information communication due to their "visual nature and high information
density" (McKitrick et al., 2022). Existing geovisualization techniques for social me-
dia data include point mapping, raster surfaces, thematic mapping, and transmission
diagrams (McKitrick et al., 2022). Depending on the platform used for presentation,
such visualizations can be either static or dynamic. Determining the most appropriate
visualization technique depends largely on the type of data to be shown and the results
that should be highlighted.

In the realm of emoji research, emojis have been combined with both basic and car-
tographic visualization techniques to convey information more efficiently. Chen et al.
(2018), for example, used emojis as point labels in charts to convey the semantic value
of various facial expression emojis. This visualization highlights semantic groupings
of similar emojis and the emotions they convey. Similarly, in a study on the spatial
differences of emoji usage, for example, Kejriwal et al. (2021) implemented a form of
point mapping using emojis as points indicating the most commonly used emoji within
a given region. This visualization highlights the trends in commonly used emojis and
how the most commonly used emojis differ by location.

While using emojis as points can increase the information density of amap visualization,
it is impractical for instances with large numbers of data points. Since many geo-social
media datasets consist of millions or even billions or trillions of data points, other meth-
ods have been adapted to reduce both computing time and visual clutter. Choropleth
maps in which pre-defined polygons are shaded depending on the quantity or charac-
teristics of local geo-social media data present are one example of this. Koylu (2019),
for example, implemented choropleth maps to visualize tweets containing keywords
across the contiguous United States, allowing trends in the data to be visually assessed
without the need for plotting individual locations of tweets.

In addition to thematicmapping using choroplethmaps, spatial data aggregation and the
reduction of spatial granularity can de-sensitize geo-social media data visualizations by
further obscuring precise user locations. In some cases, the spatial data granularitymay
be altered between the data collection or visualization phases according to the needs of

11



the project. For example, data may be collected at a higher precision in order to improve
the accuracy of the analysis but then generalized to a lower precision for visualization
purposes in order to protect user privacy. In cases where the HyperLogLog algorithm is
additionally used to de-sensitize a dataset, a new direction of visual analytics is enabled
which is “specifically suited to exploration in combination with visualization techniques
that focus on identifying patterns of data and contexts where definite answers are not
a requirement” (Dunkel et al., 2020). Thematic mapping with the use of HLL data is
therefore uniquely suited for visual exploratory data analysis.

12



3 Methods and Data Analysis

Three main analyses were ultimately conducted. The first two exploratory data analyses
were conducted for the Twitter data in both its raw and HLL formats. These analyses
were performed with the intention of gaining overarching insights about general emoji
usage and to reveal initial trends in the data. Once results from these processes were
gathered, a third, emoji-specific analysis was conducted to further investigate selected
emojis that were found to be topically consistent. The general workflow is visualized in
Appendix A.

In the interest of transparency and replicability, the precise steps of all data analysis and
visualization are available as Jupyter Notebook files that can be found in this project’s
Github repository (see Appendix E).

3.1 Data Collection and Preprocessing

3.1.1 Twitter Data

Two main data formats were leveraged in this analysis: so-called “raw” Twitter data and
Twitter data in the HLL format. All Twitter data used in this analysis was sourced by
the Technical University of Dresden Institute of Cartography from the Twitter API as
GeoJSON files. Twitter data canonlybe stored in a database as long as all attribute fields
are preserved during data collection. In other words, location data cannot be stored or
aggregated on a standalone basis (Twitter, Inc., 2020). Data was then converted from
GeoJSON into CSV format and hosted on a remote server, where data was aggregated
into tables based on the 4 facets of LBSN: social, spatial, topical, and temporal. For
the purposes of this research, the terms "LBSN" and "geo-social media" can be used
interchangeably. The term “raw” data is used only to compare the original data to the
data in the HLL format. Raw data in this case is therefore modified from its original
GeoJSON format by conversion into a CSV format and removal of unnecessary attribute
fields. The raw data was used to produce HLL data via a custom schema whereby the
data was also cryptographically hashed and geohashed.

HLL uses a non-cryptographic hash function called MurMurHash which stores informa-
tion as character sequences called hashes. These hashes are structured into shards
that contain pieces of information such as the number of distinct users in a given
area (Löchner et al., 2019). While this structure allows for efficient cardinality calcula-
tions of unions and intersections of a dataset, such non-cryptographic hashing does
not preserve privacy (Desfontaines et al., 2019). It is therefore practical to combine
this measure with other data abstraction techniques like cryptographic hashing and
geohashing.

Cryptographic hashing refers to the use of a one-way pseudonymization function to
encrypt data values. Thismeasure on its own is a somewhat superficial privacymeasure,
since the restricted lengthof fields like usernamesmeans that attackers could potentially
create rainbow tables of all possible hashed values of a specific user IDand thenperform
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a lookup (Yu & Weber, 2020). In combination with the non-cryptographic hashing used
in HLL, however, cryptographic hashing is necessary for the prevention of so-called salt
reconstruction attacks, whereby attackers learn all relevant parameters of the cardinality
estimator (Desfontaines et al., 2019).

Geohashing is a means by which the accuracy of spatial coordinates is reduced to a
fixed level of precision ranging from hundreds of kilometers to sub-meter accuracy
(Valley, Usher, & Cook, 2017). Geohashing was performed on this project’s HLL dataset
using a geohash function that reduces the precision of coordinates based on a desired
accuracy level in the form of an integer. Both datasets, sorted into tables according to
facet, were ultimately stored in a remote server accessible via PgAdmin, a PostgreSQL
management tool.

Both of these data types pose unique benefits for this analysis. The advantages of the
raw data format are that the data is human-readable (due to the lack of cryptographic
hashing) and that the data is intuitively structured with each row representing a single
tweet. The raw data format was ideal for the simultaneous analysis of the temporal,
topical, and spatial facets of the data since all of the necessary informationwas recorded
for each post; each row contains spatial information in the form of coordinates, temporal
information in the form of publication date and time, and topical information in the
form of an emoji and hashtag combination. One major disadvantage of the raw data,
however, is the lack of privacy-awareness. For example, although the number of distinct
users in the dataset could be counted using the raw data, doing so would require the
storage of usernames and would be quite computationally intensive. To preserve some
level of privacy in the raw dataset, usernames were not sources at all from the remote
server. Raw data was therefore not ideal for investigating the social facet of the given
dataset.

HLL data, on the other hand, sacrifices some precision for the sake of privacy awareness.
In combination with additional privacy measures like spatial data aggregation and
cryptographic hashing, sensitive user information like usernames could be protected
from all forms of attacks except for improbable intersection attacks which require
the knowledge of the secret key used for hashing (Dunkel et al., 2020). These privacy
benefits come as side-effects of the cardinality estimation capabilities of the algorithm.

The cardinality and union functions of HLL were also instrumental to reduce the reliance
on absolute frequency as a metric during the raw data analysis; the calculation of user
days per country and per emoji allowed the scope of the analysis to be narrowed down
using ametric that is less influenced by hyperactive and non-human users than absolute
frequency. However, data in the HLL format was less ideal for analysis of the temporal,
spatial, and topical facets. Critically, the two components used to investigate the topical
facet in this research -emojis and hashtags -were separated during the conversion from
raw data to HLL data and could not be reunified due to the nature of the HLL format.
Despite this limitation, the HLL format was ideal for both the desensitization of sensitive
user information in the dataset and the analysis of the social facet of the data via user
day estimation.
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Because the aim of this research is to analyze data spanning a variety of topics, no
keywords were used to topically filter the dataset. This crucial step deviates from
the methodologies proposed in other analyses of emojis as indicators of thematic
developments (Chandra & Krishna, 2021; Gabarron et al., 2019; Kruspe et al., 2020;
Mukherjee, 2021) and is crucial to ensure that all topics of discussion can be analyzed
over time and space. The data was only filtered to ensure that each post contained at
least one emoji and one hashtag andwas geotaggedwithin Europe in the year 2020. The
final raw dataset consisted of 4,020,046 rows, each representing a single post. The final
HLL dataset consisted of 2,148,544 rows, each representing a unique combination of
emoji and location. In the HLL dataset, a single row can represent multiple occurrences
of the same emoji in the same location.

The SQL query shown in Code Listing 1was used to select the raw data for downloading
from the remote server. The data is sourced in the WGS 84 Web Mercator projection
and is later re-projected into the Mollweide projection for visualization purposes.

SELECT
post_guid,
post_publish_date,
post_body,
hashtags,
emoji,
ST_X(ST_TRANSFORM(post_latlng,4326))ASLONG,
ST_Y(ST_TRANSFORM(post_latlng,4326))ASLAT
FROMtopical.post
ORDERBYorigin_idASC,
post_guidASC

Listing 1: Query used to source raw data from the remote server.

The HLL data was queried at multiple levels of spatial aggregation using a geohash
function (Dunkel et al., 2020). Levels 3, 4, and 5 were queried and visually compared
before a suitable spatial resolution was selected. The query shown in Code Listing
2 was used to collect the data at an aggregation level of 4. At this level, the spatial
information is reduced in accuracy so that all aggregation points are approximately
19,545 meters away from each other. This measure further protects user information
from intersection attacks (Dunkel et al., 2020).

15



SELECT
_emoji_latlng.user_hll,
_emoji_latlng.post_hll,
_emoji_latlng.pud_hll,
ST_Y(extensions.geohash_reduce(ST_SetSRID(ST_MakePoint(longitude,

latitude),4326),4))As"latitude_4",
ST_X(extensions.geohash_reduce(ST_SetSRID(ST_MakePoint(longitude,

latitude),4326),4))As"longitude_4",
_emoji_latlng.emoji,
_emoji_latlng.latlng_geom

fromtopical._emoji_latlng;

Listing 2: Query to collect HLL data at an aggregation level of 4 using the geohash
function.

Figure 2 below shows how changing the aggregation level of the data affects the spatial
distribution of the data. At aggregation level 5, data points are accurate to approximately
3.8 kilometers. At aggregation level 4, they are accurate to approximately 20 kilometers,
and at level 5, they are accurate to approximately 125 kilometers.

Figure 2: The effect of various aggregation levels on post locations.

In making a decision as to the level of spatial aggregation of the data, the Modifiable
Areal Unit Problem (MAUP) was inevitable. The nature of the MAUP states that different
levels of spatial data aggregation will lead to potentially different results during anal-
ysis (Openshaw, 1983). The MAUP is inherent to many geographical analyses but is
particularly troublesome in studies involving social media data, since it is extremely
difficult for researchers to be sure how to match the spatial unit of analysis to the scale
of the phenomena being analyzed (de Andrade et al., 2021). In the case of this analysis,
a spatial aggregation level of 4 was selected in order to provide a conservative level of
spatial data desensitization while still allowing for visualization at an acceptable scale
(see Section 3.3.2).
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3.1.2 Emoji Processing and Simplification

While both datasets were originally filtered to only include posts that contain at least
one emoji, some rows of the raw data attribute table had a blank emoji column after
being read into the Jupyter Notebook. This is due to the representation of flags as com-
binations of Regional Indicator Symbol letters, which are alphabetic Unicode characters
used to encode two-letter country codes. In the CSV-formatted raw data, these Regional
Indicator Symbols are displayed as part of the post body attribute rather than as emoji
attributes. Accessing these country codes in order to properly display flag emojis in
the emoji attribute field would require storing the text content of each post in the raw
and HLL dataset, which would significantly increase the amount of storage needed as
well as raise potential privacy concerns. To avoid this, posts containing only flag emojis
were removed from the dataset. This ensured that each row in the dataset contains at
least one character in the emoji column. The step-by-step workflow of this process can
be found in RawDataCleaning_Final.ipynb (see Supplementary Materials in Appendix E).

Another modification made to the raw dataset during data cleaning was the removal of
skin tone modifiers from emojis that can be rendered with different skin tones. This
was done so that multiple versions of the same emoji, for example the dark-skinned
thumbs-up emoji ( ) and the light-skinned thumbs-up emoji ( ), could both be
considered simply as the generic thumbs-up emoji ( ). For the purposes of this
research, differences of skin color on the same emoji were considered to have negligible
effects on the meaning of the emoji and were therefore removed to simplify calculations
and analysis. For the raw data, skin tonemodifiers were removed using themethodology
shown in Figure 3. The resulting generic emojis were then stored in a separate column
of the dataset and used in subsequent analysis.
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Figure 3: Using the emoji Python library to remove skin tones modifiers from emojis.

For the HLL data, a different method had to be implemented in order to eliminate the
effect of skin tone modifiers on the analysis. In contrast to the methodology used with
the raw Twitter data, there is no way to know whether two rows refer to two different
posts or to one post containing two different emojis. For example, if one row describes
a post containing at a location and another row describes a post containing at
the same location, there is no way to know if these two rows refer to one or two separate
tweets. While each of these two rows could represent separate posts, they could also
represent two emojis used in the same post. Treating each row as its own post could
result in an overestimation of the number of uses of the emoji. The methods used
to mitigate the effect of skin tone modifiers for the HLL data are described in Section
3.3.

3.1.3 Country Data

In addition to the Twitter datasets, this research also required the use of a country
boundary shapefile for both analysis and visualization purposes. Country boundary data
was sourced from Natural Earth at a spatial resolution of 1:50 meters. In order to reduce
the size of this file, many of the unnecessary attribute columns were removed. In the
end, the only attributed that were preserved were the feature IDs, names of sovereign
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nations, the formal name of each nation, the colloquial name in English, the shape area,
shape length, and general geometry fields.

The SQL query shown in Code Listing 3 was then executed to find the bounding box
for the given dataset -in other words, the maximum and minimum x and y coordinates
of the dataset. For the purposed of this research, the study area was defined as the
spatial extent of the available data and not according to any administrative boundaries.
The study area will therefore generally be referred to as Europe although the area of
analysis also includes small amounts of data from Middle Eastern, Asian, and North
African countries.

SELECT
MIN(ST_X(ST_TRANSFORM(post_latlng,4326)))asX1
,MIN(ST_Y(ST_TRANSFORM(post_latlng,4326)))asY1
,MAX(ST_X(ST_TRANSFORM(post_latlng,4326)))asX2
,MAX(ST_Y(ST_TRANSFORM(post_latlng,4326)))asY2
fromtopical.post

Listing 3: Query used to find the spatial extent of the dataset.

The resulting bounding box is defined by the coordinates (-18.729512, 28.017169),
(39.73858, 28.017169), (39.73858, 71.16987838), and (-18.729512, 71.16987838). In
ArcGIS Pro, this bounding box was constructed and used to clip the global dataset of
country boundaries to the spatial extent of the Twitter data (see Figure 4). The Moll-
weide projection was selected for visualization purposes throughout this thesis to avoid
major size distortions in upper latitudes. The resulting clipped data was exported as
a shapefile named Europe_Clipped_BBox.shp and was read into each of the relevant
Jupyter Notebooks.
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Figure 4: The spatial extent of the Twitter dataset. Country boundaries are used as a
basemap in future visualizations.

3.2 Raw Data Analysis

The exactworkflowand corresponding code for the following sectionare published in the
Supplementary Materials in Raw_DataAnalysis.ipynb and SpatialTypicality_Grid.ipynb
(see Appendix E). A condensed version of the iterative design process can also be found
in the SupplementaryMaterials under Spatial_Grid_Visualization_Experimentation.ipynb.

3.2.1 Assessment of Data Completeness

After the raw data was prepared, the resulting GeoJSON file was read into a new Jupyter
Notebook for exploratory analysis. Before commencing data analysis, it was essential to
first investigate the quality of the dataset. According to the International Organization for
Standardization, the components of data quality are completeness, logical consistency,
spatial accuracy, thematic accuracy, temporal quality, and data usability (International
Organization for Standardization, 2013). Of these components, logical consistency,
spatial accuracy, and thematic accuracywere alreadyaddressedduring the data cleaning
and preparation stage. In order to determine the usability of the data, temporal quality
was also considered.

Since the date and time of tweet publication were sourced directly from the Twitter
API, they were assumed to be both accurate and precise. The temporal quality check
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in this case was therefore mostly conducted in order to identify any temporal gaps in
the data. To do this, additional columns were added to the dataset that aggregated
the data into weekly, biweekly, and monthly intervals. Once the number of posts per
month was rendered visually as a bar chart, it became obvious that certain gaps existed
in the dataset, particularly in April and October (see Figure 18). In order to further
investigate these gaps, the number of posts per week was also visualized (see Figure
5). Significant gaps were found for the second, third, and fourth weeks of April, the last
two weeks of October, and the entire month of November. Unfortunately there was not
sufficient time or resources to fill in these gaps since they had occurred at the time of
data collection and additional data could not be retroactively sourced from the Twitter
API. Given these unavoidable limitations in temporal quality, the data quality was still
assessed as sufficient for the purposes of this research.

Figure 5: The number of posts collected per week in the total dataset. Some weeks not
included due to lack of data.

3.2.2 Data Exploration

Once the degree of data quality was established, some visualizations were generated
to gain an overall understanding of frequently used emojis in the given dataset. An
emoji-cloudwas created showing the top 50 emojis in the dataset by absolute frequency,
scaled proportionally to their frequency of use (see Figure 6). Many of the most fre-
quently used emojis, like the face with tears of joy, heart, and face with heart eyes emoji,
do not lend much insight into the thematic content of the dataset, so an accompanying
word-cloud was also generated to visualize the most frequently used hashtags also
scaled by frequency of use (see Figure 7).
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Figure 6: The top 50 most frequently used emojis across the entire dataset. Emoji size is
proportionate to the frequency of use of each emoji.

While some hashtags, such as #coronavirus and #covid19 seem to indicate popular
topics of discussion, one surprising finding from the hashtag visualization shown in
Figure 7 is the frequency of the p2000 hashtag. To investigate the usage of this hashtag,
the Twitter hashtag explorer (www.twitter.com/explore) was used to find posts from
2020 containing this hashtag. Upon further research, #p2000 appears to be used
primarily by a Dutch emergency alert system on Twitter. The account appears to be
a non-human user that publishes tweets each time an emergency service such as an
ambulance, fire truck, or police vehicle is deployed in theNetherlands. Since these tweets
are published as often as every 15 minutes and each tweet contains the p2000 hashtag,
this hashtag has an extremely high absolute frequency of 80,209. The same alert
system is also responsible for the frequency of #ambulance and many hashtags that
are abbreviations for Dutch metropolitan areas. This revelation brings to the forefront
the influence of overactive, non-human users often referred to simply as “bots”. The
hashtag #wetter, for example, also appears to have a high absolute frequency (11,889
uses) due to a German bot that posts updates on weather conditions in Germany.
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Figure 7: A word-cloud consisting of the top 150 hashtags used across the entire dataset.
Text size is proportionate to the frequency of use of each hashtag.

Once some overall trends in emoji and hashtags usage were identified, more specific
trends over time and space could be explored. In order to find out whether the usage of
emojis changes over time and space, Tables 1and 2 were prepared that show the top
emojis by absolute frequency over time and space, respectively. The countries selected
for the spatial table reflect the top 10 countries by user days (methodology explained in
Section 3.3.3).

Table 1: The most frequently used emojis for each monthly subset of the data, excluding
November due to lack of data. Emojis listed in descending order by occurrence number.
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Table 2: The most frequently used emojis in each of the ten countries with the highest
number of user days. Emojis listed in descending order by occurrence number.

From Table 1, it is clear that the top 10 emojis by absolute frequency do not stay con-
sistent from month to month, suggesting some changes in emoji use occur over the
course of a year, although many of these changes appear to be subtle. Table 2, on the
other hand, demonstrates that more variation in emoji usage exists across countries.

The influence of non-human users was also evident in these tables. The red circle emoji,
which appears as one of the top 10 most frequently used emojis in every single month
of in Table 1, is included in every tweet posted by the previouslymentioned p2000 Dutch
emergency alert system. Therefore its presence in the table is most likely not indicative
of its popularity amongst many people, but rather the influence of a single non-human,
overactive user. This alert system also frequently uses the ambulance, police car, and
fire truck emojis, which artificially inflates their popularity in the Netherlands as shown
in Table 2. Similarly, the frequency of use of the umbrella emoji in Germany is not due
to widespread user preference, but rather the result of a German weather update bot.

At this point in the analysis, it became clear that absolute frequency could only give
surface-level insights into trends in emoji usage and that these insights would be subject
to significant influence from hyperactive and non-human users. Simply converting from
absolute to relative frequency was insufficient for the purposes of this research. The
differences in emoji in Tables 1and 2 support the claim that differences in emoji usage
exist over time and space, but additional measures needed to be taken to gain deeper
insights, reduce the influence of bots, and to look beyond the most frequently used
emojis in each subset.

The typicalitymeasure aspresented byHauthal et al. (2021) was implemented to address
these concerns and gain a better understanding for where and when certain emojis
typically occur. Since typicality values are normalized and calculated for individual
emojis within a subset, it not only reduced the influence of overactive users, but also
accounted for the varying amounts of data available for each monthly subset given
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the temporal gaps in the dataset. Although other normalization and relative frequency
measures exist, typicality was selected for use in this study due to its relative simplicity
of calculation.

3.2.3 Temporal Typicality of Popular Emojis

Temporal typicality in the context of this research refers to the iterative calculation
of each emoji’s typicality for each monthly subset of the larger dataset. To avoid a
common misunderstanding of typicality, it should be noted at this point that, due to
the nature of the typicality measure, no list of “most typical emojis” for the whole given
dataset can be calculated. Indeed, the calculation of typicality requires the data to be
broken down into some sort of subset. Due to time constraints, it was not feasible to
calculate typicality over time for every single available emoji. Therefore, other metrics
such as absolute frequency and user days had to be used in order to prioritize which
emojis are selected for processing and analysis.

The calculation of temporal typicality was therefore conducted for both the list of top 50
emojis by absolute frequency and the list of top 50 emojis by user days (methodology for
the calculation of top emojis by user days described in Section 3.3.1). The full list of top
50 emojis by absolute frequency and by user days can be found in the Scripts folder of
the Supplementary Materials in Raw_DataAnalysis.ipynb and HLL_DataAnalysis.ipynb,
respectively (see Appenix E). These lists each have five emojis that do not occur in the
other list. The victory hand ( ), police car ( ), oncoming fist ( ), hot beverage (
), and white circle ( ) emojis are included in the top 50 emojis by absolute frequency
but not in the top 50 emojis by user days. Conversely, the face screaming in fear ( ),
face with medical mask ( ), sun ( ), rainbow ( ), and winking face with tongue (
) emojis are included in the top 50 emojis by user days but not in the top 50 emojis

by absolute frequency.

For each list, the typicality of each emoji was calculated using each of the eleven
available months as subsets (November excluded) and plotted as a line graph. Matrices
of the results are shown in Appendices B.1and B.2.

Some emojis remain fairly consistent over time, like the raising hands ( ), ok-sign (
), red heart ( ), and thumbs up ( ) emojis, while others display significant variation
over time, like the clapping hands emoji ( ) (which is typical for March and April),
folded hands emoji ( ) (also typical in March and April), sun emoji ( ) (typical in
June, July, and August), black heart emoji ( ) (typical in June), party popper emoji (
) (typical in January and December), rainbow emoji ( ) (typical in May and June),

masked face emoji ( ) (typical in March, April, and May), and the sun with face emoji
( ) (typical in August and September). The degree to which emoji use changes over
time depends on the emoji and no conclusions can be made about changes in general
emoji use over time.
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3.2.4 Spatial Typicality

After calculating typicality based on temporal subsets, spatial subsets were also used
to identify spatial trends in emoji usage. Spatial typicality was conducted at two granu-
larities: one analysis using country boundaries and another using 100 by 100 kilometer
grid cells.

First, the spatial typicality analysis was conducted using country boundaries to denote
spatial subsets. To do this, spatial joins were conducted for each of the ten selected
countries to create subsets of data occurring within each country’s boundaries. These
countries were selected because they have the highest number of user days as deter-
mined during the HLL analysis (see Section 3.3.3). Then, a list of the 10 most frequently
used emojis within each country was calculated, and the typicality of each emoji in the
list was calculated using the country dataset as the subset. Many of the top 10 most
frequently used emojis in each country demonstrated typicalities ranging from only -0.5
to 0.5. This would indicate that, especially for very frequently used emojis like the red
heart ( ) and laughing crying emoji ( ), they are so consistently popular across
space that they are not typically found in any one location.

For instances of highly typical emojis occurring within the selected countries, a list of
co-occurring hashtags was returned in order to determine the most common topics
associated with that emoji. One notable instance of highly typical emojis occurs in the
Czech Republic, where the automobile ( ), vertical traffic light ( ), and construction
sign ( ) emojis demonstrate typicalities of 165.05, 106.916372, and 143.16 respectively
using posts geotagged within the Czech Republic as the subset for calculations. Upon
further analysis, the top co-occurring hashtag by far for each of these three emojis is
#nehody, the Czech word for accident. According to results from the Twitter hashtag
explorer, this hashtag is used by a Czech emergency alert system quite similar to the
#p2000 Dutch emergency alert system mentioned in Section 3.2.2. This alert system
appears to be another hyperactive, non-human user that is one of the only users in
the Czech Republic responsible for the use of the automobile, vertical traffic light, and
construction sign emojis. This example illustrates the importance of further analysis
for emojis that demonstrate high typicalities. Investigating the topical facet of the data
by combining emojis and hashtags helps to reveal insights that might not be obvious
just from statistical analysis.

Next, the most typical emojis were calculated for the ten countries with the most user
days as calculated in Section 3.3.3. Using the existing subsets of data denoted by
country boundaries, a function was created to calculate typicality for all emojis used
at least 1000 times in each country. The threshold of 1000 uses was necessary to
add because typicality values can become skewed when calculated for infrequently
used emojis. This function returned a dictionary containing country names (keys) and
dataframes with emojis in their generic form, the total occurrences of the emoji in the
given subset, the name of the emoji, and the typicality of the emoji where the country
dataset is used as the subset (values). The outputs of this function can be found in the
Results folder of the Supplementary Materials (see Appendix E). Each of the resulting
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dataframes was then filtered and ranked so that only emojis with positive typicality
values within each country were included in the dataframe. The resulting dictionary
was then exported for use during the emoji-specific analysis portion of the workflow.
This method revealed several emojis with high typicalities that, due to lower absolute
frequencies, would otherwise not have been investigated in this analysis. Emojis with
positive typicalities for each country were further analyzed during the emoji-specific
analysis in Section 3.4. For countries with many positively typical emojis, the top three
most typical emojis were selected for analysis. In many cases, the emojis with the
highest typicalities are some of the least frequently occurring emojis within the given
threshold.

The next calculation of spatial typicality took place at a spatial data granularity of 100
by 100 kilometers and was visualized on a grid. Before the results of this analysis
are analyzed, a short summary of the cartographic design process will be discussed.
The goal was to create legible maps with minimalistic design to facilitate the analysis
of dozens of maps at a time. One map would be created per emoji at this stage of
analysis. The implementation of a user study to test map design and comprehension
would certainly be beneficial to verify the legibility of the map design but was outside
the scope of this thesis. Design decisions were therefore made and assessed with as
much objectivity as possible based on basic cartographic design principles of legibility
and compared with existing examples wherever possible.

For each of the 100 selected emojis, a choropleth map was generated by assigning
each grid cell a color according to the typicality value of the emoji in that location. A
custom color ramp ranging from beige to white to blue was used to represent negative,
negligible, and positive typicality values, respectively. Beige was selected to represent
negative values so that locations where an emoji is atypical would still be visible but
less visually dominant than locations with strong typicality. The color palette diverges
around white so that typicality values close to zero, which give us very little information
about the typicality of an emoji at that location, are granted the least visual weight.

The size of grid cells used for visualization was also an important element in the design
of these spatial typicality maps. For experimentation purposes, two data granularities
were tested for visualization, one with grid cells measuring 50 by 50 kilometers and
one with grid cells measuring 100 by 100 kilometers (see Figure 8). While the 50 by 50
kilometer grid allows for the more precise identification of local trends in emoji usage,
the presentation of so much visual information at a fine granularity is not ideal for the
efficient interpretation of spatial trends. The 100 by 100 kilometer grid, on the other
hand, presents a smoother representation of spatial trends in the data and is quickly
and easily legible -an important quality when interpreting results across one hundred
emojis as was performed in this analysis.
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Data Sources: Natural Earth, Twitter databaseof the Technical University of Dresden Institute of Cartography Author: SamanthaLevi
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Figure 8: A comparison of the spatial typicality of the folded hands emoji ( ) visualized
on a 50 by 50 kilometer grid (left) and a 100 by 100 kilometer grid (right).

Other reasons for the selection of the larger grid include privacy awareness and the
reduction of computational effort. The 100 by 100 kilometer grid cells offer a more
conservative protection of location information (Dunkel et al., 2020). This is especially
useful in this application because, unlike the data in the HLL format, the raw data
used for spatial typicality calculations was not spatially aggregated during collection.
Visualizing the data at a coarser spatial resolution allows for a more privacy-aware
display of coordinate points. Since the spatial extent of grid cells is also used for the
creation of the subsets used in typicality calculations, it is also beneficial to use larger
grid cells since they produce similar visual results while requiring only one-quarter of
the typicality calculations. This greatly reduced the processing time required to create
each map.

Another critical element of the cartographic design was the decision not to crop grid
cells to country boundaries. Cropped maps were created as part of the iterative design
process using a simplified version of the country boundary shapefile to mask typicality
values that do not occur on land (see Figure 9). However, when the results of the
cropped and uncropped versions of the same emojis were compared, it was found that
the cropped version, while having slightly improved aesthetics, obscured coastal data,
in some cases preventing the visual detection of high-typicality areas. Because spatial
data was aggregated, many data points in coastal areas were aggregated into cells
that overlap with water bodies. By cropping out the portions of these grid cells that
overlap water bodies, much of the data was obscured from final visualizations, thereby
preventing accurate interpretations of emoji use across space. For example, in the
cropped map representing the spatial typicality of the microbe emoji ( ), regions of
typical emoji usage in western Turkey and the Baltic Sea are difficult to interpret due to
obscured coastal data. In the uncropped map, these regions of typical emoji usage are
just as visible as other regions. Spatial context in the uncropped map is provided by the
addition of country boundaries overlaid on the grid cells.
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Data Sources: Natural Earth, Twitter databaseof the Technical University of Dresden Institute of Cartography Author: SamanthaLevi
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Figure 9: A comparison of the spatial typicality of the microbe emoji ( ) in cropped
(left) and uncropped (right) formats.

Here it should also be acknowledged that some grid cells in eachmap indicate typicality
values over bodies of water. This phenomenon is documented in other visualizations of
geo-social media data (Kejriwal et al., 2021) and is sometimes the result of tweets being
published from small islands and boats. It is unlikely that these anomalies are due to
imprecision during geotagging, since Twitter geotagging is both automated (thereby
reducing the risk of data error from user specification) and precise to a ten thousandth
of a degree (Malik et al., 2021).

Given these design considerations, the spatial typicality analysis was conducted at a
spatial resolution of 100 by 100 kilometers (see Figure 10). This workflow allows for
the visualization of emoji use over space to supplement the findings of the country-
based calculations. The workflow of this section can be found in the notebook named
SpatialTypicality_Grids (see Appendix E).

With a smaller dataset, a typical GIS workflow for grouping data points by polygon
would be to conduct a spatial join between the point shapefile and the grid shapefile.
However, thismethodologywould take an undesirable and infeasible amount of time and
computational power when used on a dataset of over 4 million points. To circumvent
this issue, a function was created using the Python NumPy library to find the best grid
cell, or bin, for a given latitude and longitude input. Each tweet in the dataset was thereby
assigned a corresponding row (y-match) and column (x-match) for the grid cell in which
it was published. These values were then used to find a common index -in other words,
to find all the grid cells in the generated grid that contained points from the dataset. It
is worth noting that, due to the nature of this sorting mechanism, only rectangular grid
cells were suitable for the analysis.

29



Figure 10: The grid generated for spatial analysis and visualization. Each cell represents
an area of 10,000 square kilometers.

Once each point in the dataset was assigned to a corresponding grid cell, spatial
typicality was calculated for the top 100 emojis by absolute frequency. That is, for each
cell in the generated grid, the typicality of an individual emoji was calculated using
all points assigned to the same grid cell as the subset. Once the typicality of each
emoji within each grid cell was calculated, resulting maps were generated using the
GeoPandas and Matplotlib Python libraries.

Each of the 100 resulting maps serve to visualize locations in which each emoji was
found to typically occur. These maps effectively visualize and communicate the regional
popularity of certain emojis. All of the resulting maps are available in the results folder
of the Supplementary Materials repository under SpatialTypicality_Grids (see Appendix
E). While some emojis like the party popper ( ) emoji and the hot beverage ( )
emoji seem to demonstrate more ambiguous spatial trends (see Figure 11), some emojis
display strong trends in use over space. Of emojis that demonstrate distinctive spatial
patterns, some emojis seem to be typically used within specific countries, like the dog
face ( ) emoji in Germany and the United Kingdom and the soccer ball ( ) emoji in
Spain and Poland (see Figure 12). Others demonstrate geography-based spatial trends,
like the water wave ( ) which has positive typicality along the coast and the snowflake
( ) emoji, which is typical along mountain ranges like the Alps and the Pyrenees as
well as in Scandinavia (see Figure 13).
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Data Sources: Natural Earth, Twitter databaseof the Technical University of Dresden Institute of Cartography Author: SamanthaLevi
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Figure 11: The spatial typicality of the party popper ( ) and hot beverage ( ) emojis.
Both of these emojis demonstrate ambiguous spatial trends that do not give concrete
insights into the use of either emoji.

Data Sources: Natural Earth, Twitter databaseof the Technical University of Dresden Institute of Cartography Author: SamanthaLevi
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Figure 12: The spatial typicality of the dog face ( ) and soccer ball ( ) emojis. Both
of these emojis demonstrate distinctive, country-based spatial trends.
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Data Sources: Natural Earth, Twitter databaseof the Technical University of Dresden Institute of Cartography Author: SamanthaLevi
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Figure 13: The spatial typicality of the water wave ( ) and snowflake ( ) emojis. Both
of these emojis demonstrate distinctive, environment-based spatial trends.

3.3 HLL Data Analysis

While the raw data format was sufficient for the investigation of the topical, spatial, and
temporal facets of the data, privacy concerns prevented its use for the investigation
of the social facet, since this would require the storing of sensitive information like
usernames alongside precise location information. Although the information contained
in Twitter posts can be considered volunteered information due to the public nature
of social media platforms (Dunkel et al., 2020), it is still in the interest of this study to
reduce the sensitivity of the dataset.

To address some of these privacy issues, the HyperLogLog data format was imple-
mented alongside other data abstraction measures like cryptographic hashing and
spatial data aggregation. The main advantage of HLL data over raw data is that the HLL
format allows for the social facet of the data to be explored without storing sensitive
user information. For example, counting the number of distinct days on which individual
users published a tweet using the raw data format would require storing both user IDs
and date information, which would potentially allow each user to be tracked across
space and time. Counting user days with HLL data does not require this information to
be stored, therefore protecting users from being tracked. Because the HLL data was
previously generated based on the original data, qualifications about data completeness
from the raw dataset also apply to the data in the HLL format.

As mentioned in Section 3.1.1, multiple aggregation levels of HLL data were possible,
from which a data aggregation level of 4 was selected (see Figure 2). While some
accuracy is sacrificed with these measures, the result is a dataset with an acceptable,
conservative privacy-accuracy trade-off that allows for data analysis while offering
users not insignificant protection from malicious entities. As discussed in Dunkel et
al. (2020), data in the HLL format is only able to be compromised in the event of an
intersection attack under very unique and improbable circumstances.
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The HLL format also permits three important calculations: union, intersection, and
cardinality. The lossless union and intersection functions are both set-based functions
that calculate the number of distinct items in a merged dataset and in independent
datasets, respectively. Cardinality, as mentioned earlier, is the number of unique items
in a set. It can be used to calculate three different user-based metrics: user count,
post count, and user days, as demonstrated in Wood, Guerry, Silver, and Lacayo (2013),
Dunkel et al. (2020), and Y. Kim et al. (2019). The term user day in this case is borrowed
from Wood et al. (2013) and in the context of this research refers to the total number of
days, across all users, that each user published a tweet within the study area.

To illustrate the necessity of implementing the cardinality function rather than adding
together multiple user day column values, consider a hypothetical post containing the
text "Great day today! #summer ". This tweet would show up
as 6 different rows in the HLL dataset, all with the same location information in the
latitude and longitude columns but with different versions of the thumbs-up emoji in
the emoji column. Each row would have a user day value of 1. Adding together the user
days column over these 6 rows would therefore incorrectly return a value of 6 user days.
The correct cardinality of user days in this case would be one, because each row refers
to a single post created by a single user on only one day. To achieve the correct result,
the cardinality of user days needed to be recalculated for all posts containing each
skin tone variation of the thumbs-up emoji. To do this, multiple subsets were created
for posts containing each emoji variant. A union function was then performed in order
to create a single subset representing all usages of the thumbs-up emoji. Finally, the
cardinality function (Appendix C.1could be implemented to calculate the approximate
number of user days for the thumbs-up emoji.

Using this workflow, unions were performed on subsets of the data containing similar
emojis with different skin tone modifiers to allow for accurate calculation of post count,
user count, and user days. The Python library python-hll was used for purposes of HLL
implementation. To illustrate the necessity of performing the union and implementing
the cardinality function, consider the following example: the number of total user days
in France was 390,921when calculated as a sum of user day column values, and only
228,942 when calculated as the cardinality of user days for the union of all posts
geotagged in France. Even assuming the average error rate of 2% for HLL cardinality
estimations (Dunkel et al., 2020), using the cardinality function avoids an overestimation
of 157,401user days in France.

Unfortunately the nature of the HLL format made it impossible to analyze all four facets
of LBSN at once. The data on the remote server is structured into tables separated by
facet and therefore no table existed in which hashtags, emojis, coordinates, and user
days could be accessed at once. The construction of a new HLL dataset converted
directly from raw data requires considerable time and labor and was outside of the
scope of this project. Ultimately, an HLL dataset without hashtags or publishing date
was used, meaning that the temporal and topical facets could not be properly analyzed
using HLL data alone. Raw data was therefore used to investigate the temporal, spatial,
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and topical facets of the geo-social media data, while the HLL data was used to explore
the social and spatial facets of emoji occurrence. Since neither dataset was sufficient
for the full exploration of the dataset, the results of both data analyses will later be
considered in tandem.

3.3.1 Calculation of User Days per Emoji

Once the HLL data was collected from the remote server and read into the notebook as
a geodataframe, the first task was to remove the skin tone modifiers from the emojis
so that similar emojis could be counted together, as in the raw data preprocessing. In
contrast to the methodology used with the raw data (discussed in Section 3.1.2, the
union and cardinality functions of the HLL data format has to be leveraged in order to
estimate the number of user days per emoji.

Using the union function shown in Appendix C.2, unions were performed on emojis
with potential for skin tone modification to allow for accurate calculation of user days
as shown in Figure 14. To reduce computational effort, this was only performed for
emojis with skin tone modifiers that appeared in the list of top 100 emojis by user days.
This step results in significant differences in the number of user days calculated. For
example, the generic thumbs up emoji was calculated as having 70,026 user days, while
the thumbs up emoji including all of its variations was calculated as having 95,117 user
days.
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Figure 14: Unions were performed on emojis with multiple possible skin tones. Then, the
number of user days per generic emoji was calculated.

Once the unions were performed, the cardinality function could be implemented to
calculate the approximate number of user days for each emoji. The cardinality function
is shown in Appendix C.1. Due to time constraints, it was not possible to calculate
the number of user days for every single emoji; the list had to be cut down somewhat.
Therefore a list of top 100 emojis by user days was created in which generic and skin-
tone-specific variations of emojis would have the same number of user days. The
cardinality of posts containing each emoji was also calculated for each emoji in that
list and added to a separate dictionary.

Finally, a third dictionary was created containing the list of top 100 emojis and the
difference between the respective post count and user days. This calculation was
conducted in order to find which emojis have a large discrepancy between post count
and user days. Emojis with a larger discrepancy value are included in many posts by the
same user on the same day. It is therefore possible to see from this difference dictionary
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which emojis are most often used by overactive users. This can further provide insights
as to which emojis are most often used by non-human overactive users such as bots.
Indeed, the emoji with the greatest discrepancy is the red circle emoji, which was proved
in the raw data exploration phase to almost exclusively be used in Dutch emergency
alerts labeled with the hashtag #p2000. The police car, ambulance, and fire truck emojis,
which are all also associated with the same emergency alert bot, also appear in this list
at positions 5, 8, and 21, respectively.

3.3.2 Visualization of User Days

In order to gain a better understanding of the spatial distribution of the data without
plotting the precise coordinates of each tweet, a grid of 100 by 100 kilometer cells was
used to visualize the number of user days across the study area. User days was selected
as a metric as opposed to post count or user count in order to reduce the influence
of overactive users (who would artificially drive up post counts) without counting non-
active users (who would artificially drive up the user count). Other cell sizes, like 50x50
km and 200x200 km sizes, were also created for comparison. However, the 100x100
km cell grid was determined to be the best granularity for visualization purposes and
was therefore used for later map production. Visualizing data at this coarse granularity
also further protects the privacy of users’ precise locations.

As discussed in Section3.2.4, conducting a spatial join between post locations and the
100 by 100 kilometer grid would take undesirable amounts of computational effort and
time. Therefore, during spatial data analysis, the function get_best _bins was once again
implemented to assign each post to a corresponding grid cell given its coordinates.
Suitable x and y bins that were then saved in the geodataframe as index columns.
Although other studies that calculate user days have implemented non-rectangular grid
cells for visualization purposes over a smaller study area (Y. Kim et al., 2019), the nature
of this binning technique requires the use of square grid cells.

Once the grid was created and points were assigned to suitable x-and y-bins, a function
was created that would run a union on all points within a grid cell and calculate the
cardinality of user days contained within the cell. This function was used to iteratively
calculate the cardinalityof user dayswithin eachgrid cell containing data and the outputs
were saved as a geodataframe. The resultingmap, shown in Figure 15, demonstrates the
spatial distribution of user days in the study area. In other words, thismap demonstrates
the number of users who published at least one tweet within the given grid cell. The
minimum legend classification includes values between 1and 500 in order to avoid
instances where individual users could be singled out and their information therefore
potentially compromised.
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Figure 15: The number of user days (days where distinct users posted at least once) per
100 by 100 kilometer grid cell.

Rather than solely visualizing the number of users or the number of posts that occur
within each grid cell, the user day metric shown in Figure 15 gives an insight into the
distribution of Twitter activity across the study area. If a given grid cell is assigned a
value of 1000, for example, this means that approximately 1000 distinct users published
a geotagged tweet including at least one emoji and one hashtag in that area over the
course of a year. Darker areas in the map therefore represent hotspots of user activity
that mitigate the influence of hyperactive users. Since time limitations restricted the
number of countries for which user day calculations could be conducted, these hotspots
were also used to inform the selection of relevant countries for user day analysis.

3.3.3 Calculation of User Days per Country

Another calculation that was conducted with HLL data was the cardinality of user days
by country. This step was deemed essential after the initial results of the raw data
exploratory analysis demonstrated the need to narrow down the scope of analysis using
a metric other than absolute or relative frequency. A list of the top 10 countries by user
days was therefore generated in order to create a meaningful spatial subset of the data
on which later workflows could be performed and tested.
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To calculate the number of user days within each country, the 100 by 100 kilometer
bins used in the previous section were used to follow the methodology demonstrated
in Dunkel et al. (2020). Firstly, individual countries were extracted from a shapefile
of country administrative boundaries. Grid cells were then selected whose centroids
intersected the country geometry. The resulting cluster of grid cells representing each
country was then spatially joined with the HLL data points. Finally, a union function was
implemented to join together all of the now data-enriched grid cells and the cardinality of
user days was calculated for the entire country. Figure 16 shows this process using the
United Kingdom as an example. This process was conducted for 12 countries selected
for their coverage within the dataset, and from these countries 10 were selected as
having the highest number of user days.

Figure 16: The calculation of user days within the United Kingdom.

Here it is important to note that the cardinality calculations are also somewhat depen-
dent on aggregation level -when the user days per country was performed on HLL
data with a finer spatial granularity (spatial aggregation level of 5), the results differed
(see Table 3). This example illustrates how the Modifiable Areal Unit Problem (MAUP)
affects the results of the analysis. For most countries, the differences between results
are minimal, with the exception of Switzerland and, to a lesser extent, the Netherlands.
Despite the effects of the MAUP, however, the ranking of the top 10 countries by user
days remains consistent.
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Country User Days (Agg. Level 4) User Days (Agg. Level 5) Difference

United Kingdom 811956 810535 0.18%

Spain 288547 288819 -0.09%

France 228942 230294 -0.59%

Germany 143224 142974 0.17%

Italy 143012 141807 0.85%

Turkey 111138 108351 2.57%

Netherlands 76856 73083 5.16%

Belgium 40219 39852 0.92%

Switzerland 20624 23061 -10.57%

Austria 17732 18070 -1.87%

Portugal 13177 12699 3.76%

Czech Republic 10485 10711 -2.11%

Table 3: Differences in user day calculations due to the aggregation level at the time of
data collection.

3.4 Emoji-Specific Analysis

After conducting the raw and HLL data exploratory analyses, it became clear that a
distinction should be made between topic-specific and non-topic-specific emojis. For
example, when looking at the results of the temporal typicality matrices (Appendices
B.1and B.2), certain emojis not only exhibit more distinctive variations in typicality over
time, but also seem to represent more concrete topics. For example, the typicality of
the face with medical mask emoji over time is varies much more over time than the
typicality of the red heart emoji. Between these two emojis, the face with medical mask
emoji also seems to represent a much more specific concept (medical masks) than the
red heart emoji (love).

The same trend is true formanyof the emojis included in the temporal typicalitymatrices.
Very frequently used emojis in particularmay be popular exactly because theirmeanings
are ambiguous and canbe applied tomanyposts regardless of the topic being discussed.
Additionally, only a few of the emojis analyzed seem to have significant changes in
typicality over time. Most emojis analyzed demonstrate typicality values that remain
consistently close to zero over time. This should not be interpreted as the lack of use of
the particular emoji, but rather as the consistency of the emoji’s use over time.

Because many of the emojis analyzed did not demonstrate significant change in typi-
cality over time, the topical facet was not investigated for the full list of top 50 emojis
by absolute frequency or user days. Even if, for example, the winking face emoji was
found to be topic-specific, this result would do little to illustrate where or when that topic
was being discussed. Therefore, due to the processing time required for each emoji
and in order to avoid running copious amounts of analysis on non-topic specific emojis
with potentially superficial results, the focus of analysis was restricted to emojis that
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were either hypothesized to be topically consistent, or who were found to be particularly
typical within one of the top 10 countries by user days. Once the topical facet of each
emoji was established, spatial and temporal typicality analyses were conducted for
topic-specific emojis. Results from selected emojis will be individually interpreted in
Section 3.4.5.

3.4.1 Topical Consistency

Spikes in emoji typicality in certain locations or during certain times of the year lend
themselves to speculation. One person might hypothesize that the positive typicality of
the rainbow emoji ( ) in June is due to users reacting to rainbows they see outside in
early summer, while another might guess that the spike in typicality is due to the dis-
cussion of lesbian, gay, bisexual, transgender, queer, intersex, and asexual (LGBTQIA+)
rights during June, which is international LGBTQIA+ pride month. While both of these
hypotheses have logical reasoning behind them, additional research is necessary to
prove whether the rainbow emoji and other emojis consistently refer to the same topic.
The intention of this section of the workflow was to identify topically consistent emojis
whose variable typicality over time and space could lend insights about popular topics
of discussion on Twitter.

To establish the methodology, two emojis were selected that were hypothesized to be
topically consistent: the wine emoji ( ) and the beer mug emoji ( ). These emojis
were selected because they represent concrete objects that are similar to each other
(both alcoholic beverages) but still distinguishable and specific enough that differences
in the topical facet should still be detectable during analysis. A viable methodology for
the determination of topical consistency will be able to successfully differentiate these
two emojis.

In this analysis, the topical facet of the data is defined as the combination of emojis
and hashtags that occur within the same post. Therefore, in order to investigate the
topical facet of the given dataset, a list of 20 co-occurring hashtags was generated for
each emoji selected for analysis. From this list, hashtags were identified that discussed
similar topics, and the number of posts containing the each hashtag were quantified and
divided by the total number of posts containing the top 20 co-occurring hashtags. The
resulting percentage is the topical consistency of the given emoji. In order to determine
what topic an individual hashtag is referring to, the Twitter hashtag explorer was used
to gather related posts and compare them for topical consistency. The number of
co-occurring hashtags in the list comes with a time-accuracy trade-off; more hashtags
in the list could return more precise results but would also take more time to analyze.
Since many hashtags in the list had to be individually contextualized and interpreted, it
was not feasible within the time frame of the project to include more than 20 hashtags
per emoji.

To visualize the topics associated with each emoji, the top twenty co-occurring hash-
tags per emoji were assembled into word-clouds using the WordCloud Python library.
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Each hashtag in the word-cloud is proportionately scaled according to its frequency of
occurrence within posts containing the associated emoji. These visualizations allow for
a fast, general understanding of the subjects most frequently associated with a given
emoji, as seen in Figure 17. This table reveals that the emoji was most commonly used
in tweets containing hashtags referring to the COVID-19 pandemic and appreciation for
healthcare workers.

Figure 17: The top 20 co-occurring hashtags associated with the clapping hands ( )
emoji.

Since the beer mug and wine emojis both represent concrete objects, their percentages
of topical consistency were used as a guideline to assess other emojis. The beer mug
emoji demonstrated a topical consistency of 92.1% and the wine emoji demonstrated a
topical consistency of 75.4%.

The lower percentage of topical consistency for the wine emoji is due to the conser-
vative definition of topically consistent hashtags as only those hashtags that occur
almost exclusively within posts discussing the given topic. In other words, co-occurring
hashtags must be both topically consistent and topically specific. For example, the
hashtags #france and #italy were both included in the list of top 20 co-occurring hash-
tags with the wine emoji. While both of these countries are commonly associated with
their wine production in colloquial life, posts containing the hashtags #france and #italy
could discuss any number of other topics associated with those countries. To avoid the
over-estimation of topical consistency, both hashtags were therefore not considered to
be topically specific to the wine emoji and were not included in the calculation of topical
consistency.

Based on these benchmark calculations, an emoji was said to have topical consistency
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for the purposes of this study if more than 70 percent of posts using the top 20 co-
occurring hashtags refer to the same topic. To this end, occurrences of thematically
similar hashtags were summed up and divided by the total number of posts created in
each co-occurring hashtag table. An example of this methodology is shown in Table
4 for the raised fist emoji, which was confirmed as being symbolic of the Black Lives
Matter movement. To see the co-occuring hashtag tables for all emojis analyzed, see
the Supplementary Materials in Appendix E.

Raised Fist Emoji

Rank Hashtag Uses Calculation

20 blackoutuesday 93 Total Posts:

19 bluecollarstore 95 7343

18 blacklifematters 97 BLM Posts:

17 8m 98 6678

16 blacklivesmatteruk 98 % Consistency:

15 repost 101 90.94%

14 montmartre 107

13 justicepouradama 113

12 paris 114

11 justiceforgeorgefloyd 123

10 blacklivesmattters 134

9 glasgow 150

8 blackisking 156

7 blacklivesmattter 159

6 georgefloyd 189

5 blm 506

4 respect 577

3 notoracism 688

2 blackouttuesday 1128

1 blacklivesmatter 2617

Table 4: An example of a co-occurring hashtag table with topically consistent hashtags
highlighted in gray. This process was repeated for each of the 35 emojis that were
analyzed for topical consistency.

While some hashtags had relatively straightforward meanings, additional investigation
was often necessary in order to determine topical consistency. For instances where
hashtags were previously unknown to the author, the Twitter hashtag explorer was used
as a way to "ground-truth" the data with real examples of how the hashtag was used.
Thematically ambiguous hashtags, such as names of cities, were always considered to
be non-topic specific, resulting in more conservative estimates of topical consistency.
Hashtags not written in English were translated either by the author or using online
translation services. In instances where hashtag meanings were still unclear even after
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translation into English, the author was able to consult with native speakers to deduce
their meaning in context.

Ultimately, 35 emojis were investigated for topical consistency. Ten of these were
selected based upon their hypothesized connection to relevant topics, and the remaining
15 were analyzed because they were found in Section 3.2 to be typical in one of the top
10 countries ranked by total user days. For a complete summary of the results of this
topical consistency workflow, see Appendix D.1.

3.4.2 Temporal Typicality

To supplement the information from the absolute frequency of each emoji’s usage, a bar
chart of typicality over time was also generated for each emoji using monthly subsets
of the overall dataset. Although weekly or biweekly subsets could theoretically also be
implemented for the calculation of typicality, monthly subsets were used in order to
minimize the number of empty subsets. These charts are especially illustrative of the
benefits of the typicality measure because of the temporal gaps in the data collection.
For example, several weeks worth of data from April 2020 were not able to be collected,
which leads to a somewhat misleading drop in overall emoji usage for the month of
April (see Figure 18). If one were to only analyze the total number of emojis that were
collected, one might incorrectly assume that equal number of tweets were collected for
each available month and conclude that users used fewer emojis in April compared to
March.

Figure 18: The number of tweets collected per month in the raw Twitter dataset. Some
unavoidable gaps in data collection create inconsistencies from month to month. No
data was collected for the month of November.

For example, given the bar chart of total usages of the face with medical mask emoji
( ) shown in Figure 19, one might incorrectly assume that the mask emoji was
hardly used during the month of April. However, this drop in usage is actually due to
the lack of available data for April, and is not the result of changing user behaviors.
Because the typicality measure is normalized based on the size of the subset, it is ideal
for investigating such instances. This distinction is clearly illustrated in the chart of
temporal typicality for the face with medical mask emoji shown in Figure 20. Here it
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is obvious that, although the total number of recorded emoji usages went down from
March to April, the typicality remains positive.

Figure 19: The absolute frequency of the face with medical mask emoji ( ). The
significant drop after March is misleading due to a gap in the dataset during the month of
April.

Figure 20: Typicality of the face with medical mask emoji ( ) calculated using monthly
subsets.

3.4.3 Spatial Typicality

For each of the selected emojis, maps showing the typical locations of each emoji
were produced following the methodology laid out in Section 3.2.4. To improve the
aesthetics of these maps as well as to provide additional spatial context, the carto-
graphic design of these maps was refined; grid cells were overlaid on top of a custom
basemap consisting of country borders and labels to provide additional spatial context.
In order to avoid visual clutter, only large European countries were labelled. One example
of the output maps is shown below in Figure 21. Several iterations of this map style
were generated and compared before the final visualizations were created. Among
other things, several color ramps, text sizes, grid line thicknesses, country boundary
thicknesses, and grid cell opacities were tested. The iterative design process can be
found in the Jupyter Notebook Animation_CreateFrames_Visualizations.ipynb in the
Supplementary Materials (Appendix E).
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Figure 21: Typicality of the beer mug emoji ( ) calculated using 100 by 100 kilometer
grid cells as spatial subsets.

These maps demonstrate the typicality of each emoji across the study area without
taking into account the temporal facet. They give no insight into when the topic as-
sociated with the emoji might have been discussed, but rather show just where these
discussions may have occurred. For example, in Figure 21, the beer mug emoji is shown
to typically occur in the United Kingdom, Germany, and Denmark, among other places.
However, it is impossible to judge from this map at what time of year users in these
regions are using this emoji. In order to understand both where and when certain topics
might have been discussed on Twitter, analysis of the temporal and spatial facets of
the data needs to be conducted simultaneously.

3.4.4 Spatial-Temporal Typicality

Although the analysis of temporal and spatial typicality per emoji helped to identify
trends in emoji usage, they each only illustrate half of the full picture. In order to gain
an understanding of how emojis are used over both space and time, the temporal
and spatial facets of the data needed to be analyzed in tandem. To achieve this goal,
an additional spatial-temporal typicality workflow was conducted in which the spatial
typicality of selected emojis was visualized over time. The result for each emoji is eleven
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maps displaying spatial typicality per month which can either be viewed as a matrix
(see Appendices D.2 -D.11), or as an animation (see Appendix E).

Of the sixteen emojis that were determined to be topically consistent, nine were selected
for spatial-temporal analysis. A summary of which emojis were selected for the analysis
is shown in Appendix D.1. A 100 by 100 kilometer grid was once again implemented
to create spatial subsets of the data, however the subsets in this case were further
specified to only include posts located within a grid cell that were published within
a specified month. Complete typicality maps of the entire study area were therefore
generated for each month in the dataset. When these maps are viewed in tandem, they
allow for visual analysis of changing trends in emoji usage over both space and time.
It is the author’s opinion that the results are best viewed as animations because the
dynamic visualization facilitates comparison of the same region over time. However,
for static visualizations, a matrix of the individual frames (one for each month) can also
provide a means for comparing across time and space following the methods used by
Koylu (2019). The map multiples can be found in Appendices D.2 -D.11.

As discussed in McKitrick et al. (2022), a common method used in GIS-social media
analysis is the comparison of results from a social media dataset with evidence from
an alternative confirmatory source. This comparison demonstrated the validity of
the findings by determining the degree to which the results from the social media
data emulate the patterns observed in real-world events related to the given topic. An
effort was therefore made to ground-truth trends found in the spatial-temporal analysis
using evidence from real-world events. However, due to time constraints and the labor-
intensive nature of the comparison, this additional investigation could only be conducted
for a subset of the emojis selected for the emoji-specific analysis. Thisworkflow involved
identifying typicality hot-spots on the generated maps and researching corresponding
events occurring at that time and location as well as researching large events related to
each topic and searching for corresponding trends in the visualizations. The results of
this analysis will be interpreted on an emoji-by-emoji basis in the following section.

3.4.5 Emoji-Specific Interpretation

The results of the topical consistency investigation indicate that not all emojis relate to
specific topics. Indeed, many of the most commonly used emojis are popular because
they convey broad emotions about a topic and do not represent a specific topic them-
selves. However, some emojis that represent concrete objects and ideas were found to
correspond consistently with related topics.

In order to verify the results of the topical consistency workflow in some way, spatial
and temporal trends in the use of thematically consistent emojis were compared to
occurrences of related events in the real world. This form of ground-truthing revealed
trends that support the use of emojis as proxies for certain topics on Twitter. Several
examples of trends and their coinciding, real-world events are listed below. It should be
noted that this workflow was not equally feasible for all emojis and was only performed
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for emojis that were both topically consistent and displayed significant spatial, temporal,
or spatial-temporal trends.

Figure 22: Typicality of the raised fist emoji ( ) over time.

The raised fist emoji was found to have a topical consistency of 90.94% concerning the
Black Lives Matter (BLM) movement. Based on the results of the temporal typicality,
it is clear that general increase in typicality of raised fist emoji occurs in June 2020
(see Figure 22). This phenomenon coincides with the international BLM movement
gaining momentum online after the infamous murder of George Flyod by police officers
in the United States in late May 2020. More specifically, in May of 2020, the results
of the spatial-temporal analysis show the raised fist emoji being typical in the area
surrounding Paris, France (see Figure 23). This phenomenon corresponds accurately
with the discussion and organization of a demonstration on June 2 that took place
despite a ban on gatherings of more than 10 people that existed at the time.
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Figure 23: Typicality map of the raised fist emoji ( ).

The ballot box with ballot emoji ( ) also displayed a striking trend during spatial
analysis (see Figure 24). The ballot box emoji demonstrated a topical consistency of
72.1% concerning elections and was typically found in France and Poland, two countries
which held elections during the year 2020. In Poland, the presidential election was
scheduled to take place in May but was postponed due to the pandemic. The first round
of voting took place in late June, but since no candidate received a majority of the vote,
a second round was held in July. In France, both senate and several municipal elections
took place in the same year.
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Figure 24: Typicality map of the ballot box with ballot emoji ( ).

The breastfeeding emoji ( ) demonstrated a topical consistency of 88.8% concerning
breastfeeding and babies. This emoji experienced a spike in typicality during the months
of June, July, and August, as shown in Figure 25. This time frame corresponds with
World Breastfeeding Week and similar campaigns that took place in July of 2020 to
raise awareness and support for breastfeeding (Moukarzel et al., 2021).

Figure 25: Typicality over time of the breastfeeding emoji ( ).

The face with medical mask emoji ( ) has a topical consistency of 92.9% concerning
COVID-19 and displayed a dramatic increase in typicality for the month of March and
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remained typical throughout the months of April and May as shown in Figure 26. This
trend coincides with the beginning of the COVID-19 pandemic in March 2020 and the
subsequent establishment of mask mandates and other restrictions in many European
countries. Indeed, the effect of the COVID-19 pandemic can be seen in the coinciding
rise in typicality of the folded hands emoji ( ), the 8 o’clock emoji ( ), hospital emoji
( ), and the woman health worker emoji ( ), which all have increases in typicality
during March and April. The syringe emoji ( ) demonstrated an increased typicality at
the end of the year in October and December due to a rise in discussions about vaccines.

Figure 26: Typicality over time of the face with medical mask emoji ( ).

The rainbow emoji ( ) has a topical consistency of 71.7% with regard to LGBTQIA+
rights and was found to be typical for the months of April, May, and June. This can
be partially explained by the fact that June is international pride month, during which
topics related to the LGBTQIA+ community are discussed. The rise in typicality during
April and May may be due to the frequency of weather patterns that produce rainbows
during these spring months.

Figure 27: Typicality over time of the rainbow emoji ( ).

It should be noted that the list of topics found to be prevalent in this study is by no
means exhaustive. It is entirely likely that additional topics were discussed extensively
on Twitter, perhaps even more so than some of the topics mentioned here. This list
does not necessarily represent the most frequently discussed topics, but rather topics
whose discussion over time and space could be traced with the corresponding use
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of topically-related emojis. The topics fall into three general categories: the COVID-19
pandemic and related themes, political discussions, and leisure activities.

The prominence of the COVID-19 pandemic as a discussion topic on Twitter was al-
ready prevalent in the early stages of exploratory analysis; #covid19, #coronavirus, and
#covid_19 were some of the most commonly used hashtags in the dataset as shown in
Figure 7. During the temporal typicality analysis, the typicality of several emojis spiked
in correlation with the start of the pandemic in March 2020. Many of these emojis were
confirmed to be topically consistent with respect to the pandemic, such as the face
with medical mask ( ), microbe ( ), hospital ( ), and woman health worker ( )
emojis.

In addition to emojis that directly address the coronavirus, some emojis were topically
consistent for other topics peripheral to the disease itself. For example, the clapping
hands emoji ( ) was topically consistent specifically to essential worker appreciation
during months with the strictest lockdown regulations. Upon further investigation,
the eight o’clock emoji ( ), which was found to typically occur in Spain, was most
often used to refer to the campaign of clapping for healthcare workers at 8 p.m. each
evening. Similar applause campaigns took place in Spain, France, Ireland, and the United
Kingdom, which is reflected in the typicality map of the clapping hands emoji in Figure
28.
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Figure 28: Typicality map of the clapping hands emoji ( ).

Another prominent theme in the dataset was the discussion of political and human
rights issues. The spatial typicality of the ballot box with ballot emoji ( ) correlates
strongly with elections in France and Poland. The temporal typicality of the rainbow
emoji ( ) correlates with international LGBTQIA+ pride month, and the spike in spatial
and temporal typicality of the raised fist emoji ( ) coincides with the international
BLM movement.

Topics related to leisure and lifestyle activities were also successfully traced over space
and time, including golf (through the use of the golfing man ( ) emoji), electronic
music (through the use of the bomb ( ) emoji, which was found to be topically
consistent for electronic music 72.3% of the time), and breastfeeding (through the use
of the breastfeeding ( ) emoji). The golfing man emoji was found to be typical in
Ireland, the bomb emoji was typical in Italy (where it was used to refer to electronic
music and specific DJs), and the breastfeeding emoji found to typically occur in the
United Kingdom.
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4 Results and Discussion

The overarching goal of this thesis, to determine whether emojis can be used to identify
relevant topics and their spatial-temporal evolution in a non-topic-specific dataset, has
been achieved. Based on the results of this research, it was determined that emojis can
be used to identify relevant topics and their evolution within the given dataset as long as
the emojis used are first found to be topically consistent. A methodologywas presented
for determining topical consistency using co-occurring hashtags to contextualize each
emoji.

A major advantage of using emojis for spatial-temporal analysis of geo-social media
is the relative simplicity of emojis compared with text. When compared with similar
work that uses text-based analysis, this study was able to identify meaningful trends in
the dataset with comparatively little computational effort. For example, Kruspe et al.
(2020) implemented trained neural networks for sentiment analysis on a thematically-
unfiltered dataset in order to determine overall sentiment of tweets across time and
space during the COVID-19 pandemic. In comparison to the training and comparison of
neural networks, this study’smethodology is comparatively less computationally intense,
due both to the lack of diversity of emojis the relatively straightforward computation of
the typicality calculation.

Although the workflowwas ultimately successful in identifying spatial-temporal changes
in emoji use and their thematic connections, some limitations to themethodologyshould
be noted. The chief limitation of the proposed method is that it is only applicable for
Twitter data which contains both hashtags and emojis. This requirement significantly
reduces the amount of data that can possibly be gathered for analysis, since many
tweets lack one or both of these attributes.

The dissimilar rendering of emojis on different operating systemsmay also pose restric-
tions on the universal interpretations of emoji meanings. While the use of hashtags in
combination with emojis helps to account for the possibility of semantic differences,
this condition should still be considered when interpreting the results of this analysis.

Cultural differences in the interpretation of emojis may, to a lesser extent, also have
an effect on emoji usage that is not analyzed in this study. However, the degree to
which cultural differences affect the use and interpretation of emojis is not consistent
and is certainly still less than the cultural differences in language encountered during
text-based analyses. In a comparison of emoji usage between eastern and western
countries, Guntuku, Li, Tay, and Ungar (2019) found that, while some variation in emoji
interpretation exists across cultures, evidence implies a significant degree of universality
of emoji interpretation across cultures.

One consideration that should be noted concerning the practical implementation of
results is the relationship between privacy and functional use of data. User privacy
must be considered in combination with the eventual application of collected data
(Bender, Stodden, & Nissenbaum, 2014;Malhotra, Kim, & Agarwal, 2004). Althoughmany
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potential applications for the presented methodology exist, they are not all equal with
regard to user benefits and are therefore also not all equal with regard to the level of
user privacy that should be ensured. Because the purpose of this study was purely
academic and intended to establish the validity of the proposed methodology, privacy-
awareness via HLL formatting, cryptographic hashing, spatial aggregation, and coarse
spatial visualizationwas deemed sufficient rather than total privacypreservation. Such a
standard for privacy-awareness could also hold true for instances where significant user
benefits exist, such as within the realm of environmental research (Andersson & Öhman,
2017; Dunkel et al., 2020). In instances where the applications of data can potentially
save lives, as in the documentations of possible war crimes, even less protection of
user privacy is sometimes accepted (Strick, 2022). However, in cases where users
are unlikely to benefit from the applications of their data, additional privacy measures
should be implemented.

The following subsections assess the degree to which the three main Research Objec-
tives (RO) were achieved and answer the three corresponding Research Questions (RQ)
posed in Section 1.2.

4.1 Research Objective 1

RO1: Develop a means for detecting change in emoji usage over time.

RQ1: Do significant changes in emoji use happen over time and space?

The variation in emoji use over both time and space was demonstrated throughout the
analysis. Basic summary statistics of the absolute frequency of emojis on monthly
and country-based subsets prove that these variations exist, while typicality analyses
were able to uncover more specific spatial and temporal patterns within the dataset.
Typicality calculations, being normalized for the size of the subset, were particularly
suited to the temporal analysis given the temporal gaps in data collection since they
allowed for the comparison of emoji usage across months with varying amounts of
data.

Not all emojis demonstrated similar levels of variation. While some emojis were used
fairly consistentlyover space and time, others varied greatlyover one or bothdimensions.
The raw dataset was used to investigate the spatial and temporal facets of the data.
HLL data format was used to narrow the scope of the analysis by generating lists of
relevant countries and emojis with the most user days.

At this point it is essential to note that, while this dataset is as complete as possible
given the available resources, inherent biases in the data exist. For example, in order
for posts to be geotagged with a precise location, users must override Twitter’s default
settings and specifically agree to the use of their precise location. Therefore, the
users represented in this dataset do not make up a random sample of the population;
rather, they form a specific subset of users who are comfortable with these alternative
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settings. By including only Tweets containing both emojis and hashtags, this dataset
also represents only those users comfortable using both of these features. Individuals
who are less comfortable with using emojis or hashtags, or who use social media less
frequently for whatever reason will be unavoidably under-represented in this dataset.
Specifically, users who enable the geotag functionality are more likely to be younger
and higher income than the average user and be from more urbanized areas (Malik et
al., 2021). Despite these unavoidable qualifications, the given Twitter dataset allows for
a much broader scope of data than is possible through other methods at this time.

4.2 Research Objective 2

RO2: Determine whether significant changes in emoji usage over time and space corre-
late with significant topics.

RQ2: Do spatial and temporal changes in emoji usage have thematic con-
nections?

In order to answer this research question, it first had to be determined whether emojis
themselves have thematic connections. This study presents a methodology for the
approximation of topical consistency using co-occurring hashtags and their occurrence
numbers. Although a general threshold of 70% was established to denote topical consis-
tency (based on the behavior of benchmark emojis representing concrete objects), the
percent topical consistency of each emoji should be kept in mind when correlating emo-
jis with their associated topics. Emojis with higher percentages of topical consistency
can be used as more direct proxies for topics than emojis with lower percentages of
topical consistency. The microbe emoji, for example, co-occurs with hashtags relating
to the topic of COVID-19 approximately 98.7% of the time. The rainbow emoji, on the
other hand, has a topical consistency of 71.7% with the subject of LGBTQIA+ rights.
Between these two examples, the microbe emoji can be used as a much more reliable
proxy for the discussion of COVID-19 than the rainbow emoji for the topic of LGBTQIA+
rights.

Ultimately it was found that many of the most frequently used emojis are not topically
consistent. However, some topic-specific emojis were found that demonstrated topical
consistency to varying degrees. The variations over time and space for these topically
consistent emojis can potentially be used as a proxy for the discussion of specific
topics over time. Several prominent topics and events found in the dataset include the
COVID-19 pandemic, the Black Lives Matter movement, LGBTQIA+ rights, and various
leisure activities. Such findings should not be used to generalize about the most popular
topics for all Twitter users, but rather for the topics that were able to be detected through
corresponding emoji usage amongst the subset of geotag users with their population
biases (Malik et al., 2021).
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4.3 Research Objective 3

RO3: Visualize the results in a meaningful and comprehensive way.

RQ3: What are the most appropriate visualization methods to represent
emoji usage over space and time?

For the representation of emoji use over time, both bar charts and line graphs were
deemed suitable for analysis. These forms of data visualization are widely understand-
able and clearly illustrate trends in emoji usage over time. For both of these chart types,
the data was listed in chronological order from left to right to facilitate interpretation. To
display change in emoji use over space, maps were selected for visualization because
of their "visual nature and high information density" (McKitrick et al., 2022). However,
since the raw data format contains sensitive user information, several privacy concerns
arose that had to be addressed. To avoid the visualization of precise user locations,
for example, point mapping was not considered for final visualizations. Point mapping
was only used for HLL data to display data that was already spatially aggregated. By
dividing the study area into cells and assigning each tweet to a cell, spatial trends in
emoji usage could be visualized without symbolizing individual points. The 100 by 100
kilometer grid that was created offers a very conservative level of data granularity to
prevent the identification of individual users. Using typicality as a visualization metric
as opposed to absolute frequency also mitigated the chance that individual users could
be identified in cells containing very few data points.

The topical facet was not visualized on its own, but rather calculated independently
and used to inform the selection of emojis for spatial-temporal analysis. To represent
emoji usage over both space and time simultaneously, spatial typicality was visualized
as a series of maps representing monthly spatial trends in emoji usage. These map
series can be viewed either as static matrices or as dynamic animations for ease of
comparison.
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5 Conclusion

The results of this study support the use of emojis as indicators of spatial-temporal-
thematic developments in geo-social media and illustrate the necessary considerations
to be made when working with such data. Namely, the degree of topical consistency
of each emoji should be taken into consideration when drawing comparisons between
the use of emojis over time and space and the discussion of related topics on Twitter.
Additionally, statistical measures that are easily skewed by hyperactive and non-human
users, like absolute and relative frequency, are limited in their ability to derive meaningful
insights from the data and should be avoided for the selectionof relevant emojis. Metrics
that are normalized across users, like typicality and user days, serve to minimize these
influences. Awareness of user privacy should also be maintained wherever possible.

The 4 Facet structure of LBSN proposed by Dunkel et al. (2019) served as a suitable
framework for this study. Using a combination of minimally processed “raw” data and
the privacy-aware data format HyperLogLog (HLL), all four of the facets (social, spatial,
temporal, and topical) were able to be analyzed, albeit not in tandem. The social facet
was investigated through the use of HLL data, which helped to illustrate the use of
emojis as well as provide insights as to which emojis are most used by hyperactive
users. The spatial and temporal facets were explored using the geotagged coordinates
and the publication date, respectively.

Typicality calculations were performed for spatial and temporal subsets of the raw
dataset to gain insights as to the variation in emoji use over space and time. The
topical facet was explored via emoji-hashtag combinations, and a methodology was
proposed for the approximation of an emoji’s topical consistency using the top 20
co-occurring hashtags with each emoji. For emojis which demonstrated significant
topical consistency, further spatial-temporal typicality analysis was conducted. The
resulting visualizations of this study highlight emojis that have significant spatial or
temporal variations in use and which demonstrate approximate topical consistencies
of over 70%. These visualizations have a minimalistic, straightforward design and can
be viewed either as static matrices or as animations that facilitate comparison over
time and space.

5.1 Future Work

The approach used in this study and the methodologies proposed for data analysis and
exploration proved sufficient to identify relevant topics within the dataset. However,
additional considerations could be implemented in the methodology to produce further
insights. For example, some modifications that were made to the dataset to simplify
calculations, such as the removal of skin tone modifiers on emojis and the removal of
Regional Symbol Indicator letters representing flag emojis, could be eliminated in future
research. A dataset without these qualifications could be used to determine whether
similar emojis exhibit different spatial and temporal patterns depending on skin tone or
whether relevant topics can be identified through the use of flag emojis.
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The map visualizations of spatial and spatial-temporal typicality per emoji revealed a
large number of cells with highly atypical emoji values. Givenmore time, this skew could
be accounted for either with the normalization of the dataset or the implementation
of alternative data classification methods, such as the head-tail break method used in
(Dunkel et al., 2020).

Improvements could also be made to strengthen the statistical validity of the results
presented in this study. While the results of the spatial-temporal typicality analysis
allow for the non-arbitrary visual analysis of trends in emoji usage, further quantitative
spatial-temporal analysis could be conducted using data clustering algorithms such
as Density-based spatial clustering of applications with noise (DBSCAN). SaTScan, a
software that uses space-time scan statistics to analyze spatial-temporal data, could
also be used to detect statistically significant clusters of emoji usage.
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Appendices

Appendix A Methods and Data Analysis
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Appendix B Raw Data

B.1 Temporal Typicality for Top 50 Emojis by Absolute Frequency

Rank 1-25
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Rank 26 -50
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B.2 Temporal Typicality for Top 50 Emojis by User Days

Rank 1-25

66



Rank 26 -50
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Appendix C HLL Code

C.1 Cardinality Function

defhll_from_byte(hll_set:str):
#ReturnHLLsetfrombinaryrepresentation

hex_string=hll_set[2:]
returnHLL.from_bytes(

NumberUtil.from_hex(
hex_string,0,len(hex_string)))

defcardinality_from_hll(hll_set):
#TurnbinaryhllintoHLLsetandreturncardinality

hll=hll_from_byte(hll_set)
returnhll.cardinality()-1

C.2 Union Function

defunion_hll(hll:HLL,hll2):
"""UnionoftwoHLLsets.ThefirstHLLsetwillbemodified

in-place."""
hll.union(hll2)

defunion_all_hll(
hll_series:pd.Series,cardinality:bool=True)->pd.Series:
"""HLLUnionand(optional)cardinalityestimationfrom

seriesofhllsets

Args:
hll_series:Indexedseries(bins)ofhllsets.
cardinality:IfTrue,returnscardinality(counts).

Otherwise,
theunionedhllsetwillbereturned."""

hll_set=None
forhll_set_strinhll_series.values.tolist():

ifhll_setisNone:
#setfirsthllset
hll_set=hll_from_byte(hll_set_str)
continue

hll_set2=hll_from_byte(hll_set_str)
union_hll(hll_set,hll_set2)

returnhll_set.cardinality()
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Appendix D Emoji-Specific Analysis

D.1 Summary of Analyzed Emojis
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D.2 Ballot Box with Ballot Spatial-Temporal Matrix
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D.3 Breastfeeding Spatial-Temporal Matrix
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D.4 Clapping Hands Spatial-Temporal Matrix

>

O
ne
gr
id
ce
ll
re
pr
es
en
ts
10
,0
00

sq
ua
re
ki
lo
m
et
er
s.

D
at
a
So
ur
ce
s:
N
at
ur
al
Ea
rt
h,
Tw
itt
er
da
ta
ba
se
of
th
e

Te
ch
ni
ca
lU
ni
ve
rs
ity
of
D
re
sd
en
In
st
itu
te
of
Ca
rt
og
ra
ph
y

M
ap
s
by
Sa
m
an
th
a
Le
vi

<

73



D.5 Golf Spatial-Temporal Matrix
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D.6 Hospital Spatial-Temporal Matrix
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D.7 Mask Spatial-Temporal Matrix
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D.8 Microbe Spatial-Temporal Matrix
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D.9 Rainbow Spatial-Temporal Matrix
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D.10 Raised Fist Spatial-Temporal Matrix
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D.11 Woman Health Worker Spatial-Temporal Matrix
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Appendix E Supplementary Materials

Additional materials, such as the Jupyter Notebooks containing the code used for
analysis and visualization, data used for analysis, additional results, and a PDF version
of this thesis can be accessed via the following public GitHub repository:

https://github.com/samsmop/EmojisAsIndicators_SupplementaryMaterials.
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