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Abstract

The achievement of SDG 2 – Zero hunger requires the widespread promotion of sustainable agri-
culture. Smart Agriculture practices aim to enhance the sustainability of Agri-Food systems and
provide solutions for increasing crop production while minimizing the environmental footprint and
maximizing quality and quantity.

The development of Smart Agriculture and the Internet of Things (IoT) have enabled scien-
tists and farmers to collect agricultural data using various sensors and devices. As a result, the
Agri-Food datasets have become complex and heterogeneous in terms of their spatial, temporal,
and spectral resolution and scale. Therefore, agricultural data is considered Big Data in terms of
volume, variety, velocity, and veracity and aims to support the decision-making process; however,
it is often a challenging task to get insights into multi-source and multi-scale data sources.

Semantic Technologies provide scientists and decision-makers with the opportunity for data in-
tegration and automatic information extraction and unlock insights into Big Geospatial Data.
Cartographic techniques, in turn, allow decision-makers to discover the hidden content visually
and therefore enhance information exploration and knowledge construction. Furthermore, being
an interdisciplinary domain, cartography has the potential to satisfy the demand for visualization
of Big Geospatial Data by providing an interface between data and target audience and, thus,
can support sustainable agriculture.

This research aims to unite both semantic technologies, e.g., semantic-driven data integration
and geospatial data visualization. The main goal is to design a semantic-driven geospatial data
integration and visualization approach for the needs of the Agri-Food domain, with a particular
focus on apple growing in South Tyrol, Italy.

The proposed framework consists of two parts: (1) the ontology-based data integration module
in which mappings define the relationship between environmental data and specific ontology;
(2) the visual analytics module to visually explore the integrated datasets. The combination of
interactive thematic maps and statistical graphs provides one the opportunity to look at the data
from different points of view and discover hidden patterns.

As a result, by using cartography and geospatial data integration techniques this research brings
forward the scientific topic of digital transformation in agriculture and creates an added value to
the EU’s digital strategy which aims to make digital transformation work for people and businesses
while helping to achieve its target of a climate-neutral Europe by 2050.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement
The accomplishment of Sustainable Development Goal (SDG) 2 – End hunger, achieve food
security and improved nutrition and promote sustainable agriculture1 requires the widespread
promotion of sustainable agriculture. Sustainable agriculture plays an important role in society
since it addresses supporting the world’s food needs without compromising future generations
(Jiang et al., 2020). Smart Agriculture has been developed to enhance the sustainability of agri-
culture and promote data-driven solutions for the benefits of increased crop quantity and quality
while minimizing environmental footprint (Dong et al., 2018).

Cartography may support the process of increasing agricultural sustainability because it effec-
tively illustrates spatio-temporal patterns, such as socioeconomic disparities and climate change.
Hence, maps reduce complexity and show spatial patterns that might otherwise be undiscovered.
Therefore, they are the key to better understanding the relationships between human and their
environments and can be a powerful decision-making tool for local and national authorities (Kraak
et al., 2020).

The latest advancement in Smart Agriculture and the Internet of Things (IoT) enabled farmers
and scientists to collect agricultural data using machinery, weather stations, sensors, satellites,
and even robots. Hence agricultural datasets are spatial, temporal, complex, heterogeneous,
non-standardized, and very large. Therefore, agricultural data is considered Big Data in terms of
volume, variety, velocity, and veracity (Ngo et al., 2019). These data can be used in agriculture
to predict agricultural processes, drive real-time decision-making, and redesign business processes
(Zeginis et al., 2022). However, due to the heterogeneity of data sources, it is complicated to
identify agricultural data needed for a specific task, and if it is done so, it might be challenging
to combine and analyze the data collected (Ngo & Kechadi, 2020).

Semantic technologies and linked data provide researchers and decision-makers with an oppor-
tunity for data integration and automatic information extraction (Jiang et al., 2020). According
to Abburu et al. (2015), “ontology is one of the best techniques in semantic technology”. An

1https://www.un.org/sustainabledevelopment/hunger/
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Chapter 1. Introduction

ontology is a representation of domain knowledge, which machines and humans can interpret
(Chandrasekaran et al., 1999). Ontologies specify entities of a domain, their characteristics, and
relationships in a machine-interpretable way (Goldstein et al., 2021).

Semantic interoperability of data collected by different sensors and IoT devices is usually accom-
plished using existing sensor ontologies. However, crop-specific trait ontologies, which consist
of parameters about an agricultural phenomenon, can link domain-specific variables and sensor
measurement values (Aydin & Aydin, 2020).

Several studies (Alreshidi, 2020; Aydin & Aydin, 2020; Bangkhomned & Payakpate, 2020; Bhuyan
et al., 2021; Naidoo et al., 2021) have been conducted to develop ontology-based data manage-
ment for achieving semantic interoperability in the agricultural domain to improve processes and
decision support systems. However, most of those studies are limited to the “data storage” stage
of the data life cycle without further analysis and visualization of available data to get relevant
information.
To tackle these limitations of lack of data visualization and provide an end-user with the oppor-
tunity to visually discover the hidden content of big geospatial data, geospatial visualization and
cartography might be a solution (Robinson et al., 2017). According to MacEachren & Kraak
(2001), maps are no anymore just graphical representations of existing geographical reality but
“dynamic portals to interconnected, distributed, geospatial data resources”. Based on that, maps
go beyond just a visualization method, as they aim to provide information exploration and knowl-
edge construction. Being an interdisciplinary domain, cartography has a huge potential to satisfy
the demand for visualization of Big Geospatial Data and, therefore, can support more sustainable
agriculture (Mcleod, 2021).

Therefore, this interdisciplinary study intends to develop a novel framework in the agricultural
domain that unites specific-ontology-based data integration and visualization. This research aims
to enhance the domain of cartography with a semantic-based geospatial data visualization ap-
proach as well as to apply this approach to agriculture to improve processes and decision support
systems. The thesis outcomes aim to serve domain experts in agriculture, scientists, authorities,
and tech-oriented local farmers to enhance spatial decision-making in the land and agricultural
suitability.

As a result, this research combines three recent significant topics of cartography, agriculture,
and semantic technologies and aims to contribute at two interconnected levels: a) at the domain
level (cartography), this thesis will contribute to developing a semantic-driven geospatial data
visualization approach to environmental and agricultural data; b) at the organizational level (EU-
RAC research and South Tyrol Scientific Network, Cartography M.Sc.) this research will bring
forward the scientific topic of digital transformation in agriculture using geospatial visualization
techniques. Thereby, this research will contribute to the digital transformation of the European
Agricultural Sector.
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1.2 Research Identification
The main goal of this research is to develop an approach to semantic-driven geospatial data
visualization for the needs of agriculture. It will help deepen the integration of cartography, its
methods, and techniques into the agricultural domain and serve as a powerful decision-making
tool. Since the agricultural domain is very broad, to narrow down the master’s thesis scope,
the focus will be on the apple growing in South Tyrol, Italy. This study will be conducted with
the support of the Center for Sensing Solutions (EURAC Research) and will take place in South
Tyrol, Italy.

The research has been broken down into three Research Objective (RO). Each of the objectives
will be tackled by answering the corresponding Research Question (RQ). The research objectives
and questions are as follows.

RO-1 To review the current requirements and methods of semantic integration of
geospatial data as well as the visualization of domain knowledge using a semantic-
driven approach.

RQ1.1 What are the latest standards, methods, and best practices for semantic integration of
geospatial data?
RQ1.2 How to formalize and visualize domain knowledge using a semantic-driven approach in
cartography?
RQ1.3 What are examples of successful implementation of semantic technologies in the agricul-
tural domain to support effective decision-making?

RO-2 To propose a semantic-driven geospatial data visualization approach to agri-
culture, particularly in the apple-growing domain.

RQ2.1 What are the elements of the semantic-driven geospatial data integration and visual-
ization framework?
RQ2.2 How can geospatial data be enhanced by using semantic technologies for achieving better
integration and interoperability?
RQ2.3 Which cartographic techniques are the most suitable for visualizing environmental and
agricultural variables?

RO-3 To implement and explore the effectiveness of the developed semantic-driven
geospatial data integration and visualization framework for the use cases of apple grow-
ing in South Tyrol, Italy.

RQ3.1 Which apple-growing use cases should be implemented to illustrate the effectiveness of
the proposed framework?
RQ3.2 How can users benefit from the proposed semantic-driven geospatial data integration and
visualization framework?
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1.3 Thesis Outline
The structure of the remaining part of this Master’s thesis follows a logical setup that aims to
establish an understanding of the semantic-driven geospatial data visualization approach and pro-
pose a methodological framework for semantic-driven visualization of environmental preconditions
for apple-growing in South Tyrol, Italy.

Therefore, in Chapter 2 the need for semantic-driven geospatial data integration and visual-
ization shall be reasoned out and the gap for cartographic research identified. Thereafter follows
a scientific background on semantic technologies applications for geoscience and agriculture. Sub-
sequently, state of the art in the semantic-driven geospatial data visualization is outlined which
leads to the need for cartographic approaches in agricultural data visualization.

In Chapter 3, the methodological framework is described, which adopts the concept of the visual
analytics pipeline and defines the work stages for semantic-driven data integration and visualiza-
tion.

The described methodology is then applied to the Case Study on Apple-growing in South Tyrol
and its workflow described in Chapter 4.

The derived findings from the development, implementation and evaluation of the semantic-
driven geospatial data integration and visualization framework are presented in Chapter 5.

Chapter 6 briefly describes the limitations faced throughout the thesis work and offers several
potential directions for future study before concluding the thesis.



Chapter 2

Foundations and State of the Art

Geospatial data is crucial in many interdisciplinary domains such as agriculture. The advance-
ments in remote sensing, Global Positioning System (GPS), IoT, and Web mapping enabled the
collection of geospatial data for agricultural needs at an unprecedented scale and rate. However,
according to Bellinger et al. (2004), "data is raw; it simply exists and has no significance beyond
its existence (in and of itself). It can exist in any form, usable or not. It does not have meaning
of itself". Information is the meaning of data interpreted by humans. This "meaning" might be
useful, but does not have to be. Knowledge is the collection of information that is supposed to
be useful. The transformation of data into information through the discovery process has the
potential to expand human knowledge. In a data life cycle, which is a representation of the entire
process of managing and using data, the transition from data to information is equal to the data
analysis stage (Bellinger et al., 2004; Ma et al., 2015).

Good data management practice is not a goal in itself but rather it is the key to knowledge
discovery and innovation and hence to data and knowledge integration and reuse. The FAIR prin-
ciples - Findability, Accessibility, Interoperability, and Reusability serve to guide data processes
and, as a result, ensure transparency, reproducibility, and reusability of data, algorithms, tools,
and workflows that led to that data and from the data to information (Wilkinson et al., 2016).
The FAIR principles essentially highlight the following significant factors covered by Jacobsen et
al. (2020).

• Findability: Both people and computers should have no trouble finding digital resources.
A crucial step in the FAIRification process is the use of extensive machine-actionable infor-
mation, which is necessary for the automatic discovery of pertinent datasets and services.

• Accessibility: For both people and computers, protocols for obtaining digital resources
should be made explicit. These protocols should include clear procedures for obtaining
permission to access protected data.

• Interoperability: Each participating resource, whether it be data or a service, has a clear
meaning (semantics).

• Reusability: Data and metadata are made available with a clear and understandable usage
permission.

17
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As it was mentioned before, giving meaning to data is essentially transition from data to
information. Therefore, the principle of Interoperability which makes sure that each resource has
a clear meaning is crucial in this process. Semantic Web and its components play a significant
role in supporting interoperability by capturing the conceptualizations represented in information
artifacts. On the other hand, speaking about geospatial data, Lai & Degbelo (2021) mentioned
two perspectives of web maps: map as a tool and map as a representation of knowledge. Maps
may be used as a tool to investigate the spatial dimensions and connections between phenomena
and activities that are located in space. As a result, they are useful for telling (visual) stories
about geographic phenomena. Second, rather of employing words as the main organizing principle
for knowledge, maps index information by location on a plane. They make it possible to retrieve
information hidden in datasets in a more effective and efficient manner (Degbelo, 2021). Based
on that, to improve geospatial data interoperability and provide decision makers with valuable
information hidden in the geospatial data it is necessary to utilize both: semantic technologies
and geovisualization.

Thus, the remaining of this chapter is organised as follows. Section 2.1 introduces semantic
technologies. Section 2.2 provides an overview of using semantic technologies for geospatial data
integration and analysis, as well as a combination of semantic technologies and visualisation to
enhance data management process. Section 2.3 describes semantic resources and their appli-
cation for agricultural domain. Section 2.4 summarizes the literature review and identify the
research gap to be fulfilled with this Master’s thesis.

2.1 Introduction to the Semantic Technologies
The concept of the World Wide Web (WWW) was first introduced by Tim Berners-Lee in 1989.
It was developed to be a storage of human knowledge, which would allow collaborators from over
the world to share their ideas and all aspects of common projects (Berners-Lee et al., 1994). In
the last two decades, web technologies have experienced great progress (Figure 2.1).

Figure 2.1: Evolution of World Wide Web as depicted by Benito-Osorio et al. (2013)
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The first generation of the Web also known as the read-only Web and Web 1.0 allowed users only
to search for information and read it. The websites were based on static HTML pages represented
as hypertext where elements could be linked to different resources (Berners-Lee et al., 1994).

The second phase of the Web’s evolution is Web 2.0 which is also called the people-centric
Web, participative Web, and read-write Web. Web 2.0 has provided users with new opportunities
for interaction and collaboration. New technologies such as AJAX (JavaScript and XML), Adobe
Flex, Google Web Toolkit, etc. introduced along with Web 2.0 have allowed the development of
more interactive and dynamic websites and applications in which users can publish their content
and modify the exciting one (Murugesan, 2007).

However, most of the Web’s 1.0 and 2.0 content was designed for humans to read, not for
programs to manipulate information meaningfully. For example, computers could only parse web-
pages for layout and trivial processing: "here is a header, there is a link to another page", but they
were not able to process and "understand" the semantics: "this is the home page of the university
website and this link goes to the page with ongoing scientific projects". Web 3.0 also known
as the semantic web and the web of the data is being developed to enhance the current WWW
with machine-understandable information together with services utilizing this information. Thus
Semantic Web is an extension of the current Web, in which information is given clear meaning
for better cooperation between humans and computers (Berners-Lee et al., 2001; Hitzler, 2021).

The World Wide Web Consortium (WC3)1 has defined several components of the Semantic
Web.

1) Resource Description Framework (RDF) is a standard model for data interchange on the Web.
It was developed to be read and understood by computers for better interoperability among com-
puter applications (Nishanbaev et al., 2019). RDF provides a graph-based data model to organize
and connect data that describes entities of the world. The RDF model encodes data in the form
of subject, predicate, and object known as triples. The subject and the object of a triple identify
resources being described while the predicate defines the relationship between the subject and
the object (Figure 2.2). Resources are a core concept on the semantic web: everything might be
considered a resource: a Web page, an image, a video, but also a person, a place, a device, an
event, an organization, a product, or a service (Gandon et al., 2011).

Figure 2.2: Basic RDF Graph
(CmplstofB, WTF Public License, from Wikipedia (2022a))

RDF model is flexible. That means that a resource can be a subject in one triple and an object in
1https://www.w3.org/
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another one (Bizer et al., 2009). For instance, "The Marienplatz is based in Munich" and "Munich
is the largest city of Bavaria". From a semantic web perspective, in this example, Munich is an
object in the first example and a subject in the second. RDF is utilized together with ontologies
to provide semantic information about the described resources.

2) Ontologies. In philosophy, ontology is the study of existence. In computer science and infor-
mation science fields, ontology is a data model which describes the sorts of objects, properties
of objects, and relations between objects that are possible in a specified domain of knowledge
(Chandrasekaran et al., 1999). From a data structure perspective, an ontology can be considered
a graph with objects as nodes and relations between objects as edges (Y. Hu, 2018).

WC3 also uses the term "vocabulary" which is referred to be equal to the term "ontology".
According to W3C (2015), "there is no clear division between what is referred to as “vocabular-
ies” and “ontologies”. The trend is to use the word “ontology” for more complex, and possibly
quite a formal collection of terms, whereas “vocabulary” is used when such strict formalism is not
necessarily used or only in a very loose sense." Ontologies and vocabularies are used to describe
and analyze domain of knowledge as well as they enable knowledge sharing (Chandrasekaran et
al., 1999; Nishanbaev et al., 2019). Thus ontology is a powerful tool of the Semantic Web to
improve data integration caused by a disagreement about the meaning and interpretation of data.

Ontologies can be classified according to two criteria: their level of formality and their level
of generality. According to formality, ontologies vary from informal to semi-formal, and formal.
According to generality, there are four types of ontology: top-level, domain, task, and application
ontologies (Figure 2.3) (Guarino, 1997, 1998; Kokla & Guilbert, 2020).

Figure 2.3: Classification of ontologies, according to their level of generality. Thick arrows
represent specialization relationships as depicted by Guarino (1997)

Top-level, upper-level, or foundational ontologies describe general, fundamental concepts
like space, time, object, event, action, etc. They are independent of a particular problem or
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domain and thus are used as a framework for developing more specific domain ontologies. Do-
main ontologies describe the concepts related to a generic domain such as medicine or natural
disasters, while task ontologies define the concepts of a task or activity, such as analysis, plan-
ning, or selling. Both domain and task ontologies can specialize in the concepts defined by an
upper-level ontology. Application ontologies specify the concepts related to both a particular
domain and a task, which are often specializations of both the related ontologies. These concepts
correspond to roles played by domain entities by doing a certain task (Guarino, 1998; Kokla &
Guilbert, 2020). For example, an application ontology on apple-growing response specializes in
both domain knowledge on agriculture and task knowledge on specific plant growing.

The Web Ontology Language (OWL) 2 is an extension of RDF designed to represent ontolo-
gies. It allows the representation of complex knowledge about things, groups of things, and
relations between things. OWL also allows the connection of a concept of one ontology with a
similar idea of another ontology, hence making concepts of the different ontologies reusable and
improving knowledge share (Goldstein et al., 2021).

Thus in the Semantic Web, ontologies are the main driver for data integration, knowledge discov-
ery, and sharing, and a driving force is that ontologies themselves should be reusable by others
(Hitzler, 2021).

3) SPARQL Query Language 3. “Query” in the Semantic Web means technologies and pro-
tocols that can retrieve information from the Web of Data. Since the Web of Data is represented
using RDF, it needs its RDF-specific query language. SPARQL Query Language was designed
to enable querying decentralized collections of RDF data that are stored in one or more triples
(Goldstein et al., 2021).

Technically, SPARQL queries, as well as RDF data models, are based on a triple pattern called
a basic graph pattern. The only difference is that in SPARQL queries, each of the subjects,
predicate, and object may be a variable. A SPARQL engine would return the resources for all
triples that match these patterns (Seaborne & Prud’hommeaux, 2008). Figure 2.4 shows the
example of a simple SPARQL query to find the title of a book from the given RDF data graph.
The query is divided into two parts: the SELECT clause specifies the variables that will show in
the query results, and the WHERE clause offers the basic graph pattern to compare against the
data graph (Seaborne & Prud’hommeaux, 2008).

Figure 2.4: SPARQL query example from Seaborne & Prud’hommeaux (2008)

Using SPARQL allows users of Semantic Web to extract possibly complex information which can
2https://www.w3.org/OWL/
3https://www.w3.org/TR/rdf-sparql-query/
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be incorporated into another Web page. Thus, SPARQL is a powerful tool to build complex
mash-up sites or search engines that include data stemming from the Semantic Web.

4) Simple Knowledge Organization System (SKOS) 4 is a standard to represent knowledge orga-
nization systems. It is built upon RDF and used for the specification and publication of ontologies
and vocabularies on the Semantic Web (Goldstein et al., 2021).

The Semantic Web has produced a great amount of knowledge about efficient data manage-
ment. This knowledge can be applied wherever there is a need for data sharing, discovery,
integration, and reuse (Hitzler, 2021). Geoscience is one of the most prominent application fields
for Semantic Technologies since different disciplines within this domain need to share their find-
ings to address questions about the Earth (Zaino, 2019). The next sections will review the latest
standards, methods, and best practices for semantic integration and visualization of geospatial
data.

2.2 Semantic Technologies in Geoscience
The use of geospatial information in various applications such as energy simulation, traffic man-
agement, and agriculture has revealed the importance of geospatial data for interdisciplinary
research (Huang & Harrie, 2020). Due to the rapid emergence and evolution of technologies
such as GPS, web mapping, and remote sensing, the amount of generated geospatial data has
become an unprecedented amount (C. Zhang et al., 2017). Since the volume, complexity, and
heterogeneity of data sources within the geospatial domain grow, it causes challenges in data man-
agement and re-use. Therefore, geoscience researchers have been working toward implementing
semantic technologies and ontologies to achieve geospatial data integration and interoperabil-
ity. The geospatial semantic web has been proposed as an extension of the semantic web to
tackle the limitations of traditional geospatial data management. It is able to understand the
semantics of users’ geospatial requests - geospatial semantics and return suitable responses au-
tomatically (Y. Hu, 2018; Nishanbaev et al., 2019). Kuhn (2005) defines geospatial semantics
as “understanding GIS contents, and capturing this understanding in formal theories". Y. Hu
(2018) identified six major research areas within geospatial semantics: semantic interoperability
and ontologies, digital gazetteers, geographic information retrieval, linked data, place semantics,
and cognitive geographic concepts.

Since geospatial semantics is a broad area that approaches geospatial challenges from a distinct
research standpoint, this study aims to summarize research in this field from the perspectives
of the Data Life Cycle (Figure 2.5), geospatial data integration, geospatial data processing and
analysis, and geospatial data visualization.

2.2.1 Semantic Geospatial Data Integration
Geospatial data integration includes the integration of multi-source geospatial data and the inte-
gration between geospatial and other forms of data that can be grounded spatially. To support

4https://www.w3.org/2004/02/skos/
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Figure 2.5: Data Life Cycle as depicted by DataONE (2011)

the integration, exchange, and sharing of geospatial data, Spatial Data Infrastructure (SDI) has
been developed in many countries. SDI based on open standards and Open Geospatial Consor-
tium (OGC) web service technologies have the ability to solve the heterogeneity issues that plague
older GIS systems and make geographic data exchange more effective. The rapid development
of SDI and OGC web service technologies has unquestionably enhanced the sharing and synchro-
nization of large geographic data across various sources. However, the data in SDI is insufficiently
connected and harmonized. Moreover, most of the current SDI support technical data interoper-
ability via web services and standard interfaces but are not able to address semantic heterogeneity
problems in big geospatial data sharing. Hence, SDI need a semantic-based approach for data
integration to support more efficient data management (C. Zhang et al., 2017; Huang, 2019).

Semantic integration of geospatial data has gained much attention with the goal to address
semantic heterogeneity (Harvey et al., 1999; Hong & Kuo, 2015). Semantic heterogeneity refers
to disagreements over the meaning, interpretation, or intended application of the same or related
data (C. Zhang et al., 2017). Ontologies have been identified as crucial to resolving semantic het-
erogeneity, integrating different semantic descriptions, and ground conceptualizations (Kavouras
& Kokla, 2007). Ontologies were first used in the field of geoscience in the 1990s (Sun et al.,
2019). Since then, the ontology-based approach has been widely employed in geoscience to ad-
dress semantic integration by using an explicit and structured representation of semantics (Ding
et al., 2020).

As has been mentioned in section 2.1, there are four types of ontologies: top-level, domain,
task, and application ontologies. The ontologies utilized in geoscience are commonly referred
to as geographic ontologies or geo-ontologies and are classified as domain ontologies (Tomai &
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Kavouras, 2004; Fonseca et al., 2006). However, top-level ontologies and application ontologies
are also important to geographic knowledge. Table 2.1 shows the hierarchical structure of geo-
ontology.

Table 2.1: The hierarchical structure of geo-ontology

Top-level
geo-ontologies

Define central concepts of the geospatial domain such as
space, time, spatial regions, boundaries, and processes.

Domain
geo-ontologies

Describe concepts and their relations in a specific domain
such as forestry, meteorology, oceanography, land cover
and land use, etc.

Task/Application
geo-ontologies

Describe the concepts and their relations relied on a spe-
cific domain and task, for example, meteorological early-
warning.

The following are some of the most influential upper-level ontologies in the development and
research of geospatial ontologies (Kokla & Guilbert, 2020).

• Generalized Upper Model (GUM) presents detailed semantics for linguistic spatial expres-
sions. It covers language concerned with space, actions in space, and spatial relationships
(Bateman et al., 2010).

• General Formal Ontology (GFO), an upper-level ontology integrating objects and processes
into one coherent framework. GFO presents a multi-categorical approach by admitting
universals, concepts, and symbol structures and their interrelations (Herre et al., 2006).

• Basic Formal Ontology (BFO), a top-level realism ontology that was originally created for
use in the building of domain ontologies for natural science but is currently utilized in a
variety of fields, including military and government administration (Arp et al., 2015).

The contrast between continuants and occurrents is a fundamental ontological distinction upon
which numerous upper-level ontologies are based (Kokla & Guilbert, 2020). Continuants are
items that are completely present throughout time, whereas occurrents, such as processes or
occurrences, are temporally constrained and contain temporal portions (Arp et al., 2015). Thus,
space, spatial regions, spatial relations, and time and temporal phenomena are fundamental
notions in upper-level ontologies. In recent years, the discipline of formal ontology, that hat
integrates aspects of philosophy, formal logic, and artificial intelligence has focused on further
formalization of these concepts (Herre, 2016; Kokla & Guilbert, 2020).

Baumann et al. (2016) introduced GFO-space, the ontology of space in the GFO. The prin-
ciples underlying the ontology are based on the ideas of Franz Brentano on space, time, and the
continuum. The idea is founded on four fundamental concepts: the category of space regions,
the relations of being a spatial part and being a spatial boundary, as well as the relation of spatial
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coincidence. GFO-space is a further step to establishing an ontology of space, employing rigorous
logical methods.

Time and temporal phenomena are also core concepts of top-level ontologies. Galton (2015)
developed a formal theory of processes and events that integrates two diverse ways of understand-
ing time, referred to as historical and experiential time. Historical time is considered "frozen"
emphasizing finished occurrences. Experiential time, on the other hand, is regarded as dynamic
and "fluid" and emphasizes ongoing processes. To define the link between processes and events,
temporal scale or granularity is deemed significant.

Understanding the models and theories that upper-level ontologies encompass is essential for
expressing ontological commitments, establishing relationships with other upper-level ontologies,
and expanding upper-level ontologies to construct new domain-specific ones (Kokla & Guilbert,
2020).

Domain geo-ontologies are developed at different levels of detail. They might cover the whole
domain of knowledge such as earth and environmental sciences or oceanology, as well as spe-
cific domain concepts such as "city" or "land use". The following presents some of the domain
geo-ontologies designed at different levels of granularity.

• SNAP and SPAN are geo-ontologies developed for modeling continuants and occurrents.
Relations between continuants and occurrents are trans-ontological – they are relations
that transcend the SNAP-SPAN divide. The resulted framework is able to capture the
essentially dynamic nature of geographical reality (Grenon & Smith, 2003).

• The Semantic Web for Earth and Environmental Terminology (SWEET)5 is a set of ontolo-
gies that includes more than four thousand classes of term and related concepts in Earth
and Space science. The SWEET ontologies were developed according to the principles
of scalability, application independence, natural language independence, orthogonality, and
community involvement. SWEET divides concepts into three integrative ontologies and
nine faceted ontologies that represent orthogonal aspects (Figure 2.6). Each box repre-
sents a separate ontology, and a connecting line indicates where major properties are used
to define concepts across ontology spaces. SWEET is a key to improving the discovery
and use of Earth science data, through software understanding of the semantics of web
resources (R. Raskin, 2003; R. G. Raskin & Pan, 2005).

• The Environment Ontology (ENVO)6 provides an ontology for specifying a wide range of
environments relevant to multiple life science disciplines. The four top-level classes of ENVO
are Environmental System (Biome and Habitat), Environmental Feature, Environmental
Condition, and Environmental Material. ENVO provides researchers with an accessible and
instantly relevant resource for annotating environmental elements in their data (Buttigieg
et al., 2013).

5http://sweetontology.net/sweetAll
6https://sites.google.com/site/environmentontology/
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Figure 2.6: SWEET ontologies and their interrelationships as depicted by R. G. Raskin & Pan
(2005)

• The GeoLink Modular Oceanography Ontology consists of an interlinked collection of ontol-
ogy design patterns designed for the oceanography domain. These patterns are sufficiently
modular, making them easier to extend and reuse for developing new domain or task on-
tologies related to oceanography (Krisnadhi et al., 2015).

• Ahlqvist et al. (2015) designed a framework for applying semantics in land cover and land
use domain. The study includes work on conceptual and technological semantic practices,
including categorization, ontologies, vocabularies, design patterns, ontology logic restric-
tions, etc. Thus, it helps anyone working with land use or land cover data to harmonize
categories, repurpose data, and develop or use land cover datasets.

• Calafiore et al. (2017) proposed an ontological approach to the analysis of cities as urban
artifacts. Due to the fact that the expanding quantity of geo big data and the growing
effect of IoT in today’s smart city are driving a rethinking of urban systems that takes into
account the complexities of human behavior, this study focused on in particular on the
difference between social roles and functional roles of the cities through the prism of social
practices.

The ontologies described above are heavyweight ontologies. They’re fully built ontologies that
describe a whole domain or domain notion. In the last years, the research focus has been shifted
towards the development of more modular ontologies applicable to different problems - task and
application ontologies (Kokla & Guilbert, 2020). So far, many geo-ontologies focused on different
tasks or applications have been developed. For example, spatial decision support (Li et al., 2012),
disaster managemen,t and response (Qiu et al., 2015; Zhong et al., 2017), etc. Since this section
is mainly focused on geospatial data integration, table 2.2 shows a more detailed overview of the
latest studies related to this task from different application domains.
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Table 2.2: The latest studies related to geospatial data integration

Application
domain Study Description

Geology Wang et al. (2018)

Ontology-based data integration and visualization system
for exploring information on regional geologic time, paleontology,
and fundamental geology was proposed and developed.
The proposed system bridged gaps between different geological
data sources and made a step toward smart geoscience data services.

Urban
Environment

Analysis
Y. Chen et al. (2018)

The paper presents a new way of using ontologies to resolve heterogeneous
data problems in urban analytics. As a result, the heterogeneities among datasets
are resolved by applying two levels of the mapping mechanism. A case study
shows the usability of the proposed framework and the strong potential for
applying this method to different application scenarios.

Cultural
Heritage Nishanbaev et al. (2019)

The research examined current geographic semantic web ideas that are relevant
to the cultural heritage area and proposed the framework to apply geographic
semantic web technologies to cultural heritage data to address their heterogeneity.

Earth
Observation Augustin et al. (2019)

The study introduced the concept of a semantic EO data cube. A semantic
EO data cube was defined as “a spatio-temporal data cube containing EO data,
where for each observation at least one nominal (i.e., categorical) interpretation is
available and can be queried in the same instance”. According to the research,
semantic EO data cubes can be used to retrieve the information from
EO data using semantic queries which are understandable to humans and that
allow non-EO experts to get the necessary information.

Mobility
Ding et al. (2020)

The paper proposed a framework that unites ontology-based data access and
visual analytics. By providing a unified picture of diverse data and functioning
as a mediator for visual analytic tasks, ontologies play a critical role in the
proposed framework. The case study investigates the correlation between
meteorological and traffic data showed that the proposed approach is suitable
for the exploration and interpretation of diverse geographical data.

Sobral et al. (2020)
The research proposed an ontology-based framework to support the integration
and visualization of data from Intelligent Transportation Systems. The idea
of the proposed framework is aligned with the Semantic Web principle of sharing
and reusing existing knowledge, to enhance management and decision making.

Huang & Harrie (2020)

The research introduced the idea of enhancing the ontologies approach with semantic
constraints for cross-domain data integration. Also, ontologies and semantic rules were
used to formalize geospatial data analysis and visualization knowledge. The results
demonstrated that the proposed approach can facilitate the sharing and outreach of
geospatial data and knowledge for various spatially informed studies.

This review shows that geospatial ontologies are a powerful tool to address the semantic
heterogeneity of geospatial data. In recent years, there has been a rising emphasis on integrating
domain and task geo-ontologies into broader data retrieval and analysis systems. Thus geo-
ontologies are used to create inter-operable systems and provide users with customized solutions.

2.2.2 Semantic Geospatial Data Processing and Analysis
Geospatial data processing and analysis is a challenging task that includes complex processes such
as spatial cross-matching, overlaying of multiple geospatial datasets, spatial proximity computa-
tions between objects, and spatial pattern discovery (C. Zhang et al., 2017). SPARQL Query
Language is not designed to retrieve information from geospatial data sources and does not have
a comprehensive set of geospatial query capabilities. However, it offers some simple geospatial
functionalities such as “intersects” (intersection between two geometries), “within" (check if ge-
ometry A is within geometry B), and others. Thus, SPARQL can handle simple geospatial queries,
for example, checking if an agricultural parcel is located within a specified soil type (Nishanbaev
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et al., 2019). Geospatial queries, on the other hand, are usually more complicated. To provide
users the opportunity to query geospatial data on the Semantic Web, the GeoSPARQL7 protocol
was proposed by the OGC as an extension of SPARQL. GeoSPARQL is a vocabulary that defines
a core set of classes, properties, and data types that can be used to construct query patterns
for geospatial data. Figure 2.7 shows the classes and properties defined by GeoSPARQL in the
core, Topology Vocabulary Extension and Geometry Extension, Geometry Topology Extension,
and RDFS Entailment Extension requirements classes (OGS, 2022).

Figure 2.7: An overview of the Classes and Properties defined in GeoSPARQL from OGS (2022)

Information stored in geospatial RDF data can be retrieved and analyzed using GeoSPARQL
functions to discover connections and relationships among geospatial objects. For example, the
following example GeoSPARQL query (Figure 2.8) finds the 3 closest features to feature "my: C"
using GeoSPARQL function "hasExactGeometry".

The use of ontologies to describe knowledge has also grown more common in the research areas
such as geoprocessing and information retrieval (Huang & Harrie, 2020). Hofer et al. (2017)
analyzed processes of a spatial analysis workflow and developed a knowledge base that describes
those processes. Scheider et al. (2019) examined analytical problems that underpin a variety of
standard GIS technologies and proposed a semantic framework that matches analytic questions
and tools that are capable of answering them. Scheider et al. (2020) proposed an ontology
of core concept data types that help to resolve geo-analytical problems. The results of the
above-mentioned studies showed that the ontological approach to knowledge formalization about
geospatial data processing and analysis is able to help answer various analytical questions.

7https://www.ogc.org/standards/geosparql
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Figure 2.8: GeoSPARQL query example from OGS (2022)

2.2.3 Semantic Geospatial Data Visualization
The translation of data from measurement or simulation, as well as models (empirically built or
machine-learned) into interactive pictures for exploration, analysis, and presentation, is known
as data visualization (M. Chen et al., 2020). Visualization of geospatial data refers to the term
geovisualisation - "the use of visual geospatial displays to explore data and through that explo-
ration to generate hypotheses, develop problem solutions and construct knowledge". Maps are
crucial in this process (Kraak, 2003). The use of maps and mapping technologies addresses the
synthesizing and displaying of complex data. Trends may be seen and comparisons can be made
across different places and historical periods using maps. As a result, maps can help to better
understand the relationship between humans and their environments (Kraak et al., 2020).

Data visualization is not only an end product of scientific analysis. It can support different
steps in the data life cycle and become a more integral part of the scientific process (Fox &
Hendler, 2011). For example, various ontology visualization tools and methods address organiz-
ing and representing knowledge and support the data life cycle’s data integration stage. Dudáš et
al. (2018) made a review of the ontology visualization methods and tools. In this study ontology
visualization methods were classified according to three criteria: the number of dimensions used
by the visualization method, graphical elements used in the visualization, and the method used
to lay out the elements on the screen. The following schema (Figure 2.9) was made based on
the above-mentioned research to summarize ontology visualization approaches. According to the
study, although a large number of ontology visualization methods exist, most of the ontology
visualization tools use a 2D node-link visualization with a force-directed layout. However, there
is no proof that it is significantly better than other methods, thus, the appropriate visualization
method should be chosen based on ontology visualization purposes such as learning to use an
ontology or sharing to show an overview or illustrate a specific part of an ontology.

Concept maps are an example of 2D node-link visualization with a force-directed layout. They
consist of concepts, which are commonly enclosed in circles or boxes of some kind, as well as
connections between concepts, which are shown by a connecting line joining two concepts. The
words on the line, known as connecting words or linking phrases, describe the relationship be-
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Figure 2.9: Classification of the ontology visualization methods

tween the two ideas (Novak & Cañas, 2006). Being a powerful graphical tool for organizing and
representing knowledge, concept maps have been increasingly used to support building ontologies
and vocabularies for the Semantic Web. For example, figure 2.10 shows a part of the concept
map developed for the ontology in the GeoLink project founded by the US National Science
Foundation Krisnadhi et al. (2015). The concepts (e.g., Trajectory) and the relations (e.g., seg-
ment) in this example objects have been annotated using terms in the corresponding domain,
oceanography in this case. Thus ontologies built in the data integration stage can be combined
with data visualization and provide efficient support to the data analysis stage (Ma et al., 2015).

In the field of Geoscience various applications which incorporate semantic technologies and visual-
ization of geospatial data have been developed. The latest of them have already been mentioned
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Figure 2.10: A fragment of the concept map of the ontology from the GeoLink project
(Krisnadhi et al., 2015)

in the table 2.2. For example, Wang et al. (2018) in geology, Ding et al. (2020); Sobral et
al. (2020); Huang & Harrie (2020) in the urban mobility domain. The main idea behind those
applications is to provide users with the opportunity to query data of interest without having
to understand the complexity of the heterogeneous data and to create map layers to support
data analysis processes. For example, figure 2.11 shows the ontology-driven data integration and
visualization pilot system for exploring information on the regional geologic time, paleontology,
and fundamental geology 8 developed by Wang et al. (2018). The aim of this system is to help
users find fossil records through a visualized geologic time scale. The system connects elements
from geologic time scale, paleontology, and WMS geologic map service together. As a result,
applications based on the combination of semantic geospatial data integration and visualization
can bridge the gaps between different data sources and create smart geoscience data services.

On the other hand, for visualization and cartography themselves, it is well known, that map-
making is an intrinsically human process that is difficult to automate since computers are often
incapable of managing perceptual characteristics of data depiction (Harrie & Weibel, 2007).
However, cartography has traditionally adapted to new technology breakthroughs, and these de-
velopments frequently affect the theoretical underpinning of cartography, resulting in new spatial
representation paradigms. Cartography is once again at a technical development point, with the
emergence of the Semantic Web, which is affecting operational methods as well as conceptual
and theoretical underpinnings (Varanka & Usery, 2018). Hence, cartographic knowledge can be
formally presented as well to enhance computer aiding and the propagation of such knowledge
(Huang et al., 2020). Earlier works in this field were mostly focused on the development of a
knowledge base to support map generalization (Kokla & Guilbert, 2020). For example, Gould &
Mackaness (2016) used ontological modeling to represent and articulate the knowledge used in

8http://www2.cs.uidaho.edu/ max/gts/
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Figure 2.11: A screenshot of the ontology-driven data integration and visualization pilot system
for exploring information on regional geologic time, paleontology, and fundamental geology

developed by Wang et al. (2018)

the map generalization process. Yan et al. (2017) proposed a multi-agent system for nautical
chart generalization based on the knowledge of the generalization process and the undersea fea-
tures and their relationships. This system evaluates ontological rules and constraints in order to
choose suitable generalization operators. More recently, Varanka & Usery (2018) proposed the
concept of a map as a knowledge base. A map as a knowledge base implies that the visual map is
more than just a collection of descriptive data and design principles; it also includes a collection
of semantic propositions and logical predicates that form a body of knowledge structured as a
map. The digital output of a map as a knowledge base may be understood by computers as
well as people, and can enable access to the knowledge base via interfaces that allow users to
pick features and other data from the map. Based on that Huang & Harrie (2020) developed
a broader model that includes formalization of visualisation knowledge. The proposed system
architecture derives geographical and depiction data from a knowledge base and creating a map
with the desired style for a client application.

This literature review shows that semantic technologies and in particular ontologies can effec-
tively support geospatial data management. Although geo-ontologies were firstly developed to
formalize domain knowledge, in recent years, there has been a rising emphasis on using ontolo-
gies for geospatial data integration, retrieval, analysis, and visualization. Latest works in this
domain make use of ontologies to design smart geoscience data services and provide users with
tailor-made solutions.
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2.3 Semantic Technologies in Agriculture
Fundamentally, agriculture is about developing the environment in a sustainable manner to suit
social demands (Hitzler et al., 2021). To sustainably increase agricultural productivity, fortify the
global supply chain, decrease food losses and waste, and guarantee that everyone who is hungry
or undernourished has access to nutritious food, more work and efforts are needed as the world’s
population rises. The SDG2 "End hunger, achieve food security and improved nutrition and pro-
mote sustainable agriculture" requires the widespread promotion of sustainable agriculture. More
specifically, SDG 2 is divided into sub-targets, with Targets 2.3 and 2.4 addressing increasing
agricultural production and transition to agricultural sustainability, respectively (Table 2.3).

Table 2.3: SDG 2 - Zero Hunger: Targets 2.3 & 2.4 from United Nations (2016)

Target 2.3

By 2030, double the agricultural productivity and incomes of small-scale food producers,
in particular women, indigenous peoples, family farmers, pastoralists, and fishers, including
through secure and equal access to land, other productive resources, and inputs, knowledge,
financial services, markets, and opportunities for value addition and non-farm employment

Target 2.4

By 2030, ensure sustainable food production systems and implement resilient agricultural
practices that increase productivity and production, that help maintain ecosystems, that
strengthen capacity for adaptation to climate change, extreme weather, drought, flooding, and
other disasters and that progressively improve land and soil quality

Smart Agriculture was created to improve agricultural sustainability and promote data-driven so-
lutions for greater crop quantity and quality while reducing environmental impact (Dong et al.,
2018). Smart Agriculture is being enhanced by IoT, a collection of new technologies that provide
farmers with the tools they need to address the enormous challenges of the twenty-first century
(Bhuyan et al., 2021). As a result, nowadays agriculture, and in particular smart agriculture is
generating massive amounts of raw data from sources like soil sensors, drones, and local weather
stations. Since agriculture is highly dependent on weather and environmental conditions like
rain, temperature, humidity, hail, etc, from this perspective, agricultural datasets are spatial and
temporal and can be considered geospatial data as well. However, raw data from sensors in itself
is meaningless and isolated and it may be of little benefit to farmers and decision-makers. By
offering standard data transfer protocols and data description languages, semantic web and in
particular geospatial semantic web may add context and meaning to data as well as its aggregate
(Drury et al., 2019).

Nonetheless, agriculture has a number of its own semantic resources and data interchange stan-
dards. Thus this section is focused on the review of the most prominent agricultural semantic
resources as well as the applications of semantic web technology to the agricultural domain.

Semantic resources for agriculture are resources that employ semantic technologies to describe
knowledge gathered by an organization or individual, and the described resources are free to use
and come with liberal user permissions (Drury et al., 2019).
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The most extensive and biggest semantic resource AGROVOC 9, developed by Food and Agri-
culture Organization (FAO). AGROVOC is a useful tool for homogeneously classifying data and
allowing exchange and reuse. AGROVOC is a system for organizing knowledge so that it may be
retrieved later. It is a logically organized set of concepts, terminology, definitions, and connec-
tions. Maize, hunger, aquaculture, value chains, and forestry are examples of concepts in food
and agriculture. These ideas are utilized to clearly identify resources, allowing for uniform indexing
methods and more efficient searches. Each notion in AGROVOC contains lexicalizations, which
are phrases used to convey it in other languages. AGROVOC now has more than 38,100 concepts
and 802,000 terms in more than 40 languages (Subirats-Coll et al., 2022). AGROVOC is released
as a Linked Open Data (LOD) collection with different vocabularies aligned (linked)(Figure 2.12).
The LOD version of AGROVOC is saved in Allegrograph triple store and is in RDF/SKOS-XL
(data is accessible to machines through a SPARQL endpoint, and to humans by means of HTML
pages generated with Loddy).

Figure 2.12: AGROVOC Linked Open Data, taken from FAO (2022)

AGROVOC has a variety of real-world uses in contemporary information service infrastructures,
ranging from text annotation and indexing to applications in research data management to full-
fledged integration into ontologies, schemas, and data sets. These uses go beyond simple in-
teractive thesaurus use. Thus, this will improve big data methodologies, which support greater
decision-making and accountability as well as more efficient global knowledge and technological
exchange (Subirats-Coll et al., 2022).

While AGROVOC is a big monolithic resource, large semantic resources can also be created
by combining smaller ontologies into a single, more comprehensive one (Drury et al., 2019). The
most significant examples of this approach are Crop Ontology 10 and FoodOn 11.

9https://www.fao.org/agrovoc/
10https://cropontology.org/
11https://foodon.org/
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The Crop Ontology project provides the crop community with a central place to create standard-
ized vocabularies and organize them into ontologies. It enables browsing and searching through
a large collection of concepts linked to crops that are organized according to categories for phe-
notypes, breeding, germplasm, and traits. Concepts are stored in the form of ontologies that are
not only lists of terms but also define relationships between terms within a specific domain. It
provides computers with an understanding of those relationships and therefore they are able to
find information semantic reasoners. In the context of agricultural bio-diversity, Crop Ontology
serves as both a useful software system capable of modeling generic ontologies and a forum for
discussion and the development of the next generation of standard crop vocabularies, which are
crucial for the management and discoverability of biodiversity data in the future. As a result, it
is one more step toward more sustainable agriculture (Matteis et al., 2013).

A consortium-driven initiative called FoodOn aims to create a complete and readily searchable
global "farm-to-fork" food ontology that reliably and consistently identifies foods that are fa-
miliar to cultures from all over the world. This ontology focuses on creating a semantics for
agricultural, animal husbandry, and food production activities, relating them to food produc-
tion, culinary, nutritional, and chemical substances, and processes. By standardizing contractual
food references along the farm-to-fork supply chain, utilizing FoodOn vocabulary will improve
research understanding and customer satisfaction with more easily comparable food data, hasten
the traceability of tainted foods, and ultimately result in favorable economic and human health
outcomes (Dooley et al., 2018; Alreshidi, 2020).

Semantic technologies and their resources can be integrated into applications. There are many
examples of applications that rely on semantic technologies and were made specifically for use in
the agricultural domain. Drury et al. (2019) identified the main categories of semantic technolo-
gies applications in agriculture: Knowledge-based systems, Remote Sensing, Decision Support,
and Expert Systems. In addition, decision support is the most frequent area of research. The
following table (Table 2.4) is made based on the above-mentioned study and summarizes the
research on the application of semantic technologies in agriculture.

On the other hand, Drury et al. (2019) pointed out that despite the fact that there are
many resources that are specifically geared toward solving agricultural issues, there are not many
applications of existing semantic resources for doing so because most of the applications use
custom-built domain ontologies. The reason might be that as it was mentioned in section 2.2,
the creation of more modular ontologies that can be applied to many issues, such as task and
application ontologies, has become the focus of study in recent years.

Agriculture relies more and more on data. An interconnected information is necessary to de-
scribe and predict agricultural processes. So this review makes the assertion that in light of
their ability to represent and integrate data as well as infer new information through the use of
reasoners, semantic web technologies are therefore asserted to have an important role to play in
smart agriculture.
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Table 2.4: Applications of agricultural semantic technologies based on Drury et al. (2019)
Application Area Subarea Examples of studies

Knowledge-based systems Question-Answering Chaudhary et al. (2015)

The study presents an agro advisory system for the cotton crop.
The system includes Cotton Ontology, Web Services, and Mobile
Application. The Cotton Ontology stores the domain knowledge
about cotton production required for answering farmers’ questions.
As a result, the system bridges the gap between farmers and
agricultural domain experts.

Semantic Information Retrieval Lawan et al. (2016)
This paper presented the Onto-CropBase tool which is a semantic web
application for querying and browsing an ontology-based knowledge
model. According to the evaluation results, the tool can serve as a first-hand
information portal for information on underutilized crops.

Remote Sensing S. Hu et al. (2011)

The study introduces the AgOnt , an ontology for transmitted data from sensors.
It consists of five top-level concepts: product, phase, time, location, and condition.
Each of these concepts has subclasses that represent related agricultural concepts such
as Seed, Seedling, Plant, Crop, and Processed food. Using this unified meta-model,
heterogeneous agriculture data sources can be integrated and accessed seamlessly.

Decision Support
Crop Management Bangkhomned & Payakpate (2020)

This paper presents an ontology applied to the management of knowledge on the
production of the tropical fruit, longan, in Northern Thailand. The ontology includes
factors affecting the quality of longan and the relationships between them. According
to the results, the proposed system can be implemented to support local farmers,
decision-makers, and domain experts.

Pest Management Zarembo et al. (2021)
The study proposes a data integration system that allows the identification of new
regularities in plant-pathogen interactions (apples and pear scab) and provides mechanisms
for disease control decisions. It can be applied to design guidelines or be applied as a part of
digital expert systems.

General Agricultural
production Alreshidi (2020)

This paper proposes an ontology-driven information retrieval system for agriculture in
Saudi Arabia (SAAONT). It provides a knowledge base for Arabic concepts of terms
related to agriculture and the lifecycle of seeds, grains, transportation, storage, and
consumption and, as a result, it supports decision-makers, to establish a smarter agriculture
environment.

Expert Systems Cao et al. (2013)

The study proposed a system that helps farmers identify ailments that impact the corn
harvest. Plantationontology, Disorder ontology, and Observation ontology are the three
key terms of the domain ontology that the system employs. A Problem solution editor,
a Concept editor and a Domain model editor are also included in the system. The inference
procedure first establishes the stage of plant growth before predicting the most likely illness.

2.4 Summary
The primary research concepts emerging from the preceding literature review are based on the
motivation of developing a novel framework in the agricultural domain that unites ontology-based
data integration and geovisualization to provide farmers with valuable information for more ef-
fective decision making, and as a result, improve the sustainability of agriculture.

According to Bellinger et al. (2004), information is data enriched by meaning. Interoperability is
one of four foundational FAIR principles of data management that supports the transformation of
data into information. Hitzler (2021) underlined that there is a great amount of information re-
garding effective data management that has come from the Semantic Web. This information can
be applied anywhere that data exchange, discovery, integration, and reuse are required. As a part
of Semantic Web, ontologies and vocabularies enable data interoperability by describing objects,
properties of objects and relationships between objects within a specified domain of knowledge,
in other words, they give meaning to raw data.

Nowadays agriculture, and in particular smart agriculture is generating massive amounts of raw
data from sources like soil sensors, drones, and local weather stations. In particular, these data are
spatial and temporal, and hence geospatial data. There are a lot of existing ontologies developed
for different purposes and applied to different domains in geoscience. These ontologies support
data integration, retrieval, and analysis by discovering hidden relationships between geospatial
objects and phenomena. However, Lai & Degbelo (2021), Degbelo (2021) argue that maps as a
representation of knowledge index information by location on a plane rather of employing words
as the main organizing principle for knowledge. They make it possible to retrieve information
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hidden in geospatial datasets in a more effective and efficient manner.

Nonetheless, in recent years some studies which combine both: semantic technologies and geo-
visualisation were conducted in different geo-related domains such as geology, urban mobility,
cultural heritage, etc. Results show that applications based on the combination of semantic
geospatial data integration and visualization can bridge the gaps between different data sources,
create smart geoscience data services, and provide users with tailor-made solutions.

Even though there are various semantic resources and ontologies in agriculture developed for
different application purposes, to the best of the author’s knowledge, there is a very limited
number of applications that combine semantic technologies and geovisualization for agriculture.
Thus this Master’s thesis aims to bring forward the scientific topic of digital transformation in
agriculture using geospatial visualization techniques. Thereby, this research will contribute to the
digital transformation of the European Agricultural Sector.
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Methodology

Agriculture is becoming increasingly data-driven. The efficiency and effectiveness of data use can
be improved by implementing the FAIR principles for data management. By making data Find-
able, Accessible, Interoperable, and Reusable, these principles support knowledge construction
and make it easier for people and machines to discover and analyze data. This Master’s thesis is
mostly focused on data interoperability and reusability, in other words, on the integration of data
sources and making sure that each resource has unambiguous semantics which increases data
reusability by different stakeholders, and, as a result, reduces time and costs spent on decision-
making.

Although there are a number of existing studies dealing with ontology-based geospatial data
integration and visualization in various application domains (Wang et al. (2018), Ding et al.
(2020), Huang & Harrie (2020)), to the best of the author’s knowledge, there is no existing
methodology for the ontology-based geospatial data integration and visualization in the agricul-
tural domain. The thesis is therefore viewed as state-of-the-art research with a primary goal of
creating a data-driven technique that encompasses the whole data life cycle: starting from data
collection and processing steps, follow-on data integration, and finally analysis, visualization, and
interpretation. Nevertheless, the proposed visualization framework should provide a high level of
utility and usability in order to ensure its usefulness for the target users. Hence, the methodology
should include user-based evaluation besides the steps defined above. The methodological stages
included in semantic-driven geospatial data integration and visualization will be discussed in more
depth in the following sections.

3.1 Data Collection and Processing
Data preparation is the process of collection, combining, structuring, and organizing data so it
can be further used for business analytics and data visualization applications. Data preprocess-
ing, profiling, cleansing, validation, and transformation are all parts of data preparation step.
It frequently includes entails combining data from various internal systems and outside sources
(Stedman et al., 2022). The data preparation workflow defined by Stedman et al. (2022) is
adopted for this Master’s thesis (Figure 3.1).
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Figure 3.1: Data preparation steps (based on Stedman et al. (2022))

Data collection. For the purpose of this thesis the relevant data was gathered from data ware-
houses, data lakes, and other data sources. During this step, it was necessary first to identify and
confirm that the data collected is a good fit for the objectives of the planned analytics applications.

Data discovery and profiling. The collected data has then to be further examined in or-
der to determine what it includes and what needs to be done in order to make it suitable for the
intended usage. Data profiling may assist with this by locating patterns, correlations, and other
qualities in the data as well as discrepancies, abnormalities, missing values, and other problems
so they can be fixed.

Data cleansing. To develop comprehensive and accurate data sets, the detected data flaws
and mistakes must be then fixed. For instance, erroneous data must be rectified or eliminated,
missing values must be filled in or remove, and conflicting entries are harmonized as part of the
process of cleaning up data sets.

Data structuring. The data must be structured and modeled to satisfy the needs of ana-
lytics. For instance, to make data available for geoprocessing tools and perform interpolation,
information stored in comma-separated values (csv) must be transformed into spatial data for-
mats such as shp-files.

Data transformation and enrichment include the development of new fields, columns, or
datasets that aggregate values from existing ones. For example, temporal or spatial aggregation,
calculation of new indicators needed for the analysis, and modeling and predicting the missing
values. As a result, steps like supplementing and adding data and enrichment significantly im-
prove and optimize data sets.

Data validation and storage. In this final phase, data is verified according to its correct-
ness, consistency, and completeness. After then, the data is either utilized immediately or made
accessible to other users after being stored in a data warehouse, a data lake, or a similar reposi-
tory. The data processed for the Master’s thesis purpose are stored in a relational database which
will be integrated with other data sources during the integration stage.
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Even though data preparation is usually a time-consuming process, which takes approximately
80% of the total data engineering effort, it is a crucial process because real-world data might be
incomplete and ambiguous; high-performance mining systems require quality data, and quality
data yields high-quality patterns. Thus, data preparation guides the quality knowledge discovery
and helps to create efficient, high-performance data analysis application systems (S. Zhang et
al., 2003).

3.2 Ontology-based Data Integration
Although data integration is one of the traditional issues in data management, it is still a sig-
nificant challenge today (Giacomo et al., 2018). This Master’s thesis adopts the idea of using
semantic technologies to make data integration more powerful. The best formal instrument for
establishing a conception of the subject area is thought to be ontologies. Ontologies are partic-
ularly encouraged for implementing what we may term Ontology-Based Data Access (OBDA), a
framework for dealing with and modeling data integration systems (Poggi et al., 2008; Giacomo
et al., 2018).

The OBDA framework consists of a set of pre-existing data sources forming the data layer of
the information system, and then on top of this layer, a service is created with the goal of giving
the information system users a conceptual perspective of the data. The conceptual perspective
is specifically described in terms of an ontology, which serves as the point for the interactions
between clients and the system. The data sources are independent of ontology. In other words,
the idea is to connect an autonomously existing set of data to the ontology. The data sets have
not been necessarily structured with the purpose of storing the ontology instances. As a result,
the user of the information system is liberated from having to know how data are stored and
structured in concrete resources (databases, software programs, services, etc.), and can interact
with the system by expressing their queries and goals in terms of conceptual representation of
the domain of interest, called ontology (Poggi et al., 2008; Giacomo et al., 2018).

Three elements make a system that realizes the OBDA vision (Figure 3.2):

• The data layer, representing the information system data sources that are controlled by
the services and processes that use their data.

• The ontology, with the goal to give a formal, orderly, and high level representation of the
domain of interest. It is the part of the information system that clients (both people and
computer programs) interact with.

• The mapping between the two layers, which is an explicit description of the relationship
between the data sources and the ontology. It is used to transform ontology operations
(such query answering) into specific actions on the data sources.

Thus, the OBDA, which is also known in the literature as Virtual Knowledge Graph enables data
access, integration, quality checking, and governance through an ontology. An ontology and
data source are connected semantically by a mapping, which is made up of a number of mapping
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Figure 3.2: OBDI/OBDA specification and system as depicted by Calvanese et al. (2018)

claims. It is worth noticing that this Master thesis adopts the term "mapping", however, the
term "annotation" can be met in literature. The mapping enables the separation of the physical
data structure from the ontology model and bridges the semantic gap between these two. As a
result, the data source is exposed as a virtual knowledge graph via the ontology and mapping
combined, known as an OBDA specification, and is made accessible using SPARQL. The virtual-
ization approach avoids impact on the pre-existing data layer and doesn’t require the application
of the ETL algorithms and new database creation (Ding et al., 2020).

Ontology-Based Data Integration (OBDI) is an extension of OBDA in which data are not ini-
tially included in a single data source, but must be accessed from numerous sources that must
be merged while querying. OBDI often calls for an additional step of setting up a (integrated)
database so that SQL queries may be sent simultaneously to several data sources. This can be
accomplished in one of two ways: either by connecting to the existing databases using a SQL
federation engine, such as Denodo 1 or Dremio 2, or by using a more direct "physical integration"
method to import all the data sources into a single database system. After this step, OBDI
maintains the same conceptual architecture as OBDA. There are various systems implementing
the OBDI paradigm such as Mastro 3, Stardog 4, Ontop 5 (Ding et al., 2020).

As a result, OBDI is an advanced method to semantic data integration. The global schema
for OBDI is provided in terms of an ontology, which is a formal and conceptual representation of
the application domain rather than just a unified view of the data at the sources.

1https://www.denodo.com
2https://www.dremio.com
3(http://www.obdasystems.com/it/mastro
4(https://www.stardog.com/
5https://ontop-vkg.org/
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3.3 OBDI-enabled Visual Analytics
The next step of the proposed framework is the extraction of meaningful information from inte-
grated data sources. According to the definition given by Keim et al. (2008), "visual analytics
combines analysis techniques with interactive visualizations for an effective understanding, rea-
soning, and decision making on the basis of very large and complex data sets". Thus visual
analytics techniques provide a solution to effective data-information transition. Visual analytics
approach provides domain experts with a comprehensive strategy for making decisions that com-
bine data analysis, visualization, and human reasoning. Visualization serves as a suitable means
for appropriately communicating the results of the analysis to achieve the most effective results
(Keim et al., 2008).

A variety of information visualization systems and visualization methodologies have been influ-
enced by Shneiderman’s Mantra: overview first, zoom and filter, then details on demand.
The current data, however, is too big and complex to be represented in such a straightforward
way. Hence, Shneiderman’s Mantra was expanded to include what is referred to as the visual
analytics mantra: analyze first, show the important, zoom/filter, analyze further, details
on demand. In other words, this mantra encourages clever fusions of analytical procedures with
cutting-edge visualization methods (Shneiderman, 1996; Keim et al., 2008).

This Master’s thesis research employs the above-mentioned mantra as well as visual analytics
steps summarized by Cui (2019) (Figure 3.3) to implement the proposed semantic-driven geospa-
tial data integration and visualization approach.

Figure 3.3: The visual analytics process as depicted by Cui (2019)

Step 1 Preprocess data. As a first step Cui (2019) defines data cleaning, transformation, and
integration of the heterogeneous data. However, in this Master’s thesis data preparation is a
separate step that goes beyond visual analytics, as well as OBDI, is a separate module of the
proposed semantic-based geospatial data integration and visualization approach.
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Step 2 Analyse data - "Analyze first" . For the purpose of this Master’s thesis, the ana-
lytical tasks are formulated as SPARQL and GeoSPARQL queries using the vocabulary from the
ontology.

Step 3 Visualize data - "Show the important" . The query results often contain rich spatial
and temporal information that must be shown using visualization techniques concentrating on
various perspectives. The chosen methods are based on cartographic visualization, information
visualization, and other graphic representations. Thus they enable synchronized visual exploration
of data of the different formats and structures and support pattern discovery among represented
phenomena.

Step 4 Generate knowledge - "Zoom/filter" . Interacting with the system, users gener-
ate insightful knowledge through human vision, cognition, and reasoning processes. Based on
that the proposed system must provide a user with the interactivity functions such as zoom to
show details, filters by time and location, additional information on click, etc.

Step 5 Make new hypotheses - "Analyze further" . Through interactions, users may develop
new hypotheses and incorporate the newly acquired knowledge into the analysis and visualization.

Step 6 Update visualizations - "Details on demand" . The system creates a new visu-
alization that is modified based on interactions to represent the user’s comprehension of the data.

Systems for visual analytics have undergone numerous stages of technical development. Nowa-
days, there are various solutions available to developers such as Data Driven Documents (D3),
Tableau, Insights for ArcGIS, PowerBI, etc (Robinson et al., 2017). This Master’s thesis im-
plements an interactive dashboard as interface for visual analytics performance. A dashboard
is a type of graphical user interface that often provides at-a-glance views of indicators relevant
to a particular objective. Dashboards provide users with filtering, guided navigation, interactive
analytics, and visualization. As a result, it is an effective way to monitor spatial and temporal
changes, look for specific answers, and see all important metrics at a glance (Hale, 2020).

3.4 Evaluation
In order to provide high levels of utility and usability, it is crucial for visual analytics that solu-
tions adhere to user-centered design principles and are iteratively created with end users in mind
(Robinson et al., 2017). Roth et al. (2015) addressed the topic of interface success from the
perspectives of cartography and visual analytics. Interface success depends on following aspects:

1. Programming and debugging;

2. Examination of the supported use case scenarios and target users throughout the design;
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3. Evaluation-and-revision stages are carried out through the development process to address
users and use cases.

Therefore the evaluation step should be included to ensure the utility and usability of the
visual analytics module of the proposed semantic-based geospatial data visualization approach.

According to (Roth et al., 2015), there are three categories of interface evaluation methods
defined by evaluator:

• Expert-based methods are supposed to provide feedback about the interface from experts
in interface design and evaluation. In order to get a fair and unbiased opinion, experts should
be outside the project team.

• Theory-based methods need the interface to be evaluated by the developers and designers
themselves.

• User-based methods are essential to user-centered design. They provide a feedback from
a representative set of target users. However, these methods are often costly compared
to other methods in terms of time, money, and participant access. Anyway, a user-based
evaluation is recommended with at least a few participants from the target group.

According to the sort of data that was gathered, the interface evaluation methods may also
be divided into qualitative and quantitative. While quantitative data take the form of one or
more measurements (such as task completion rates or task timeframes) seeking to explain if the
activities were simple to accomplish, qualitative data consists of observational findings aiming to
determine whether design aspects are easy or hard to use (Budiu, 2017).

There are various qualitative and quantitative interface evaluation methods drawn from each of
our three evaluator-based categories, for example, conformity assessment, cognitive walkthroughs
as expert-based methods, scenario-based design, automated evaluation as theory-based methods,
and surveys, interviews, talk aloud/think aloud studies as user-based methods (Roth et al., 2015).

To ensure successful communication between an end-user and interface it is important to im-
plement different interface evaluation methods at different stages of the development. However,
due to the lack of time and resources, it might be difficult to do so but is necessary to conduct
at least one user-based interface evaluation. Therefore this Master’s thesis employs the com-
bination of two user-based evaluation methods: talk aloud/think aloud while the exploration of
the interface and follow-up interview with potential target users and evaluators. The proposed
data integration and visualization framework is intended to help spatial decision-makers in terms
of more sustainable agriculture and land use, professionals in the field of agriculture, scientists,
authorities, tech-oriented local farmers, and general public interested in the studied domain.

The talk aloud/think-aloud method provides quick feedback on the most important problems
from the users who might be interested in identifying a broad range of usability issues while
project resources are limited. An interview is a set of predefined questions. There are several
interview kinds, which are frequently distinguished by their degree of structure. In structured
interviews, questions are asked in a prearranged sequence. Semi-structured interviews occur
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somewhere in between unstructured interviews and free-form interviews. Interviews serve well
when the proposed framework supports a small number of highly-specialized users or a small set
of user-profiles (Roth et al., 2015; George, 2022).

In order to enable data-driven research, it must be made sure that all stakeholders have ac-
cess to high-quality data as well as other relevant outputs including software, methodologies, and
publications. All parties involved should take the FAIR Data Principles into account in order to
make sure that research results are discoverable, accessible, interoperable, and ultimately reused.
There are various of free tools that can help to assess the FAIRness of the data (Assessing the
FAIRness of data, 2019).

• The Australian Research Data Commons FAIR Data self-assessment tool 6 helps in eval-
uating a dataset’s FAIRness and, if required, helps in determining how to improve it by
walking you through a series of questions relating to each of the four groups of principles
(Findable, Accessible, Interoperable and Reusable).

• DANS have developed a prototype tool 7 to help to determine a score for the FAIRness of
existing data. The tool intends to support the assessment of how useful a particular dataset
is, and by adding a FAIR score badge to the data’s metadata in the repository catalog, this
can help other potential reusers as well.

• The EUDAT Fair Data Checklist is not a tool as such, but rather a handy reference sheet
that can help to carry out a quick check on the FAIRness of data.

The proposed methodological framework is applied to the case study of apple growing in
South Tyrol, Italy. The implementation steps are discussed in chapter 4.

6https://www.ands-nectar-rds.org.au/fair-tool
7https://www.surveymonkey.com/r/fairdat
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Implementation. Case Study:
Apple-growing in South Tyrol, Italy

4.1 Background - Agricultural Context

4.1.1 Study Area Description
Analyzing the factors that have shaped the agricultural sector is first important if it becomes
necessary to look at agriculture in a particular area of interest. Pedo-climatic conditions, climate
change, and relief influence agricultural activities directly while demographics, history, land use,
traffic, and consumer behavior have an indirect impact on agriculture (Tappeiner et al., 2021).

The case study was taken place in South Tyrol, Italy, which is the largest single apple-growing
region in Europe. With an area of 7,400 square kilometers, South Tyrol is the second-largest
province in Italy and its most northern (Figure 4.1) and has a total population of about 534,000
inhabitants as of 2021 (ASTAT-Landesinstitut für Statistik, 2021).

Climate

Located at the transition between southern and central Europe, South Tyrol has a moderate
continental climate - with an annual average temperature of 12.4 °C in Bolzano (266 m) and 2.6
°C in Martelltal (1850 m). The seasons feature cool to cold winters and warm to hot summers
with extreme high temperatures. It rains relatively little, especially in the wide main valleys of
South Tyrol. The average annual precipitation is between 500 mm in Schlanders in Vinschgau
and 1100 mm in the area between Passeier and Brenner. With increasing elevation, precipitation
increases by 100-150 mm per thousand meters of altitude. The duration of snow cover varies
between a few days on the southern slopes above Bolzano and Merano, and up to 140 days in
Ridnaun (1360 m). The inner-Alpine location of South Tyrol means a high number of hours
of sunshine and the mass warming effect of the Alps enables favorable production conditions
up to higher altitudes. Apple and wine growing is possible up to 1000 meters above sea level.
Temperature fluctuations of up to 20 °C between day and night offer good ripening conditions
for grapes and apples. Climate change is also a reality in South Tyrol. While the global aver-
age temperature has increased by 0.85 °C since 1880, the Alpine region warmed up even more
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Figure 4.1: Map highlighting the location of the province of South Tyrol in Italy (in red)
(TUBS, South Tyrol in Italy, CC BY-SA 3.0 from Wikipedia (2022b))

during this period. During the last 50 years, the temperature raised about 2 degrees. So far,
precipitation has not changed significantly, however, forecasts for the year 2100 assume less rain
in summer and unchanged to slightly increasing winter precipitation (Tappeiner et al., 2021).

Geology, Soil, Erosion

The high diversity of geological conditions in South Tyrol contributes to the development of
different types of soils that are crucial for agriculture. The location in the center of the Eastern
Alps means that a rich spectrum of rocks can be found here: volcanic rocks such as porphyry and
granite, metamorphic rocks such as phyllite and gneiss, and various sedimentary rocks such as
dolomite, limestone, or sandstone. The sediment layers of fluvial or glacial origin are particularly
important for agriculture, both in the valley bottoms and in the low mountain ranges. Fertile
soils could form on these sediments. Brown earth is the predominant soil type in agricultural
areas in South Tyrol. This is characterized by a high clay content and can therefore store water
and nutrients very well. Despite many cultivated slopes, erosion in South Tyrol is rare compared
to agricultural areas in other regions and only occurs locally (Tappeiner et al., 2021).

Relief

The pronounced mountain relief of South Tyrol only allows limited use of the land area. The
landscape presents differences in elevation from 200 up to 3900 m.a.s.l. However, only 14% of
the territory is below a thousand meters altitude, and only 5% can be settled. Up to the subalpine
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level, i.e., up to about 1800 meters altitude, the area is intensively used for agriculture (Tappeiner
et al., 2021).

Although the area suitable for agriculture is very limited by relief, South Tyrol has favorable
conditions for horti- and viticulture. The Alps protect valleys against cold and wind, while South
Tyrol’s climate with 300 days of sunshine and 2,000 hours of sunlight every year ensures the
necessary warmth (South Tyrol Apple Consortium, 2020). Therefore, most of the cultivable areas
of South Tyrol are used to grow fruits, in particular apples and grapes.

4.1.2 Apple-growing in South Tyrol
Apples thrive in all zones with a moderate climate. However, nowadays, apple production has
successfully expanded into warmer locations thanks to the creation of more heat-tolerant culti-
vars, the rising popularity of varieties that need an extended growing season (such Granny Smith
and Fuji), and developments in irrigation technology (Ferree & Warrington, 2003).

Horticulture and viticulture play an important role in the agriculture of South Tyrol. Together
they achieve 60% of the agricultural value added (Tappeiner et al., 2021). In South Tyrol, apples
are grown on 18,400 hectares - mainly in the area of Überetsch-Unterland, in the valley between
Bolzano and Merano, in the Vinschgau and in the middle of the Eisacktal (Figure 4.2). That
represents approximately 3% of the total area of South Tyrol (South Tyrol Apple Consortium,
2020).

Figure 4.2: Apple-growing regions of South Tyrol
(taken from Thuile (2022))

There are more than seven thousand apple growers in South Tyrol. Each farmer tends an average
of 2.5 hectares. Most of the orchards are family- operated (South Tyrol Apple Consortium, 2020).
Favorable growing conditions along with increased mechanization and industrialization of the fruit
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and wine growing sector have caused yield to increase significantly since 1990 by an average of
about 1.8 percent per year, resulting in an increase of over 58 percent over 27 years (Tappeiner
et al., 2021). Nowadays, approximately one million metric tons of apples of different varieties are
harvested every year in South Tyrol (Figure 4.3). That represents 50% of the Italian and 10% of
the entire European harvest (South Tyrol Apple Consortium, 2020).

Figure 4.3: Apple production in South Tyrol (2019-2020) based on the data from
ASTAT-Landesinstitut für Statistik (2021)

Following the latest trends in the promotion of sustainable and organic agriculture, apple produc-
tion in South Tyrol can be divided into two groups: integrated farming and organic cultivation.
Both put a lot of stress on the power of nature and the existence of a healthy balance between
helpful and pest insects. However, properly regulated, carefully chosen pesticides are employed
when pests go out of control or when the threat of fungal diseases exists. The choice of pesticides
to be used is where the distinction lies: organic producers utilize natural or pesticides that are
similar to those found in nature rather than chemical or synthetic pesticides. Between producers
who grow apples organically and those that grow apples in accordance with integrated criteria,
collaboration is guaranteed by one of the fundamental agreements that have been established by
the major fruticulture organizations (South Tyrol Apple Consortium, 2020).
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In terms of water use, when compared to wine or grassland farming, irrigation for the fruit
producing industry in South Tyrol is one of the most intense. The Vinschgau region in general,
and particularly deep south-facing farming fields, are especially dependent on supplemental irri-
gation. Since it may also be used to protect the fruit from frost, overhead irrigation or foliage
spraying systems are frequently used in the fruit-growing industry. However, as agriculture moves
in the direction of being more sustainable, water consumption for irrigation must be mindful
and controlled, which has resulted in a steadily rising proportion of drip irrigation over the past
10 years. Drip irrigation systems are thought to be more effective at watering apple trees than
spreading water thinly over a vast area, especially during the summer when water resources are
limited (Tappeiner et al., 2021).

However, in order to step forward in more sustainable agriculture, the sustainability strategy
sustainapple was created. The strategy adopts three main fields of action (Südtiroler Apfelkon-
sortium, 2020).

1. The South Tyrol Apple as a Worldwide Model of Success.

2. We Feed People in a Healthy Way.

3. Nature as a Partner.

Sustainapple also includes the core aspects of climate, environment, resource, soil, water, and
species protection which makes it a highly innovative and forward-looking sustainability strategy
(Südtiroler Apfelkonsortium, 2020).

Thus, apple growing is a crucial source of income for South Tyrol. This fact makes it im-
portant to apply Smart Agriculture to this domain. Growing concern about climate change in
mountain terrains requires an adequate analysis of apple-growing environmental conditions. The
following section presents the case study with the idea of the integration and visual analytics of
the ecological data.

4.2 Case Study
This section presents a comprehensive framework for ontology-driven geospatial data integration
and visualization for the needs of agriculture. There are two primary modules in the framework
(1) the OBDI module and (2) the visual analytics module. Figure 4.4 shows the two modules’
organizational structure, with arrows denoting information flow.

The OBDI module provides an ontological view of the data sources from the data layer. A declar-
ative mapping describes how to add the underlying data to the classes and properties listed in
the ontology. As a result, the data layer is exposed as a virtual knowledge graph via the ontology
and mapping combined, known as OBDI specification. The vocabulary from the ontology may
be used to create SPARQL queries for the analytical tasks. After then, users are shown the query
results using a variety of visualization techniques. Following the visual analytics mantra, based
on the visualization results users can formulate and perform new analytical tasks. In the following
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Figure 4.4: The ontology-driven geospatial data integration and visualization framework

subsections, the proposed framework is described in detail starting from data preparation for the
data layer, following data integration and visual analytics. Analytical tasks related to the environ-
mental precondition of apple-growing are performed, and the results are visualized. Furthermore,
to ensure high levels of utility and usability, the visual analytics module is assessed by experts in
the apple-growing domain.

4.2.1 Data Collection and Processing
Data collection

As a first step, the data related to the factors that influence agricultural activity are collected to
get insights into environmental preconditions of apple-growing in South Tyrol. In this study, data
from the following data sources are used.

• The Environmental Data Platform of EURAC Research (EDP)1, an online platform inspired
by the FAIR principles, that allows researchers to discover, share, analyze and process
datasets by web tools and APIs.

• The State Institute for Statistics of the Autonomous Province of Bozen-Bolzano (ASTAT)2.
1https://edp-portal.eurac.edu/home
2http://astat.provinz.bz.it/
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The ASTAT provides an interactive database of socioeconomic data. The most common
data formats are XLS and PDF.

• The Copernicus Land Monitoring Service (CLMS)3 provides a wide variety of customers in
Europe and throughout the world geographical information on land cover and its changes,
land use, vegetation status, water cycle in the field of environmental terrestrial applications.

Table 4.1 describes the collected datasets. These datasets are organized in different structures
and provided in various formats including geospatial and non-spatial data. Thus, different data
preparation operations were applied in order to make the data suitable for the next steps. Fig-
ure 4.5 shows the workflow applied to the meteorological records provided in .csv format. The
preparation of geospatial data is discussed later in this subsection.

Table 4.1: Datasets used for Master’s thesis research
Dataset Description Format Spatial Source

Weather stations
information

The dataset contains information about the name,
elevation, and location of more than 300 weather
stations in Trentino - South Tyrol and part of Austria and Switzerland.

csv yes EDP

Daily meteorological
records

The dataset contains meteorological time series of daily temperature
(maximum, minimum and mean) and daily total precipitation for weather
stations in Trentino - South Tyrol region.
The spanned period is 1950 – 2021.

csv no EDP

Monthly climatologies
The dataset contains the 1981 – 2010 monthly climatologies of mean,
minimum, and maximum temperature and total precipitation for weather
stations in Trentino – South Tyrol.

csv no EDP

Solar Irradiation The dataset contains information about monthly mean annual average
value of solar irradiation in South Tyrol Geotiff yes EDP

Land Cover The dataset presents the level land cover classes in South Tyrol. shp yes EDP

NDVI
The NDVI dataset is based on MODIS satellite data. It is calculated as
an 8-day maximum value composite MOD09Q1 (v006) reflectance
product. The spatial resolution is 231 m.

API,
Geotiff yes EDP

EU-DEM European Digital Elevation Model has 25m resolution with vertical a
ccuracy: +/- 7 meters RMSE. Geotiff yes CLMS

Apple production
in South Tyrol

The dataset contains information about the production of the most common
apple varieties in South Tyrol in 2019 and 2020. csv no ASTAT

Bloom and harvest
start dates

The dataset contains information about bloom and harvest start dates in apple
orchards related to weather stations Laimburg and Latsch. csv no Laimburg Research

Center

Figure 4.5: Non-spatial data preparation steps
3https://www.copernicus.eu/en/copernicus-services/land
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Non-spatial data

Data cleansing

The next step of the data preparation workflow is preliminary data exploration and profiling.
Having completed this step, it was discovered that meteorological data, in particular, daily me-
teorological records, incomplete and inconsistent, especially before 2010. That means that
there are missing records and NA values. R package ’tidyverse’4 was used to deal with those
data. Basically, the tidyverse is a system of packages for data manipulation, exploration and vi-
sualization. Using this package daily records were filtered first, leaving only records from 2010 to
2021 and only for the vegetation period (April - October), and then NA values were also removed.

Data transformation

The next step is grouping the data by the weather station, year, and month to further sum-
marize it by finding minimum, maximum, and mean values for temperature. The last step of
non-spatial data transformation is to join with the weather stations table that stores the infor-
mation about the weather station locations. As a result, a new spatial dataset with information
about monthly temperature values was obtained. The interpolation algorithms were applied to
this dataset as a part of geospatial data preparation.

Growing degree-day (GDD)

Horticulturists, gardeners, and farmers utilize GDD, a measure of heat accumulation, to fore-
cast the rates of plant and animal growth, such as when a flower will blossom, an insect will
emerge from hibernation, or a crop will mature.(Miller et al., 2001). To calculate GDD daily
meteorological records were used. The R package ’pollen’5 allows GDD calculation using the
gdd() function. This function accepts up to five arguments (1) daily maximum temperature, (2)
daily minimum temperature, (3) base temperature, (4) maximum base temperature, (5) type
of the GDD calculations. For this research GDD was calculated for each weather station from
2010 to 2021 with the base temperature of 10°C. The calculation was performed according to
type "B": GDD is calculated by taking the integral of warmth above a base temperature, where
integration is over the time period with T(t)>Tbase.

GDD =
∫

(T (t) − Tbase)dt (4.1)

In the case when the daily minimum temperature is lower than base temperature, then it is re-
placed by base temperature. The resulting table was joined with the weather stations table in
order to get a corresponding spatial dataset.

Bloom and harvest dates

Bloom and harvest dates for each weather station from 2013 to 2020 were calculated using GDD
4https://cran.r-project.org/web/packages/tidyverse/index.html
5https://cran.r-project.org/web/packages/pollen/index.html
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dataset and the dataset that contains information about bloom and harvest dates of Golden De-
licious variety at weather stations Laimburg and Latsch from 2010 to 2020. In order to define
bloom and harvest dates for each weather station, regression analysis was performed using the
GDD values on bloom and harvest dates at Laimburg and Latsch and the elevation of these
stations as parameters. Having these dates the length of the growing season was additionally
calculated.

Geospatial data

Due to the fact, that collected and obtained geospatial datasets were organized in different
structures and presented in diverse formats, the data processing steps applied to the geospatial
datasets are different. Figure 4.6 shows processing workflow applied to the collected geospatial
datasets.

Figure 4.6: Geospatial data processing steps

EO-DEM

Digital Elevation Model (EO-DEM) with 25m resolution was used to obtain slope and aspect.
Slope defines the steepness at each cell of a raster surface. The lower the slope value, the flatter
the terrain; the higher the slope value, the steeper the terrain. Aspect defines the direction the
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downhill slope faces. Each cell’s value in the output raster represents the compass direction that
the surface is facing at that particular point.

Monthly temperature (2010 -2021)

Since meteorological measurements represent a continuous phenomenon existing through space,
in this study modeled it as a surface with each location a unique phenomenon value. Empiri-
cal Bayesian Kriging (EBK) Regression Prediction was used to generate temperature surfaces.
EBK Regression Prediction is a geostatistical interpolation method that uses Empirical Bayesian
Kriging with explanatory variable rasters that are known to affect the value of the data that
is interpolated. This approach combines kriging with regression analysis to make more accu-
rate predictions. Since temperature changes with altitude, EBK Regression Prediction used it
as a dependent variable, while DEM raster was used as an explanatory variable. However, it is
challenging to store, query, and analyze raster datasets. Hence, it was decided to apply zonal
statistics that summarize the values of a raster within the zones of another dataset. To get the
"zones" dataset, the study area was partitioned into hexagonal grid cells. Considering the size of
the study area, grid cell size was set as 1 square kilometer resulting in a total of more than 7000
cells inside the study area. As a result, the polygonal vector dataset was obtained. Figure 4.7
depicts the interpolated mean temperature surface in April 2021.

Figure 4.7: The mean temperature surface in April 2021

NDVI

The NDVI dataset was collected in the form of a multi-band raster consisting of 8-day maxi-
mum value composites. Rasters inside the dataset were grouped by year and month first, then
the maximum value of NDVI for each month of the vegetation period (April - October) from
2010 to 2020 was found. In order to avoid dealing with massive raster datasets, zonal statistics
were applied to the NDVI dataset as well to get a polygonal vector dataset where each polygon
stores a unique value of NDVI.
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Data Storage

The datasets collected and obtained through processing steps are converted into relational tables
and stored in climate4apple database. PostgreSQL was chosen as the database management
system.

4.2.2 Ontology-based Data Integration
The data integration stage enables an ontological view of collected data using OBDI technology.
The OBDI system Ontop6 has been used for this Master’s thesis research. Ontop displays the
content of relational databases as knowledge graphs. Since these graphs are virtual, data remain
in the original data sources instead of being moved to another data storage, and queries formu-
lated over the ontology vocabulary are answered by being translated on the fly into queries over
the original sources. The relationship between ontology and data sources is specified by declar-
ative mappings. To accomplish interoperability, the OBDI module depends on standard formats,
including R2RML for mapping, OWL for ontology, RDF for the virtual graph, and SPARQL for
queries. Figure 4.8 provides a detailed architecture of the OBDI module developed for this study.

Figure 4.8: The OBDI module architecture

Designing ontologies and mappings may be seen as a process of documenting/annotating the
6https://ontop-vkg.org/
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data source (Figure 4.9). Usually, this process is incremental and iterative. It was started from a

Figure 4.9: The fragment of the data source annotation

small fragment of data including only weather stations, daily meteorological records, and monthly
climatologies. For this data fragment, ontology and mappings were created and tested by ob-
serving queries answers. Then a larger fragment of the data was included in the OBDI system.
Figure 4.10 depicts a part of the ontology as shown in the Protégé editor.

The OBDI configuration is subsequently made available as a typical SPARQL endpoint, indicating
that clients can interact with the endpoint by writing queries via the common HTTP protocol
(Figure 4.11).
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Figure 4.10: The fragment of climate4apple ontology

Figure 4.11: The deployed SPARQL endpoint

4.2.3 OBDI-enabled Visual Analytics
Analytical tasks related to the environmental precondition of apple-growing are defined and for-
mulated with the SPARQL language using the vocabulary from the ontology as the first step
of the OBDI-enabled visual analytics. SPARQL queries retrieve the information from the OBDI
module, in particular, from the RDF graph populated over the database using ontology and map-
ping.

In order to identify which use cases are relevant to the apple-growing in South Tyrol and translate
them into analytical tasks, the relationships between environmental variables and apple-growing
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were investigated first. In addition, the data available for this research were taken into account.
The following concept map (Figure 4.12) depicts the relationships among environmental variables,
apple-growing in South Tyrol, and data available to analyze those relationships.

Figure 4.12: The concept map showing relationships among environmental variables,
apple-growing in South Tyrol, and data available

Based on the fact that different environmental variables have a different impact on apple-growing
during the phenological stages, the analytical tasks and their visual representations are grouped by
the apple-phenology stages as follows: blossoming, fruit growth, harvesting, and dormancy.
Below are presented use cases related to the environmental preconditions of apple growing for-
mulated using SPARQL.
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Blossoming

Bulb blooms frequently mark the beginning of a new season. A location’s yearly variation in
winter and spring temperatures, as well as when the trees’ chilling and heating needs have been
satisfied, might affect when apple trees bloom.

Task 1 Get calculated blossoming start date for each location for each year.
1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX station : <http :// climate4apple / weather_stations #>
5 PREFIX obs: <http :// climate4apple / weather_stations_data #>
6 PREFIX dates: <http :// climate4apple / blossoming_harvesting_start_dates >
7 SELECT ?id ? station ?date (year (? date) as ?year)
8 WHERE {
9 ? observation station : weather_station_id ?id.

10 ? observation station : weather_station_name ? station .
11 ? observation dates: blossoming_start_date ?date.
12 }

Temperature over the blossoming period has a dramatic effect on fruit set, which in turn can
result in major changes in yield. Most apple cultivars are self-incompatible, so conditions suitable
for pollen transfer during flowering are necessary. The activity of the pollinators, chiefly insects, is
enhanced under warm, dry and non-windy conditions. Even if pollen is successfully transferred
between flowers of compatible cultivars, the rate of pollen tube growth is temperature-dependent.
Under a mean daily temperature of 15°C, pollen tubes take 2 days to reach the ovules, compared
with 4 days at 13°C and 8 days at 9°C (Ferree & Warrington, 2003).

Task 2 Get the daily mean temperature and precipitation records over the blossoming period.
1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX station : <http :// climate4apple / weather_stations #>
5 PREFIX obs: <http :// climate4apple / weather_stations_data #>
6 SELECT ?id ? station ?date ?year ?tmean ?prec
7 WHERE {
8 ? observation obs: weather_station_id ?id.
9 ? observation obs: weather_station_name ? station .

10 ? observation obs: mean_air_temperature ?tmean.
11 ? observation obs: weather_observation_date ?date.
12 ? observation obs: precipitation ?prec.
13 FILTER (( MONTH (? date) = 4) || (MONTH (? date) = 5))
14 ORDER BY ASC (year (? date) as ?year)
15 }

Flowers are very sensitive to low temperatures and can be killed by late spring frosts. The critical
temperature for damage to the tissues for the full bloom stage is -2.2 °C (Ferree & Warrington,
2003).
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Task 3 Get the number of days when the minimum temperature was lower than -2.2 °C at
the weather stations close to the apple orchards for each year of observations.
Subtask 3a Get the weather stations within 1 km from apple-orchards.

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
3 PREFIX geo: <http :// www. opengis .net/ont/ geosparql #>
4 PREFIX bif: <http :// www. openlinksw .com/ schemas /bif#>
5 PREFIX station : <http :// climate4apple / weather_stations #>
6 PREFIX obs: <http :// climate4apple / weather_stations_data #>
7 PREFIX orchard : <http :// climate4apple / apple_orchards #>
8 SELECT ?name
9 WHERE {

10 ? orchard orchard : geographic_location ? o_location .
11 ? station station : geo_location ? s_location .
12 ? station station : weather_station_name ?name
13 FILTER (geo: sfWithin ( ?s_location , ?o_location , 0.003) )
14 }

Subtask 3b Get the number of observations.
1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX station : <http :// climate4apple / weather_stations #>
5 PREFIX obs: <http :// climate4apple / weather_stations_data #>
6 PREFIX gdd2019 : <http :// climate4apple / growing_degree_day_2019 >
7 SELECT ?id ? station ?year (COUNT (? observation ) as ?NOBS)
8 WHERE {
9 ? observation obs: weather_station_id ?id.

10 ? observation obs: weather_station_name ? station .
11 ? observation obs: min_air_temperature ?tmin.
12 ? observation obs: weather_observation_date ?date.
13 FILTER (?tmin < -2.2)
14 FILTER (( MONTH (? date) = 4) || (MONTH (? date) = 5 ))
15 FILTER (? station = " Altrei " || ? station = "Auer" || ? station = "Bozen"

|| ? station = " Branzoll " || ? station = " Brixen_Vahrn "
16 || ? station = " Eyrs_Laas " || ? station = "Graun - Kurtatsch " || ? station = "

Hintermartell " || ? station = "Kollmann - Barbian "
17 || ? station = " Laimburg " || ? station = " Meran_Gratsch " || ? station = "

M h l e n " || ? station = " Naturns " || ? station = " Obermais "
18 || ? station = "Prad" || ? station = " Riffian " || ? station = " Salurn " || ?

station = " Sarnthein " || ? station = " Schenna "
19 || ? station = " Schlanders " || ? station = " Sexten " || ? station = "

St_Martin_in_Passeier " || ? station = " S t _ P e t e r _ V i l l n s s - Bahnhof "
20 || ? station = " Taufers " || ? station = " V l s _ a m _ S c h l e r n ")
21 }
22 GROUP BY (year (? date) AS ?year) ? station ?id
23 ORDER BY ASC (? year) DESC (? NOBS)

Fruit Growth

The seasonal pattern of apple fruit growth is defined by an initial 35–50-day period of exponen-
tial growth following fertilization, coinciding with rapidly increasing fruit cell number, followed
by a more or less linear growth phase until harvest maturity. Fruit expansion is, for example,
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approximately 10 times greater at a mean temperature of 20°C than at a mean of 6°C. The fruit
expansion rate responded to changes in mean temperature rather than to the maximum/minimum
differential (Ferree & Warrington, 2003).

Task 4 Get the mean temperature surface over the fruit growing period.

However, excessively high temperatures can result in sunburn on the skin of the apple fruit.
This occurred when air temperature exceeded 36°C. In addition, high summer temperatures can
also reduce the production of flower buds.

Task 5 Get the number of days when the maximum temperature was higher than 36 °C for
each year of observations.

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX station : <http :// climate4apple / weather_stations #>
5 PREFIX obs: <http :// climate4apple / weather_stations_data #>
6 PREFIX gdd2019 : <http :// climate4apple / growing_degree_day_2019 >
7 SELECT ?id ? station ?year (COUNT (? observation ) as ?NOBS)
8 WHERE {
9 ? observation obs: weather_station_id ?id.

10 ? observation obs: weather_station_name ? station .
11 ? observation obs: air_temperature_max ?tmax.
12 ? observation obs: weather_observation_date ?date.
13 FILTER (?tmax >36)
14 }
15 GROUP BY (year (? date) AS ?year) ? station ?id
16 ORDER BY ASC (? year) DESC (? NOBS)

Harvesting

Most apple varieties in South Tyrol are harvested between late summer and late October. They
must be harvested at a specific time based on two factors. The first factor is the weather over
the whole harvest season, with sunny days being the most crucial because they significantly affect
how delicious the apple is. The variety of apples is the second factor. This research uses Golden
Delicious as a reference for identifying when harvesting starts.

Task 6 Get calculated harvesting start date for each location for each year.
1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX station : <http :// climate4apple / weather_stations #>
5 PREFIX obs: <http :// climate4apple / weather_stations_data #>
6 PREFIX dates: <http :// climate4apple / blossoming_harvesting_start_dates >
7 SELECT ?id ? station ?date (year (? date) as ?year)
8 WHERE {
9 ? observation station : weather_station_id ?id.
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10 ? observation station : weather_station_name ? station .
11 ? observation dates: harvesting_start_date ?date.
12 }

The temperature during the 4–6 weeks preceding harvest can influence the quality of the fruit at
harvest and its storage potential. Cooler temperatures result in less water-core development and
reduced susceptibility to superficial scald (Ferree & Warrington, 2003).

Task 7 Get the daily mean temperature records before and over the normal harvesting period.
1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX station : <http :// climate4apple / weather_stations #>
5 PREFIX obs: <http :// climate4apple / weather_stations_data #>
6 SELECT ?id ? station ?date (year (? date) as ?year) (month (? date) as ?month)

?tmean
7 WHERE {
8 ? observation obs: weather_station_id ?id.
9 ? observation obs: weather_station_name ? station .

10 ? observation obs: mean_air_temperature ?tmean.
11 ? observation obs: weather_observation_date ?date.
12 FILTER ((( MONTH (? date) = 8) || (MONTH (? date) = 9) || (MONTH (? date) = 10)

)).
13 }
14 ORDER BY (year (? date)) ASC

Dormancy

Winter dormancy is also known as rest or true dormancy. Temperature is the main environ-
mental factor controlling dormancy. Temperatures between 0 and 15°C are effective, with the
maximum response at 6–7°C, where 1 h of chilling equals 1 ‘chill unit’ (CU). The symptoms of
inadequate chilling are seen in delayed and poor bud break, a prolonged flowering period, a low
proportion of flowering spurs, and poor lateral leaf-bud development (Ferree & Warrington, 2003).

Task 8 Get the accumulated chill units at each weather station for each year of observation.
1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX station : <http :// climate4apple / weather_stations #>
5 PREFIX obs: <http :// climate4apple / weather_stations_data #>
6 SELECT ?id ? station ?year (COUNT (? observation ) as ?NOBS) ((? NOBS *24) as

?CU)
7 WHERE {
8 ? observation obs: weather_station_id ?id.
9 ? observation obs: weather_station_name ? station .

10 ? observation obs: weather_observation_date ?date.
11 ? observation obs: min_air_temperature ?tmin.
12 ? observation obs: max_air_temperature ?tmax.
13 FILTER (((? tmax <15) && (?tmin >0))&&(( month (? date)=11) || (month (? date)

=12) || (month (? date)= 1) || (month (? date)=2) || (month (? date)=3)))
14
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15 }
16 GROUP BY ?id ? station (year (? date) AS ?year)

However, there is a high possibility of freezing injury in the autumn or winter, which kills tissues
or trees and accounts for greater crop losses than all other environmental stresses combined. To
identify the spatial and temporal distribution of extremely low temperatures, the winter-hardiness
of the Golden Delicious cultivar was taken as a reference with the lowest survival temperature
-26.0°C in November, -33.0°C in December and January, and -26.5°C in February (Ferree &
Warrington, 2003).

Task 9 Get the number of days when the minimum temperature was lower than above-mentioned
lowest survival temperatures at each weather station for each year of observation.

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX station : <http :// climate4apple / weather_stations #>
5 PREFIX obs: <http :// climate4apple / weather_stations_data #>
6 SELECT ?id ? station ?year ?month (COUNT (? observation ) as ?NOBS)
7 WHERE {
8 ? observation obs: weather_station_id ?id.
9 ? observation obs: weather_station_name ? station .

10 ? observation obs: weather_observation_date ?date.
11 ? observation obs: min_air_temperature ?tmin
12 FILTER (((? tmin <= -26.5) && (month (? date) = 2)) || ((? tmin <= -33) && (

month (? date) = 12)) || ((? tmin <= -26) && (month (? date) = 11))
13 || ((? tmin <= -33) && (month (? date) = 1)))
14

15 }
16 GROUP BY ?id ? station (year (? date) AS ?year) (month (? date) AS ?month)
17 ORDER BY DESC (? NOBS)

It has to be noticed that soil, precipitation, and solar irradiance weren’t taken into account by
developing use cases (1) due to the lack of consistent and reliable data about soil characteristics;
(2) due to the fact that apple orchards in South Tyrol are irrigated and get enough water for
a particular apple cultivar at the certain phenological period; (3) although there are data about
solar irradiance, the whole area of South Tyrol gets enough sunlight to develop horticulture.

Following the visual analytics process (Figure 3.3), the next step is the visualization of the
analytical results. The interactive Power BI dashboard plays the role of the interface for visual
analytics. The dashboard includes six tabs that visually present the information about the apple-
growing domain in South Tyrol. The link to the dashboard is provided in Appendix A.

The first tab (Figure 4.13) gives a general overview of apple growing in South Tyrol. It shows
apple orchards’ locations, apple production of different apple varieties, and gives an idea about
the land cover of South Tyrol for potential apple-growers.

The second tab (Figure 4.14) provides a potential user with information about the climatic con-
ditions of South Tyrol. "Blossoming", "Fruit Growth", "Harvesting", and "Dormancy" tabs are
visual representations of the results of the analysis (Figure 4.15 - 4.18). The design of each tab
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Figure 4.13: Climate4Apple - Apple growing in South Tyrol

was conceptualized according to Shneiderman’s Visualization Mantra: "overview first, zoom and
filter, then details on demand". Thus, the user gets an overview, in the beginning, then they can
zoom maps as well as filter the presented data by location and the specific time period, and, as a
result, get detailed information about the filtered object on demand by the interaction with maps
and graphs.

Visualization techniques

The dashboard employs a variety of visualization approaches to present data from different per-
spectives.

• Isarithmic Maps were chosen to display temperature and temperature-related GDD as a
continuous phenomenon existing through space. Color hue represents negative and positive
temperatures while the color lightness connotes lower or higher values of temperature or
GDD (Figure 4.14, 4.16, 4.17).

• Hot-spot maps display the areas with a high occurrence of spring frosts (Figure 4.15),
excessively low (Figure 4.18), or high temperatures (Figure 4.16).

• Proportional Symbol Maps represent a quantitative variable using size. Circles show the
location of weather stations within the map, with the size of each circle sized proportionally
to the growing season length calculated for the particular station. Color identify blossoming
and harvesting start dates (Figure 4.15, Figure 4.17).
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Figure 4.14: Climate4Apple - Climate

Figure 4.15: Climate4Apple - Blossoming
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Figure 4.16: Climate4Apple - Fruit Growth

Figure 4.17: Climate4Apple - Harvesting
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Figure 4.18: Climate4Apple - Dormancy

• Line Graphs display temperature over time period and help to analyse how temperature is
changing over time (Figure 4.14, 4.15, 4.17).

• Bar Charts are employed for this dashboard help to compare the number of days with
extreme temperatures over the years (Figure 4.16, 4.18), and display the precipitation
values over the time (Figure 4.14, 4.15).

• Multi-set Bar Chart displays the comparison of the production of different apple cultivars
over the years (Figure 4.13).

• Stacked Bar Graph shows how land cover of South Tyrol is divided into smaller land cover
categories and what the relationship of each part has on the total amount (Figure 4.13).

The high level of interactivity of the dashboard allows potential users to generate new knowledge
through data exploration, and therefore formulate new hypotheses and analytical tasks. The
data access provided by the OBDI module ensures efficient information retrieval while the visual
analytics module easily employs new data to create new or update existing visualizations.

4.2.4 Evaluation
The proposed framework is evaluated by the visualization results, which is a sink where the activ-
ities of data integration and analysis are aggregated, interpreted, and visualized in a meaningful
way (Huang et al., 2020).
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The evaluation was conducted as a combination of talking aloud and semi-structured inter-
views with the target users - experts in the agricultural domain. It is worth noticing that the very
first version of the dashboard was tested with a group of software developers from the Center for
Sensing Solutions who are not domain experts in agriculture. It allowed finding weaknesses and
bugs, and in general improving the quality of the user interface and visualizations before actual
user tests.

The evaluation session with a domain expert was conducted as unstructured interview as fol-
lows:

1. In order to provide the domain expert with the background information about this research,
firstly the proposed semantic-based approach to geospatial data integration and visual-
ization was introduced. Domain experts got the idea about the research scope, adopted
workflow, and data used for the research.

2. In the second stage of the evaluation session, domain experts were given time to explore
the dashboard by themselves. During this part, domain experts could talk about what they
were doing or ask questions about the dashboard. However, talking aloud wasn’t a must.
The author was observing and took notes as well as answered questions raised.

3. The last stage was a semi-structured follow-up interview. The author had prepared the
following questions.

(a) Do you find the user interface easy to understand?
(b) Do you think is the chosen visualization method appropriate to the question it is

supposed to answer?
(c) While working with the dashboard, could you easily get the information you were

looking for?
(d) While working with the dashboard, did you face any problems?
(e) Do you have any suggestions on how to improve the proposed framework?

However, some of the questions were already answered during the second stage, for example,
domain experts specified what they would like to add to the dashboard.

In general, the proposed framework and the dashboard itself got positive feedback. Domain
experts provided several suggestions on what and how could be improved. A detailed discussion
of the evaluation results is provided in Chapter 5.
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Results and Discussion

This chapter presents the key findings of the study, examines how the research objectives were
met, and provides the answers to the research questions posed in Section 1.2. The main goal
of this research was to develop an approach to semantic-driven geospatial data integration and
visualization for the needs of agriculture.

This thesis is interdisciplinary research as it employs methods and information from various do-
mains such as cartography, agriculture, semantic web, and data visualization. According to
Wagner et al. (2011), interdisciplinary research improves comprehension of a complex problem,
question, or issue. However, Keena et al. (2016) has pointed out that although the discussion
and collaboration between stakeholders in many domains might result in novel insights into the
current research issue, this approach brings large volumes of multivariate data, and it can be
challenging to grasp how the variables might be related and how that can affect how relevant
they are to the problem. This research was carried out from the cartographic point of view and
primarily focused on data integration, visualization, and presentation. However, there was an at-
tempt to establish collaboration with the domain experts from the field of agriculture to identify
their views on data manipulation and visualization. Nevertheless, it still remains a challenge to
meet the requirements of all stakeholders.

To accomplish the main goal of the research, it has been broken into three research objectives
and corresponding research questions. The following sections present how the research objectives
were met and answers to the research questions.

5.1 RO-1//RQ 1.1-1.3
Since the agricultural domain heavily relies on geospatial data, in order to develop an approach to
semantic-driven geospatial data integration and visualization for agriculture, it is needed to re-
view the current requirements and methods of semantic integration of geospatial data
as well as the visualization of domain knowledge using a semantic-driven approach.

RQ 1.1 What are the latest standards, methods, and best practices for semantic integration
of geospatial data?
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The literature review made for the Master’s thesis has shown that GIScience researchers have
been striving to apply semantic technologies to accomplish geospatial data integration and inter-
operability. SDIs have been developed in many countries as an attempt to provide the access,
integration, exchange, and sharing of geospatial data. However, according to C. Zhang et al.
(2017); Huang (2019), although the majority of the current SDIs offer technical data interop-
erability through web services and common interfaces, they are unable to solve the challenges
of semantic heterogeneity of geospatial data. Therefore, in order to allow more effective data
management, SDIs require a semantic-based approach to data integration.

Many researchers (Kavouras & Kokla, 2007; C. Zhang et al., 2017; Y. Hu, 2018; Sun et al.,
2019; Kokla & Guilbert, 2020) argue that nowadays ontologies are essential for resolving semantic
heterogeneity of the geospatial data, integrating various data sources, and establishing concep-
tualizations. Ontologies enable direct and effective management of the geospatial data through
Ontology-based Data Access and Integration Systems. The virtualization approach through a
knowledge graph that is used by Ontology-based Data Management allows the separation of
the data from the ontology model. Data access, integration, and quality checking are carried
out over the virtual graph populated by ontology and mapping. As a result, there is no impact
on pre-existing data sources as well as no new databases and ETL processes are needed. New
data sources can be connected to the ontology by mapping them to gain more data integration.
Thus the domain experts can easily access the data through simple questions over the ontology,
regardless of where and how the data is stored. It reduces the time and cost of decisions making.

RQ 1.2 How to formalize and visualize domain knowledge using a semantic-driven approach
in cartography?

Like any other domain of knowledge, cartographic knowledge and principles can be formally
presented using ontologies. The latest advances allow the formalization of cartographic knowl-
edge directly to the application architecture which allows retrieving the information about the
particular geospatial data visualization rules and producing the map with the desired style for
an application (Huang et al., 2020). Thus, this approach might shift the cartographic research
more in the direction of how to effectively formalize the existing geospatial data visualization
principles and rules in order to more efficiently produce maps that would enhance analysis and
decision-making processes. In addition to the existing geospatial domain ontologies, it will bring
new ontologies that formalize how to visualize the concepts stored in geo-ontologies. Moreover,
in the Semantic Web era, the role of the map has also changed. A map is not anymore just a
collection of descriptive data and design principles, it includes a collection of semantic propo-
sitions and logical predicates that form a body of knowledge structured as a map (Varanka &
Usery, 2018). Thus, the map itself is a representation and formalization of the knowledge about
geospatial phenomena which can open new application domains for cartography.

RQ 1.3 What are examples of successful implementation of semantic technologies in the agri-
cultural domain to support effective decision-making?

This question is widely discussed in Section 2.3. Agriculture has a number of its own seman-
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tic resources and data interchange standards such as AGROVOC which is the most extensive
and biggest semantic resource, Crop Ontology, FoodOn initiative, etc. In addition, there are a
number of applications developed for the needs of agriculture that employ semantic technologies
and ontologies which describes different aspects of the agri-food domain from genetics to socio-
economics. Since the current trends are going towards the traceability of goods and services
and ontology-driven and geospatial technologies are essential for this because they help domain
experts, decision-makers, and tech-oriented farmers to enhance data sharing, effective informa-
tion retrieval, and support decision-making processes. As result, agriculture makes a step toward
rational use of resources and sustainability.

5.2 RO-2//RQ 2.1-2.3
Based on the knowledge gained from the literature review the next step is to propose a
semantic-driven geospatial data visualization approach to agriculture, particularly to
the apple-growing domain.

RQ 2.1 What are the elements of the semantic-driven geospatial data integration and visu-
alization framework?

The semantic-driven geospatial data integration and visualization framework consists of two main
modules (1) the OBDI module and (2) the visual analytics module.

Three elements make a system that realizes the OBDI module:

1. The data layer represents the data sources used by the framework. In the case of this Mas-
ter’s thesis, the data are stored in two relational PostgreSQL databases: Climate database
and Climate4apples database.

2. The ontology gives a formal and high-level representation of the domain of interest. Cli-
mate4apple ontology describes the concepts of the environmental precondition of apple-
growing.

3. The mapping describes relationships between the ontology and the data sources.

The ontology and the mapping together form the OBDI specification. As a result, the data layer
is exposed as a virtual graph via the OBDI specification. The virtual approach avoids explicitly
materializing the data into the ontology, therefore the process of ontology/mapping development
is more lightweight and flexible.

The visual analytics module consists of two parts:

1. The analysis layer provides analytical tasks related to the apple-growing domain as SPARQL
queries.

2. The visualization layer, in this framework, plays the role of the user interface and provides
visualization of the queries answers using various visualization techniques.
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The connection between the OBDI module and the visual analytics module is possible via de-
ployed SPARQL endpoint. Clients can interact with the endpoint by writing queries provided by
the analysis layer and getting results from the OBDI module.

RQ 2.2 How can geospatial data be enhanced by using semantic technologies for achieving
better integration and interoperability?

The main idea behind the proposed framework is to provide users with the opportunity to get
the necessary information without having to understand the complexity of the data and how the
data are stored and to create visualizations to support knowledge acquisition processes.

This idea can be explained with an example. An end-user is usually not a database adminis-
trator or owner. That means that they (an end-user) might not have an idea that table "stations
daily" keeps the information about the daily weather records, including precipitation encoded as
"prec" and stored in the Climate4apple database while table "metadata" keeps the information
about the weather stations themselves and stored in the Climate database. Having the semantic-
driven approach to data integration, the end-user doesn’t have to be aware of the data in the
data storage. Using vocabulary from the ontology which describes the concepts like "weather
data" or "weather station", their attributes like "precipitation" and "weather station location"
correspondingly, and relationships between concepts like "weather data are recorded at weather
stations", the end-user can create basically natural language queries and get information without
having to know about the actual data in the storage.

Ding et al. (2020) in their study have shown an example reported by the Norwegian oil company:
the geologists in the exploration department have to spend up to 70% of their time digging into
data, instead of performing the data analysis itself. The reason is that there is a big semantic
gap between the raw data and the terms that are used within the domain. Thus, the semantic-
driven approach to data integration bridges the gap between data sources and domain concepts
by providing a (virtual) ontological view of the underlying heterogeneous data. In addition, this
approach brings data toward FAIR principles by supporting a higher level of interoperability and
reusability.

RQ 2.3 Which cartographic techniques are the most suitable for visualizing environmental and
agricultural variables?

Environmental and agricultural maps are created to understand natural resources better. Some
of these maps are inventories related to climate, vegetation, soil, hydrology, geology, and forestry.
Others are related to the use and misuse of these resources, such as maps showing water, air or
soil pollution (Kraak & Ormeling, 2020).

This research is mostly focused on the presentation of climatic conditions of apple growing.
Maps of this subject area are mostly analytical quantitative maps as representations of continua,
mostly by isolines. There are also signatures for station points, precipitation areas as well as local
diagrams for wind conditions, fluctuations, etc. In addition, climate maps indicate the aggregated
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values of the atmospheric condition or the fluctuations that occur for a certain period of time
(e.g., month, year) (Hake et al., 2002).

The climate maps also include the phenological maps, in which isolines show the time when
a specific growth phase begins for a specific plant (e.g. apple blossom) (Hake et al., 2002).
Moreover, phenology might be visualized as the number of days needed for different phenological
stages. Due to the incomplete data, to show the start of the blossoming and harvesting period
as well as the growing season length, this research employed the proportional symbol maps tech-
nique where a circle represents a weather station, color hue of the circle shows the period when
the blossoming (harvesting) starts, and circle size shows the growing season length. A user can
get the precise date by interacting with the map. The table 5.1 shows the applied visualization
techniques of environmental and agricultural variables related to the apple-growing domain in
South Tyrol.

Table 5.1: The proposed visualization techniques of environmental and agricultural variables
applied to the apple-growing domain in South Tyrol

Technique Definition Graphic variables What to visualize

Isarithmic map
Represents a continuous field using line and/or region symbols
to connect places of similar value. Isarithmic maps are usually created by
interpolating from raster data or from a set of sample points (e.g. weather
stations) (Kraak & Ormeling, 2020).

Color hue,
Color value

Temperature,
Precipitation,
GDD,
Growing season
length

Hot spot map

Hot spot maps use statistical analysis in order to define areas of high
occurrence versus regions of low event. Hot spot regions are statistically
significant, which makes the final image less arbitrary. Therefore,
statistical confidence is used to classify a region as a hot spot
(Extending your map with spatial analysis, 2012).

Color value

Late spring
frosts occurrence,
Extreme winter frosts,
Excessively high
summer temperatures

Proportional symbol map Proportional symbol map uses map symbols that vary in size to represent
a quantitative variable.

Color hue,
Size

Phenological indicators
at weather stations

Line graph
Line graphs are a sort of graph that shows information as a collection of markers,
or data points, linked by straight lines. Line charts demonstrate how data change
over time at regular intervals (The Data Visualisation Catalogue, 2022).

Color hue or value
(several variables
are shown)

Any kind of changes,
e.g. temperature over
vegetation or blossoming
period

Bar chart
A chart with rectangular bars whose lengths are proportionate to the values they
show is called a bar chart. One axis of the chart shows the specific categories being
compared, and the other axis represents a discrete value
(The Data Visualisation Catalogue, 2022).

Size (length)
Precipitation,
Number of days with
extremely high and low
temperatures over the years

Multi-set Bar Chart
The variation of a Bar Chart is utilized when two or more data series are drawn
next to each other and categorized together on the same axis. The length
of each bar, such as in a bar chart, is used to display distinct, numerical
comparisons across categories (The Data Visualisation Catalogue, 2022).

Size (length),
Color hue or value

Production of different apple
varieties over years

Stacked Bar Graph
Stacked Bar Graphs are used to illustrate how a bigger category is broken down
into smaller categories and the impact that each component has on the overall sum
(The Data Visualisation Catalogue, 2022).

Size (lengh),
Color hue or value

Land cover by different
levels of classification

5.3 RO-3//RQ 3.1-3.2
The last step of this research is to implement and explore the effectiveness of the devel-
oped semantic-driven geospatial data integration and visualization framework for the
use cases of apple growing in South Tyrol, Italy.

RQ 3.1 Which apple-growing use cases should be implemented to illustrate the effectiveness
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of the proposed framework?

The main natural conditions, e.g., light, temperature, available moisture, and the nature of
the soil and subsoil, may limit or, conversely, improve the development of a given crop in a par-
ticular area (Ulyantsev, 1968).

The temperature has profound effects on all aspects of apple production. It first establishes
boundaries for the producing zones. Since the cultivated apple is essentially a temperate decid-
uous species, it needs a time of winter chill to emerge from dormancy. Second, the duration of
the growing season is influenced by temperature, which in turn restricts the variety of cultivars
that can be cultivated in a given area. Thirdly, temperature affects how quickly all physiological
processes progress, including vital ones like breathing, cell division, and the creation of pollen
tubes. Fourthly, because temperature affects the growth of apple pests and illnesses, warmer
regions usually see more pest generations than colder ones (Ferree & Warrington, 2003).

As a part of the Master’s thesis, the temperature conditions of each apple-growing stage in
South Tyrol were described, analyzed, and visualized using different techniques in Section 4.2.3.
The temperature was chosen because, as mentioned above, it is the primary driver of processes
that ensure apple growth. This indicator is very important for apple growers and domain experts
as the results can help to identify where additional measures are needed, for example, places with
a high occurrence of late spring frosts need frost protection measures while spots with the highest
temperatures might need netting to protect trees and fruits from sunburns. In addition, further
analysis of the visualization results ensures finding places the most suitable for the planting of
new orchards.

Moreover, the temperature can be presented in many forms and datasets such as daily records
at weather stations, the air temperature surface, GDD, etc. Those data are stored in different
formats and in different databases. It gives the opportunity to test the proposed framework by
integrating temperature-related datasets and visualization the results of apple-growing analytical
tasks. Light, water, and soil are also crucial for apple growth. However, their analysis is out of
this research scope.

RQ 3.2 How can users benefit from the proposed semantic-driven geospatial data integration
and visualization framework?

To answer this research question, target users shall be identified first. After that, the proposed
framework should be evaluated by the target audience.

The proposed data integration and visualization framework is intended to aid in improving spatial
decision-making in terms of more sustainable agriculture and land use for professionals in the field
of agriculture, scientists, authorities, and tech-oriented local farmers. Nowadays, the situation is
that different stakeholders use data from different sources which might not be easy to access and
reuse when it is coming to data exchange. In addition, to the best of the author’s knowledge,
experts from the apple-growing domain in the study area are mostly focused on data analysis and
do not use the full capabilities of data visualization to support decision-making and knowledge
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presentation. Thus the established framework can help the target audience to get access to the
relevant data from one point while visual analytics can help to discover hidden patterns and
enable the knowledge construction process.

According to (Huang et al., 2020), the framework should be evaluated by the visualization results,
as the visualization is sink where the activities of data integration and analysis are aggregated,
interpreted, and visualized in a meaningful way.

The developed dashboard as a "visualization" part of the proposed framework was evaluated
by its target users - experts in the apple growing domain who can understand and interpret the
visualized data. In general, experts found the proposed framework very interesting. It was sug-
gested to present it to the more general public including not only the domain experts but also
people who are interested in apple growing and would like to plant apple trees.

The user interface was characterized by domain experts as clear, tidy, and very easy to un-
derstand. The visualization chosen does its work very well. They mentioned that since the tabs
of the dashboard have almost the same layout, it makes it very easy to use it. However, the
author observed that experts didn’t notice from the beginning that maps on the dashboard are
interactive and can be used to get additional information on demand.

Moreover, domain experts provided the author with suggestions about how to improve the dash-
board.

1. To focus on the measurements from weather stations that are close to orchards.

2. In case of getting data from domain experts, to add the visualization of the information of
the interest.

As a result, a clear interest in the proposed framework as well as in further development was
seen. It says about the necessity of interdisciplinary research like this to provide a broader view
of different domains of knowledge, collaboration among scientists, and deeper exploring the data
to get new insights and possible solutions.
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Limitations and Outlook

The study of semantic-driven geospatial data integration and visualization for the needs of agri-
culture can be considered a state-of-the-art study. It paves the path for uniting semantic tech-
nologies, data visualization, and agriculture and as could be expected, the preliminary attempt
to unite those domains posed several challenges. This chapter briefly describes the limitations
faced throughout the thesis work and offers several potential directions for future study.

Data Collection and Processing

• Incomplete and inconsistent data has become the main challenge during the data
collection and processing stage. For example, the quality of the daily meteorological records
and blossoming and harvesting dates vary among years and weather stations - there are
many missing records and values. Thus, it limited the possibilities for data analysis and
introduced uncertainty in terms of quality of the calculated GDD and blossoming and
harvesting dates, even though calculations are correct methodologically.

• Data privacy concerns have restricted to use of the data that would be interesting to
include in the analysis, e.g. data about apple varieties. The problem is that those data
have a commercial interest and thus, can not be shared under open settings. To access
such data the author should have ensured the authorization to the system, and provided
the necessary data security, which goes beyond this research scope. However, the data
and privacy settings can be provided by stakeholders who are interested to get their data
analyzed and visualized within the proposed framework.

Ontology-based Data Integration

As was mentioned in section 2.2.1, it is rather easier to develop a new lightweight ontology
than reuse an existing one. Due to the limited time, a small ontology that describes several con-
cepts was developed. However, it would be valuable for the AgriFood and GIScience community
to apply the hybrid approach to designing an ontology by reusing existing taxonomies and as a
result bring forward standardization practices in the domain of knowledge.

OBDI-enabled Visual Analytics

77



Chapter 6. Limitations and Outlook

• The technical challenges caused by the fact that the OBDI system Ontop is still under
development didn’t let to plug spatial components, and thus it limited the possibilities
to use GeoSPARQL queries for analysis. However, it would be beneficial for GIScience
to dig more into spatial analysis on the Semantic Web to use the capabilities offered by
GeoSPARQL and define how it can enhance the classical approaches to spatial analysis.

• The following features might be added to the dashboard to enhance it further:

1. The information about the precipitation wasn’t deeply analyzed within this research
due to the fact that orchards are irrigated. However, domain experts mentioned,
that it would be extremely useful to include in the dashboard the visualization of the
precipitation data, especially for the last years with drought.

2. One of the possible directions of future research is to include analysis and visualization
of the data about apple cultivars in South Tyrol as different apple cultivars have
different timing of phenological stages as well as different environmental requirements.
As was mentioned before, it can be done if data security settings are provided by data
owners because these data are considered sensitive. The visualized environmental
variables can be filtered according to their suitability for growing a particular apple
cultivar.

Evaluation

User studies should be conducted at different stages to evaluate the proposed framework. In
addition, since it is interdisciplinary research, different stakeholders from domains of semantic
technologies, agriculture, and cartography should be involved in user tests. The methodology of
the user study should be improved in order to get a deeper insight into if and how semantic data
integration improves data management and information retrieval and if and how visualization
could help experts in spatial decision-making.

Both qualitative and quantitative methods of interface evaluation should be utilized to pro-
vide a reliable assessment of the visual analytics module. Quantitative methods are based on
participants’ perceptions of usability (e.g., satisfaction ratings) or on users’ performance on a
specific task (e.g., task completion times, success rates, or numbers of errors). Quantitative data
can be retrieved from a questionnaire filled by users after completing certain tasks (e.g. specific
information retrieval from the OBDI or the visual analytics module). However, since quantitative
indicators are only numbers, it can be challenging to comprehend them in the absence of a frame
of reference. Thus the evaluation should be enhanced by qualitative methods such as a structured
interview that consists of questions about if and how users benefit from the developed system
and if there are any other suggestions that could improve the framework.
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Conclusion

The main goal of this research was to develop a semantic-driven geospatial data integration and
visualization approach to agriculture. As a result of this interdisciplinary study, a novel method-
ological framework was proposed which merges various aspects of recent inquiry: geospatial data
interoperability and visualization, and agriculture.

The framework consist of two main modules (1) the OBDI module and (2) visual analytics mod-
ule. The OBDI module provides an ontological view of the integrated data sources. The visual
analytics module plays the role of the user interface and presented as an interactive dashboard.
The combination of interactive thematic maps and statistical graphs provides the opportunity to
look at the data from different points of view, and thus find important patterns that otherwise
might be left unnoticed.

Thus, this research contributes to three interconnected levels.
(1) At the level of Cartography, this study opens up new perspectives for data access and visu-
alization. Semantic-driven approach to data integration adds value to the data and allows easy
information retrieval. As a result, a cartographer does not need to spend time and resources on
data collection and preparation but can focus on more effective information transition through
maps. In addition, this research brings Cartography, its methods, and techniques to the relatively
new applications domain such as agriculture. (2) From the point of view of Agriculture, domain
experts can easily access integrated data sources. In addition, they can benefit from utilizing
visual analytics in their research which gives new opportunities for knowledge construction and
supports the process of data reusability and data interoperability. (3) Data Integration special-
ists can find in this research practical application of their theories and methods and thus, adjust
them in accordance with the potential users’ needs.

Although this study utilizes open-source settings combined with licensed software and sensi-
tive data, the research adheres to the FAIR principles and is regarded as open science, intends to
make the data and results available for reuse in future studies because FAIR means responsible and
sustainable data use. Data and results might have restrictions for a wide audience, but when it is
accessible through licensed access, it is FAIR. As a result, this study by utilizing state-of-the-art
technologies advances the scientific subject of digital transformation in agriculture, in particular,
the digital transformation of the European Agricultural Sector.

79



References

Abburu, S., Dube, N., Miyar, R. N., & Golla, S. B. (2015). An ontology based methodology for
satellite data semantic interoperability. Advances in Electrical and Computer Engineering , 15 ,
105-110. doi: 10.4316/AECE.2015.03015

Ahlqvist, O., Varanka, D., Fritz, S., & Janowicz, K. (2015). Land use cover and land cover
semantics. principles, best practices, and prospects. Boca Raton: CRC Press. Retrieved from
http://pure.iiasa.ac.at/id/eprint/11609/

Alreshidi, E. (2020, 1). Saaont: Ontological knowledge-based development to support intelligent
decision-making systems for saudi arabian agriculture. International Journal of ADVANCED
AND APPLIED SCIENCES, 7 , 49-59. Retrieved from http://www.science-gate.com/
IJAAS/2020/V7I1/1021833ijaas202001005.html doi: 10.21833/ijaas.2020.01.005

Arp, R., Smith, B., & Spear, A. D. (2015, 8). Introduction to basic formal ontology i: Continu-
ants. The MIT Press. doi: 10.7551/mitpress/9780262527811.003.0005

Assessing the fairness of data. (2019, Jul). Retrieved from https://www.fosteropenscience
.eu/learning/assessing-the-fairness-of-data/#/id/5c52e8cf0d3def29462d8cb5

ASTAT-Landesinstitut für Statistik. (2021). South tyrol in figures. Retrieved from url{https://
astat.provinz.bz.it/downloads/Siz_2021-eng(4).pdf}

Augustin, H., Sudmanns, M., Tiede, D., Lang, S., & Baraldi, A. (2019, 7). Semantic earth
observation data cubes. Data, 4 , 102. doi: 10.3390/data4030102

Aydin, S., & Aydin, M. N. (2020, 6). Semantic and syntactic interoperability for agricultural
open-data platforms in the context of iot using crop-specific trait ontologies. Applied Sciences,
10 , 4460. doi: 10.3390/app10134460

Bangkhomned, W., & Payakpate, J. (2020). Applying ontology knowledge representation tech-
nology and semantic searching methods to support the production of high quality longan fruit.
doi: 10.1007/978-981-15-1465-4_59

Bateman, J. A., Hois, J., Ross, R., & Tenbrink, T. (2010). A linguistic ontology of space for natu-
ral language processing. Artificial Intelligence, 174(14), 1027-1071. Retrieved from https://
www.sciencedirect.com/science/article/pii/S0004370210000858 doi: https://doi
.org/10.1016/j.artint.2010.05.008

80

http://pure.iiasa.ac.at/id/eprint/11609/
http://www.science-gate.com/IJAAS/2020/V7I1/1021833ijaas202001005.html
http://www.science-gate.com/IJAAS/2020/V7I1/1021833ijaas202001005.html
https://www.fosteropenscience.eu/learning/assessing-the-fairness-of-data/#/id/5c52e8cf0d3def29462d8cb5
https://www.fosteropenscience.eu/learning/assessing-the-fairness-of-data/#/id/5c52e8cf0d3def29462d8cb5
url{https://astat.provinz.bz.it/downloads/Siz_2021-eng(4).pdf}
url{https://astat.provinz.bz.it/downloads/Siz_2021-eng(4).pdf}
https://www.sciencedirect.com/science/article/pii/S0004370210000858
https://www.sciencedirect.com/science/article/pii/S0004370210000858


References

Baumann, R., Loebe, F., & Herre, H. (2016). Towards an ontology of space for gfo. In (Vol. 283,
p. 53-66). IOS Press. doi: 10.3233/978-1-61499-660-6-53

Bellinger, G., Castro, D., & Mills, A. (2004). Data, information, knowledge, wisdom. Retrieved
2022-06-26, from https://www.systems-thinking.org/dikw/dikw.htm

Benito-Osorio, D., Peris-Ortiz, M., Armengot, C. R., & Colino, A. (2013). Web 5.0: the future
of emotional competences in higher education. Global Business Perspectives, 1(3), 274-287.
doi: 10.1007/s40196-013-0016-5

Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H. F., & Secret, A. (1994). The world-wide
web. Communications of the ACM, 37(8), 76-82.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web a new form of web
content that is meaningful to computers will unleash a revolution of new possibilities. Scientific
American, 284 , 1-5.

Bhuyan, B. P., Tomar, R., Gupta, M., & Ramdane-Cherif, A. (2021, 12). An ontological
knowledge representation for smart agriculture. In (p. 3400-3406). IEEE. doi: 10.1109/
BigData52589.2021.9672020

Bizer, C., Heath, T., & Berners-Lee, T. (2009, 7). Linked data - the story so far. International
Journal on Semantic Web and Information Systems, 5 , 1-22. doi: 10.4018/jswis.2009081901

Budiu, R. (2017, Oct). Quantitative vs. qualitative usability testing. Retrieved from https://
www.nngroup.com/articles/quant-vs-qual/

Buttigieg, P., Morrison, N., Smith, B., Mungall, C. J., & Lewis, S. E. (2013). The environment
ontology: contextualising biological and biomedical entities. Journal of Biomedical Semantics,
4 , 43. doi: 10.1186/2041-1480-4-43

Calafiore, A., Boella, G., Borgo, S., & Guarino, N. (2017). Urban artefacts and their social roles:
Towards an ontology of social practices. In Cosit.

Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M., & Rosati, R. (2018). Ontology-based
data access and integration. In L. Liu & M. T. Özsu (Eds.), Encyclopedia of database systems
(pp. 2590–2596). New York, NY: Springer New York. doi: 10.1007/978-1-4614-8265-9_80667

Cao, L., Zhang, X., San, X., Ma, L., & Chen, G. (2013). Maize disease diagnosis model based
on ontology and multi-agent. doi: 10.1007/978-3-642-36137-1_32

Chandrasekaran, B., Josephson, J., & Benjamins, V. (1999, 1). What are ontologies, and why
do we need them? IEEE Intelligent Systems, 14 , 20-26. doi: 10.1109/5254.747902

Chaudhary, S., Bhise, M., Banerjee, A., Goyal, A., & Moradiya, C. (2015). Agro advisory system
for cotton crop. In 2015 7th international conference on communication systems and networks
(comsnets) (p. 1-6). doi: 10.1109/COMSNETS.2015.7098701

Chen, M., Hauser, H., Rheingans, P., & Scheuermann, G. (2020). Foundations of data visual-
ization.

https://www.systems-thinking.org/dikw/dikw.htm
https://www.nngroup.com/articles/quant-vs-qual/
https://www.nngroup.com/articles/quant-vs-qual/


References

Chen, Y., Sabri, S., Rajabifard, A., & Agunbiade, M. E. (2018, 11). An ontology-based spa-
tial data harmonisation for urban analytics. Computers, Environment and Urban Systems,
72 , 177-190. Retrieved from https://www.sciencedirect.com/science/article/pii/
S0198971518300632?via%3Dihub doi: 10.1016/j.compenvurbsys.2018.06.009

Cui, W. (2019). Visual analytics: A comprehensive overview. IEEE Access, 7 , 81555-81573. doi:
10.1109/ACCESS.2019.2923736

DataONE. (2011). Data management skillbuilding hub. Retrieved from https://dataoneorg
.github.io/Education/bestpractices/

The data visualisation catalogue. (2022). Retrieved from https://datavizcatalogue.com/

Degbelo, A. (2021, 11). Fair geovisualizations: Definitions, challenges, and the
road ahead. Retrieved from http://arxiv.org/abs/2111.07273http://dx.doi.org/
10.1080/13658816.2021.1983579 doi: 10.1080/13658816.2021.1983579

Ding, L., Xiao, G., Calvanese, D., & Meng, L. (2020, 8). A framework uniting ontology-based
geodata integration and geovisual analytics. ISPRS International Journal of Geo-Information,
9 . doi: 10.3390/ijgi9080474

Dong, W., Wu, T., Sun, Y., & Luo, J. (2018, 8). Digital mapping of soil available phosphorus
supported by ai technology for precision agriculture. In (p. 1-5). IEEE. doi: 10.1109/Agro
-Geoinformatics.2018.8476007

Dooley, D. M., Griffiths, E. J., Gosal, G. S., Buttigieg, P. L., Hoehndorf, R., Lange, M. C.,
. . . Hsiao, W. W. L. (2018, 12). Foodon: a harmonized food ontology to increase global
food traceability, quality control and data integration. Science of Food , 2 , 23. doi: 10.1038/
s41538-018-0032-6

Drury, B., Fernandes, R., Moura, M. F., & de Andrade Lopes, A. (2019, 12). A survey of
semantic web technology for agriculture (Vol. 6). China Agricultural University. doi: 10.1016/
j.inpa.2019.02.001

Dudáš, M., Lohmann, S., Svátek, V., & Pavlov, D. (2018, 7). Ontology visualization methods
and tools: a survey of the state of the art. The Knowledge Engineering Review , 33 , e10. doi:
10.1017/S0269888918000073

Extending your map with spatial analysis. (2012, Jun). Retrieved from https://resources
.arcgis.com/en/communities/analysis/017z00000015000000.htm

FAO. (2022). Linked data. Retrieved from https://www.fao.org/agrovoc/linked-data

Ferree, D. C., & Warrington, I. J. (Eds.). (2003). Apples: botany, production and uses. CABI.
doi: 10.1079/9780851995922.0000

Fonseca, F., Camara, G., & Monteiro, A. M. (2006, 12). A framework for measuring the
interoperability of geo-ontologies. Spatial Cognition Computation, 6 , 309-331. doi: 10.1207/
s15427633scc0604_2

https://www.sciencedirect.com/science/article/pii/S0198971518300632?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0198971518300632?via%3Dihub
https://dataoneorg.github.io/Education/bestpractices/
https://dataoneorg.github.io/Education/bestpractices/
https://datavizcatalogue.com/
http://arxiv.org/abs/2111.07273http://dx.doi.org/10.1080/13658816.2021.1983579
http://arxiv.org/abs/2111.07273http://dx.doi.org/10.1080/13658816.2021.1983579
https://resources.arcgis.com/en/communities/analysis/017z00000015000000.htm
https://resources.arcgis.com/en/communities/analysis/017z00000015000000.htm
https://www.fao.org/agrovoc/linked-data


References

Fox, P., & Hendler, J. (2011, 2). Changing the equation on scientific data visualization. Science,
331 , 705-708. doi: 10.1126/science.1197654

Galton, A. (2015). Outline of a formal theory of processes and events, and why giscience needs
one. doi: 10.1007/978-3-319-23374-1_1

Gandon, F., Krummenacher, R., Han, S.-K., & Toma, I. (2011). The resource description
framework and its schema.

George, T. (2022, Jun). Types of interviews in research: Guide amp; examples. Retrieved from
https://www.scribbr.com/methodology/interviews-research/

Giacomo, G. D., Lembo, D., Lenzerini, M., Poggi, A., & Rosati, R. (2018). Using ontologies for
semantic data integration. Studies in Big Data, 31 , 187-202. doi: 10.1007/978-3-319-61893
-7_11

Goldstein, A., Fink, L., & Ravid, G. (2021, 6). A framework for evaluating agricultural ontologies.
Sustainability , 13 , 6387. doi: 10.3390/su13116387

Gould, N., & Mackaness, W. (2016, 5). From taxonomies to ontologies: formalizing generalization
knowledge for on-demand mapping. Cartography and Geographic Information Science, 43 ,
208-222. doi: 10.1080/15230406.2015.1072737

Grenon, P., & Smith, B. (2003). Snap and span: Prolegomenon to geodynamic ontology..

Guarino, N. (1997). Semantic matching: Formal ontological distinctions for information or-
ganization, extraction, and integration. In M. T. Pazienza (Ed.), Information extraction a
multidisciplinary approach to an emerging information technology (pp. 139–170). Berlin, Hei-
delberg: Springer Berlin Heidelberg.

Guarino, N. (1998). Formal ontology in information systems. IOS Press. Retrieved from
http://www.csc.liv.ac.uk/~pepijn/legont.html

Hake, G., Grünreich, D., & Meng, L. (2002). Kartographie: Visualisierung raum-zeitlicher
informationen. Walter de Gruyter.

Hale, Z. (2020, Jan). 3 ways that accounting dashboards can benefit you. Top Busi-
ness Software Resources for Buyers - 2022 | Software Advice. Retrieved from https://
www.softwareadvice.com/resources/accounting-dashboard-examples/

Harrie, L., & Weibel, R. (2007). Modelling the overall process of generalisation. In W. Mack-
aness, A. Ruas, & T. Sarjakoski (Eds.), Generalisation of geographic information: Cartographic
modelling and applications (pp. 67–88). United States: Elsevier.

Harvey, F., Kuhn, W., Pundt, H., Bishr, Y., & Riedemann, C. (1999, 5). Semantic interoperability:
A central issue for sharing geographic information. The Annals of Regional Science, 33 , 213-
232. doi: 10.1007/s001680050102

Herre, H. (2016). Formal ontology-a new discipline between philosophy , formal logic , and
artificial intelligence..

https://www.scribbr.com/methodology/interviews-research/
http://www.csc.liv.ac.uk/~pepijn/legont.html
https://www.softwareadvice.com/resources/accounting-dashboard-examples/
https://www.softwareadvice.com/resources/accounting-dashboard-examples/


References

Herre, H., Heller, B., Burek, P., Hoehndorf, R., Loebe, F., & Michalek, H. (2006, 07). General
formal ontology (gfo) - a foundational ontology integrating objects and processes [version 1.0].

Hitzler, P. (2021, 1). A review of the semantic web field. Communications of the ACM, 64 ,
76-83. doi: 10.1145/3397512

Hitzler, P., Janowicz, K., Sharda, A., & Shimizu, C. (2021, 06). Advancing agriculture through
semantic data management. Semantic Web, 12 , 1-3. doi: 10.3233/SW-210433

Hofer, B., Mäs, S., Brauner, J., & Bernard, L. (2017). Towards a knowledge base to support geo-
processing workflow development. International Journal of Geographical Information Science,
31 , 694 - 716.

Hong, J.-H., & Kuo, C.-L. (2015, 12). A semi-automatic lightweight ontology bridging for the
semantic integration of cross-domain geospatial information. International Journal of Geo-
graphical Information Science, 29 , 2223-2247. doi: 10.1080/13658816.2015.1072200

Hu, S., Wang, H., She, C., & Wang, J. (2011). Agont: Ontology for agriculture internet of
things. In D. Li, Y. Liu, & Y. Chen (Eds.), Computer and computing technologies in agriculture
iv (pp. 131–137). Berlin, Heidelberg: Springer Berlin Heidelberg.

Hu, Y. (2018). Geospatial semantics. Elsevier. doi: 10.1016/B978-0-12-409548-9.09597-X

Huang, W. (2019). Knowledge-based geospatial data integration and visualization with se-
mantic web technologies. Retrieved from https://inspire.ec.europa.eu/news/linking
-inspire-data-draft-guidelines-and-pilots

Huang, W., & Harrie, L. (2020, 9). Towards knowledge-based geovisualisation using semantic web
technologies: a knowledge representation approach coupling ontologies and rules. International
Journal of Digital Earth, 13 , 976-997. doi: 10.1080/17538947.2019.1604835

Huang, W., Kazemzadeh, K., Mansourian, A., & Harrie, L. (2020). Towards knowledge-based
geospatial data integration and visualization: A case of visualizing urban bicycling suitability.
IEEE Access, 8 , 85473-85489. doi: 10.1109/ACCESS.2020.2992023

Jacobsen, A., de Miranda Azevedo, R., Juty, N., Batista, D., Coles, S., Cornet, R., . . . Schultes, E.
(2020, 1). Fair principles: Interpretations and implementation considerations. Data Intelligence,
2 , 10-29. doi: 10.1162/dint_r_00024

Jiang, S., Angarita, R., Chiky, R., Cormier, S., & Rousseaux, F. (2020). Towards the integration of
agricultural data from heterogeneous sources: Perspectives for the french agricultural context
using semantic technologies. doi: 10.1007/978-3-030-49165-9_8

Kavouras, M., & Kokla, M. (2007). Theories of geographic concepts. CRC Press. doi: 10.1201/
9781420004670

Keena, N., Etman, M. A., Draper, J., & Pinheiro, P. (2016). Interactive visualization for
interdisciplinary research.

https://inspire.ec.europa.eu/news/linking-inspire-data-draft-guidelines-and-pilots
https://inspire.ec.europa.eu/news/linking-inspire-data-draft-guidelines-and-pilots


References

Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., & Melançon, G. (2008).
Visual analytics: Definition, process, and challenges. In A. Kerren, J. T. Stasko, J.-D. Fekete,
& C. North (Eds.), Information visualization: Human-centered issues and perspectives (pp.
154–175). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/
10.1007/978-3-540-70956-5_7 doi: 10.1007/978-3-540-70956-5_7

Kokla, M., & Guilbert, E. (2020, 3). A review of geospatial semantic information modeling
and elicitation approaches. ISPRS International Journal of Geo-Information, 9 , 146. doi:
10.3390/ijgi9030146

Kraak, M.-J. (2003, 4). Geovisualization illustrated. ISPRS Journal of Photogrammetry and
Remote Sensing , 57 , 390-399. doi: 10.1016/S0924-2716(02)00167-3

Kraak, M.-J., & Ormeling, F. (2020). Cartography. CRC Press. doi: 10.1201/9780429464195

Kraak, M. J., Roth, R. E., Ricker, B., Kagawa, A., Sourd, G. L., & Association, I. C. (2020).
Mapping for a sustainable world.

Krisnadhi, A., Hu, Y., Janowicz, K., Hitzler, P., Arko, R., Carbotte, S., . . . Wiebe, P. (2015).
The geolink modular oceanography ontology. In M. Arenas et al. (Eds.), The semantic web -
iswc 2015 (pp. 301–309). Cham: Springer International Publishing.

Kuhn, W. (2005). Geospatial semantics: Why, of what, and how? In S. Spaccapietra &
E. Zimányi (Eds.), Journal on data semantics iii (pp. 1–24). Berlin, Heidelberg: Springer
Berlin Heidelberg.

Lai, P.-C., & Degbelo, A. (2021, 06). A comparative study of typing and speech for map
metadata creation. AGILE: GIScience Series, 2 , 1-12. doi: 10.5194/agile-giss-2-7-2021

Lawan, A., Rakib, A., Alechina, N., & Karunaratne, A. (2016). The onto-cropbase – a semantic
web application for querying crops linked-data. In S. Kozielski, D. Mrozek, P. Kasprowski,
B. Małysiak-Mrozek, & D. Kostrzewa (Eds.), Beyond databases, architectures and structures.
advanced technologies for data mining and knowledge discovery (pp. 384–399). Cham: Springer
International Publishing.

Li, N., Raskin, R., Goodchild, M., & Janowicz, K. (2012). An ontology-driven framework
and web portal for spatial decision support1. Transactions in GIS , 16(3), 313-329. Retrieved
from https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9671.2012.01325
.x doi: https://doi.org/10.1111/j.1467-9671.2012.01325.x

Ma, X., Chen, Y., Wang, H., Zheng, J., Fu, L., West, P., . . . Fox, P. (2015, 08). Data
visualization in the semantic web. In (p. 149-167). doi: 10.13140/RG.2.1.1648.3041

MacEachren, A. M., & Kraak, M.-J. (2001, 1). Research challenges in geovisualization. Cartog-
raphy and Geographic Information Science, 28 , 3-12. doi: 10.1559/152304001782173970

Matteis, L., Chibon, P.-Y., Espinosa, H., Skofic, M., Finkers, R., Bruskiewich, R., . . . Arnaud,
E. (2013, 05). Crop ontology: Vocabulary for crop-related concepts. In (Vol. 979).

https://doi.org/10.1007/978-3-540-70956-5_7
https://doi.org/10.1007/978-3-540-70956-5_7
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9671.2012.01325.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9671.2012.01325.x


References

Mcleod, B. A. (2021). Precision mapping of apple proliferation using multi- and hyperspectral
data .

Miller, P., Lanier, W., & Brandt, S. (2001). Using growing degree days to predict plant
stages. Ag/Extension Communications Coordinator, Communications Services, Montana State
University-Bozeman, Bozeman, MO, 59717(406), 994–2721.

Murugesan, S. (2007, 7). Understanding web 2.0. IT Professional , 9 , 34-41. doi: 10.1109/
MITP.2007.78

Naidoo, N., Lawton, S., Ramnanan, M., Fonou-Dombeu, J. V., & Gowda, R. (2021, 8). Modelling
climate smart agriculture with ontology. In (p. 1-9). IEEE. doi: 10.1109/icABCD51485.2021
.9519380

Ngo, V. M., & Kechadi, M.-T. (2020, 1). Crop knowledge discovery based on agricultural big
data integration. In (p. 46-50). ACM. doi: 10.1145/3380688.3380705

Ngo, V. M., Le-Khac, N.-A., & Kechadi, M.-T. (2019). Designing and implementing data
warehouse for agricultural big data. doi: 10.1007/978-3-030-23551-2_1

Nishanbaev, I., Champion, E., & McMeekin, D. A. (2019, 5). A survey of geospatial semantic
web for cultural heritage. Heritage, 2 , 1471-1498. doi: 10.3390/heritage2020093

Novak, J., & Cañas, A. (2006, 01). The theory underlying concept maps and how to construct
them.

OGS. (2022). Geosparql. Retrieved from https://opengeospatial.github.io/ogc
-geosparql/geosparql11/spec.html

Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., & Rosati, R. (2008).
Linking data to ontologies. In S. Spaccapietra (Ed.), Journal on data semantics x (pp. 133–
173). Berlin, Heidelberg: Springer Berlin Heidelberg.

Qiu, L., Du, Z., & Qing, Z. (2015, 07). A task-oriented disaster information correlation method.
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, II-4/W2 ,
169-176. doi: 10.5194/isprsannals-II-4-W2-169-2015

Raskin, R. (2003). Semantic web for earth and environmental terminology (sweet). Retrieved
from https://www.researchgate.net/publication/250346856

Raskin, R. G., & Pan, M. J. (2005). Knowledge representation in the semantic web
for earth and environmental terminology (sweet). Computers Geosciences, 31(9),
1119-1125. Retrieved from https://www.sciencedirect.com/science/article/pii/
S0098300405001020 (Application of XML in the Geosciences) doi: https://doi.org/10.1016/
j.cageo.2004.12.004

Robinson, A. C., Demšar, U., Moore, A. B., Buckley, A., Jiang, B., Field, K., . . . Sluter, C. R.
(2017, 10). Geospatial big data and cartography: research challenges and opportunities for
making maps that matter. International Journal of Cartography , 3 , 32-60. doi: 10.1080/
23729333.2016.1278151

https://opengeospatial.github.io/ogc-geosparql/geosparql11/spec.html
https://opengeospatial.github.io/ogc-geosparql/geosparql11/spec.html
https://www.researchgate.net/publication/250346856
https://www.sciencedirect.com/science/article/pii/S0098300405001020
https://www.sciencedirect.com/science/article/pii/S0098300405001020


References

Roth, R., Ross, K., & MacEachren, A. (2015, 03). User-centered design for interactive maps:
A case study in crime analysis. International Journal of Geo-Information, 4 , 262-301. doi:
10.3390/ijgi4010262

Scheider, S., Ballatore, A., & Lemmens, R. (2019). Finding and sharing gis methods based on
the questions they answer. International Journal of Digital Earth, 12(5), 594-613. Retrieved
from https://doi.org/10.1080/17538947.2018.1470688 doi: 10.1080/17538947.2018
.1470688

Scheider, S., Meerlo, R., Kasalica, V., & Lamprecht, A.-L. (2020). Ontology of core concept
data types for answering geo-analytical questions. Journal of Spatial Information Science.

Seaborne, A., & Prud’hommeaux, E. (2008, January). SPARQL query language for RDF (W3C
Recommendation). W3C. (https://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/)

Shneiderman, B. (1996). The eyes have it: a task by data type taxonomy for information
visualizations. In Proceedings 1996 ieee symposium on visual languages (p. 336-343). doi:
10.1109/VL.1996.545307

Sobral, T., Galvão, T., & Borges, J. (2020, 7). An ontology-based approach to knowledge-assisted
integration and visualization of urban mobility data. Expert Systems with Applications, 150 ,
113260. doi: 10.1016/j.eswa.2020.113260

South Tyrol Apple Consortium. (2020). Apple country south tyrol. Re-
trieved from https://www.southtyroleanapple.com/media/70610cc8-f62b-46d5-9347
-2f42b3e6433d/booklet-apple-country-south-tyrol-2020.pdf

Stedman, C., Burns, E., & Pratt, M. K. (2022, Feb). What is data preparation? an in-
depth guide to data prep. TechTarget. Retrieved from https://www.techtarget.com/
searchbusinessanalytics/definition/data-preparation

Subirats-Coll, I., Kolshus, K., Turbati, A., Stellato, A., Mietzsch, E., Martini, D., & Zeng, M.
(2022). Agrovoc: The linked data concept hub for food and agriculture. Computers and
Electronics in Agriculture, 196 , 105965. Retrieved from https://www.sciencedirect.com/
science/article/pii/S0168169920331707 doi: https://doi.org/10.1016/j.compag.2020
.105965

Sun, K., Zhu, Y., Pan, P., Hou, Z., Wang, D., Li, W., & Song, J. (2019, 7). Geospatial data
ontology: the semantic foundation of geospatial data integration and sharing. Big Earth Data,
3 , 269-296. doi: 10.1080/20964471.2019.1661662

Südtiroler Apfelkonsortium. (2020, Nov). Das drei-mal-drei der nachhaltigkeit: Strate-
gie zur nachhaltigen entwicklung der südtiroler apfelwirtschaft. Retrieved from https://
www.sustainapple.it/wp-content/uploads/sustainapple-de.pdf

Tappeiner, U., Marsoner, T., & Niedrist, G. (2021). Landwirtschaftsreport zur nachhaltigkeit
südtirol 2020.

https://doi.org/10.1080/17538947.2018.1470688
https://www.southtyroleanapple.com/media/70610cc8-f62b-46d5-9347-2f42b3e6433d/booklet-apple-country-south-tyrol-2020.pdf
https://www.southtyroleanapple.com/media/70610cc8-f62b-46d5-9347-2f42b3e6433d/booklet-apple-country-south-tyrol-2020.pdf
https://www.techtarget.com/searchbusinessanalytics/definition/data-preparation
https://www.techtarget.com/searchbusinessanalytics/definition/data-preparation
https://www.sciencedirect.com/science/article/pii/S0168169920331707
https://www.sciencedirect.com/science/article/pii/S0168169920331707
https://www.sustainapple.it/wp-content/uploads/sustainapple-de.pdf
https://www.sustainapple.it/wp-content/uploads/sustainapple-de.pdf


References

Thuile, M. (2022). Viel mehr als nur knackfrisch - was uns bewegt - südtirol. https://
www.suedtirol.info/wasunsbewegtdev/apfel. (Accessed: 2022-9-5)

Tomai, E., & Kavouras, M. (2004, 9). From “onto-geonoesis” to “onto-genesis”: The design of
geographic ontologies. GeoInformatica, 8 , 285-302. doi: 10.1023/B:GEIN.0000034822.47211
.4a

Ulyantsev, M. (1968). Apple tree (2nd ed.). Moscow: Kolos.

United Nations. (2016). Goal 2: Zero hunger - united nations sustainable development. Retrieved
from https://www.un.org/sustainabledevelopment/hunger/

Varanka, D. E., & Usery, E. L. (2018, 5). The map as knowledge base. International Journal of
Cartography , 4 , 201-223. doi: 10.1080/23729333.2017.1421004

W3C. (2015, Sep). Vocabularies. Retrieved from https://www.w3.org/standards/
semanticweb/ontology

Wagner, C. S., Roessner, J. D., Bobb, K., Klein, J. T., Boyack, K. W., Keyton, J., . . . Börner, K.
(2011, 1). Approaches to understanding and measuring interdisciplinary scientific research (idr):
A review of the literature. Journal of Informetrics, 5 , 14-26. doi: 10.1016/j.joi.2010.06.004

Wang, C., Ma, X., & Chen, J. (2018, 6). Ontology-driven data integration and visualization
for exploring regional geologic time and paleontological information. Computers Geosciences,
115 , 12-19. doi: 10.1016/j.cageo.2018.03.004

Wikipedia. (2022a). Resource Description Framework — Wikipedia, the free ency-
clopedia. http://de.wikipedia.org/w/index.php?title=Resource%20Description%
20Framework&oldid=225258410. ([Online; accessed 06-September-2022])

Wikipedia. (2022b). South Tyrol — Wikipedia, the free encyclopedia. http://en.wikipedia
.org/w/index.php?title=South%20Tyrol&oldid=1098782837. ([Online; accessed 23-
August-2022])

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., . . .
Mons, B. (2016, 3). Comment: The fair guiding principles for scientific data management and
stewardship. Scientific Data, 3 . doi: 10.1038/sdata.2016.18

Yan, J., Guilbert, E., & Saux, E. (2017, 5). An ontology-driven multi-agent system for nautical
chart generalization. Cartography and Geographic Information Science, 44 , 201-215. doi:
10.1080/15230406.2015.1129648

Zaino, J. (2019, Aug). Case study: Semantic web ontologies and geoscience collaboration helps
the planet. Retrieved from https://www.dataversity.net/case-study-semantic-web
-ontologies-and-geoscience-collaboration-helps-the-planet/#

Zarembo, I., Teilans, A., Bartulsons, T., Sokolova, O., Litavniece, L., & Nikolajeva, A. (2021).
Apple and pear scab ontology. In (Vol. 2, p. 199-204). Rezekne Higher Education Institution.
doi: 10.17770/etr2021vol2.6589

https://www.suedtirol.info/wasunsbewegtdev/apfel
https://www.suedtirol.info/wasunsbewegtdev/apfel
https://www.un.org/sustainabledevelopment/hunger/
https://www.w3.org/standards/semanticweb/ontology
https://www.w3.org/standards/semanticweb/ontology
http://de.wikipedia.org/w/index.php?title=Resource%20Description%20Framework&oldid=225258410
http://de.wikipedia.org/w/index.php?title=Resource%20Description%20Framework&oldid=225258410
http://en.wikipedia.org/w/index.php?title=South%20Tyrol&oldid=1098782837
http://en.wikipedia.org/w/index.php?title=South%20Tyrol&oldid=1098782837
https://www.dataversity.net/case-study-semantic-web-ontologies-and-geoscience-collaboration-helps-the-planet/#
https://www.dataversity.net/case-study-semantic-web-ontologies-and-geoscience-collaboration-helps-the-planet/#


References

Zeginis, D., Kalampokis, E., Palma, R., Atkinson, R., & Tarabanis, K. (2022). A semantic meta-
model for data integration and exploitation in precision agriculture and livestock farming.

Zhang, C., Zhao, T., & Li, W. (2017). Big geospatial data and geospatial semantic web: Current
state and future opportunities. CRC Press.

Zhang, S., Zhang, C., & Yang, Q. (2003). Data preparation for data mining. Applied Artificial
Intelligence, 17(5-6), 375-381. Retrieved from https://doi.org/10.1080/713827180 doi:
10.1080/713827180

Zhong, S., Fang, Z., Zhu, M., & Huang, Q. (2017). A geo-ontology-based approach to decision-
making in emergency management of meteorological disasters. Natural hazards, 89(2), 531-
554. Retrieved from http://dx.doi.org/10.1007/s11069-017-2979-z doi: 10.1007/
s11069-017-2979-z

https://doi.org/10.1080/713827180
http://dx.doi.org/10.1007/s11069-017-2979-z


Appendices

90



Appendix A

The dashboard is available at the following link:

https://app.powerbi.com/links/Du8KUk4d5-?ctid=92513267-03e3-401a-80d4-c58ed6674e3bpbisource =
linkShare

or QR code:

To get access please send the email to Darya.Lapo@eurac.edu
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