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Abstract

The relation that the ontological and spatial dimensions have is not always evident. To
better understand this relation, a tool called SeMaptics that connects the two domains
were developed. Ontological mapping allows for discrete ontologies to be projected into
the spatial field. Such ontologies are regularly seen in a continuous or overlapping layered
format in the spatial dimension. However, integrating both spaces results in a novel
method, which adds additional perspectives when designing a map.

The objective is to link and map both dimensions enabling user interactions, and allowing
for proper semantic probing. This exploration contains some criteria of geographical
relevance. This criteria allows for better identification of high-interest areas within any
given dataset.SeMaptics implements graphDB Neo4j to accommodate a graph architecture
and visualization JavaScript library D3js to render knowledge graphs on the screen. Visual
representations of knowledge graphs are limited by performance as the data pool grows.
In this work, an isolated administrative unit in Austria is analyzed to have a balance
between semantics and data quantity. Criteria that comprise geographical relevance
are over-viewed in this style of mapping to understand if it is the use relevance when
exploring spatial data from a semantic viewpoint.
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CHAPTER 1
Introduction

1.1 Motivation

The ontological space presents several properties that cartography can take advantage
of such as discretizing, connecting, and encapsulating semantics. The spatial domain is
one of continuous fields and variables which can or can not be discrete[JT22]. A present
challenge for map makers is to communicate e�ectively map semantics. Understanding
semantics in such a dimension proves at times challenging for both humans and machines.
Better integration of the semantic field into the spatial domain can enhance our ability to
identify hidden semantics and behaviors of our mapped surroundings. As a result, we can
better understand the data within a context to better design maps, enhance distribution
services or increase performance on digitally based maps. There is a wide field contained
within maps that implement knowledge graphs that is yet to be explored. Showcasing a
simple tool that allows us to see the connection between the spatial and the ontological
dimension should help us better understand the semantic relevance of data.
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1. Introduction

1.2 Thesis Outline

• Chapter 2 Research Identification: A presentation of the research objectives,
research questions, hypothesis, and explanation of how this thesis contributes to
cartography.

• Chapter 3 Relevance:Relevance and its di�erent elements and types. The types
covered in this chapter are i) physiological relevance as presented by Wilson (1986)
and Harter (1992)[Har92][SW86]. ii) Logical relevance per Cooper (1973)[Coo73].iii)
Situational relevance from Wilson’s (1973) perspective. iv)Geographical relevance
presented by Reichenbacher and Sabbata(2011 & 2012)[dSR12][RDS11]. The cri-
teria that comprise geographical relevance and the evolution of such criteria are
covered.
Relevance, maps, and communication are interconnected and thus a brief overview
of the role that neurocognitive relationships and the elements of the cartographic
transmission model are discussed [Ken18] [SZRM07]. Section 3.2 provides insight
in how SeMaptics as visual tool that communicates semantics influences relevance.
Additionally, relevance is tightly coupled with the information extraction field.
Inferring semantics has an underlying information extraction process following
Boyce’s (1982) and others’ relevance is presented under the scope of information
extraction [Boy82].

• Chapter 4 Knowledge Graphs & Knowledge Networks: Knowledge graphs
are fundamental to the semantic web[MHC+22]. In this chapter, the basic elements
of a knowledge graph are presented through the triplet model[MHC+22] and the
subject, predicate, and object model as per Nickel (2016)[NMTG16].
Knowledge Networks(KN) stem from decentralized linked data [Biz09]. E�orts
to delimit concepts with KN in the form of Resource Description Framework
Schema(RDF) as presented by the WWW3. This standardization allows for both
humans and machines to understand linked semantics. KN in cartography is
confined to 3 dimensions thematic, topographic, and connected [JG22]. How we
integrate these fields in cartography will define categorically related spatial data
infrastructures (SDIs), to formalize exchange and inter-usability[HKMH20]. Such
standardizations include the use of geospatial vocabularies through the standard of
GeoSPARQL.
Knowledge graphs in data visualisation have 3 main variables interaction, users
and task[MGP+04]. These three variables subdivide data visualization into 4 levels.
How the Semantic web and other knowledge networks a�ect the geovisualisation
field reflects on evolving standards such as the ones proposed by the World Wide
Web Consortium(WC3). Graph visualisations are built following 4 main steps data
retrieval, building, calculations, layout and rendering)[GRMSOG18]. The di�erent
types of knowledge graph layouts have advantages and disadvantages depending on
di�erent scenarios where navigation and interaction a�ect user preference and use.
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1.2. Thesis Outline

Mainly visual knowledge graphs in cartography have been used to represent flow
maps, sketch maps and network maps. The way a network is presented is de-
fined by its topology, spatial accuracy, and connectivity[RA97]. Narrative car-
tography has found support in knowledge graphs to construct maps and define
standards[MHC+22].

• Chapter 5 Popular Technologies that surround Knowledge Graph and
Knowledge Network systems: All technologies related to knowledge graphs
such as graph databases. These databases are schema flexible and follow the
SPO model. The query language they use defines them. The three most popular
languages for graph databases are SPARQL, Cypher, and Gremlin[Ang17]. These
languages conform to a declarative and graphical structure. They also support
existing database operations such as UNION, WHERE, FILTER, JOIN, and others.
The popular graph databases on the market at the moment are AllegroGraph,
ArangoDB, InfiniteGraph, and OrientDB. All databases support di�erent query
languages and have use cases where they perform better, whether it is scaling,
learning curve, readability, deployment, and distribution. These performance points
have defined the level of adoption that each one of these databases has. In the
cartographic field, these databases are popular in the use of mobile cartography,
digital river networks, and augmented reality navigation among others.

Additionally, technologies relating to knowledge graphs subdivide into web browser-
based and none web-browser based. The web browser o�ers cross-platform com-
patibility, while native technologies might o�er better performance and allow for
native optimization.

• Chapter 6 Finding Relevance Through the combination of Maps, Knowl-
edge Networks, and Web-based Knowledge Graphs: Methodology used in
this project alongside justification and hypothesis. A presentation of SeMaptics,
the tool developed for this thesis, and the capabilities it showcases as part of the
results.

SeMaptics was made using the four main steps on graph visualization Data retrieval,
building, calculations, layout and rendering proposed by Romero (2018)[GRMSOG18].
The data retrieval stage is comprised of collecting data from the Austrian Federal
O�ce of Metrology and Surveying (BEV) and converting tabular data into a graph-
ical structure on a Neo4j instance. The building processes follows a single-page
application SPA structure. The SPA approach allows for flexible and scalable tools
that require less time to develop, deploy and maintain. The main visual components
are upgraded versions of Typescript of D3js and OpenLayers.

The result is a tool that projects data to the spatial dimension from the ontological
dimension with a one-degree connection. Interactions are fluid in both visualizations,
with operations such as selection and drag being included. Simple readable legends
are rendered on top of each node to support human readability of the network.

3



1. Introduction

Di�erent types of graphical visualizations are supported in SeMaptics such as
Force-direct and disconnected-force graphs.

• Chapter 7 Conclusion & Discussion: Discussion on the results, challenges, and
limitations of SeMaptics. Future work and final thoughts on this topic.
It was found that graph visualizations add a level of understanding of the data
and that could stimulate creative mapping. Important characteristics such as
i)Ontology definition ii) Data harmonization, iii)Query language selection, iv)graph
visualization selection, and v)Interaction design play a role in how a user interacts
and perceives the presented semantics. Cluster identification on graph visualizations
allows for quick pattern identification. Data navigation is made much easier since
some of the data have no apparent spatial relation. The ontological space allows
for all data to be displayed on a single layer, something that is not possible in the
multilayered spatial dimension. Improvements can be done to explore the impact
that they have on relevance. These include categorization, multiple degree selection,
zooming, panning, and a dynamic state that changes according to interactions.
In conclusion, the connection of both dimensions reveals hidden patterns and allows
for e�cient semantic reads. Several criteria points from geographical relevance
are met such as depth, specificity, availability, accuracy, tangibility, accessibility,
dynamism, curiosity, spatial proximity, visibility, cluster and co-location. This
research leaves room for many areas to be explored. These areas include experiment-
ing with the impact of implementing: di�erent graph typologies and connectivity,
cardinality implementation, cross-domain data integration, additional graph types,
and understanding more semantic reads and aesthetics.

4



CHAPTER 2
Research Identification

2.1 Objectives

• Understand how the mapping of the ontological dimension projects relevance into.
the spatial dimension.

• Present a proof of concept, which can be build upon to explore relevance that
originates from the ontological dimension and projects itself to the spatial dimension.

2.2 Research Questions

• Does a web-based map tool, which contains a linked ontological and spatial dimen-
sion, enables geographical relevance criteria to be identified within in the ontological
and spatial dimension?

• Which criteria from geographical relevance can be asserted from a web-tool which
shows linked ontological(knowledge graphed space) and spatial dimension(map)?

2.3 Hypothesis

The connection of the ontological and spatial dimensions, while displaying both spaces
and adding based event interactive filtering features, will allow us to explore new ways to
understand relevance related to spatial features.

5



2. Research Identification

2.4 Contribution
This thesis explores the use and combination of maps, knowledge networks, and knowledge
graphs taking data visualization and database implementation. Through the linkage
and combination of these, the objective is to see the unseen and bring relevance forward.
Popular-themed cartography is focused mainly on layered visual classification, where
ontological relations are often overlooked. The reasons for this may vary. It could be
that cartographers are not exposed to the ontological relations that are embedded in the
data represented by the maps. The lack of maps that map ontologies or that the tools
used in map-making lack the means to create such maps. Relevance is an appropriate
topic that satisfies the need for maps that originate from an ontological dimension. The
main goal is to help understand the relevance in the ontological dimension and project
such relevance into the spatial dimension.
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CHAPTER 3
Relevance

3.1 Brief Introduction into relevance
Relevance is a notion that people use without defining it. One definition given by Saracevic
(1996) of relevance is The basic inner and outer human cognitive notion in constant use
when we have a present matter. Its pragmatic nature and core are evident to us, yet we
struggle to define it. Relevance is an action to access, filter, infer rank, accept, reject
and classify information. Even though its pragmatic application and nature are evident
to us its strict definition, fundamental particles, and classification type require a lot of
research [Sar96b]. Since the sixties, there have been e�orts in academics to understand
the underlying nature of relevance. However, Sabbata states that relevance is still a not
well-defined concept and that relevance subdivides itself into many types[SMR15].

Relevance as presented by Wilson (1973) is not a fundamental concept. But, as a
composition of di�erent fundamental relevances [Wil73]. A type of relevance mentioned
by Wilson is psychological relevance, which focuses on how people use the information
and how their views change after such information has been received. On the other hand,
Wilson mentions logical relevance, a type of relevance where the level of consequence
the received information has on an individual’s personal view is subject to criticism. He
states that logical relevance is often overlooked and ill-identified. An example he provides
is the realization of valuable information that was available all along. But for any given
reason was failed to be identified as relevant. Wilson defines logical relevance as, “(...)
the concept of a relation between an item of information and a particular individual’s
personal view of the world and his situation in it, and it is a concept in which relevance
depends on logical bearing on some matter on which he has preferences.” [Wil73]. This
definition bears importance because it states the relationship between the items and
the individual’s personal views at the center, showing that even relevances which are
considered fundamental are subject to the individual’s perception of reality. This concept
resurfaces later on in the cartographic communication model proposed by Kolacny where

7



3. Relevance

the perception of reality by both the user and the cartographer a�ects the information
transmission process[Li20]. Researchers such as Sabbata (2015) mention that relevance
in terms of information extraction is the connection between the information available to
the individual and the needs of the individual[SMR15]. Such ideas tie better to a static
concept of situational relevance introduced by Wilson(1973).

In the following sections, the main aspects of relevance that are considered relevant in
cartography will be covered. However, relevance is a vast well in which much research
happens. I would not exempt myself from being tied to situational relevance, consequently
omitting relevant research.

3.2 Communication & Relevance in Cartography
Since ancient times maps have been used as an interface of communication before written
language was commonly used [UMS+09]. Maps are communication gateways in which
spatial information concerning spatial ontologies transmits from the map maker to the
map user. Maps are communication systems [Li20]. Cartography is the art and science
that provides meaning to spatial relationships transforming space [Ken18].

The meaning a space receives through a map is always subject to the map maker and
the user. The two parts inherently have interests that they project on the map. Such
projection is the cartographic information transmission model [Ken18]. This model has
three core elements: the cartographer, the map user, and the reality[SSJK02]. Both
the cartographer and the user have di�erent perceptions of reality. The cartographic
community extended such a concept with new models accounting for the loss of informa-
tion. Since maps are communication systems, terms were coined for these models such
as encoding, decoding, and transmission [RP95]. However, these terms are not novel.
They have been mentioned in the code model since the time of Aristotle[Sar96b]. These
components are contained in what Sperber and Wilson defined as the improved inference
model. A model based on a high payo� low processing e�ort system, where relevant
information available receives more attention from the individual [WS95]. Sperber and
Wilson propose two principles in relevance. The first oscillates around the concept of high
payo�s for low processing e�orts through cognitive processes. The second states that
relevance is always clearly communicated[Sar96b]. Novel to this theory is the relationship
between communication and information retrieval for high payo�s.

Swienty (2007) presented the neurocognitive model that a geovisualisation instantiates.
This model splits into two paths. The M-Path & P-Path each of these is responsible of
di�erent tasks. The M-Path takes care of the spatial inference and the P-Path takes care
of defining what the user is seeing. Swienty presents a table that shows graphical variables
and neurocognitive pathways belonging to the neurocognitive model. Some factors such
as contour size, shape, resolution, crispiness transparency, saturation-achromatic contrast,
spatial depth disparity, and semantic motion signals belong to both pathways. However,
size, contrast, velocity, and motion direction are related only to the M-Path[SZRM07].
Swienty argued that there is a need to create a geovisualisation that is relevance driven.

8



3.3. Information Retrieval and Relevance

Figure 3.1: Neurocognitive relationships [SZRM07]

3.3 Information Retrieval and Relevance

Information extraction and relevance are tightly coupled. A drift exists between the
definition of relevance within the information retrieval field and other fields that deal
with relevance. For this reason, a general view of how information retrieval defines and
uses relevance has been included. Other definitions of relevance, which are covered in
the following sections, also include the information retrieval point of view. Information
retrieval and relevance relate through topicality[Boy82]. The idea is that relevant re-
quested information from an individual relates to topicality. This topicality acts as a
binder between relevant and non-relevant information. However, Boyce thought that this
was not necessarily true. He proposed a two-stage model where topicality is taken into
account in the first step. But afterward, a matrix of topical probabilities is made to rank
information with the highest conditional probability given a representation[Boy82].

Information retrieval, which started as a static task later evolved into a more interactive
process. However, information retrieval does not reflect interaction [Sar96b]. There exist
three proposed models known to me for information retrieval where relevance is treated
ever so di�erently. Firstly, the cognitive model proposed by Ingwersen (1996). Here
interactions are viewed as a set of cognitive processes under the justification that the user
interacts with texts, which are defined as cognitive structures. Relevance in this theory
is at the center of cognitive interactions from the users[Ing96]. Secondly, the episode
model by Belkin (1995) where interactions are a separate set of episodes and relevance
may be defining which type of interaction the user chooses to make[Bel95]. Thirdly, a
model proposed by Saracevic (1996) called the stratified model of IR interaction. This
model follows a 3 step foundation of Acquisition-Cognition- Application[Sar96b]. This
approach separates human interaction into a cognition level, where relevance participates
through intent pattern definition. From the computer side, an input or process level
exists. At this point, the computer tries to identify its relevance. An interface exists
which connects both participants[Sar96a]. Saracevic mentions that since humans made
such systems and they made relevant assumptions, there are more cognitive structures at

9



3. Relevance

play[Sar96b]. With this insight, Saracevic explains that there is a plurality of relevances
in the information retrieval field. This plurality is also mentioned in Wilson’s (1973 &
1995) work. The novelty of Saracevic’s work is that he presents what he calls a strata.
These strata of interactions encapsulate di�erent relevances which are independent of
each other. Hence he concludes that we can not choose one type of relevance and ignore
the rest [Sar96b]. This gives birth to a definition of relevance seen under the scope
of information science. Saracevic (1996) defines such relevance as the indicator that
shows how e�ective interaction between two parties, a user and an information system,
is [Sar96b].

A proposed relevance criteria list was given and formalized by Barry & Schamber (1998).
Their published list criteria included: depths, scope, presentation quality, geographic
proximity followed by accuracy and validity (Object & Subject), content Novelty, tangi-
bility, a�ectiveness, verifiability, and consensus among other criteria. This list was based
on all past research at the time. Schamber’s pointed out that geographical proximity
was identified as relevant when categories such as weather or currency were in play[IS98].
Both Sabbata & Reichenbacher expressed that this was a list that was founded on a
general perspective[dSR12]. Consequently, there was the possibility to use the same
criteria within geographical relevance. This criteria list will be explained in further detail
later on.

3.4 Types of relevance
In this section, the most prominent relevances mentioned in literature will be covered.
However, this field is vast and has a long history of research. It is most likely that
some types of relevance might be missed. It is encouraged that complementary read and
research is done besides what is presented in this chapter.

Physiological relevance is one of the earliest relevances to be researched and defined.
Initially presented by Sperber & Wilson (1986) and later on named by Harter (1992).
Physiological relevance is the relation between a premise and its context. Where two
elements from this framework must be satisfied [SW86].

• “1) An assumption is relevant in a context to the extent that its contextual e�ects
are large. [Har92] ”

• “2) An assumption is relevant in a context to the extent that the e�ort required to
process it is small. ” [Har92]

Understanding these two premises of physiological relevance. Harter states that we can
consider it as a comparative concept. He explains that since Sperber & Wilson’s proposal,
there has been a gap in the concept definition. There is the idea that the individual
will try to extract the most amount of value from any given piece of information, thus
maximizing its contextual value. Even though we have discussed that these authors

10



3.4. Types of relevance

regard relevance as a comparative concept, psychological relevance can be classificatory
when considering its value at a defined time within a defined context[Har92]. Saracevic
(1996) felt that a more appropriate name for physiological relevance would be cognitive
relevance. However, the naming has prevailed. A shortcoming also identified by Saracevic
is the challenge of putting our thoughts into discrete verbal concepts. Hence, using
language as a way to identify relevance is not advisable. Also, it restricts itself to project
information and changes according to received answers, making any a-priory relevance
obsolete [Sar96b].

Logical relevance as defined by Cooper (1973) is always dependent on the consequence of
any proposed statement [Coo73]. The possible answers to any given statement are defined
as component statements. Logical relevance focuses on the relationship between the
initial statement and component statements. From this definition, Wilson explains that
a piece of information holds its weighted relevance proportionally to the probability of
confirmation of the conclusion, based on the relation that the information has between the
proposed statement and the conclusion. If information holds no impact on the probability
of confirmation of such a conclusion can then be considered irrelevant. Then situational
relevance is at the forefront of relevance. Relevance is subject to the individual’s perceived
reality and not to the perceived reality of him by others or reality itself, if there is such
a thing. Consequently, statements are formulated in a categorical order. The order is
pertinent to the desired answers of the individual, which is a situational description.[Wil73]

Situational relevance is a core relevance Wilson(1973) places relevance as a consequence
of the individual’s situation and preferences. The dynamic concept within this relevance
is that information can become relevant when added to the individual’s knowledge stock.
This relevance depends on the individual’s value and preference stock. However, Wilson
does not explicitly state what the individual’s knowledge stock encloses. Situational
relevance, as the name suggests, encircles information based on situational concerns.
Some main drivers of situational relevance are preference, interests, time, degrees of
relevance, and completeness. Situational categorizes information based on these factors,
which act as situational to any given individual and are evaluated through a logical
relevance lens. Wilson argues this type of relevance is a strong notion for system design
that supplies information through an analysis that determines if a piece of information
is situationally relevant to a system user or not. Therefore, a challenge would be to
accurately project the user’s views and concerns into the system[Wil73].

11



3. Relevance

3.5 Relevance in Cartography
Cartography has a second side to relevance. Most relevant papers link relevance with
information extraction or decision-making. However, in cartography, there are other
relevant issues that relevance solves. Filtering is an important process/service in modern
cartography. There has been a lot of interest in filtering objects on mobile maps due to
the limited cognitive capacities of humans. Hardware limitations on over-rendering are
aided by filtering as well. There has been an identified need to render and communicate
e�ciently. This presents a challenge since mobile map makers wish to communicate
e�ectively and maintain map performance. On top of this, there is a need to be able
to identify relevant information from an overwhelming well of data that ubiquitous
modern mobile GIS provides. Geographic relevance has been the answer to some of
these challenges [RDS11]. In geographic relevance, all entities in a geographic space have
a quality attribute. The quality is the relation between the representation of such an
entity and the use context. Such objects have a relevance that is contained in di�ering
levels of intricacy. There are four levels to this relevance. The base level is relevance
contained within discrete objects. The second level contains attributes related to such
objects and/or their relationship at a: spatial, temporal, and spatio-temporal degree.
The third level is the relevance found within groups such as clusters. Lastly, the fourth
level is the relevance held as a function of such objects and places. [RDS11]

Geographical relevance has been related to situational relevance by Sabbata, under
the argument that the relevance contained within geospatial features, projects the
relevance of a real-world entity or event[dSR12]. However, Sabbata states that the
current understatement of geographical relevance is to evaluate the relevance of any given
object within an information system. As explained before, relevance is a dynamic state
that depends on the user’s interests and temporality. This relevance impacts how the
map user interacts with the map. Discussion around how to properly relate geographical
relevance and relevance that concerns information retrieval exits[dSR12]. There was an
understanding that relevance was tightly coupled with topicality in information retrieval.
Therefore, Euclidean distance could be used as a form of spatial topicality. However, there
has been debate over how to go about this linkage[dSR12]. Additionally, topicality in
information retrieval may require secondary stages to deliver relevant information[Boy82].

Considering the list proposed by Barry & Schamber(1998) and mentioned in the In-
formation relevance section. The criteria relation to geographical relevance was made
by Reichenbacher & Sabbata (2012) under the argument that this list could be also
used as criteria for geographical relevance. The criteria stated were depth, scope, speci-
ficity, availability of information, sources of information, e�ectiveness, accuracy, validity,
clarity, currency, tangibility, reliability, quality of sources, accessibility, and verifica-
tion[dSR12]. Reichenbacher & Sabbata explain why each of the elements of the list can
be used by geographical relevance and why are they valuable. Some of the criteria added
were: currency where it shows how much the information regarding any entity is up to
date.Accessibility relates to the fact that information might have some e�ort or cost to
obtain. A�ectiveness is the level of emotional response to any given information. Another
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3.5. Relevance in Cartography

criteria that Reichenbacher & Sabbata added through Schamber’s work was dynamism,
which refers to how alive or active the information is. An example would be zooming and
graphical interaction[dSR12]. More elements in the list are contained. The criteria list
was later extended with time. Novelty refers to information newness was also included as
criteria. In the early 2000s, there was more focus on web relevance where the criteria list
was extended by Reichenbacher & Sabbata. This new criteria where familiarity,variety
and curiosity. Finally, both researchers explain that personalized relevance is in play,
which they define as appropriateness[dSR12].

Relevance in GIS has also been the subject of research. Two core criteria are usually
scoped. Those being spatial and temporal proximity[dSR12]. Spatial proximity is defined
as the distance between entity and user. The same applies to temporal proximity. But
concerning the entity’s temporality and the temporality of the user. Other studies on the
mobile realm argued that spatial proximity was a dynamic factor since individuals could
trade space for time[MM07]. This concept plays into accessibility so Reichenbacher &
Sabbata brought up the spatio-temporal proximity as a criteria for relevance. The mobile
studies from Mountain (2007) made also possible for Reichenbacher & Sabbata to include
visibility and irrationality as criteria of relevance in GIS.

The geographical environment is influential to the judgment of relevance and definition
context. In such a context some fundamental geographical criteria that relate to any set of
entities exist. This relation can manifest itself in the form of hierarchy or spatial hierarchy
or through a cluster-type relation. Both, clustered and hierarchies, are judged under the
relevance scope. For cluster size and shape shows relevance. For hierarchical entities,
geographical units represent relevance. Other relevant factors that define relevance in
the geographical environment are co-location & association which can be constrained by
temporal factors[dSR12]. In their research Reichenbacher & Sabbata(2012) found that
as long as spatio-temporal proximity and topicality where satisfied co-location,cluster and
hierarchy where important criteria for users to define relevance in geographical entities.
Contrary to what Mountain (2007) found in his mobile study where availability was a
core criterion to define availability. Perhaps here is a good example where situational
relevance plays a role in the results of these studies.

There is a proposed discrete way to measure graphical relevance proposed by Reichen-
bacher & Sabbata (2016). Using the criteria list previously defined in the field, some of
which have been presented in this section, they account for semantic distance, mobility,
and geographical environment. Each of which spans over some criteria. Mobility takes
care of spatio-temporal proximity and directionality. Geographical environment takes care
of cluster-related relevance and co-location. The idea behind this calculated geographical
relevance was to compare it to the relevance given by regular users to see if the score
matched the user’s given relevance. They concluded that their estimation had a positive
correlation with human relevance. They found, however, that their proposed model
performed better in scenarios where spatio-temporal proximity approximated spatial
distance. Even though they had a positive correlation on their model they concluded that
there was still space to improve, to assess and estimate human relevance better. They also
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acknowledge that geographical relevance is expressed through multilayered relationships
where geographical relevance is strongly attached to topicality and spatio-temporal factors
concerning the user.[RSPF16]

Relevance in digital cartography can be a�ected by hardware and software variables, such
as display size and displayed data amount, influencing the cognition and geographical
relevance of the user[SZRM07]. In mobile cartography, Oliveri & Reichenbacher (2021)
studied the impact graphical variables have on relevance. This elements where hue , value
and transparency. The approach was to have subjects draw their attention to the screen.
The participants’ eyes were tracked in a free roam scenario. There was no immediate
impact on what users perceived as relevant. However, in a second scenario where users
were asked to complete a task, they found that transparency yields good results to draw
attention[OR21]. Suggested future work by them was to add geographical encoding
and test more graphical variables. In geovisualisation relevance has been treated as a
two-part system of objective and subjective relevance[SZRM07]. The objective relevance
is the direct result of any algorithmic determination and the subjective relevance is the
influencing factor. Subjective relevance is the interface in which a system generated
geovisualisation and the user interact[SZRM07].
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CHAPTER 4
Knowledge Graphs & Knowledge

Networks

4.1 Understanding Knowledge Graphs & Knowledge
Networks

4.1.1 Brief Introduction to KG and KN

Ontologies are one of the fundamental units in a semantic web. Ontology is a blueprint
to represent knowledge. Ontologies are the description of concepts and relations using
deterministic structures. The construction of a determined semantic space is known as a
domain.[MHC+22]

A standard definition of a Knowledge Graphs KG states that statements in the context
of the Semantic Web can be expressed in the form of a triple (h,r,t), the head entity
(i.e., subject), the relation (i.e., predicate), and the tail entity(i.e., object)[MHC+22].
Processing data using KGs is known as an ontological approach. A challenge that
the ontological approach faces is the ambiguities contained within natural language.
Formalism is required to map semantic spaces to strive for well-defined heterogeneous
domains[HMBB17].

Knowledge Networks(KNs) stem from decentralized linked data [Biz09]. Defined as the
use of typed links between data from di�erent sources[Biz09]. The distance between these
sources is irrelevant. The sources may be projected in the spatial dimension or it might be
data held in the ontological dimension. Data is identified on the web via Union Resource
Identifiers (URI�s)[Biz09]. URIs operate within Web of Data – Resource Description
Framework Schema(RDF) technology, which is also based on a triplet structure as the one
explained for KGs. This aggregation of linked data is a knowledge network [MBK]. KN
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aid in the creation of semantic interconnected spaces, to achieve such spaces metadata
must be included in the di�erent spatial data infrastructures (SDIs)[HMBB17].

4.1.2 Basic Elements on Knowledge Graphs & Knowledge Networks

Knowledge has the property to be surrogated by a representation[DSS93], which helps
us reason knowledge. In any given knowledge graph we can use a Node, Relationship
structure. This falls in line with the subject, predicate, Object (SPO) model. A
relationship is born out of the link of two ontological objects, which are represented as
nodes. When various SOP triplets combine they form a graph system. The directionality
of the edge is what di�erentiates a subject from an object. The construction of a KN
leads to accurate results. In these systems, we have the advantage of matching unique
ontologies on a space to create a KG. KGs are known to have deterministic properties
such as transitivity. Transitivity shows a logical path that knowledge follows[NMTG16].
An example of transitivity would be a node of type "park" that points to the year 2022 as
its foundation, respectively 2022 points to the century 2000-2100. Hence, we can easily
infer that such a park was found in the twenty-first century. The existence of statistical
patterns in a KG is known as homophil (autocorrelation). Entities tend to be related to
similar entities.[NMTG16]

Figure 4.1: SPO model

According to Nickel (2016), There are di�erent ways how to build a knowledge graph.
First, through a curated set of SOPs handpicked by experts. Second, using crowdsource
or group volunteer collaboration (Wikipedia). Third, automated approaches, extract
triplets from structured data. Fourth, automated methods from unstructured data such
as language. Nickel explains that even though a curated approach brings on the most
accurate results, using this technique does not scale well. All data from a KG is stored
in a Knowledge Base(KB). The main advantage of KGs is that semantic information
stored exists in computer-readable structures, which enhances the intelligent capacities
of computer systems. However, the quality and the trust worth of a knowledge graph are
only as good as the source it comes from.[NMTG16]
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4.2. Knowledge Graphs & Networks in Cartography

Relationship {
identity: Link ID,
start: Start Node ID,
end: End Node ID,
type: definition of relation

}
Node {

identity: Node ID,
labels: String[],
properties: {}

}

For KNs some basic metrics help evaluate them. Some of these are the average degree
of nodes, the average local cluster, the global cluster coe�cient, and the number of
connected components[MBK]. There are more metrics in which a knowledge network can
be measured. Additionally, RDF properties can be analyzed within data stacks depending
on the sources. Mangaladevi (2017) found diverse KN structures through the measure of
the basic metrics in combination where each property of a data structure (RDF) including
spatial topologies resulted in di�erent network structures and properties. The upward
trend in Semantic Web ontologies is because tasks such as storing, publishing, retrieving,
reusing, and integrating are supported. Standardized vocabularies such as Ontology Web
Language (OWL) enhance RDF triplets[GRMSOG18].

4.2 Knowledge Graphs & Networks in Cartography

Three dimensions have been presented in KN cartography: thematic, topographic, and
connection. The thematic dimension has the problem of informational structures, which
demand hierarchy and are diverse. Combining such structures has always been a challenge
in cartography. A concrete example is abstract administrative units represented in cadas-
tral data and their relations. Semantic abstraction using KN benefits the implementation
of this dimension on maps. The topographic dimension which is the host for the real-world
referencing point acts as the centerpiece that benefits from networks for data processing
and distribution. The connection dimension is the support of a common data space
where the enablement of relation allows for the implementation of multi-layer systems,
IT architect design, understanding of API mapping, and identification of redundancy.
Defining a standardized ontology to topographic elements to provide information security
has stagnated for some years now[JG22]. This study brings forward relevant areas of
need in modern cartography. Where ontological standardization implementation has
been set aside, due to the fact of questioning the relevance of doing so. More concrete
examples of applied semantic web ontologies in cartography are needed to be made to
demonstrate the relevance of semantic definition and standardization.
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Our world moves into ubiquitous Location Base Services(LBS) systems. Knowledge bases
become a viable service that cartography can rely on. Narrative cartography is a field of
cartography that benefits from KGs & KBs. From a visualization perspective using KG
can be projected into the spatial dimension. Crowdsource KG such as Wikipedia has
been mapped to understand the process and also as an additional step to evaluate the
accuracy of the data. KGs have not been properly exploited to generate geovisualizations.
The geospatial domain is no di�erent from other domains. There is a long-standing need
to understand it. Consequently, maps have been subject to knowledge formalization to
understand the underlying semantic structures within maps. A cartographic module
fitted for narrative cartography has been proposed by Mai (2022) to better define the
geospatial domain. This domain contains ontologies of di�erent natures such as object,
event, Spatio-temporal extent, Spatial-Extent, Temporal-Extent, map content Item, and
map content-type. The relation of such ontologies is defined in predicates of type boolean
(’is of type’, ’has property’). However, also predicates that explain the nature of such
ontologies can be used (according to whom). The KG cartographic module serves as
an initial guideline to map the semantic space in the geospatial domain. We can even
add styling features as ontologies to also define the styling domain as a subset of the
geospatial domain. Ontologies such as feature-type-styled, symbol, and legend-item.
stroke, fill and others can be graphed in the style domain. All these ontologies are
connected through boolean predicates of type consists-of, has-symbolizer, has-stroke, and
so on. The proposed cartographic module by Mai proves to be a powerful tool to define
cartographic spaces on the semantic web domain.[MHC+22]

The challenge of mapping the geospatial domain divides itself into two main areas of
application. The first is geospatial data integration. A well-defined problem is anointed
to the spatial data infrastructures (SDIs). SDIs formalize data integrations. Since a
standard allows for better data exchange and inter-usability[HKMH20]. Geoprocessing is
another field that would benefit from semantic web integration[HMBB17]. Here ontologies
are defined as process points and fed to geoprocessing tools as operators[HKMH20]. Since
knowledge graphs have transitivity properties workflow automatizing is possible. This
exercise has been explored by Huang (2020) on bicycle roads. Huang found that it is
possible to overcome data heterogeneity between di�erent sources to integrate and process
semantic data using KGs. He makes use of semantic constraints on data integration in
his work to achieve cross-domain integration. The second area of application that results
from mapping the geospatial web domain is geovisualisation. There is a clear boundary
to what corresponds to data acquisition. However, what data to show and how to show
it is a di�erent science[HKMH20]. Establishing KGs that define the display rules would
be a step closer to automatizing the map-making process.
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Maps can be used as a KB. This allows for maps not only to be human-readable but also
machine-readable. Since there have been e�orts by the WWW Consortium (W3C) to
standardize graph vocabularies, many KGs have been generated under the recommended
Resource Description Framework (RDF) classes. Nodes under the general convention
are International Resources Identifiers (IRIs). Ontological design for geospatial features
follows a Class design, where such classes are instantiated and extended. This permits
clear deterministic concept creation. Classes can e part of a class, consequently having
Sub-classes. Classes can contain values and properties which define interactions and
projections of the physical world. Many of the vocabularies available are non-geospatial.
However, geospatial vocabularies exist such as geo:lat and geo:long. These vocabularies
define spatially in an object and are under the Basic Geo vocabularies. Map semantics are
represented under the RDF vocabularies. However, there is still not a fixed convention
for all ontologies, and depending on the field of application-specific vocabularies may be
proprietary or of hybrid nature. Since RDF vocabularies are machine-readable, some
ontologies within a map can be defined without a map being visualized. This allows for
other maps to be generated on demand.[VU18]

4.3 Knowledge Networks in Data distribution
Infrastructures

Vocabularies that represent geospatial data through the standard GeoSPARQL, depre-
ciated since 2021 and refactored to OCG-GeoSPARQL, such vocabularies allow the
embedding of a spatial predicament in queries. It makes use of simple fundamental
concepts such as feature and geometry. Other more robust vocabularies have been
implemented using GeoSPARQL as a foundation, INSPIRE being an example. Metadata
provides context to any dataset which is associated thanks to graph representations of
geospatial datasets. Cartographic scale definition has also been modeled under graph sys-
tems to develop a vocabulary that allows for better standard geometry design Huang2020.
This work is relevant to understanding the standard ontological design vocabulary behind
KG cartography and the underlying stepping stones that have been laid before in KG
cartography.

Evaluation of data quality across the Semantic Web is another relevant topic. The value
of a web can be seen as the number of links that exist among all participating ontologies
since this increases the usefulness of the data as a whole. Where linked data not only
refers to lower-level ontologies but also at a meta-level. Where the linked aggregate of
such heterogeneous data sources brings forth a network of knowledge. The quality of the
semantic web data can be seen in a 5-star system where One-star has the lowest grade
and is considered demand-driven (PDF). The two-star rating puts data into context
and is available as machine-readable structured data in proprietary formats (XLSX,
Esri Shapefile, MapInfo, Geodatabase). Three-star rating supports conservation around
data, but in a non-proprietary format (CSV, TXT, GeoJSON, TopoJSON, KML, KMZ).
Four-star rating builds capacity, skills, and networks using open web standards from
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W3C (IRIs for identifiers, RDF for data model, SPARQL for querying). Five start
Linked to other Linked Open Data on the web providing the content. Collaboration
on data common sources. As of 2020 most of the European detests were classified on a
3-star system OlhaOstrovna2020. More projects using Semantic Web technologies should
promote a shift towards an upper star system, which benefits data security [JG22] and
cartographic semantics.

Traditional SDIs have developed data storage in tabular structures. However, machines
are e�cient at understanding these structures. Hence a field that specializes in extracting
semantics from tables exists[HKMH20]. Syed (2010) proposed a simple way for systems to
interpret data, where table headings are categorical ontologies and each corresponding row
to said categorical ontology is an instance of such category with a specific value[SFMJ10].
This process allows for data to be understandable to machines and humans alike and has
been built upon other research[Zha14].

Network Analysis on GIS also brings valuable elements to the table. Where a network
is not only seen as an equal weight network topology. But also as a dynamic system,
where there is a flow preference depending on the network characteristics. An example
of such a network is a tra�c network. These graphs are defined as value graphs or
alternative graphs. GIS relies upon data models as a core piece. Such models are abstract
representations of the real world. A popular standard is the relational model, which
separates the data attributes and the spatial attributes of any node edge representation.
Even though we can manage these representations on Relation Data Base Management
Systems RDBMSs, this does not allow for relations to have their own attributes[FM06].
Network Analysis is a vast field. However, the implementation of simple but basic network
operations enhances our understanding of the semantical context.

These researches do set a foundation stone for standard vocabulary and ontological
definition. However, there has been limited work done on the implementation of web
integrated systems that make use of semantic web technologies since the principal
cartographic studies still deal with KG basic definition concepts. Incursion in cartographic
KG tool creation and technological stack proposal represents a challenge since it has not
been thoroughly explored. However, the stage has already been set by fellow cartographers
in the community to start implementing such technologies.
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4.4 Knowledge Graphs in Data Visualisation
Geovisualisation has 3 main variables interaction(I)[high(h)-medium(m)-low(l)], users(U)[public(p)-
specialist(s))] and task(T)[knowledge(k)-info(i)]. These 3 variables indicate define the
function of the geovisualisation, which is ranges in 4 levels exploration(I-h,U-s,T-k),
analysis(I-h/m,U-s/p,T-k/i), synthesis(I-m/h,U-p/s,T-i/k) and present(I-l,U-p,T-
i)[MGP+04]. Graphical representations help us understand our surroundings and the
nature of complex systems better. Since actual systems are complex, dynamic, and
ubiquitous and such systems present SPO structures. Graph network type representa-
tions have been sought[DR22]. Popular network representations are protein pathways
in biology, supply chain systems, and temporal events in narrative cartography just to
name a few.

E�orts have also been poured into presenting geovisualisation using Semantic Web
technologies, where a common framework is set by the World Wide Web Consortium
(WC3) that allows data to be shared and used by di�erent applications across the
Semantic Web. Geovisualisation has broad coverage that contains multiple knowledge
traits. These contain visual perspective, cartographic scale, data portrayal, and geometry.
All these elements comprise geovisualisation knowledge [HKMH20]. Understanding the
fundamental aspects of geovisualisation concerning the Semantic Web is key to develop
a standardized framework that follows pre-established concepts by the cartographic
community. Similar graph models have been implemented in narrative KG cartography
to standardize Narrative Cartography Ontology [MHC+22].

Graphs are classified by the directionality of information they present or the lack of it.
KG that contains directionality on the edge that relates two nodes is called a direct
graph, while a graph that does not show such directionality is an indirect graph [Mat22].
Directionality normally is represented with an arrow [0–>0<==>0].

Graph visualization follows an outlined process for its estimation and rendering. The
process consists of 4 main steps(Data retrieval, building, calculations, layout and ren-
dering). Building extracts data from a source. In the case of a semantic graph, it
extracts semantic context. In this step, RDF vocabularies help to provide interoperability
between the semantic structures. The building process takes care of building the graph
and has data in the most machine-readable way. Graph calculations estimate all the
graph properties interpreted in the rendering process. Specific graph attributes such
as relation weights and node relevance are calculated at this point. The graph Graph
Layout calculates spatial values or coordinates within the viewport depending on the
selected layout. The layout makes it possible for humans to understand the graph system.
Finally, the rendering displays all estimated values from the previous steps. This process
can vary specifically on the data retrieval since OWL vocabularies keep expanding, which
facilitates extraction from raw data. [GRMSOG18]

A limiting factor for graph visualizations is the graph size. Problems such as viewing
port saturation and performance arise with size. Saturation of the viewing port results in
overall information becoming hard to understand since nodes and edges pile up together.
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Hence, recommended way to display a graph is small. Graph visualization is responsible
to solve the problem of giving a certain number of nodes and relations, estimating the
positions of these, and drawing all elements with respect. Some terminology exists in
graph drawing depending on the resulting drawn graph. Such as planarity, aesthetic-
rules, size, predictability and time complexity[Her00]. Planarity refers to the possibility
of drawing a graph without having edges crossing paths with each other. Aesthetic rules
may set constraints to the drawing process such as edges must be straight lines and
have the same length between nodes. Planarity should be minimized. Nodes in a drawn
graph should be isomorphic to each other. From these aesthetic rules avoiding edges, and
crossing is the most important[Pur98]. Size relates to how well a graph visualization will
scale, accounting for readability and rendering performance. Predictability is a term that
refers to the algorithms drawing the graph, where di�erent drawing algorithms drawing
the same data should lead to similar visual outcomes. Finally, time-complexity is how
immediate can updates on a graph take place, which allows for better interactions and
facilitates implementation when scaling up.[Her00]
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4.5 Types of Knowledge Graphs Visualisations
Graph visualizations are classified according to their layout. Each layout has its challenges
concerning the overall drawing variables (planarity, aesthetic rules, size, predictability,
and time complexity).[Her00]

The tree layout is the traditional way of representing a graph. This layout subdivides into
many types such as simple tree-layout,ballon-view, hierarchical-tree, radial-view,tree-map.
Tree layouts are seen as the simplest graph visualizations to generate and the ones
with the lowest complexity to generate, where complexity is proportional to the number
of nodes. The Ballon-view (Figure 4.3) is generated by having sub-trees projected to
attached father nodes. For the hierarchical tree (Figure 4.2) the most important factor to
preserve is planarity. Treemaps are also a form of hierarchical representation, where the
viewport is subdivided, however, relations can not always be identified. Relationships of
type isContained is easily spotted. The radial-view (Figure (Figure 4.4)) places all nodes
on a concentric circle concerning their hierarchical level. [Her00]

The Sugiyama Layout is used for directed acyclic graphs (DAGs), where the edge is
directed to another and there is no closed loop. In this type of layout, the layering of the
nodes is of most relevance. The placement of the nodes follows the layering order. The
same information can be represented in di�erent manners according to preset constraints.

The Spring Layout or Force-Directed is a graph generated based on Hooks law which
describes attracting and repelling forces between bodies. This method is attributed to
Eades and was later refined[FRW91] [Her00][HSoM91]. The result is generally a balanced
graph system with good planarity. The disadvantage of this method computes time since
all nodes have to be revisited for each calculation. Complexity is of the order O(N3)
considering N as the number of nodes[Her00]. Another property of a spring layout system
is that it is unpredictable, the same data could generate di�erent graphs. A Spanning
Tree is a popular graph representation that scales well with large graph systems that can
be disconnected. The Hyperbolic layout is a graph contained in a distorted space, which
often allows for navigation within the fish-eyed view-port (Figure4.6).

Navigation and Interaction are relevant areas that impact the level of the geovisualisation
(exploration, analysis, synthesis and present). Navigation is composed of zoom and pan.
Context preservation techniques can be implemented to preserve contextual information
when a section of the graph is zoomed such as Fish-eye distortion or Incremental
exploration[Her00]. Context preservation techniques are used as a counterbalance graph
size. Clustering is another popular method used to abstract graphical information. The
implementation is done based on semantics. Clustering can be done on the source of the
information. structural-based clustering is done strictly with data contained within the
graph. content-based uses semantic data that is bonded to each of the graph elements.
Typical tasks for clustering are searching and task filtering. Algorithms that cluster
graph systems usually are designed to find a balance in the filtered information, while
maintaining the overall graphical structure at the proposed abstract level. Such algorithms
usually focus on the network properties such as type of graph, degree, rank, edge weight,
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and such[HDM98][Her00]. A clustered layout is the resulting layout of a graph that
has undergone a clustering process. The term super-node introduced by citeHerman I
(2000) in this visualisation. Super-nodes are clustered nodes, when implementing super
nodes the resulting graph is called a compounded graph. citeHerman) proposes some
visualization techniques for compound graphs (ghosting, hiding, and grouping). Ghosting
takes focus away from non-super-nodes or less clustered super-nodes. Hiding hides nodes
based on a predefined constraint (selection, node-type among others . . . ). Compounded
graphs can also be subject to navigation interaction through a folding process [HDM98].

Figure 4.2: H-tree layout
Figure 4.3: Ballon View

Figure 4.4: Radial-View [Bos12]
Figure 4.5: Sugiyama-Layout [Bos12]

Figure 4.6: Hyperbolic Tree[Glo21]
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4.6 Visual Knowledge Graphs & Cartography

The earliest knowledge visualizations integrated into maps are flow maps, connection maps
and sketch maps. Flow maps are not always considered formal network maps. Normally a
flow map consists of a network-like view, where flows are represented by relative line widths.
A pitfall from this map is that often lines overlap. It is di�cult for humans to estimate
the magnitude of the values expressed on line widths. Connection maps were introduced
in the 1930s in London as subway maps.Network sketch maps as the name suggests are
hand-drawn maps with a route and an end destination. Used typically for advertisement
purposes. These maps have low detail and are considered mental representations of the
maker from any given area. Also, network sketch maps show alternative flexible routes
and navigation instructions. In this type of map, the focus is placed on landmarks that
facilitate wayfinding on the road or in remote scenarios. Due to the simplicity of these
types of maps often their network properties are overlooked. However, they all contain
the characteristics that define a network map visualization. According to Ruggles (1997),
a network is an organized collection of objects with cartographic nature, where degree,
organization, flow-interaction, and contextual relationship influence their representation
of such network. Network and geographic transformation can be combined to obtain the
network types seen in figure 4.7. [RA97]

Figure 4.7: Network basemap transformations[RA97]
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There has been some relevant work in the field of KGs and cartography. The use of KGs to
present history combines technologies of GIS clients (QGIS, ArcGIS Pro) and Knowledge
Network(KN) sources like Wikipedia. A drawback of this research was the limitation of
the used GIS client and its toolbox extensions such as "Linked Data Relationship Finder"
of proprietary nature. Challenges were identified such as data incompleteness, semantic
incompatibilities, and geovisualisation. To these last drawbacks, a proposed ontological
design pattern in the form of a "Cartographic Module" was presented, to define how
narrative maps that use KGs should be visualized [MHC+22]. High volumes of data do
not translate to better visualizations [KPS19]. Hence, we need to rely on e�ective ways
to convey insights contained in data. The true benefit of visualizations is not contained
in a single visualization form. But in the combination of various visualization types (line,
bar, pie, stacked, polar, histogram, dot-matrix, etc ...)[KPS19].

Cartography of the mind is an area where KGs are used. Our creative process has a
strong relation to KGs. The association that concepts have in our mind is related to
the creative self[Med62]. More creative people are capable of traversing deeper into
their mental structures. These people have higher semantical awareness. Ontologies
are connected weakly and strongly. The way mental semantics are traversed is related
to connectivity, ontological distance, and communities. Creative individuals normally
reach weaker connected nodes. Each path explored path is a stream thought, where each
concept visited has a semantic distance associated with it[KF19].Stream thoughts can
be represented on a graph visualization to better understand the thought stream that
happens in the human mind[KAF14].
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CHAPTER 5
Popular Technologies that

surround Knowledge Graph and
Knowledge Network systems

5.1 Graph Databases

5.1.1 Brief introduction Graph Databases

Current map information structures in GIS revolve around traditional relational database
management systems (RDBMSs) [CDW+19]. In such databases, information is stored in
table-like structures which implement structure query language (SQL) to retrieve data and
execute operations on such RDBMSs. This traditional method allows for practical bulk
operations that enable e�ective statistical analysis. Apart from these relational databases
exist graph database management systems (GDBMSs) which operate on a node-edge
structure, where ontological instances are depicted as nodes and the relationship between
these ontologies is defined by an edge. These ontological interactions are represented in a
knowledge graph(KG)[MHC+22]. Analogous to RDBMSs SQL’s GDBMSs use SPARQL
to query and implement changes. SPARQL has the same expressive power as Relational
Algebra [AG08].GDBMSs have emerged as a complement to RDBMSs. However, the
limits of GDBMSs are still unknown[CDW+19]. The scarce implementation around
GDBMSs results in a need to explore the potential application and use cases that could
benefit map creators and users alike. The storage architecture works by having vertices
that contain a direct reference to a list of direct vertex[FB18].
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Graph databases support ACID transactions the same as RDBMS. They are better
at gathering information than RDBMS. The data storage capacity is in the order of
Petabytes. They are flexible when expanding due to their graph structure. They handle
well irregular data. Tasks that relate to data mining perform well. Data type declaration
is not required. Handle well on querying data that has multi-dimensional. Hence,
having good performance in Big data scenarios[FB18]. Graph databases struggle with
representing data or operations that involve data steamed from RDBMS. However, graph
databases are flexible, feature good performance, and are quite agile. Today businesses
evolve at high speeds and also the collection of data is at higher volumes than before, for
these reasons the use of graph databases has become more popular.[FB18]

Both RDBMS and GDBMS are cyclical structures. An important di�ering factor between
these two technologies is that relational structures use tuple array structures, while graph
structures employ a triplet structure (RDFs). Tuples inherently predescribe data type. It
is possible to execute RDF queries on relational structures. Using RDF queries provides
unambiguous results since RDF has deterministic vocabularies.[GPE21]

As the use of the Semantic web becomes more popular performance challenges arise.
Graph systems struggle when displaying big graph structures and in the early stages
of retrieving and processing the data. Completion time of tasks such as queries, page
rank, build, and layout scale concerning the number of edges that a network has. Layout
tasks especially increase exponentially with the number of edges, while queries, page
rank, and build scale linearly with some exceptional cases. However, depending on the
dedicated technologies used the point of exponential growth can be displaced in any
direction. This has been proven with both real-life data and synthetic generated graph
systems.[GRMSOG18]

The core objectives of all GDBMS are graph pattern matching and graph navigation.
Graph pattern matching works depending on the overall graph pattern from the GDBMS.
The known patterns are of nature basic and complex. Basic graph patterns are query
structures that directly match the database contents. Complex graph patterns are
augmented query structures by use of unions, projection, optional, and di�erence. These
patterns can be of homomorphic nature or isomorphic. A homomorphic pattern matches
into a graph with no restrictions while a isomorphic pattern follow restrictions. Isomorphic
patterns can allow repetition or not of edges or nodes. [Ang17]

Aside from basic graph patterns, a graph database is defined by its navigation capacity.
Navigation graph patterns are basic graph patterns with the main di�erence being that
the edge is being labeled. These are also known as regular path queries or (RPQs). RPQs
are integrated as basic navigation graph patterns and can be extended as well as complex
navigation graph patterns[Ang17].
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5.1.2 Graph Database Query Languages

The most popular GDBMs operate under three di�erent structure query languages
(SPARQL, Cypher, and Gremlin). As mentioned before these query languages all operate
under pattern matching and pattern navigation. SPARQL is derived by the W3C to
extract RDF graphs. Cypher is an implement-ion of the Neo4j team, which uses patterns
as the fundamental components to build queries. Cypher aims to be a more visual
language with a visual node encoding. The main command used in Cypher to query
is MATCH. Inside the MATCH command, the basic graph pattern is specified. Here
are some simple queries that Cypher uses to do graph pattern matching. Cypher uses
WHERE for conditional matching, WHERE NOT is also possible. To create a Node or a
relation the command CREATE is used. [Ang17]

Node Creation

CREATE((Fruit){name:apple})
CREATE((Taste){flavour:sweet})

Simple query to get Fruits which are of name apple

-MATCH (a:Fruit) WHERE a.name=’Apple’ RETURN a;

This query returns all the relation of type ’tastes_Like’
connected to Fruit nodes of name ’Apple’

-MATCH (a:Fruit)-[:tastes_Like]-(tastes)
WHERE a.name=’Apple’ RETURN a,tastes

Relation Creation -> To create a relation first we need to
match the nodes and then create the relation between them.

-MATCH (a:Fruit) WHERE a.name=’Apple’
-MATCH (b:Taste) WHERE b.flavour=’sweet’
-CREATE(a)-[:tastes_Like]->(b)

In this example note that apple tastes like sweet and not the other
around(sweet tastes like apple). Relations have a directionality.

SPARQL is a declarative language, which means the user specifies the task. This W3C
language queries RDF triplets of SPO nature. SPARQL supports basic patterns and
complex graph patterns. Each statement is interpreted as a sentence. In the following
example, it would read as follows. Select an apple that tastes like sweet and a taste that
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has a sweet flavor. This allows for deterministic sentences. That are structured under the
predefined standard vocabularies set by the W3C. SPARQL supports other operations
(UNION, MINUS, FILTER, OPTIONAL,...), which allows for more specific sentences.
[Ang17]

SELECT ?a ?b
WHERE {
?a :tastes_like ?b . ?a :type :Fruit.
?b :flavour "sweet" . ?b :type :Taste.
}

Gremlin is a language adopted by Apache Tinker-Pop3 and has a very distinct nature
in comparison with SPARQL and CYPHER. It follows a G.V() command that returns
the requested list of nodes, followed by .in() and .out() commands to include respective
relations. It is considered to be a limited declarative language. [Ang17]

A popular alternative among developers is the query language GraphQL. A query lan-
guage released in 2016 by Facebook and since has been popular in the programming
community[HP18]. GraphQL is an implementation to partially replace REST-API re-
quests on SQL and NoSQL commands. Since its release, it has seen adoption by some
graph database developers such as Neo4j[TVSV18]. However, the GraphQL implementa-
tion is strictly an overlay on the existing graph querying language. This means that it is
possible to emit GraphQL commands which are parsed to SPARQL, Cypher, or Gremlin.
Each parsed command term executes the corresponding command in its specification.
This means the user querying gains homogeneity at the expense of sacrificing some
performance on parsing tasks. There is a challenge to implement semantic declarations
in the case of SPARQL[HP18][TVSV18]. Tasks such as defining a graph structure are
necessary to create the bridge between GraphQL and SPARQL[TVSV18].

5.1.3 Popular Graph Database Systems

The most prominent databases that have reached a considerable level of adoption are
Neo4j, AllegroGraph, ArangoDB, InfiniteGraph, and OrientDB. They all support di�erent
query language architectures (SPARQL, Cypher, Gremlin ...) and have di�erences in
the way they operate. All of these databases boast advantages and pitfalls. The main
areas according to Fernandes (2018)that define a graph database are flexible schema,
query language, sharding, backups, multi-model, multi-architecture, scalability, and
cloud-ready.

AllegroGraphDB is based on RDF technology. It is an open-source project, which has
been adopted by private and public entities alike. AllegroGraph is known to have high
storage, due to its e�cient memory handling. It can scale up to a billion nodes while
maintaining performance. The AllegroGraphDB community has developed interfaces to
connect with popular programming languages such as JAVA and python. It supports
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adhoc queries, which are dynamic or on-the-fly queries. Queries are done under SPARQL
language[FB18]. It is possible to make queries that contain Geospatial, temporal and
relational logic. It can be cloud hosted.

ArangoDB was started in 2012. However, the level of adoption is still small. Arango’s
query language (AQL) supports multiple data models. The AQL command remains
unchanged even if the data model changes. This feature is powerful since it allows for
simplicity and flexibility when developing products. It has strong data consistency, thanks
to back-end management that follows the ACID rules[FB18]. Arango’s client is embedded
in the browser. ArangoDB’s architecture implements REST protocol. Because of this, it
has JavaScript integrations.[FB18] It can be run under a cluster architecture[Akh17].

InfiniteGraph is built on C++ and has JAVA implementations. This database is popular
in commercial projects due to its scalability, distribution and processing features, and
cloud storage capacities. InfiniteGraph allows for distributed process partitions and
graph partitions. InfiniteGraph has the advantage of allowing multiple reads and writes.
API is mostly based on JAVA and C++. It allows for data models to be exported as
JSON. InfiniteGraph is not a free database.[FB18]

Neo4j is an open-source database built on JAVA released in 2007. Neo4j implements
native graph storage. It follows a persistent transaction architecture. Neo4j implements
Cypher as it is a query language. HTTP API is used for its client, which runs on the
browser. Neo4j is considered the most popular graph database. Used in both private
and public projects. It has been presented as a tool in use cases such as tax evasion,
and access management. Neo4j has graph algorithms. Neo4j is flexible, scalable, and
follows the graph model. Multiple drivers for JAVA, JavaScript, Spring, and Scala have
been developed for Neo4j. It supports query data exports in JSON and CSV. Neo4j is
a high-performance database since it is built on native Neo4j[FB18]. Neo4j supports
sharding through its Neo4j Fabric implementation. Neo4j supports spatial queries due to
its spatial plugin extension [TS19].

OrientDB is an open-source multi-model database released in 2011. OrientDB is im-
plemented on JAVA. Query commands can be done on Gremlin, Java, or SQL. It is
designed under free adjacency architecture, meaning that vertices have a stored list of all
connected vertexes. It is free under the Apache license. OrientDB can be sharded. One
of the biggest pitfalls of OrientDB is that it does not support import tasks. OrientDB
has a web-built client[FB18].

Finally, Apache’s AGE is a PostgreSQL extension that implements Cypher on any
PostgreSQL (11,12,13, and 14) instance. This is done through the implementation of a
parser that acts as a middle firmware to execute queries at an SQL level. The process
takes place on a cashed layer with the following steps: parsing, transformation, planner
and executor. At the parsing stage the caper query is parsed into Cypher specifications.
During transformation the Cypher query is converted into a query tree. The planner or
optimizer produces plan nodes to execute the corresponding node operations. Finally the
executor executes the plan nodes. This extension is still under development and still, the
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performance impact or level of adoption that this parser will have is unknown.[hASF22]

5.1.4 General Adoption of Graph Databases in Cartography

As graph databases see higher adoption in other fields such as cartography, and paired with
the fact that geospatial data is collected in higher volumes. Additionally, cartographers
frequently deal with graph-like structures such as river networks, and road networks
among others. Consequently, research is done using graph databases to explore the
possibilities that implementing graph databases open.

Brazil holds 12 percent of the world’s freshwater reserves. However, the distribution of it
is not balanced across Brazil. Most of the water is stored in the Amazonas. The network
faces many challenges such as pollution waste from illegal mining, industrial waste,
sewage, and general waste. For this reason, is important to have e�cient information
infrastructures that provide on-demand information in regards to the network. Daltio
(2016) migrated the river network from an RDBM to a GDBM to understand the benefits
of such technology. He defines drainage points as nodes and drainage stretches as the
edges. The river network he works with is a binary tree graph that is connected and
acyclic. Relevant operations would be to retrieve all the water stretches from a drainage
point and calculate upstream catchment areas. These operations on a regular RDBMS
require multiple JOIN queries. In his research, he encountered three main challenges data
structure types, operator implementation, and consistency in database states. Daltio
concludes that due to data persistence issues it is recommended to use both database
types to obtain the benefits of consistency from an RDBM while having the graph
benefits that a GBDM o�ers. This type of architecture he describes as a hybrid. His
implementation was done on a Neo4j instance.[DM16]

Trajectory analysis benefits from the implementation of GDBMs. Currently, navigation
algorithms filter a lot of semantics because data comes in bulk with often an unnecessary
overhead. These filtering techniques stem. These filtered elements are often relevant for
other parts of the navigation system. For this reason, Tamilmani (2019) proposed a new
methodology that involved trajectory estimation with the use of a GDMS. In his works,
she uses Neo4j and PostgreSQL instances. Tamilmani uses a hybrid approach as well.
The main methodology approach is to enrich the simplified line with semantics and inject
this enriched line into Neo4j. Once in Neo4c Cypher can be used to further process and
analyze the trajectories. An architecture approach he follows is to connect a JAVA server
and have the JAVA server communicate with Neo4j and PostgresSQL then the data is
transferred via HTTP to a custom front-end web client. He concludes that this approach
simplifies trajectory analysis when talking about large data sets. [TS19]

Augmented reality navigation systems are also good candidates for graph database
implementations according to Amirian (2015). Since LBS applications are becoming
more ubiquitous, and as seen on Tamilmani’s work there is a lot of drive for graph
database implementation. Amirian proposes a Native mobile navigation stack that
enforces the connection of both a spatial database and a graph database, with a front-end
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web application rendering tool. The proposed tool provides e�cient navigation using
augmented reality properties such as wayfinding in real-time in combination with the
cellphones camera. The navigation tasks are handled by the graph database, while
the distribution of other assets such as images and graphical elements are provided by
RDBMS. OSM data would be embedded in the graph database and communication
between these elements is handled via a REST API. He concludes that graph databases
allow for easy connection of multi-dimensional data. [ABG+15]

5.2 Web browser-based

Modern cartography is trending more and more in the web browser. We see more often
web data tools coming up. Big GIS clients such as ArcGIS or GRASS GIS can be now
used from a web browser. Projects such as OpenLayers, Mapbox, and Leaflet have gained
popularity over the last few years. There is a trend toward websites with visualizations
that prioritize interactivity. The way a website is designed regarding how it functions and
how it interacts with itself is normally called web Architecture[DB19]. There are many
types of architectures such as client-server, multi-tier, service-oriented architecture (SOA),
and component-based among others. The client-server model is based on the concept
of a front-end or client requesting data from a logical server or back-end. Depending
on the response the client might react in a specific way. A multi-layer as the name
suggested is simply a tiered layer that divides the tasks. Each tier might be in charge of
security, task management, data acquisition, or distribution. SOA is increasingly popular
and it divides all the elements of a web client into small components and allows for
e�cient maintenance and scalability. It allows for flexible projects that can be modified
easily. The component architecture is similar to SOA. However, the core concept of this
architecture is re-usability where components can be instantiated multiple times and
rendered according to predefined specifications. This last architecture normally is used
to design singled page applications (SPAs).[DB19]

The way architecture is structured relates to the framework used to build it. Currently,
popular component or SOA architectures to build SPA’s are Angular and ReactJS.
Angular is a framework developed by Google. It has been used to build popular web
pages such as Gmail, Forbes, and PayPal. ReactJS developed by Facebook is responsible
for websites such as Netflix and Dropbox(Hello-sign) built using this framework. These
frameworks work under a language developed by Microsoft called Typescript. Typescript
addresses JavaScript’s lack of syntax[BAT14]. Typescript is a strictly typed language.
This means syntax must be defined always. This allows for a clear code read and faster
project development. Since it is an extension of JavaScript it can run on the browser and
inherits all prototype methods that JavaScript has for each type of object (Array, object,
integer, string ...). Typescript follows object-oriented programming rules. Typescript in
comparison to other strictly typed languages (JAVA), allows type errors at compilation
that fails at run-time[BAT14]. To build SPAs that contain maps and knowledge graphs
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it is required to have certain building blocks. Libraries are the compounded elements to
build such products. A library is generally written in a language (javascript, typescript,
python, JAVA, etc ...) and it may or not support other languages depending on the
developer. They are subject to license usage which is defined by the author of said library.

A popular library for rendering maps on a website is Open Layers. This is an open-source
library that follows the Open Geospatial Consortium (OGC) standards[DJS14]. Open
layers are extensive and flexible. OpenLayers is written in JavaScript. However, a
Typescript upgrade exits, which allows it to be used in Angular or React. OpenLayers
allows for interaction with objects contained within the map, which adds a higher level
of interactivity.

D3js is another popular JavaScript library used in data-related projects. Its popularity is
due to visual flexibility and integrated scalable vector graphic(SVG) standards defined
by the W3C. D3js supports many types of visualizations and has become a popular
library to showcase data aesthetically since SVG preservers detail independent from scale
(resolution-independent)[BC14]. D3js supports a long range of graphical display types
that range from traditional charts (bar, line, bubble, etc ...) to a more experimental
type such as hyperbolic trees [Glo21].D3js allows data binding Document Object Model
(DOM) elements, which allows for interactivity. D3js’s methods are designed under a
declarative architecture which allows for more intuitive DOM manipulations. D3js has
a well-documented API and a vast community, which allows for the project to be well
maintained.

graphVizdb is an example of a graph project that is distributed online. graphVizdb
architectures consist of the front-end, a graphVizdb core module, and a database. The
prototype includes several services such as visualization, information, navigation, bird-
view, string search, statistics, filter, and edition. graphVizdb rendering time is dependent
on the window size (pixels) where bigger screens take longer to render. graphVizdb is
built on JAVA, MySQL, mxGraph, JavaScript, and Metis[BLK+16]. graphVizdb runs a
graph tool using only an RDBM as its database.

The main strength of web-based graph technologies is compatibility and distribution.
It is common to have none standardized technological environments, where users have
di�erent software and hardware environments. Having a cross-platform project, which
can run on any web browser allows for mass adoption. Distributing any project through
the internet also gives it exploration and increases the user base, where scalability at a
low cost is feasible.
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5.2.1 Non Web browser-based

Even though cartography trends toward a more web-browser environment. There are
technologies that run independently from the browser and still prove to be powerful tools.
These tools can be integrated into web-based tools as back-end services[BC14] [FB18].

Python is a derived programming language from C++, C, ABC, and Unix among
others[SFV19]. Python is the 3rd most commonly used language among programmers
[ove21]. Python has an easy-to-learn approach since it resembles English reading. Python
has a supportive community which has allowed for good maintenance. Even though
python was not intended to be used as a web-based technology it has been implemented
as a framework (Django and Flask) to build websites[SFV19]. Python has specialized in
data analytics libraries such as OpenCV and Tensorflow, which are popular to handle big
data. Python is simple in the way that more gets done with fewer lines of code compared
to other languages[SFV19].

TorchKGE is an open-source python library/module that specializes in knowledge graphs
[Bos20a]. Its main objective is to provide fast KG operations and predefined structured
interfaces that allow for fast KG design and testing[Bos20b]. TorchKGE is integrated
with NumPy [Bos20b], a popular python library that enables numerical computing with
Python[Num]. TorchKGE has been recognized for its high e�ciency and in comparison
with other KG specialized modules such as OpenKE, AmpliGraph, Pykg2vec[Bos20b].

NetworkX is another popular network python library. NetworkX focuses on the exploration
and analysis of networks and their algorithms[HSSC08]. The library ships with network
data structures that conform to graphs and networks. Popular algorithms that NetworkX
has included are shortest paths, betweenness centrality, clustering, and degree distribution
just to name a few[HSSC08]. NetworkX is designed to work with SciPy, Numpy, and
Matplotlib tools. NetworkX allows for simple graph instantiation and construction.
Figure 5.1 shows Napoleon’s Russian campaign rendered with NetworkX.

Figure 5.1: Napoleon’s Russian Campaign with NetworkX [HSS08]
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Non-web-based tools have the benefit of running sometimes in lower-level languages,
which are often faster depending on the hardware. They feature powerful processing data
libraries. A popular architecture is to combine non-web-based tools with web-based tools
in the back-end of any web product (graphVizdb).
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CHAPTER 6
Finding Relevance Through the

combination of Maps, Knowledge
Networks and Web-based

Knowledge Graphs

6.1 Justification and Hypothesis Review
Present technology allows us to implement ontological mapping and project this mapping
into the spatial domain. However, much research is needed still in this domain. Graph
systems allow us to make maps from a di�erent perspective. There is still not a well-
defined standard on how to design maps fundamental to ontological constructs. There is
also the challenge of integration. How can cartographers convert existing table-like data
into knowledge graphs? How can map makers standardize vocabularies when making
graph-based maps? We see projects such as the one proposed by Varanka (2018) where
the map acts as both a human and machine-readable document[VU18]. We are entering
a stage where we could start making maps where semantics are also understood by
machines.

Additionally, current map information structures in GIS revolve around traditional
relational database management systems (RDBMSs) [CDW+19]. In such databases,
information is stored in table-like structures which implement structure query language
(SQL) to retrieve data and implement operations on such RDBMSs. This traditional
method allows for practical bulk operations that enable e�ective statistical analysis. Apart
from these relational databases exist graph database management systems (GDBMSs)
which operate on a node-edge structure, where ontological instances are represented as
nodes and the relationship between these ontologies is defined by an edge. These ontolog-
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ical interactions can be represented in a knowledge graph(KG)[MHC+22]. Analogous to
RDBMSs SQL�s GDBMSs use SPARQL to query and implement changes, SPARQL has
been proven to have the same expressive power as Relational Algebra [AG08].GDBMSs
have emerged as a complement to RDBMSs. However, the limits of GDBMSs are still
unknown[CDW+19]. The scarce implementation around GDBMSs results in a need to
explore the potential application and use cases that could benefit map creators and users
alike.

Map makers struggle to convey and/or understand the relevance of a map. Knowledge
graphs pose as an alternative or a complementary tool to understand and identify relevance
considering semantics. This work serves as a proof of concept that the combination
of knowledge graphs, graph visualizations, and maps lets the design of maps consider
ontological definitions, which help in the understanding of geographical relevance.

6.2 Methodology

6.2.1 Project Objectives Review
This thesis work has two main objectives. First, understand how the mapping of the
ontological dimension projects relevance to the spatial dimension. Some other researchers
have explored the idea of mapping the semantic space as a conceptual idea[JG22].
However, the lingering question is in regards to the actual value that mapping such spaces
bring considering human and time resources. This leads to the second main objective
of this study which is to present a proof of concept that can be built upon to explore
relevance that originates from the ontological space. Logically in cartography, there has
been a focus on understanding geographical relevance. A relevance where all entities
in geographical space have a quality attribute. This quality is the relation between the
representation of a such entity and its context. Geographical relevance then goes into
four levels discrete objects, relationships, groups, and functionality[RDS11]. Mapping
the ontological space and projecting such space on a map helps us address the first level
(discrete objects figure 6.1). When speaking about mapping the ontological space, two
main challenges arise. The first one is the commonality of an understatement. This
relates to what the W3C does in its RDF vocabulary. The second challenge is the level
of semantic richness an ontological space can have. Both are vast challenges that are
areas of research by themselves. This work presents a very simplified version of mapped
ontological space. Simplifying the mapping process allows for an easier understanding of
the overall subject.

Since modern cartography has been trending towards browser-based tools, building tools
that run in such environments makes sense. The idea is to present a tool that runs
on free-to-use software that stays away from proprietary technologies. This facilitates
reproducibility and serves as a pathway that others can follow without the worries of
financial constraints. For semantic web technologies to be adopted and used there is a need
for commonality. This commonality disappears when we use proprietary closed-black-box
software.
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Figure 6.1: Ontological and Spatial Dimension mapped

6.2.2 Conceptual design

For simplicity, I will refer to this tool as SeMaptics. SeMaptics should run in the browser
to have cross-platform compatibility. To build SeMaptics first, Some design layouts were
maid. An SPA approach will be followed to allow for a layout design that is flexible and
can be modified . However, the initial design indicates the components that need to be
made to have this scalable and flexible tool(Figure 6.2). In this case, a graphing library is
needed and a mapping library to achieve this design. Also, the ontological spaces should
be interactive to allow the user to explore and interact with the data.

Figure 6.2: SeMaptics Conceptual Design
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6.2.3 Environment setup

SeMaptics design follows the 4 main steps of graph visualization Data retrieval, building,
calculations, layout and rendering[GRMSOG18].

For Data retrieval two sources were defined a static GEOJSON source which acts as
the result of any SQL command done via HTTP. The data that needs to be queried
needs to be simple and uncontroversial. If SeMaptics can bring relevance to a simple
scenario it is likely to have a greater impact on data that is highly influenced by semantics.
Following this logic, data from the Austrian Federal O�ce of Metrology and Surveying
(BEV) was chosen. Specifically, a digital landscape model that contains points of interest
of municipal, operative, cultural, recreation, and sports nature in Austria. Some data
elements in the data sets could be lines in the case of ski tracks and power distribution
lines[BEV]. Visual knowledge graphs do not perform well on scenarios with a vast
amount of data[Her00]. Consequently, the data was brought down in size by a) selecting
a category from the ones mentioned above and b) focusing only on an administrative unit
of Austria. Recreational buildings were chosen as points of interest. Since recreational
features are more uncontroversial and relevance might be more di�cult to identify. For
the administrative unit, ’Tulln an er Donau’ (Figure 4) with the international id of NM
33-12-19 was chosen. Administrative units in this dataset have a similar extent. However,
Tulln an er Donau unit is located on the northwest outskirts of Vienna, and having a
unit contains both city and outer city feature points might show in the semantic space.

The data is distributed on a table feature with the following columns featureID, feature-
Code, featureName, Name, type, addressCode,subCode, StreetName, DateOfConstruction
,DateOfService ,ObjectId, GlobalID, latitude and longitude. To convert these columns
from a table domain into an ontological domain a similar logic to the one implemented
by Syed (2010) was used, where each row is an instance of several ontologies and column
titles are ontologies themselves. Relations of type isOf [SFMJ10] where defined among
the nodes. The approach used can be seen in Figure 6.3 using this logic a simple semantic
network was generated. This is an approach similar as the one done by Nickel (2016) in
his knowledge graph building methodology[NMTG16].
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Figure 6.3: Parsing Tabular data to a semantic knowledge graph

With this logic, a decision was made on database technologies to create the proposed
semantic network. Neo4j was chosen as the GDBM database since it is an open-
source project and has widespread adoption in many cartographic and non-cartographic
projects[FB18][ABG+15]. It also comes with a web client, which means that this method-
ology can be replicated regardless of the operating system. To create such a network a
custom parser was written, which outputted a raw .txt from a .geojson file that contained
batch instructions to create the network. The batch instructions were later fed into
Neo4j’s web client. The same logic to make the relations was used. The command that
initiates a single node is the CREATE command(Figure 6.4).

’CREATE(node:Feature{
name:"2403 Sportplatz",
type:"Fußballplatz",
dateOfService:12.02.2018,
(...)

})’

Figure 6.4: Example on Creating a Node

Additionally, nodes can be created on demand from SeMaptics itself since it supports
HTTP requests. To make relations in Neo4j it is necessary first to match node pairs
(Subject & Object) and then instantiate the relationship between them (Figure6.5). These
relations are of cardinal nature.
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’MATCH(node:Ontologie) WHERE id(node)=34364
MATCH(type:ART) WHERE id(type)=8471
CREATE((node)-[:IS_OF]->(type))’

Figure 6.5: Example on Creating a Relationship

To set up Neo4j container technologies were used. This falls in with the philosophy of cross-
platform compatibility. Docker containers allow for regulated replicable environments,
which can be scaled and distributed e�ciently and are compatible independent from the
operating system they are run on. GraphStack’s image (gdb:3.5.26) was used since it is
an extension of Neo4j.

A design decision was made to have a non-temporal dependant ontological dimension.
This means that time instance are considered as ontologies (Figure 6.3). This is a powerful
property of graph systems, where temporal and thematic classification can be done in the
same layer. This type of design approach is also used in narrative cartography[MHC+22].
However, there is the possibility of having temporal nodes that relate to an instance of a
graph that contains a temporal state of all nodes.

After defining Data Retrieval the build process[GRMSOG18] was implemented. In this
phase, the architecture and the building blocks (libraries) were determined. For web
design, a SPA approach was followed, which implements Angular as my general framework.
Since Angular projects are Typescript type consistency is preserved[DB19].

An extension that communicates via HTTP with Neo4j was needed. Traditionally this is
handled by a back-end service. However, to keep simplicity on database requests a Type-
script library called angular-neo4j was used, which allows for web-socket communication
with any Neo4j database running on a network. Using angular-neo4j avoids the need to
have a dedicated back-end. However, in a production environment, it is recommended to
have a dedicated back-end for proper security and design. All Neo4j requests are handled
by a dedicated Neo4j service. This service handles node and relation creation, deletion,
and general queries.

For the graphical interface, SeMaptics uses D3js. Since it o�ers widespread graph
visualizations and is in constant development. D3js ships with multiple methods to
interact with the DOM and is a tool that not only displays but also enables interaction
with the data. This design decision makes SeMaptics to be more of an exploration
tool with high interactivity[MGP+04]. D3.js o�ers a wide range of graph visualizations,
which are categorized into two groups hierarchical and network. Since the data is
not of hierarchical nature network visualizations were more eligible for the project.
Among the network visualisation options D3js o�ers two were chosen Force Directed and
Disjoint-force-directed. Spring-layout or Force-Directed as mentioned earlier result on
balanced graph systems that respect planarity, which is a desirable trait in visual graph
representations[FRW91][Her00][HSoM91]. The main di�erence between Disjoint-force-
directed and Force Directed is that force directed gives all nodes a repelling force and the
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graph is held together by the relationships. This means that if there is a node that is not
related to the data bulk it will simply repel itself out from the viewport. However, nodes
that are highly connected or relevant to the network tend to be pulled to the center of
the viewport. Thus making relevant nodes easier to identify. The Disjoint-force-directed
graph on the other hand has similar behavior. The main di�erence is that a cohesive
force at the center of the viewport, which keeps all nodes within the frame, is similar to
a gravity field. All forces on these visualizations can be adjusted. D3js can be highly
customized. It allows for all sorts of modifications on nodes and edges such as fill-hue,
border-hue, shape, thickness, transparency, size, and forces between elements.

D3js in SeMapticsfollows an nine-step build process. i)It cleans the view-port from any
pre-rendered elements. ii) It process the graph data. This includes instantiating d3js
node, link, link target, node groups, node titles, styling objects, and force objects. iii)
Build node and link arrays that include d3js prototype methods. iv) Define a color
scale in which the nodes and links can be rendered according to any given value or
classification. v) Sorts and the di�erent node groups. vi) Assign each node and/or link a
color from the defined scale. vii) Construct forces on nodes and Links. viii) Construct
the force simulation. In these steps, a force simulation is generated depending on the
assigned forces from step vii. ix) Set graphical elements. In this step, all SVG elements
are constructed according to di�erent calculated variables such as stroke, stroke-width,
stroke-opacity, stroke-line cap, text, fill, primitive selection (line, circle, ...), and primitive
attributes (the radius for circle). Also, prototype and/or custom methods are attached
to each SVG element. These prototype methods are responsible for interaction tasks
such as drag, click, and drop. Once this process is finished an interactive graph system
is rendered on the viewport. The graph system that SeMaptics displays according to
Ruggles (1997) classification system (Figure 4.7), is of type altered node - altered line -
complete connectivity[RA97].

The implementation of OpenLayers(Figure 6.6) follows a simple pattern that goes from
fundamental to compounded elements. Some elements can be defined by the application
state such as zoom, map center, projection, and base layer. SeMaptics defines the map
center, zoom level, and the feature data as variables set by the application set. The base
layer is an Open Street Map which OpenLayers ships with. The selected hard-coded
projection is EPSG:4326. However, data can be projected as well on EPSG:31255, which
is the original projection of the data source (Figure 3). The center of the map is a
coordinate point that is around the center of Tulln an er Donau.

The main idea behind SeMaptics is to have a tool where the user can see both the spatial
dimension and the ontological dimension (Figure 6.1). Through this dual representation,
a user is able to identify ontological relevance and project this relevance into the spatial
dimension. To achieve this goal there needs to be communication between the distinct
elements through a managed central data state. Additionally, many helper functions
and methods are required, which prepare and harmonize the data for both D3js and
OpenLayers. All of this tasks are compartmentalized within a utility manager(Figure 6.7).
The utility manager takes care of: i)Managing the application state. ii) Communicating
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Figure 6.6: Open Layers Build Process in SeMaptics

with Neo4j. iii) Sending the updated state to all the corresponding components. iv)
Managing interactions. This level of management is done through a design pattern called
a facade design pattern. This means that components have independent services. But
they communicate with other components through a facade service [PGT10]. This design
approach hides complexity in the application and simplifies interactions.

Figure 6.7: SeMaptics architecture

The Neo4j response comes in the form of an HTTP response and some parsing is required
to have the data harmonized for use within the application. Nodes have three main
attributes i) id, which serves as the node identifier. ii) Label, which generally contains
the node’s title or label. iii) Property object, which stores all other related data that
pertains to the node. This last property object is used to have matching elements when
selecting data. Relationships have the following attributes. i) Start, which is the source
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node of the relationship. ii) End, which is the target node of the relationship. iii) Type,
the type of relationship that the relationship is (’IS_OF’,’ACTS_IN’,’WORKS_WITH’)

Defining interactions on the graph is an important feature of SeMaptics. The user should
be able to navigate the ontological space and see the spatial features tied to any given
ontology(Figure 6.1). Here is where D3js DOM interaction and manipulation play a
meaningful role. Since each node generated on the map has an id, it is possible to match
any node to any feature in the map and query the node’s information from Neo4j. Once
a node is clicked the application store is notified and the application state updates. This
prompts all linked components to update, through what is known as a subscription(Figure
6.9). This follows the observable design pattern, where instantiated classes are notified
of specific variable changes[WLoSEoPL09].

Figure 6.8: SeMaptics Utility Manager

Figure 6.9: Observable pattern on Angular

45



6. Finding Relevance Through the combination of Maps, Knowledge Networks
and Web-based Knowledge Graphs

Using the observable pattern OpenLayers component responds to the selected nodes of
spatial nature or the related spatial nodes of any chosen non-spatial ontology such as
’Type’ or ’Date’. When data is clicked on SemMaptics open layers adds an additional
layer of the selected either spatial features or the connected spatial features. Thus the
user can easily interpret the graph system and visually identify relevant nodes on any
given structure.

6.3 Results
The resulting graph system from the BEV dataset is a 563 node graph that contains 528
feature nodes, 10 categorical nodes and 25 date of service nodes and 4 street name nodes.
Feature nodes all contain an instance of their respective tabular data and are of geometry
type ’point’ (Figure 6.3). Categorical nodes refer to the type of installation(ball sport,
Football, indoor pool, beach, tennis court, indoor and outdoor pool, outdoor stage). The
date of service nodes contains an epoch number of the date of service of the feature.
More attributes can be added to the network to enrich its informational value. However,
to keep simplicity no other instances where added.

Figure 6.10: SeMaptics with a Disconnected-force-graph

SeMaptics general layout can be easily configured. The minimum requirement is that
a map and graph component are rendered on screen. The graph has two main visual
components i) color, which is assigned to categorization. ii) Labeling, which assists with
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information graph navigation. The resulting graph is an overlay of two graph systems.
One that renders the nodes and another that renders the labels. The design approach
takes a toll on performance since the rendering of 2 graph systems in one takes place.
However, rendering times and interactions are still snappy and unnoticeable. SeMaptics
supports dragging functions that allow for the user to modify the topology of the graphical
structure without editing the data(Figure 6.12). Drag and drop functionality is available
also on Isolated Graphs and on force-directed graphs (Figure6.17 & Figure 6.15)

Figure 6.11: SeMaptics Interaction description

Figure 6.12: SeMaptics Drag
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SeMaptics interactions are simple. The selection of a spatial node (green - Figure
6.13) will highlight a point rendered in the map (Figure 6.10) and the selection of a
categorical or temporal node will highlight all the spatial nodes related to it. This allows
the user to traverse the data and see the projection of ontological entities and their
relations in the spatial dimension. This helps the user to define topicality in a map and
make categorizations that benefit information extraction[Boy82]. The exploration and
interaction with the graph systems allow for cognitive interactions that are chosen by
the user as a key element of relevance[Ing96][Bel95].

Figure 6.13: SeMaptics Node types

SeMaptics can also focus on single nodes and queries can be established and displayed
on map and graph Figure(6.17).This isolates information from the graph under a force-
directed graph visualization. This isolation is key to small display graph system visu-
alizations and prevents graph visualizations of great size. An alternative view is using
force directed graph where nodes with higher relevance tend to be drawn to the center
Such as ’Tennis court –> Tennisplatz’ in Figure 6.15. ’Tennis court’ has great deal of
nodes relating to it (Figure 6.11, Figure 6.12 & Figure 6.17), this translates into the force
directed graph. However, some elements such as the Date node ’2-7-2018’ seen in Figure
6.16 does not relate to many nodes. However, is pulled to the center because is between
relevant spatial nodes that are connected to important categorical nodes (’Football’ and
’Ball sport’). The user can also interact with this graph and highlight either related nodes
or spatial nodes. The force-directed graph view in SeMaptics is of broken connectivity
with altered nodes, lines, and geography[RA97].
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Figure 6.14: SeMaptics Attribute Node

Figure 6.15: SeMaptics Categorical Node Selection force directed graph

Attribute nodes saturate the view port and do not provide a lot of graphical information
since normally there is only one instance of each per spatial node. In this data scenario,
only a few nodes contained a street name, hence we only see a few attribute nodes.
However, we can already see in Figure 6.14 and Figure 6.11 that this nodes only exist on
nodes that are related to the category ’Keine Erfassung - not defined’.
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Data that is related to categorical nodes for this particular dataset is not spatially
clustered (Figure 6.15). If the map had been designed in a traditional way, these
relationships might not have been identified as relevant. This is a case where the spatial
distribution is not related to the ontological relation. However, with this design approach,
we can recognize that this category is relevant to the data set and project such relevance
into the spatial dimension.

Any layout arrangement can be done on SeMaptics since it supports a SPA web archi-
tecture(Figure 1 & Figure 2 ).Many visual components can be rendered at the same
time and they all can be connected to the central state, which is persistent among all
visualizations. These visualizations stimulate both the M-Path through the use of the
map and the graph force animation and its visual elements and the P-path through the
graph systems[SZRM07].

Figure 6.16: SeMaptics ’2-7-2018’ Node Selection
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Figure 6.17: SeMaptics Graph Isolation
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CHAPTER 7
Conclusion & Discussion

7.0.1 Discussion
Through the build and implementation of SeMaptics some points are important. i)Ontology
definition ii) Data harmonization, iii)Query language selection, iv)graph visualization
selection, v)Interaction design. Ontology definition is a step that needs to be considered
at the beginning of the project. A characteristic that ontological-based maps have is
that before starting the map maker needs to decide on how to define the ontological
space. There are already some standards defined. However, it is easy to come up with
personal ontological vocabularies that stem from the personal and cultural background
of the map maker. Assuming the map maker is defining the space before making a
map. A scenario could arise where the map maker starts the cartographic process from
a predefined map space such as RDF vocabularies. ii) This leads to the second char-
acteristic Data harmonization. This is not unique to graph-based maps all web maps
that consume services have to have homologation processes, what stands out in a graph
map is passing from a tabular logic to a graph logic. Graph logic presents a challenge
not because it is a complex structure but because most pre-existing data comes in a
tabular format Even if data comes in a graph structure there is the need for homologous
vocabularies. This homologation process is an important step when making graph-based
maps in order to facilitate a connected space. iii) Unlike RDBMS GDBMS do not have
a standardized Query language selection, which is somewhat predefined by the chosen
GDBMS that is selected. However, many databases have shared query languages and
this boosts adoption and extension. As discussed earlier the query language selection ties
to performance[Ang17], which carries on to the user experience. iv) Graph visualization
selection defines the success of any tool that wants to reveal relevant data. It is important
to choose a visualization tool that is flexible and that can scale well with the data. v)
Interaction design is the synthesis of all previous steps since it allows for exploration
and visual stimulation. Interaction favors an exploratory tool, which ranks higher in
geovisualisations[MGP+04].
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Data retrieval is always a topic in any cartographic project. The data source heavily
influences the look and development of the project. For SeMaptics the influence was
at the schema level. The schema design process is the result of the tabular parser
(Figure 6.3). The fact that SeMaptics is based on a single point of source simplified this
problem. However, projects which contain more than one data source might have to
implement more strict approaches, where the schema is predefined before loading the
data. Schema definition brings into play interesting elements such as temporal nodes.
Seeing data from an ontological perspective removes some constraints of time linearity.
Multiple dimensions can be projected into the same space and relate to features. This
brings some discussion on the topic of relationship and classification. Since relationships
have properties, we could also see relationships of spatio, temporal, spatio-temporal, or
taxonomical nature. In SeMaptics only has spatio, temporal and taxonomic relations.
Even though all nodes were classified under ’IsOf’. The nature of such relationships is
di�erent. Relation direction is also an important factor. One which does not end up
being rendered on the graph view. This is a shortcoming of SeMaptics and is something
that should be improved.

Neo4j had qualitatively speaking a good performance. However, batch processing was
slow in comparison to relational databases. Specifically, batch processing of relationship
creations. This is because creating a relationship requires two previous queries, which
are the nodes, and then creating the indexing of the relation that binds such nodes
takes time. There is room for improvement in terms of performance for the relationship
creation processes. Additionally, making requests from the client to Neo4j was not very
e�cient for data creation. It is better to create data directly on the client of Neo4j.
Because of the high waiting time on relationship creation, connections to the database
get easily saturated, thus Neo4j drops the connection or needs to restart. This might be
an issue if the tool is designed to create data based on any external service. From a query
perspective, Neo4j performed e�ciently and reliably. Connecting from a docker container
was not an issue as long as there is a proper protocol configuration via Bolt or HTTP.

Displaying both dimensions on the screen, it is easy to identify ontological clustering
points, which immediately catch the eye and invite the user to explore (Figure 7.1).
These are relevant information hubs from the data set. However, when we click them we
see that spatially no obvious pattern(figure 7.2). This is a scenario where this type of
ontological exploration brings relevant behaviors forward and makes them more obvious.
When seeing multiple variables (date of implementation and category) we also easily
identify that two nodes hold a lot of relevance in the data set that was selected. i) Tennis
court and ii) 6.9.2021. These two variables we might be able to visualize in a traditional
system using a bi-variate choropleth map. The advantage of a graph system is that it does
not require any specific type of training or long pondering to understand the relevance of
the data. Additionally, bi-variate maps require more advanced GIS skills, while simple
graph navigation feels intuitive and simple to understand. Another advantage that graph
navigation has is that we can project and study multiple dimensions at the same time.
In figure 7.2 we see that the tennis court is not only related to 6.9.2021 but also to 4
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other relevant dates (02.09.2021, 4.11.2017, 3.09.2021, and 2.04.2019), where 4.11.2017 is
also a node that relates to other clusters.

Figure 7.1: Ontological groups

Figure 7.2: Ontological groups selected
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Even though the graph is intuitive to navigate and it is easy to tell apart nodes from
each other, there is a problem with node classification. A proposed solution is to have a
type of classifier nodes that serve as element grouper to make grouping easy and intuitive
as well (figure 7.3). This classifier might be able to suggest which categories we could
make based on the available data. In a way making maps from graph data pushes the
map-maker to design maps around the data that is relevant to the dataset.

Figure 7.3: Ontological categories

SeMaptics interactions are elemental at the moment. Having a highlighting(filtering)
function constitutes a core action of relevance [Sar96b]. Which is also a common task in
cartography [RDS11]. Navigation and interaction, which impact the visualization level,
also perform filtering tasks[Her00][HDM98] to balance the graphical load. All this tasks
are executed in SeMaptics weather by the highlight selection or the isolated graph (figure
6.17). In regards to this point, SeMaptics delivers in bringing relevance forward to us.
Other functions could be included to enhance more this capabilities such as zoom and
pan. Context preservation is done well in SeMaptics the disconnected force graph (figure
6.10). However, context preservation would benefit also from the implementation of zoom
and pan. On the other hand, the force-directed graph (figure 6.15) eliminates context
by pulling elements away from the view. This is harmful for context preservation and
overall relevance identification. However, this visualization is e�ective for isolated graph
components, which could have an enhancing role of relevance. Selection reach is another
area where relevance could be brought up currently selection degree is of the first order
(figure 7.4). This means that if we select a category we only get the immediate nodes
related to this node. Extending the filtering degree would most likely have a meaningful
impact on data exploration, which benefits relevance identification.
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The ability to navigate the ontological space and geo visualize it falls into both the
cognitive model [Sar96b] and the episode model [Bel95]. Since it is both an interactive
process and a process where interactions can be seen as episodes or snapshots. This
blends well with the relevance of the information retrieval nature. If SeMaptics would be
part of a larger service chain we could also consider the Acquisition-Cognition-Application
model[Sar96a]. However at the moment SeMaptics has only Acquisition and Cognition.
At present, the user is at the center of relevance identification. However, if we were to
compute certain parameters such as the number of connections, page rank, betweenness,
and other network statistics, we could put machines at the center of relevance. Since
one of the main advantages of a graph map system is that it is machine-readable. With
correct RDF vocabulary interactions, it is possible to develop map systems that identify
relevance firsthand. This concept enables machines to define maps by themselves and
have an interface of understanding between machine and human understatement in
regards to what a map is.

Figure 7.4: Ontological groups selected

Using a rich visualization library such as d3js helps when designing any project that
intends to show relevance. However, implementing native JavaScript libraries in higher
languages such as Typescript presents a technical challenge. SeMaptics has a custom
built Typescript upgrade. There is little to no documentation on many of the network
visualizations that D3 o�ers as examples, this is a challenge for any web map maker.
However, D3js is an open source project which comes with the advantage of code
transparency. Understanding what any library is doing when a method or function is
called helps any web map designer create better tools. Even though documentation is
limited in D3js, flexibility is high. However, other tools could be equally as suitable for
graph mapping projects. The following aspects could define the usability of any graph
library. i) Environment requirements, ii) Interaction support in the viewport, iii)graphical
visualization catalog, iv)build e�ciency, v)graphical primitives.

The environment requirements for D3js are any environment that supports JavaScript.
However, as mentioned before a custom upgrade was necessary to overlay D3js on
Typescript. The interaction support for d3js was good since any selected DOM element
on the view-port can be mapped out, which allows for a convenient state change. This
interaction support is crucial to address relevance revelation. The graphical visualization
catalog for d3js is extensive and creative since it stems from a vast community of
contributors. However, one must not assume that all examples are easily reproducible
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since sometimes the example implements custom functions, resulting in confusing code.
Additionally, all examples are written in JavaScript, which has the drawback of not being
a strict type of language, which adds a layer of ambiguity to an example. A pitfall when
implementing D3js. Build e�ciency for SeMaptics was snappy and responsive. When
manually zooming with browser controllers the graph rendering slows down considerably.
Considering that SeMaptics was rendering two full graph networks with labels(4 graph
networks- 2000 nodes) and an isolated network with around 100 nodes considering labels.
This first iteration proved that for isolated regions with 2000 plus nodes graph mapping
is possible with current technology (software and hardware).

Psychological relevance changes as the user receive new pieces of information[Wil73].
SeMaptics has a role in this relevance, since every time the user interacts and explores
spatial entities on the graph new questions arise that relate to dimensional (What, when,
where, and who). Of course, there is always the current situation of the user and his/her
personal preferences. SeMaptics allows for easy data navigation and exploration of
ontologies. Since physiological relevance places items and personal views at the center, we
can think of ontologies as information items that interact with the user. This itemization
of relevance is a powerful concept that can be further explored.

Geographical relevance evaluates the object within the information system [dSR12] and
SeMaptics allows for a visual evaluation of node relevance on any loaded information
space. Also, this includes a dynamic state which changes with any given interaction.
SeMaptics could also be extended to support on the fly data uploads from a traditional
RDBMS, which builds upon dynamic states. SeMaptics directly address scope and
dynamism when speaking of geographical relevance criteria points.

7.0.2 Conclusion

The visual and state connection of both the ontological and spatial dimension with
event-based interaction allows us to explore hidden patterns and allows for e�cient
semantic reads where relevance is present. Where a semantic read can be interpreted as
the overall look of interconnected ontologies towards a specific data point. A semantic
read is currently not available in the traditional map-making process.

Mapping ontological spaces require to have a discrete concept definition. Existing
vocabularies can serve as a guide to defining local ontologies. However, there are still
no fixed methods for defining ontologies that stem from traditional tabular data. Once
an ontological space has been constructed it is necessary to build proper relations that
allow for SOP queries to retrieve information from a knowledge graph. Additionally, to
map ontological interactions and relations to the spatial dimension, we need interface
ontologies that are overlaid in both dimensions (points, lines, polygons). These overlapping
ontologies are what allow the projection of one space into another.
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The geographical relevance criteria[dSR12] [IS98] [RSPF16] found in ontological mapping
is the following: i)depth with the display of all data and how it relates to other ontologies,
with the added visual navigation. ii) specificity, with well-defined ontologies that allow for
the mapping of a discrete dimension that projects to a continuous dimension(space)[JT22].
iii) availability, through state persistence and the presentation of the whole data set
visually. iv)accuracy, since the ontological space is discrete thus accurate descriptions
and data points can be derived. This of course is always dependent on the quality of the
data source, which is also a criterion of geographical relevance. v)tangibility is another
criteria that bonds well to a discrete mapped space. vi)accessibility, allowing interactions
open data to be accessed and provide transparency. However, some criteria might only
be reached at full when talking of data that is linked directly from the semantic web.
vii) dynamism since data in any graph visualization is flexible to change and recording
change can be done within the same ontological dimension. viii) curiosity is fed through
semantic mapping where creativity is stimulated[KAF14] ix) spatial proximity is seen
directly on the map. x)Visibility is present in both graph and map visualization and
interaction services such as highlight and filtering. Cluster and Co-location can also be
derived from graph patterns. The other criteria (a�ectiveness, e�ectiveness, currency,
temporal proximity, and verification) are criteria that could also be proved achievable
with the use of graph mapping. However, with the current reach of this study, it is not
possible to make such statements yet.

SeMaptics most likely helps the user design a map in a creative way, since network data is
shown and easily read. Creativity is defined by the ability that a person has to connect two
distant concepts together[KAF14]. Using a network approach could lead to more creative
map creation. Since today we are dependent on tabular data exploration or exploration
through predefined tools within current GIS clients (QGIS, ArcGISPro, GRASS, etc ...).
This creativity not only is sourced from humans but computers themselves.

Current web-based technologies are su�cient to combine ontological and spatial mapping.
SPA design pattern fits well in graph mapping, due to its flexibility in scale and scope.
Graph mapping is a young and upcoming field and many branches of such can be studied.
Having a better understanding of how can we integrate ontological mapping into current
map-making technical is important. The barrier of entry is still high. An extensive
technical background is required to build such ontology-based projects and to understand
previous work made in the field. Map makers need to find a way to lower this barrier to
increase the level of adoption of all graph-related technologies.

It is possible to make web-mapping tools using only GDBMS. However, much technology
is already developed for RDBMS that benefits from GDBMS. The desired pattern would
be a hybrid one where both technologies are involved and the core benefits from both
technologies can be used.

The graph visualization process proposed by Romero (2018) [GRMSOG18] serves as a
good guideline to design ontological mapping as well. All 4 steps (Data retrieval, building,
calculations, layout, and rendering) translate well to the graph building process.
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In this dataset, some ontological patterns do not translate to spatial patterns. There are
some instances where relevance is hidden in semantics and relevance can be identified
through the use of graph tools. SeMaptics works as a proof of concept on how can we
merge both spatial and ontological patterns.

Something that is not addressed by SeMaptics is the aesthetic design of both the map
and the graph visualizations. These elements influence relevance perception. It would be
important to see the impact that these factors have on relevance perception with a graph
structure. However, even with the basic visual components, we can already access an
additional layer of information that is traditionally not present in maps.

Relevance is an elusive concept that changes scope depending on the who, where, what,
how, and when the data is accessed. Graph mapping opens a door of possibility having
multiple dimensions (time, space, methods, technology, and user) interacting in the same
space. However, there is a challenge in commonality and mutual understatement among
all ontologies. Bridging this communication gap makes ontological mapping a power full
approach to having context embedded not only in our perceived context. But also in the
computer’s context.

7.0.3 Future Work

It would be worth testing the other graph systems proposed by Ruggles (1997)(figure
4.7) and see how they impact relevance in comparison to the complete connected-altered
node, line, and geography system implemented in SeMaptics [RA97]. How the graph is
presented to the user translates into data perception and thus into data definition.

The presented exercise focused on the most simple spatial form (Point). However,
ontologies are also embedded in higher forms such as lines and polygons. A future step
would be to use graph mapping on these forms and study how topological interactions
a�ect the mapping of the ontological space.

The type of relations used in SeMaptics where of type boolean. However, relationships
can have other natures and carry meaning and weight to the link. Web mapping that
takes into account the quality and nature of these relations is also likely to dig more into
hidden relevance in the ontological dimension. Additionally, SeMaptics lacks cardinality
in the display of its relationships, which limits the semantic value of such relationships.
Extending cardinality display and understanding the impact that it has is a future step.

Cross-domain data integration such as proposed by Huang (2020), would be the next step
to using graph mapping to find relevance[HKMH20]. This means using data from the
semantic web to do semantic mapping and project such mapping into the spatial domain.
This means a more formal implementation of RDF vocabularies and defining mapping
modules for these domains such as done by Mai (2022) in narrative cartography[MHC+22].
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The type of graph selection has an impact as well on relevance perception. More research
should be done to understand how this relevance perception is a�ected according to graph
visualization (force directed, h-tree, ballon-view, Sugiyama, hyperbolic tree, radial-view,
etc ...). The graphical elements chosen for any graph visualization also impact relevance.
Such elements include rendered primitives, shapes, sizes, hue, value, and width, among
others. All visual elements influence relevance perception and there is still much unknown
on how geographical relevance is a�ected by these elements.

Graph mapping could make an impact on creative map definition. Since data that is
shown in a graph is connected it may lead to the correlation of distant nodes, which is
a core definition of creativity[KAF14]. It is worth exploring how can we map spaces if
we start with data that is projected by a knowledge network rather than approaching
data with a preconceived notion. Since in some cases the map theme is defined by the
availability of the data. However, the approach might change if the data is presented on
graph visualization.

The way a user reads a graph, whether human or machine, defines relevance. Looking
under the scope of psychological relevance [Wil73]. Doing further research on what calls
the attention of the user in a graph visualization that projects into the spatial dimension
add value to how we interact with relevance visually. Graph navigation patterns may be
influenced by axioms of relevance, which may reveal the user’s nature. Additionally, a
higher degree search should also prove important in finding underlying data semantics
(figure 7.4). In this graph, other types of nodes were not added to avoid visual cluttering.
Adding more information enriches the data and increases semantics but reduces legibility
from a human perspective. It is important to better attain this balance, where we can
have rich semantics while preserving legibility for humans.

Using Harter’s second definition of relevance in section 3.4 as a north star in contextual
relevance. The data loaded into SeMaptics is as relevant as its connection to the
environment. This means that for graph mapping to be e�ective data must be thoroughly
enriched. The example presented in this work is limited to the data selected. However,
we must think that this data is highly connected to other ontologies and there must be
further development on the idea of having web semantic connections in this kind of map.

There are still many research areas that can be explored in graph mapping. Current
technologies allow us to explore the ontological space and current vocabularies open
the opportunity for deterministic space mapping. Aesthetics, functionality, interactions,
and data sources all a�ect relevance. When we project the spatial into the ontological
dimension we find new trends in data that reveal unexplored semantics. These underlying
semantics are crucial to further understanding the nature of data spaces.
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Appendix

Figure 1: SeMaptics Flexible Layout

Figure 2: SeMaptics Flexible Layout
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Figure 3: SeMaptics Supports other projections such as EPSG:31255

Figure 4: SeMaptics Data selection – Visualized on ArcGISPro
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