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Emoijis As Indicators Of Spatial-Temporal-Thematic
Developments In Geo-Social Media




State of the Art

Social Media as a Data Source
« Generated by billions of users

» Provide insights into ideas and topics that attract large numbers of users

Emoijis vs. Text
« Emojis increasingly used to convey meaning, not chosen arbitrarily

« Allow for language-independent research

« Circumvent obstacles common in text-based approaches like Natural Language Processing
(slang, spelling and grammatical errors)

Existing Research Gap

_Emoji Usg ldentify Local Topics
(Single Topic) (Text-Based)
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Objective

Determine whether emojis can be used to identify relevant topics
and their spatial-temporal evolution in a non-topic-specific dataset
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* No data available for November 2020

The Dataset

~4 MILLION POSTS
GEOTAGGED WITHIN EUROPE

DURING 2020*

AT LEAST ONE EMOJI AND ONE
HASHTAG

Image source:
https://about.twitter.com/e
n/who-we-are/brand-
toolkit
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Does the
usage of
emojis change
over time and
space?

Research Questions

Do changes in
emoji usage
have thematic
connections?

How can these
spatial/temporal/
thematic
developments be
visualized?
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Methodology
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Conceptual Framework: 4 Facet Structure
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Social Facet: Privacy-Awareness

HyperLoglog (HLL) Algorithm
« Cardinality estimator, MurMur hash function

* Privacy is a side-effect, comes with other perks (count user days, user count,
post count)

Cryptographic Hashing
« Data encryption — pseudonymize user information

« Weak measure by itself, but sirengthens the effectiveness of other measures

Spatial Data Aggregation
« Geohashing possible at several levels

« Aggregation level 4 (used in this analysis) “snaps” to a 20 km spatial resolution

Visualizations at Coarse Resolution

« 100 by 100 kilometer grid used for resulting maps to avoid visualizing precise
user locations
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Conceptual Framework: 4 Facet Structure

Dunkel et al. (2019)
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Workflow: Proposed

Data Analysis

Data
Data — /v {Exploro’non} \ — | Inferpret | ——»| Visualize
Preparation Results Final Results

Adjust Data Intermediate
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R__~
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Workflow: Actual

HyperLoglLog Data Analysis
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HyperLoglog
Data Analysis
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Benefits/Uses of HyperLoglLog (HLL)

Privacy-Awareness
 Investigate social facet of data with increased user privacy

« Sensitive information (like user IDs) is never gathered from remote server
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Benefits/Uses of HyperLoglLog (HLL)

Privacy-Awareness
 Investigate social facet of data with increased user privacy

« Sensitive information (like user IDs) is never gathered from remote server

Calculate Cardinality, Unions, Intersections
« Efficiently compute number of distinct users, posts, and user days* with error of 2-5%

« Unions allow for joining of emojis with multiple skin tone variations

Reduce Reliance on Absolute Frequency
* Narrow down scope of calculations for raw data analysis by finding top emaojis and
countries by user days

Identify Emojis Often Used by Bots/Hyper-Active Users
« Calculate the difference between post count and distinct user days, find which emojis are
used frequently by only a few users
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User Days

“[U]ser-days are defined as the total number of days, across
all users, that each person took at least one photograph
within each site” - Wood et. al (2013)

INn This context:

The numlber of days, across all users, that a distinct user
posted at least one tweet within the study area

MM © @



Distribution of User Days
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Workflow: Actual
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Raw Data
Exploratory Analysis
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Most Frequently Used Emojis Per Month
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Most Frequently Used Emojis Per Country
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The Problem with Absolute Frequency: Bots
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Typicality

Hauthal et al. (2021)

Meaning

For a designated subset of a larger dataset, how ‘characteristic’ or ‘typical’
of that subset is a given emaojie

Calculation
ns/Ns — nt/Nt Rel. freq. within the subset —rel. freq. within the total dataset
Typicality = = —
Nnt/Nt rel. freq. within the total dataset
Interpretation

Positive: an occurrence is typical for the subset

Negative: an occurrence is atypical for a subset
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Temporal Typicality
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Number of Face With Medical Mask Emojis Used Per Month

8000 S
2 6000
w
o
g » 7|
- :
o
8 o
c 4000
=1
=
) . . . -
0 I - - - I
January February March April May June July August September October December

Month in 2020

MM © @



8000

@
(=]
o
o

Number of Posts
B
(=]
o
o

2000

Typicality
ot = e N
(&3] o [4)] o

o
o

1
o
&)

January

January

Number of Face With Medical Mask Emojis Used Per Month

February

March

April

June
Month in 2020

July

August

September

N

October

Typicality of Face With Medical Mask Emoji Over Time

February

March

April

May

June
Month in 2020

July

August

September

October

December

December

@

1ITC



Spatial Typicality
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100x100 km Grid Superimposed on Study Area
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Spatial Typicality of Wine Glass Emoji
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Does the
usage of
emojis change
over time and
space?

15

Research Questions

Do changes in
emoji usage
have thematic
connections?

How can these
spatial/temporal/
thematic
changes be
visualized?
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Emoiji-Specific Analysis
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Example: Masked Face Emoji

Rank
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coronavirus
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Uses
2186
1857
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553
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266
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173
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158
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Example: Masked Face Emoji

Typicality of Face With Medical Mask Emoji Over Time
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Example: Masked Face Emoji

Spatial Typicality of Face With Medical Mask Emoji
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Typicality of Face With Medical Mask Emoji (January)
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One grid cell represents 10,000 square kilometers.

Data Sources: Natural Earth, Twitter database of the
Technical University of Dresden Institute of Cartography

Maps by Samantha Levi



Results
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Selected Emoijis
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Detected Topics

COVID-19
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Lifestyle /
Leisure
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Detected Topics
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Topic:
COVID-19

Topical

Consistency:

92.2%

Typicality of Face With Medical Mask Emoji (January)
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Topic:
COVID-19

Topical

Consistency:

88.2%

Typicality

Typicality of Hospital Emoji Over Time
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Spatial Typicality of Hospital Emoji
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Topic:
Healthcare

Worker
Appreciation

Topical
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Topic:
Elections

Topical

Consistency:

72%

Spatial Typicality of Ballot Box With Ballot Emoji
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Conclusions
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Objective

Determine whether emojis can be used to identify relevant topics
and their spatial-temporal evolution in a non-topic-specific dataset
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Objective

Determine whether emojis can be used to identify relevant topics
and their spatial-temporal evolution in a non-topic-specific dataset
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Conclusions

Topical Consistency
« EmoQjis with less topical consistency are less reliable proxies

« Labor-intensive to calculate, subject to human bias and error
Metrics Matter
« Absolute, relative frequencies are easily skewed by hyper-active users

« Metrics like typicality and user days help to mitigate this influence

Privacy Awareness
« Strive to protect user privacy wherever possible

« Degree of necessary privacy depends on the applications of results

Limitations of HLL Data
« Benefits: cardinality, unions, privacy for investigation of social facet

« Drawbacks: cannot analyze multiple facets simultaneously, emojis and hashtags are

separated
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Future Work

Quantitative Spatial-Temporal Analysis

« Use clustering algorithms, space-time scan statistics to detect statistically significant clusters
of emoji usage

Head-Tail Breaks for Visualizations
« Account for skew towards negative values in spatial typicality maps

Emoji Expansion
« Flag emoijis, skin tone modifiers
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Thank Youl!

Questions? Comments?
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Topic:
Healthcare

Worker
Appreciation

Topical
Consistency:
88.2%

Spatial Typicality of Woman Health Worker Emoji
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Topic:
Healthcare

Worker
Appreciation

Topical
Consistency:
78%

Spatial Typicality of Eight O'Clock Emoji
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Topic:
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Typicality of Rainbow Emoji Over Time
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Topic:
Golf

Topical

Consistency:

86.9%

Spatial Typicality of Man Golfing Emoji
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Breast-
feeding

Topical
Consistency:
88.8%

Typicality
o
wn

0.0

-0.5

Typicality of Breast-Feeding Emoji Over Time

March April

May

June
Month in 2020

July

Augu

st

September

October December

M © &



Spatial Typicality of the Water Wave Emoji K Spatial Typicality of the Snowflake Emoji %




Geo-Hashing Aggregation Levels

Aggregation Level 5 Aggregation Level 4 Aggregation Level 3
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Country User Days (Agg. Level 4) | User Days (Agg. Level 5) | Difference
United Kingdom 811956 810535 0.18%
Spain 288547 288819 -0.09%
France 228942 230294 -0.59%
Germany 143224 142974 0.17%
Italy 143012 141807 0.85%
Turkey 111138 108351 2.57%
Netherlands 76856 73083 5.16%
Belgium 40219 39852 0.92%
Switzerland 20624 23061 -10.57%
Austria 17732 18070 -1.87%
Portugal 13177 12699 3.76%
Czech Republic 10485 1071 -2.11%
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Design Considerations
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Grid Size

Spatial Typicality of the Folded Hands Emoji J
50 by 50 Kilometer Grid 100 by 100 Kilometer Grid




Cropping the Data

Spatial Typicality of the Microbe Emoji *
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