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Abstract
In real-world applications, it is difficult to collect labeled samples, and supervisedlearning methods rely on the quality of this labeled training data. Therefore, in thisresearch, a semi-supervised learning approach is developed in order to benefit from theunlabeled samples that can be produced effortlessly. These semi-supervised methodsare built on a popular machine learning technique called support vector machine, whichis used to classify remote-sensing imagery in this thesis. Moreover, this work aims toenhance the accuracy of the methods in settings with very few labeled samples anddeploy a constrained set of unlabeled samples with a self-learning strategy. Additionally,the aim includes model evaluation for existing support vectors and virtual samples.Moreover, the methodology is further extended with an active learning method. Thisextension involves uncertainty visualizations in order to increase the model accuracyby relabelling the uncertain samples in a prioritized way. To evaluate these models,experimental results were obtained over the city of Cologne, Germany, and the HagaderaRefugee Camp, Kenya from a very high spatial resolution multispectral data set. Resultsfrom newly proposed methods showed favorable performance properties, especiallyon the few labeled samples. Furthermore, the uncertainty of the models was comparedwith the active learning extension, and this extension also increased the accuracy.
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1 Introduction
1.1 Motivation and problem statement
In the last decades, with the advent of high spatial and spectral resolution remotesensing data, land cover classification applications have become one of the mainsubjects in remote sensing (Lu et al., 2016). Consequently, it triggered the developmentof many methods to derive thematic classes from image data, and as an outcome,supervised methods became one of the most preferred classification approachesbecause of their robust and accurate information extraction properties (Geiß et al.,2019) Although it is overly challenging to determine the best method from numerousof existing approaches for a classification problem, Support Vector Machines (SVM)attracted attention regarding the classification of multispectral remote sensing images.As a working principle, SVM set suitable hyperplanes on different classes of labeleddata and those samples are projected through a nonlinear transformation from inputspace to a higher-dimensional space. In that space, support vectors (SV), which arethe samples closest to the separating surface, are determined in subject to the optimalhyperplane that maximizes the margin (Geiß et al., 2019; Burges, 1998). Therefore,SVM showed excellent performance due to their, (i) ability to manage high-dimensionalfeature space; (ii) relevant generalization properties (iii); the uniqueness of the solution(Tuia et al., 2009)
SVMs, as any other supervised method, rely on the quality of the labeled training data.However, this constrains the training set and requires extensive manual efforts regardinghuman-machine interaction. That is why active learning methods and semi-supervisedlearning approaches which use unlabeled samples will benefit the classification results,especially with respect to poorly sampled remote sensing applications (Izquierdo-Verdiguier et al., 2012). It is here where we combine self-learning constraints on VirtualSupport Vector Machines (VSMV) with a semi-supervised approach to indicate usefulinformation about the underlying data distribution which eventually achieves higheraccuracies, especially with small amounts of training data.

1.2 Research identification
1.2.1 Research objectives
To eventually enhance the accuracy properties of the Virtual Support Vector Machineswith the self-learning (VSVM-SL) method in settings with very few labeled samples,the goal is to deploy a constrained set of unlabeled samples for model learning andfor very high spatial resolution multispectral remote sensing images. As a result,the training set which the model is learning will be enriched by informative unlabeledsamples. Those are jointly evaluated and selected with respect to existing supportvectors and virtual samples. In addition, the generation of spatial visualization for theuncertainty of results is done by checking the distance of SVMs hyperplane from themodel and further monitoring how the uncertainty changes with the newly developedmethods. The spatial visualization will be displayed as land cover classification maps
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showing corresponding thematic uncertainty. Subsequently, these spatial visualizationswill benefit the active learning process by providing human-machine interaction onrelabeling uncertain samples in a prioritized way and will use those samples to relearnthe model and eventually obtain higher accuracies.
RQ1: To what extent does the new Virtual Support Vector Machines with self-learningconstraints on a semi-supervised scheme (VSVM-SL- Unlabeled Samples) methodprovide better classification accuracy with few labeled samples when compared toother/older methods such as SVM, VSVM, and VSVM-SL?

• Comparison analysis will be made between newly proposed semi-supervisedmethods to previous methods by comparing overall and average accuracies,kappa value, and F1 score.
• Line graphs will be used in order to see mean kappa values and overall accuraciesof the methods.

RQ2: Does visualizing the uncertainties of the models improve human-monitored activelearning approaches on relabeling uncertain samples?
• Model quantifies the certainty of unlabeled samples by checking the distanceof SVM hyperplane and shows which land cover classes they belong to. Conse-quently, this helps the user to label those uncertain samples and bring them backto model.
• Therefore, a case study will be applied in order to assess the effects and overallperformance of relabeling with visualization of uncertainty on active learning. Ac-curacy results of newly developed methods plus the uncertainty visualizations willbe compared to the results of newly developed methods without the uncertaintyvisualizations.

1.3 Innovation aimed at
The innovation of the research aims at developing a semi-supervised classificationmethod based on a self-learning strategy. This will provide results with higher accuracyon sparsely sampled remote sensing imageries and will be adaptable in the future tothe classification of hyperspectral data. These innovations are aimed at bringing a newoutlook with the extension and combination of methods on remote sensing and thecartography fields.
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2 Theoretical Background & Literature Review
2.1 Theoretical Background
In this chapter, the theoretical background is discussed in six main subsections. In thefirst section, the theoretical background of one of the robust machine learning methods,Support Vector Machines (SVM) is introduced. The second part gives information aboutthe extension of the virtual support vector machines with self-learning constraintsfor remote sensing image classification research and explains the semi-supervisedlearning and especially semi-supervised support vector machines. In the third part, thefundamentals of uncertainty, as well as uncertainty visualization, are explained. At last,base methods that are used for setting semi-supervised environments are explained,including actual SVM learning, Virtual SVM (VSVM), and Self-Learning (SL) strategy forpruning virtual and unlabeled samples with under specific threshold.

2.1.1 Support Vector Machines
SVM are supervised learning models in machine learning, that can solve classificationand regression problems. As a working principle, SVM creates a linear decision surfacewith a suitable set of parameters that sticks to the generalization principle by mappingthe input vectors to higher dimensional future space Z (Cortes and Vapnik, 1995). Inthis feature space, the optimal separating hyperplane that maximizes the margin isdefined in the Eq. 1, where x is the nearest data point to the plane, w is the normal vectorto the hyperplane, and b as an absolute value.

w0 · x+ b0 = 0 (1)
Moreover, maximized distance ρ (w0, b0) of optimal separating hyperplane for projectionof training vectors can be formulated in the Eq. 2 and the maximized distance isdisplayed as optimal margin in Fig. 1.

ρ (w0, b0) =
2

| w0 |
=

2
√
w0 · w0

(2)
Which further creates an optimization problem in order to maximize the distance 1

||w||in subject to the constraints minn=1,2,...,N | wt · b |= 1 and same time minimizing 1
2
wTwsubject to the constraints yn(wt · xn + b) ≥ 1. Therefore, quadratic programming (QR) isrequired to construct the optimal hyperplane because optimal hyperplane that minimizes

w0 · w0 is the unique under the constraints.
The formula above is a convex programming problem since in optimization step, min-imizing f(x) with constraints to g(x) includes convex functions. A solution to thisproblem is to use the Lagrange function in Eq. 3:

L(w, b,Λ) =
1

2
w · w −

l∑
i=1

αi
[
yi (xi · w + b)− 1

] (3)
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The margin further can be described by determining support vectors (SVs) which
yi (w · xi + b) = 1 in order to define the model. (Cortes and Vapnik, 1995; Geiß et al.,2019). It can be seen in the figure 1 that squared samples on the border that are closestto the separating the surface are SV’s.

Figure 1: An example of linearly separable case. (Cortes and Vapnik, 1995)
In order to continue, Vapnik–Chervonenkis(VC) dimensions and structural risk mini-mization has to be further explained. In SVM it is important to control generalizationability since generalization indicates the trained model’s performance on unseen data.Therefore, this has to be controlled by two factors so as error rate and capacity of thelearning which are measured by its VC-dimensions (Cortes and Vapnik, 1995). Here,VC dimensions provide properties of a set of functions f(α) and can be defined fora two-class classification case. Moreover, if VC dimensions h is a set of functions,shattered points which are N data points that the learning model can produce 2N distinctpatterns on those data points will be one set of h points. Yet, it does not mean thatevery set of h points can be shattered (Burges, 1998) as it is shown in Fig 2.

Figure 2: Shattered three points by oriented lines. (Burges, 1998)
12



To summarize, VC dimensions are related to parameters of the models, and the class offunctions relies on the VC confidence. However, here, the goal is to minimize empiricalrisk and VC confidence by finding the subset of the chosen set of the functions yetit cannot be achieved easily since h is an integer value. That is why structural riskminimization (SRM) has to be defined. SRM works by dividing the class of functionsinto subsets and finds the actual subsets of functions that minimize the bound of risk(Burges, 1998).
As another point, it is vital to mention SVM strategy on dealing with non-linearly separablecases as it is formulated in the Eq 4 and 5. In order to deal with the non-separable case,constraints have to be modified by adding positive slack variables: ξi to the constraints.Therefore, in this case, the upper bound of α is introduced to the model so-called C.Which is different from the previously mentioned optimal hyperplane. Therefore, theinput vectors are mapped through a non-linear transformation φ to a high dimensionalspace.

min
w,ξi,b

{
1

2
|| w ||2 +C

n∑
i=1

ξi

}
(4)

subject to:
yi (〈φ (xi) , w〉+ b) = 1− ξi (5)

However, applying polynomial combinations of features to transform data into higherdimensional space is causing high computational cost, and applying kernel methodthat provides solution by acting as a modified dot product. See the figure 3.

Figure 3: Transformation of input vectors to the higher dimensional space (Song et al.,2012)
To summarize, SVM are a highly robust method because of their general advantagesin the field. These advantages are; its effectiveness in high dimensional spaces, ef-fectiveness in cases where dimensions are higher than samples size so-called theHughes phenomenon, and its overall strategy on using SV in the decision functionwhich eventually makes it memory efficient in the sense of increasing computationalspeed. In addition to several researches that have been done on remote sensing fieldabout SVM are including many wide ranges of areas on remote sensing applicationdomain (biophysical tasks, land cover , and use tasks), change detection, and focusingon algorithmic advancements (Mountrakis et al., 2011).
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2.1.2 Semi-Supervised Support Vector Machines
As an overview, semi-supervised learning is a combination of labeled data so-called”the training set : L = {(x1, y1) + (x2, y2) + ...+ (xl, yl)}” and unlabeled data so-called”the working set : U = {x′

1, x
′
2, ..., x

′
u}” and it only occurs when both training and workingsets are valid. The reason that semi-supervised learning methods are trending is thatin real-life data that have been generated are mostly unlabeled; for this reason, a lotof work has to be put on labeling those data and some of the occasions few labeledsamples decrease the generalization ability and cause models not to adapt unseendata .(Bennett et al., 1999; Ding et al., 2017)

Moreover, this part of the chapter will mostly consider a semi-supervised learningmethod, called semi-supervised support vector machines (S3VM) which is an extensionof the standard form of the SVM method and useful when SVM are not beneficial whenthe above-mentioned situations on labeled data occur. (Ding et al., 2017)
As it has been mentioned, S3VM follows the standard form of SVM and aims for findingthe maximum margin to separate two classes by using training and working sets.Here, one of the aims is to obtain the lowest generalization error on unlabeled data onpredicting outcomes with unseen data that comes within the new separating hyperplane.Another aim is to find the function that attains the minimum classification error andthis can be done by applying two restrictions. The first restriction presumes that theworking set belongs to class one and another restriction presumes that the workingset belongs to class two. Furthermore, by calculating the error rate, these restrictionsare satisfied. Additionally, for the nonlinear separable cases, so as SVM, usage of thekernel functions are suitable for S3VM (Ding et al., 2017; Li and Zhou, 2014).
Decision function of S3VM is formulated in Eq. 6 and 7. Here, C is a misclassifica-tion penalty and has to be greater than zero and it can be solved by using integerprogramming by optimizing when all variables are restricted to be an integer values.

min
w,b,η,,ξ,z

C

[ l∑
i=1

ηi +
l+k∑
j=l+1

min (ξj, zj)

]
+ || w || (6)

subject to:
yi (w · xi + b) + ηi ≥ 1 ηi ≥ 0 i = 1, ..., l,

w · xi − b+ ξi ≥ 1 ξj ≥ 0 j = l + 1, ..., l + k

− (w · xi + b) + zj +Mdj ≥ 1 zj ≥ 0 dj = {0, 1}
(7)

To sum up, the semi-supervised approach on SVM brings promising results since it ismore suitable on real-life data and it improves the performance of SVM model and withthis extension, it extends to more application areas such as image processing. Yet, itstill has some downsides because large sets of unlabeled data cause higher complexityin computation which eventually takes long time. However, it is possible to overcomethrough the extension of S4VM method developed by Li and Zhou (2014); Ding et al.(2017)
14



2.1.3 Uncertainty
Here in this part, uncertainty will be defined and causes of uncertainty in remote sens-ing and image classification methods will be discussed. According to the Goodchild(2008) uncertainty is the contrast between contents of the geospatial database andcorresponding phenomena in the real world and it can be also defined as a componentof data quality in geospatial data depending on the purpose and the application (Lucieer,2004).
Moreover, due to several factors, for example; atmospheric conditions, geometric cal-ibration, sensor sensitivity, and sensor resolutions, different types of uncertainty inremote sensing exists and it became an important factor to investigate since remotesensing data is highly used in geographic information science (GIS) and many applica-tion fields of remote sensing. Regarding the image classification methods on remotesensing data, uncertainty is mostly caused by the pixel values, fuzzy boundaries, tran-sition zones, and misclassified data points. For an instance, Fig. 4 demonstrates thesituation where objects in the landscape are below the resolution of the image and thiscauses the mixed pixels situation. Moreover, fuzzy classification is also introducedfor this problem. Instead of assigning the pixel with its label as Boolean values 0 or 1,values between 0 to 1 can be assigned to show its probable class as its is displayed inFig 5 (Bastin et al., 2002)

Figure 4: Example of mixed pixels causing uncertainty (Bastin et al., 2002).

Figure 5: Example of fuzzy classification (Bastin et al., 2002).
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Furthermore, to evaluate the image classification’s overall quality, a confusion matrix isneeded and it is determined through the reference labels. However, from the confusionmatrix, it is not possible to see how the uncertainty is spatially distributed. Therefore,thematic and spatial uncertainty, where the error or lack of knowledge is coming fromits geographic position or its thematic class, have an essential role in finding the qualityof classification (Lucieer, 2004; Bastin et al., 2002).
In this part, the uncertainty of classification method, SVM will be taken care of. In theSVM models uncertainty is mainly occurs when data points are not labeled right andwhen they are closer to the margin. The condition is formulated below by (Wang andPardalos, 2014) in Eq. 8 and 9. Here, uncertain data points are presented as xi and it isfree within the centered at xi with ∆xi radius and could move towards in any directionwithin the uncertainty set.

min
w,b,ξi

1

2
|| w ||22 +C

m∑
i=1

ξi (8)

subject to:
yi
(
wT (xi + ∆xi) + b

)
≥ 1− ξi, ξi ≥ 0, i = 1, ...,m

|| ∆xi ||2≤ δi, i = 1, ...,m
(9)

In addition, it is important to further analyze the uncertainty by quantifying, exploring,presenting, and communicating. This can be done by visualizing the patterns andspatial behaviors of uncertainty. Different visualization techniques can be used inremotely sensed image classifications to explore and present these patterns. Forinstance, uncertainty visualization in land cover maps and graphic variables such ascolor saturation, lightness, noise annotation lines can be used (Kinkeldey, 2014; Lucieer,2004).
Furthermore, it is possible with the use of active learning techniques to improve modelperformances by ranking the uncertain pixels, exploring their uncertainty, and relabelingthem as it has been done in the research by Tuia and Munoz-Mari (2012).
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2.1.4 Support Vector Machines Settings
In the model learning process of the research, as an initial SVM method, the Gaussianradial basis function (RBF) kernel has been used due to its practicality in image classi-fication and especially in its remarkable performance in remote sensing applications(Volpi et al., 2013). Here, this RBF kernel function can be formulated below in the Eq. 10,
x and x′ represents the feature vectors in input space, and its Euclidean distance staysunder the range of zero and one.

K (xi, xj) = exp(−|| xi − xj ||
2

σ2
) (10)

Moreover, learning RBF kernels with concurrence of SVM requires a cost parameter
C and it also requires an additional parameter γ to define kernel-width and these pa-rameters range in C = {2−4, 2−3, ..., 212} and γ = {2−5, 2−4.5, ..., 23}. As an other remark,this mentioned SVM approach has been used to classify the inputs for binary and multiclass problems with one one-against-one SVM architecture.

2.1.5 Virtual Support Vector Machines
First of all, it should be mentioned that the Virtual Support Vector Machines (VSVM)method is a modification of the SVM approach. For this reason, the VSVM’s workingprinciple is built on SVM models which are explained in chapter 2.1.1. Where the overallaim is to find a separating hyperplane with the maximum margin between labeledsamples of different classes and eventually determine those SV that are the labeledpoints on the border of the margins. Furthermore, in the VSVM approach, SV are capturedfrom the initial SVM model. These captured SV control the encoding of invariances byaltering modeled objects (e.g. invariances of scale or shape of the objects) which areafter added to the input space as virtual samples.
Working principle of VSVM is explained in Fig. 6 and 7. Figure 6-a shows the inputvectors in the feature space and Fig. 6-b shows the seperating hyperplane with amaximum margin when the initial SVM model is applied.
Thereafter, virtual samples were generated through encoding the invariances in thecontext of object-based image analysis framework (Blaschke, 2010). Invariances areencoded by the segmentation algorithm with the respect to the shape of the object andscale such as the size of an object. This segmentation algorithm initially uses the SVthat is obtained in Fig 6-b and finds the segmentation level that involves these SV in theimage domain. Thereby, with those segmentation levels object features are computedand introduced to the model in Fig 7-c as virtual samples. (Geiß et al., 2019)
These introduced virtual samples together with SV’s are used for learning the modelonce more and which eventually finalize by altering the hyperplane with maximummargin (Fig. 7-d). Finally, virtual samples as induced by SVs are called Virtual SupportVectors (VSV). As a final remark, hyperparameters of the VSVM model, which are usedto handle the case of non-separable data, are optimized by the hold-out method (Foody,2009). This was done to see how well the model works with unseen data by usingtraining data that the model is trained with to deal with the very large data set.
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Figure 6: Working principle of Virtual Support Vector Machines (a),(b). (Geiß et al., 2019)

Figure 7: Working principle of Virtual Support Vector Machines (c), (d). (Geiß et al.,2019)

18



VSVM approach is described below in detail within the pseudocode under Algorithm 1(Geiß et al., 2019). Here, the pseudocode explains the procedure that has been displayedin Fig 6 and 7.
Algorithm 1 (Virtual Support Vector Machines (VSVM))Inputs:Pool of labeled samples: XTrain, XTestOutput:SVM classifier retained with training set X̂Train

1: Learn initial SVM model with XTrain2: Extract SVs and add them to a pool XSV
Train3: Perturb features based on XSV

Train to generate a pool of virtual samples V SV

4: Compile training set X̂Train = XSV
Train ∪ V SV

5: Learn SVM model with X̂Train and select model with optimal hyperparameters basedon XTest.

2.1.6 Self-learning strategy
In order to make VSVM approach more efficient, self-learning (SL) strategy is introduced.Overall goal of the SL strategy is to prune the uninformative virtual samples from theinput space in under consideration of similarity and margin constraint (Fig. 8).

Figure 8: Working principle of Self-Learning strategy on VSV (Geiß et al., 2019)
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In the similarity constraints approach, first of all, the Euclidean distance (d) between avirtual sample and its SV’s is computed. Distance calculation is formulated below withthe Eq. (11). In the equation, v stands for virtual samples and m for the features.

dij =

√∑
m

(
vSVim − xSVjm

)2 (11)

As a next step, a threshold δ is introduced to determine the uninformative samples. δ iscalculated below in Eq. (12) , here, NQ refer the the number of SV per thematic class Q.

δQ =
2

NQ (NQ − 1)

NQ−1∑
i=1

N∑
j=i+1

√∑
m

(
x
SVQ
im − xSVQjm

)2 (12)

In the consideration of margin sampling constraint, it is aimed to prune those virtualsamples that are far away from the hyperplane. This is an important step since thosevirtual samples that are not pruned with similarity constraint should be pruned for thereason that samples that are far from hyperplane are unlikely to be VSV. Therefore, thedistance of a virtual sample to the hyperplane is calculated below in Equation 13.

f
(
vSVδQkj

)
=

n∑
i=1

yiαiK
(
xi, v

SV
δQkj

)
+ b (13)

Algorithm 2 (Self-learning strategy (SL))Inputs:Pool of SV: XSVPool of virtual samples: V̂ SV , XTestOutput:A pool of constrained virtual samples V̂ SV

1: for i=1 to N in V SV do
2: Compute Euclidean distance dij between vSVi and xSVj ;
3: end for
4: Compute class-specific maximum distance thresholds δQk according to δQk = δQ · kand Equation (12);
5: Remain virtual samples which satisfy dij ≤ δQk and prune the others from V SV

according to V SV
δQk

= V SV ∩ {V SV
i |dij ≤ δQk} to establish a pool V SV

δQk
, which containsonly virtual samples that lie within the radius of δQk ;

6: for i=1 to N in V SV
Qk do

7: Compute distance to hyperplane for class Q with decision function according toEquation (13);
8: end for
9: Remain virtual samples which satisfy the maximum acceptable distance l, andprune others from V SV

Qk to establish a final pool of constrained virtual samples V̂ SV
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Figure 8 explains the use of the described constraints and shows how the hyperplaneis adjusted after pruning the uninformative virtual samples. In Fig. 8-a similarity con-straints approach is applied and after pruning the virtual samples, margin samplingconstraint is applied in Fig. 8-b by calculating the distance of the remaining virtualsamples to the hyperplane. In the last stage, the model is learned with remaining virtualsamples and with SV, and the hyperplane is adjusted with the maximum margin Fig. 8-b.
Furthermore, self Learning strategy is described in detail within the pseudocode Algo-rithm 2 (Geiß et al., 2019). The algorithm briefly explains the framework in Fig 8 In thefirst stage, virtual samples among the SV are collected from the VSVM algorithm. Afterthat, the euclidean distance is calculated between SV and the virtual samples. Virtualsamples that are under a certain threshold are selected. The virtual samples that arefar away are pruned from the model. In the second step, distance to the hyperplaneis calculated between the remaining virtual samples, and samples that satisfied themaximum acceptable distance are selected. As a final product, a pool of constrainedvirtual samples are produced and these samples are used for model learning.

2.2 Literature Review
The literature review chapter is discussed in two main parts. The first part discusses thetheory of support vector machines, semi-supervised SVM, active learning methods, andtheir applications mainly on the classification of remote sensing imagery. Furthermore,the first part involves some of the partial combinations of these methods. At last, thesecond part discusses uncertainty visualization and cartographic design.

2.2.1 Theory and the Applications of Machine Learning Methods
Cortes and Vapnik (1995) introduced a new machine learning method for classifyingtwo-class problems, the so-called the support vector networks. This method is appliedto very high-dimensional feature space and also enlarged to solve non-linearly separabletraining data. Empirical studies on the research made on optical character recognitiondata and further compared with various supervised algorithms such as linear classifier,k-nearest neighbors algorithm.
Burges (1998) further demonstrates and introduces a tutorial on support vector ma-chines(SVM) and mainly focuses on its concepts on structural risk minimization andVapnik–Chervonenkis dimension (VC dimension). The research explains the kernelmapping technique to classify non-linear data in Fig. 9 below. Figure shows how SVMtransform the data from the original space into a higher dimensional feature spaceand make it linearly separable and show how well SVM show good generalizationperformance on very large VC dimensions.
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Figure 9: Linear separating hyperplanes for the non-separable case (Burges, 1998)
Bennett et al. (1999) proposed a new method called semi-supervised support vectormachines (S3VMs). The purpose of the method is to overcome the transduction problemby applying overall risk minimization (ORM) with the use of both labeled (training set)and unlabeled samples (working set). Since transduction does not produce a predictivemodel and when an unknown point is added to the set, it causes the transductivealgorithm to be repeated to predict the label. Subsequently, this research (S3VMs)tested on ten real-world application data sets and results showed that adding unlabeleddata improves the generalization.
Semi-supervised support vector machines (S3VM) are a highly favorable approach onfew labeled data but when the obscure and misleading unlabeled samples are selectedthey can perform poorly. Therefore, Li and Zhou (2014) come up with a solution toimprove S3VMs safeness. Subsequently, two approaches that are developed named
S3VMs-us and S4VMs (Safe S3VMs) that work with multiple low-density separatorseventually maximize the performance against inductive support vector machines. Afterempirical studies, it has been detected that new methods can decrease the risk of poorseparation and moderately improves performance. Moreover, research from Ding et al.(2017) gives an overview to the S3VM and they further investigate the previous method-ology on S3VM, discuss the extension of methods such as transductive support vectormachine, Laplacian support vector machine, mean S3VM, S3VM based on cluster kernelto overcome main challenges of semi-supervised methods especially on computationcosts on training the models. Research also indicates that extension of the methodstruly improves the computation although there are still some obstacles to overcome inthe future.
Fernández-Delgado et al. (2014) did detailed investigation on 179 different classifiersfrom 17 families including support vector machines, decision trees, rule-based classi-fiers, and so on. According to the experimental results on 121 real-world applicationdata sets random forest (RF) and support vector machines (SVM) resulted in the bestaccuracy. Therefore, this paper gives a comprehensive explanation of these methodsand their applications.
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In the application are of machine learning, Melgani and Bruzzone (2004) approached theclassification of hyperspectral remote sensing images problem by using support vectormachines(SVM) and compares the results with non-parametric classifiers such as radialbasis function neural networks and the K-nearest neighbor classifier. Moreover, researchfurther analysis the issue of applying SVM binary separator to multi-class problemsand discusses the one-against-all, the one-against-one, and two hierarchical tree-basedstrategies on a real Airborne Visible/Infrared Imaging Spectroradiometer hyperspectraldata set. Results showed that SVM are effective compared to other non-parametricclassifiers in hyper-dimensional spaces and can solve multi-class problems.
Foody and Mathur (2004) evaluate the performance of support vector machines (SVM)on multi-class image classification and compare to other classification methods suchas discriminant analysis (DA), decision tree (DT), and feed-forward neural network (NN).According to the research, the most precise classification results were obtained withthe SVM method. Additionally, the overall performance of SVM is also evaluated bytaking the training samples size from 15 to 100 cases per class. Although SVM performsbetter on a small number of training-set, increasing training set size obtained decentaccuracy.
Mountrakis et al. (2011) investigated the use of support vector machines in remotesensing over the year and further classifies the research that has been done on thistopic. They conducted this SVM overview in remote sensing based on its applicationareas, platform type, spatial and spectral resolution, and last change detection. Theyfurther highlighted its upsides and downsides within previously published works andthey provide a guideline for future improvements.
Izquierdo-Verdiguier et al. (2012) deals with remote sensing image classification usingan invariance in Support Vector Machines (SVM) which refers to the robustness ofthe classifier to any changes in data and deals with characterizes of images. Themethod uses the initial SV that maximizes the margin and further includes invariancesto reflections and rotations and then object scales and finally generates synthetic SVso-called Virtual Support Vectors. Obtained results demonstrate that method worksefficiently with few labeled samples and appears to be a robust classifier.
Ul Haq et al. (2011) present a `1 minimization-based sparse representation approachfor hyperspectral data classification with a few labeled samples. Unlike the super-vised learning, method approaches the proposed model does not acquire training andtesting phases use labeled samples to determine the representation of test samples.Additionally, the model overcomes the challenge of classifying a few sampled but highdimensional data as known as the Hughes phenomenon (Hughes, 1968). At last, experi-mental results showed promising results on four hyperspectral data sets compared tothe traditional classification methods.
Geiß et al. (2017) investigated the effect of spatially non-disjoint training and testsamples on model generalization in supervised classification with spatial features.Additionally, two different partitioning strategies for training and test sets followed toeffects of spatial auto-correlation on spatial features. Thereby, the first strategy deter-mined spatially random selected samples meanwhile, the second strategy determinedspatially disjoint selection with topological constraints on multi- and hyperspectralacquisitions over urban areas.
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Bruzzone and Carlin (2006) proposed a multilevel context-based system for the clas-sification of very high spatial resolution images. To do so, they developed a featureextraction module which is depicted in Fig. 10 below. Figure investigates the image inmultilevel and extracts the spatial context of every pixel and segments the image with asupport vector machine (SVM) classifier with a tree-based hierarchical constraint. Thisallowed the feature-extraction module to work with different image scales. Moreover,experimental results on two different data sets, urban and rural areas of Pavia(Italy)and Trento(Italy) showed that overall accuracy does not change on a different numberof levels, and the model can characterize the spatial context adaptively.

Figure 10: Scheme of the proposed approach of multi-level context-based classificationstrategy (Bruzzone and Carlin, 2006)
Bruzzone et al. (2006) introduced a method for the classification of remote sensing im-ages. The method is based on semi supervised system that uses labeled and unlabeledsamples in the training phase of SVM. Besides, the SVM algorithm is enriched by thetransductive process which finds the best hyperplane iteratively. The proposed methodshowed that the transductive SVM approach can achieve stable and high classificationaccuracy results compared to standard inductive SVM.
Dópido et al. (2013) tailored a semi-supervised learning technique on the classificationof hyperspectral remote sensing imagery. The reason is that hyperspectral imageryprovides higher dimensional data but with a few labeled samples since it is costly andtime-consuming which eventually ends up in Hughes phenomenon (Hughes, 1968).Therefore, with use of the unlabeled samples in a self-learning framework that selectsthe most informative unlabeled samples, has achieved favorable results in multinomiallogistic regression (MLR) and a support vector machine (SVM) classifiers.
Lu et al. (2016) developed a new framework on semi-supervised learning for hyperspec-tral and panchromatic remote sensing image classification which eventually obtainsimproved overall classification accuracy with few labeled samples compared to othersupervised algorithms. The framework that is displayed in Fig. 11 also uses an activelearning approach for a self-learning strategy on image segmentation and automaticallyselects unlabeled informative samples by avoiding extra human-machine interaction.Therefore, in each iteration of the self-learning step, the candidate set chooses thesamples with the same predicted labels with object labels until the stop criteria are met.
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Figure 11: Main procedures of the proposed synergetic classification approach (Lu et al.,2016)
Tuia et al. (2009) evaluated two active learning strategies on both hyperspectral andvery high-resolution remote sensing images with support vector machines classifier.Since SVM perform better with the high-quality labeled data, it turns into a difficulttask to determine this set and active learning methods come into action to find theaccurate set with human-image interaction. Therefore, results showed that applyingactive learning strategies gives consistent accuracy and methods can reach the samequality as large data sets.
Tuia et al. (2011) investigated active learning algorithms such as committee, largemargin, and posterior probability on remote sensing image classification in order tocreate an optimal training set. They evaluate the working principle of active learning,adding new labels and selecting the ones that are beneficial for the model in an iterativeway. Therefore, the evaluation process continued with challenging remote sensingscenarios and tested on both very high spatial resolution and hyperspectral images.Experimental showed that active learning algorithms have a great potential in the remotesensing area and they are robust on noise.
Demir et al. (2010) explored batch-mode-active-learning methods for the classificationof remote sensing images. Additionally, uncertainty and diversity are selected as twoparameters to investigate techniques. In this sense, a newly proposed novel queryfunction that is based on a kernel clustering compared with state-of-the-art methodsfor very high-resolution multispectral and hyperspectral images. Results showed betteraccuracy on the newly proposed method for both data sets.
Pan et al. (2018) introduced a collaborative method on combining semi-supervised learn-ing and active learning to classify hyperspectral imagery with limited labeled samples.Therefore, they follow a strategy so-called collaboratively integrated using clustering(CLUC) and this strategy clusters unlabeled samples, additionally, by calculating theuncertainty, most uncertain unlabeled samples are labeled manually. Experimentalresults showed that pseudo labeling strategy showed an important role in proposedalgorithms and the used methods are open for future alternative extensions.

25



2.2.2 Uncertainty Visualization and Active Learning Methods
Kinkeldey (2014) explored major challenges in the analysis of land cover classificationthat are mainly caused by inaccuracies of multiple data sets such as bias in sensors orspatial disintegration. Therefore, Kinkeldey emerges an approach to quantifying andvisualizing uncertainty in order to overcome this challenge. By doing so two elementsare discussed in change detection and analysis steps, and visual communication ofuncertainty within a case study. Example in Fig 12. shows uncertainty change perpixel with the real image in the bottom part and it is demonstrated as black (0.0) as nouncertainty to white (1.0) to maximum uncertainty. Uncertainty measure for land coverchange is determined by the fuzzy membership values µ. For each scene, µ values areconducted by the minimum operator.

Figure 12: Example showing the change in uncertainty (Kinkeldey, 2014)
Tuia and Munoz-Mari (2012) discusses active learning (AL) scenarios in remote sensingbased on the uncertainty of the pixels. AL methods are taken into consideration in termsof ranking the pixels by their uncertainty and users confidence in labeling depending onthe user’s experience and knowledge, example is shown in Fig 13. Moreover, experimen-tal data sets consisted of different levels of resolution in order to test user’s confidencein labeling after determining the areas by uncertainty and results showed that the areaof AL has great potential and opens up for many future pieces of research.

Figure 13: Images into confidence map after 5th iteration (Tuia and Munoz-Mari, 2012)
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Murphy (2015) introduced a visualization option in the cartographic medium by com-bining remote sensing imagery with cartographic symbolization. Therefore, a suitableapproach followed the idea of applying visual hierarchy on individual image objects andhighlighting specific objects or classes. Research shows that this approach enhancedthe user’s visual attention and also the user’s visual communication with image maps.
Since uncertainty is a major factor in processing geospatial data and ignoring theuncertainty may result in unusable results. For this reason, Kinkeldey et al. (2014)proposed a technique for visualizing uncertainty with the use of noise annotation lines.Therefore, two experiments are made to assess the method. It showed that noiseannotation lines can be used in 6 uncertainty levels and can demonstrate a qualitativecomparison of constant uncertainty.
Lucieer (2004)’s paper investigates uncertainties in remote sensing image classificationand focuses on its visualizations. Research further separated into three parts. The firstpart is about developing and implementing a visual exploration tool; the second part isabout developing, implementing, and applying image segmentation techniques for iden-tifying objects and quantifying their uncertainty. The third part is about developing andimplementing visualization techniques to explore the relationship between uncertainty.More specifically, in the first part, a fuzzy classification algorithm has been explored inremotely sensed imagery with its related uncertainty. This algorithm was applied to theLandsat 7 ETM+ image from Southern France and achieved an overall of 88 percentaccuracy. In the second part, the working area is selected from the IKONOS image. Databelong to an agricultural area in the Netherlands and the segmentation technique, theso-called split-and-merge algorithm is applied. The method was extended with two casestudies. As an example in Fig. 14 texture-based segmentation of a figure is displayedwith its related uncertainty. In the left side of the figure 14, the object is classified withfive reference classes and the related uncertainty of the classes is displayed on theright side. At last, the third part of the research has shown the effect of uncertainty byadjusting the threshold and generally, research showed that interactive visualizationtool has an important role in objects uncertainty in remote sensing.

Figure 14: Supervised texture-based segmentation and related uncertainty for all objectbuilding blocks (Lucieer, 2004)
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3 Methodology
In this section, the methodology is introduced with four new algorithms. The first threealgorithms are created semi-supervised learning. These methods are based on thetheory that is explained in the theoretical background section. At last, the fourth methoddemonstrates the uncertainty approach that boosts the models by visualizing andrelabeling the uncertain samples.

3.1 Semi-Supervised Methods
This section explains three newly proposed semi-supervised methods on the SVM ap-proach.The first method follows the initial idea of Virtual Support Vector Machines withSelf Learning (VSVM-SL) strategy and combines unlabeled samples into model learning.The second method initializes a Virtual Unlabeled Samples approach by following thebasic principles of the VSVM method. Finally, the third approach sets a benchmarkmethod on a semi-supervised scheme by integrating unlabeled samples into the trainingdata pool, and it learns the model with initial SVM method. Furthermore, in all thesenewly proposed approaches, the SL strategy is used in order to prune uninformativeunlabeled and labeled samples. This prevented the use of further heuristics regardingwhich semi-labeled samples can be used.

3.1.1 VSVM-SL with Unlabeled Samples
As mentioned in the above section, VSVM-SL with the Unlabeled Samples methodfollows the idea of the VSVM-SL strategy and the overall aim is to eventually furtherincrease the accuracy properties of the VSVM-SL in settings with few labeled samplesand deploy a constrained set of unlabeled samples for training the model. By doing sothe model is enriched by informative unlabeled samples and these informative unlabeledsamples will be considered and selected with respect to the existing SVs and virtualsamples.
In this model extension, Algorithm 3 starts with collecting unlabeled samplesx∗1, x∗2, ..., x∗kamong with the labeled training data x1, x2, ..., xn that will be used for initial model learn-ing. As a second step, SV’s are extracted from the initial SVM model and the VSVMapproach is applied to collecting virtual samples by perturbing the features of theseSVs. Moreover, at this stage, virtual samples and the selected unlabeled samples wereforgathered in a pool for pruning uninformative VSV’s and unlabeled samples. For thatreason, by checking the similarity constraints (Eq. 12) and margin sampling constraints(Eq. 13), the model is left with the virtual samples that induced with unlabeled samplesand new separating hyperplane with maximum margin has been found by the effect ofthe enriched unlabeled samples. The procedure is further described in the followingfigure 15. Here, in the figure 15, the blue color shows the gathered data, before or afterany process. The red color shows the steps that use unlabeled samples. The circularcross represents the step when the training data is enriched by semi-labeled samples.At last, the green color stands for the model training steps.
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Figure 15: Working principle of VSVM-SL with Unlabeled Samples
VSVM-SL with Unlabeled Samples method is described below in detail within the pseu-docode under Algorithm 3.
Algorithm 3 (VSVM + Unlabeled Samples+ SL Strategy)Inputs:Pool of labeled samples: XTrain, XTestPool of unlabeled samples: XTrainRemainingOutput:SVM classifier retained with training set X̂Train

1: Select unlabeled samples from remaining training samples XTrainRemaining2: Learn initial SVM model with XTrain3: Extract SVs and add them to a pool XSV
Train4: Perturb features based on XSV

Train get virtual samples V SV

5: Get SVs of unlabeled samples and perturb features of unlabeled samples based on
X̂Train = XSV

Train ∪ V SV

6: Apply self-learning strategy to V SV and unlabeled samples which satisfy the maxi-mum acceptable distance and prune others according to Algorithm (2).
7: Establish pool of constraint samples V̂ SV

8: Compile training set X̂Train = XSV
Train ∪ V̂ SV

9: Learn SVM model with X̂Train select model with optimal hyperparameters based on
XTest.
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3.1.2 VSVM-SL with Virtual Unlabeled Samples
The second semi-supervised approach, VSVM-SL with Unlabeled and Virtual Unlabeledsamples, is motivated by VSVM method (chapter 2.1.5). It follows the idea that addingvirtual unlabeled samples by integrating the invariances of shape and scale to alreadypruned unlabeled samples. With this approach, it is aimed to possibly increase accuracyproperties of the model especially with the few labeled samples by benefiting therobust and sparse model solutions of virtual samples since these samples enhancegeneralization capabilities of the model. Therefore, method basically accompanies theapproach on Fig. 15.
VSVM-SL with Virtual Unlabeled Samples method is described below in detail withinthe pseudocode under Algorithm 4.
Algorithm 4 (VSVM + Unlabeled Samples+ SL Strategy + Virtual Unlabeled Samples)Inputs:Pool of labeled samples: XTrain, XTestPool of unlabeled samples:XTrainRemainingOutput:SVM classifier retained with training set X̂Train

1: Select unlabeled samples from remaining training samples XTrainRemaining2: Learn initial SVM model with XTrain3: Extract SVs and add them to a pool XSV
Train4: Perturb features based on XSV

Train get virtual samples V SV

5: Get SVs of unlabeled samples and perturb features of unlabeled samples based on
X̂Train = XSV

Train ∪ V SV

6: Apply self-learning strategy to V SV and unlabeled samples which satisfy the maxi-mum acceptable distance and establish V̂ SV .
7: Learn SVM model with X̂Train = XSV

Train ∪ V̂ SV

8: Extract SVs from the model.
9: Perturb features of unlabeled samples based on X̂SV

Train to get virtual unlabeledsamples.
10: Prune virtual unlabeled samples with self learning strategy and establish constraintsamples Ṽ SV

11: Learn model again with X̃Train and select model with optimal hyperparametersbased on XTest

Here within the pseudocode, Algorithm 4 is displayed. In the algorithm, unlabeled sam-ples x∗1, x∗2, ..., x∗k and labeled samples x1, x2, ..., xn are collected from the pool trainingsamples. Thereafter, with the labeled samples the initial SVM model is learned to obtainSV for applying the VSVM approach. With the SL strategy, these unlabeled samples andvirtual samples induced by unlabeled samples are pruned and the model has learnedagain as it is shown in Fig. 15. As a next step, the unlabeled samples that have becomeSV are extracted to obtain the virtual unlabeled samples. At this point, features of theextracted SV perturbed with the VSVM approach (chapter 3.1.2) and unlabeled virtualsamples are established. As a final remark, the SL strategy (chapter 2.1.6) is applied toprune uninformative virtual unlabeled samples, and the model is learned again. As anoutput SVM classifier retained with a training set is generated.
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3.1.3 Benchmark Method for Semi-Supervised Learning
This method is created as a modified and improved version of the basic function ofSVM by basically including informative unlabeled samples. This method aims to in-crease the generalization abilities of decision functions when training information is notavailable. By doing so, the initial SVM is altered into a semi-supervised learning schemeand becomes a benchmark method for further semi-supervised learning methods.Furthermore, it follows simpler approach compared to the algorithms 3 and 4.
SVM with Unlabeled Samples approach is described below in detail within the pseu-docode under Algorithm 5.
Algorithm 5 (SVM + Unlabeled Samples+ SL Strategy)Inputs:Pool of labeled samples: XTrain, XTestPool of unlabeled samples:XTrainRemainingOutput:SVM classifier pruned with unlabeled samples

1: Select unlabeled samples from remaining training samples XTrainRemaining2: Learn initial SVM model with XTrain and extract SVs.
3: Prune the unlabeled samples with self learning strategy and establish constraintsamples X̂SV

4: Learn the model again with X̂Train and select model with optimal hyperparametersbased on XTest

In the Algorithm 5 , first of all, initial SVM is learned with training samples x1, x2, ..., xn andSV are extracted. Thereafter, with the selected unlabeled samples so as x∗1, x∗2, ..., x∗k , SVare pruned with the indication of unlabeled samples with the constraints of chapter 2.1.6.As a final remark, the model has learned again with the training set that is enriched withpruned unlabeled samples. After, the best optimal hyperparameters are determinedwith the enhanced generalization ability by benefiting the semi-supervised learningapproach.

3.2 Uncertainty Visualization
In this chapter, as an active learning method in the SVM approach, uncertainty visu-alization is introduced. As a primary idea uncertainty of the models is calculated andvisualized in order to aim for higher accuracy of the developed methods. Therefore,this active learning approach initialized for the usage for all developed semi-supervisedmethods.
As a working principle, this approach follows the theoretical background of uncertainty.See in chapter 2.1.3. Therefore, the method measures the uncertainty of the SVMmodels. To do so, the optimal hyperplane that maximizes the margin has to be initiallydetermined. By taking the margin constraints all the classified samples of certainclasses are taken into account as input vectors and the distances of these samples tothe hyperplane are aimed to be calculated with the margin constraints. Fig 16 shows
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the calculated distances of samples to the hyperplane with l. SV is also displayed asthe samples within the hyperplane in the figure.

Figure 16: Illustration of distance to the hyperplane
Thereafter, these calculated distances are normalized in the range of zero to one to scaledown the distance differences. Therefore, to determine the most uncertain samples,samples among the calculated hyperplane distances are visualized by stretching theuncertainty values along with the histogram. To improve the visual contrast, the toneof a single color is selected. With the help of visualizations and normalized distances,it can be considered that these samples closer to the hyperplane are most likely tobe uncertain samples since SV are at the zero distance on the hyperplane. Moreover,in the relabeling procedure of these uncertain samples, an absolute number of mostuncertain samples are selected, relabelled according to the reference labels, and themodel has learned again by setting a new hyperplane with maximum margin. Fromthis stage, calculating the uncertainty values once more and visualizing them makes itpossible to monitor how the uncertainty of the models changes with this interactiverelabelling process. Also, uncertainties of the introduced semi-supervised methods canbe compared as a second parameter to the accuracy values. As an example, scheme ofsemi-supervised learning method, VSVM-SL with Unlabeled Samples is demonstratedwith the integration of uncertainty visualization approach and it is shown in Fig. 17.In the figure, the blue color is used for showing data pools and the red color is usedfor steps that use unlabeled samples. Thereafter, training data that is enriched bysemi-labeled samples are represented by the circular cross and the green color usedfor the model training steps. At last, the active learning process is showed with lightgreen color. Furthermore, this active learning method eventually sets a collaborativelearning method by combining this approach with semi-supervised learning methods.
The uncertainty visualization approach is demonstrated in detail within the pseudocodeunder Algorithm 6. Here, in the algorithm, as a first step, a semi-supervised SVM methodis selected. Model is trained with its related methodology and labels are predicted andthe initial accuracy values. Thereafter, distances of samples to the hyperplane arecalculated and normalized. Uncertainty visualizations are created with the normalizedvalues and most uncertain samples are determined. After the relabeling process, as
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a last step accuracy and uncertainty are calculated and compared with the previousvalues.

Figure 17: Working principle of Active Learning Approach with Uncertainty on VSVM-SL-UMethod

Algorithm 6 (Active Learning Approach with Uncertainty)Inputs:Pool of labeled samples: X̂TrainOutput:Pool of labeled and relabeled samples : X̂Train, X̂ ′
Train

1: Train the model with the selected SVM approach
2: Predict the labels the data set
3: Calculate the distance to hyperplane for each class Q
4: Normalize the distance in range {0,1}
5: Visualize the distances to determine most uncertain samples.
6: for i = 1 to N in X̂Train do
7: Select most uncertain top 100 labeled samples;
8: Relabel them according to reference label;
9: end for

10: Recalculate accuracy and uncertainty
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4 Results & Discussion
In the evaluation of newly proposed semi-supervised algorithms, VSVM-SL-U, VSVM-SL-VU, and SVM-SL-U, two different data sets are used with their configurations. Sothat these methods are evaluated with invariances to scale and shape for both of thedata sets. Additionally, binary and multi-class classification settings are further addedto evaluation processes. Furthermore, data is explained with its following thematicclasses for each data sets in the next sub-chapter. In the model learning processes ofbinary and multi-class settings, labeled and unlabeled samples are selected randomlyfrom the training and testing data pool. Without biased quantification, to evaluate theaccuracy measurements properly, 20 independent realizations were made for generatinggraphs, and tables and standard deviations of these runs are added into the results aswell. Besides the accuracy measurements, to further assess the model performance,
k statistics, weighted mean F̄1 of F1 calculations, overall accuracies (OA), averageaccuracies (AA), individual class accuracies are calculated. At last, visualizationsof binary and multi-class settings are added for the specific number of labeled andunlabeled samples.
Furthermore, to increase the accuracy and explore the uncertainties of the newly pro-posed models, the uncertainty visualization approach is implemented as an activelearning extension. In this process, the Cologne data set that is explained in chapter 4.1is used with its binary classification settings. Uncertainty visualizations are created andwith the help of the visualizations, most uncertain samples have been relabeled by andnew uncertainties and labels have been displayed for comparison. Additionally, all theuncertainties of the newly proposed models have been compared with their statisticalvalues for a certain amount of samples and all the uncertainty values have been scaleddown for the consideration of all methods.

4.1 Data
In this section, two data sets that have been used in the experimental setup will bediscussed. The first data set covers the geographic area of 1000x1000 meters and thesecond data set covers the area of 2000x2000 meters. They were captured by VeryHigh Resolution (VHR) multispectral imagery with blue, green, red, and near-infraredbands from the WorldView-II sensor. Additionally, images have a geometric resolutionof 0.5 meters.
The first data set was obtained in the city of Cologne, Germany on January 31, 2004.Moreover, it shows an urban area, mainly dominated by buildings. That is further shownin Fig. 18 below. The image also consists of shadow areas and facades of singularbuildings that can be further seen through the direction of sensor view due to the of-nadir acquisition. Furthermore, pixels are organized into six thematic classes such as“bush/tree”, “roof”, “meadow”, “facade”, “shadow”, and “other impervious surface” inFig. 18 (b).
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Figure 18: (a)WorldView-II scene of Cologne, Germany; (b) Available labeled samplesper class; (c) spatially disjoint training, testing, and validation areas.
The second data set was captured over the Hagadera refugee camp in Kenya, on March01, 2012 with a 2000×2000 spatial resolution that is shown in Fig. 19. Moreover, datawas spatially splited into train, test and validation areas and selection was made ondetermining a heterogeneously distributed settlement area. Therefore, this separationwas made based on the objects in the image so that the image object stayed within thecertain area as train, test, or validation. As a second consideration, it was aimed to splitthe area based on the idea of not overlapping over the features. This area also consistsbuildings that have various types of fences, walls, shadows and open spaces. At last,data was divided into five thematic classes such as “built-up area”, “bush/tree”, “baresoil”, “fence/wall”, and “shadow” in Fig. 19(b).
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Figure 19: (a)WorldView-II scene of Hagadera Refugee Camp, Kenya; (b) Availablelabeled samples per class; (c) spatially disjoint training, testing, and validation areas.

4.2 Results from Data set I: Cologne
The methodology is applied to the Cologne data set. Results are presented in twodifferent graphs and figure types. Semi-supervised methods (i.e., VSVM-SL-U, VSVM-SL-VU) are mainly compared with the VSVM with and without self-learning constraintsstrategy, for the reason that these methods are built upon these strategies. Additionally,benchmark semi-supervised methods (i.e., SVM-SL-U) are compared with the initialSVM model and for the SVM-M model where all the invariances were treated as featuresof the data and did not consider as virtual samples (Geiß et al., 2019).
In the first section of the Cologne data set results, graphs for binary classificationsettings are discussed. These graphs differ due to the invariances to scale and shape,and they were generated for 20 independent realizations considering the differentnumber of labeled samples per class. In the figure creation, unlabeled samples aretaken into the models as a hyperparameter, and the realization process is repeated forvarious amounts of unlabeled sample sizes, and from these unlabeled sample sizes soas 20,40,60 for per class, the best resulting sizes were selected. Therefore, in thesefigures, highlighted light blue (VSVM-SL-VU) and blue color (VSVM-SL-U) represent
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the semi-supervised methods, green-colored lines present VSVM approaches. Dashedgreen lines for VSVM-SL and green lines for VSVM approach. At last, black colored linespresent SVM methods, black line for SVM, dashed line for SVM-M and dashed and dottedline for the benchmark SVM-SL-U method. Additionally, graphs show mean accuracyvalues on the vertical plane where tables consider multiple statistic measurements.Moreover, the number of labeled samples varies in the range of 10 to 200 per class foreach graph.

Figure 20: Cologne- Binary classification setting- invariance to scale- Mean Accuracy
Moreover, Fig 20- 22 demonstrates the overall accuracies of the semi-supervised andother methods for varying numbers of samples used in model learning for Colognebinary classification settings. Figure 20 shows that VSVM-SL-VU approach has thebest overall accuracy measurements for the few labeled samples and it is followedby the VSVM-SL and VSVM-SL-U methods. As another result, it can be seen that thebenchmark method SVM-SL-U performs better compared to initial SVM models forthe few labeled samples. In Fig 22, the best accuracies archived by VSVM-SL method,followed by semi-supervised methods for the few labeled samples.
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Additionally, in both of the figures, all the methods reach a plateau when the num-ber of labeled samples increased. However, semi-supervised methods remain on topcompared with supervised methods. In Fig 21- 23, kappa values are displayed insteadof overall accuracy for the Cologne binary classification settings, and the results aresupported with similar patterns from the kappa measurements. As an only difference,the benchmark method, SVM-SL-U, achieves higher kappa measurements for the fewlabeled samples and the higher number of samples.

Figure 21: Cologne- Binary classification setting- invariance to shape- Kappa Statistics
Results with 40 labeled samples and 20 unlabeled samples with 20 realizations aredisplayed in tables 1 - 2 for the Cologne binary classification settings. As a remark,in terms of binary classes, SVM-SL-U method had better F1 and accuracy values withlower standard deviation especially in the invariance of shape settings. However, SVMand SVM-M methods performed better in overall statistics. Meanwhile, semi-supervisedmethods VSVM-SL-U and VSVM-SL-VU had a dominant performance in terms of overallaccuracy and kappa statistics. Also, these methods had an overall good classificationperformance regarding the class bush/tree. Therefore, it can be later seen in theclassification results Fig. 25
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Figure 22: Cologne- Binary classification setting- invariance to shape-Mean Accuracy

Figure 23: Cologne- Binary classification setting- invariance to shape-Kappa Statistics
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Class SVM SVM-M SVM-SL-UnF1 Acc F1 Acc F1 AccInvariance to object scale; number of samples per class: 40 ; unlabeled samples : 20Bush/Tree 82.82 (± 2.25) 73.4 (± 4.7) 80.7 (± 1.65) 73.11 (± 2.82) 80.96 (± 4.27) 75.45 (± 5.73)Other 94.76 (± 1) 98.75 (± 0.92) 94.37 (± 0.59) 97.41 (± 1.09) 94.66 (± 1.33) 96.75 (± 1.4)
Kappa 77.69(±3.2) 76.23(±2.71) 75.93(±6.28)F1 92.78(±1.16) 92.58(±0.87) 92.32(±2.2)OA 91.89(±1.34) 91.78(±0.99) 91.42(±2.54)AA 85.85(±1.79) 86.16(±1.62) 85.51(±3.35)
Invariance to object shape; number of samples per class: 40 ; unlabeled samples : 20Bush/Tree 82.83 (± 3.84) 74.28 (± 4.9) 83.86 (± 1.91) 72.78 (± 2.89) 81.78 (± 1.38) 76.45 (± 0.55)Other 94.89 (± 1.35) 98.3 (± 0.7) 94.78 (± 0.76) 99.71 (± 0.02) 94.96 (± 0.27) 96.84 (± 0.79)
Kappa 77.96(± 2.71) 78.72(± 3.57) 76.1(± 3.85)F1 92.89(± 0.96) 93.01(± 1.34) 92.41(± 1.36)OA 92.02(± 1.12) 92.1(± 1.57) 91.53(± 1.57)AA 85.99(± 1.53) 86.33(± 1.98) 85.57(± 2.06)

Table 1: Cologne - Binary classification setting- Classification accuracies and otherconfigurations compared to benchmark semi-supervised method.
Class VSVM VSVM-SL VSVM-SL-Un VSVM-SL-VunF1 Acc F1 Acc F1 Acc F1 AccInvariance to object scale; number of samples per class: 40 ; unlabeled samples : 20Bush/Tree 79.89 (± 2.16) 69.07 (± 3.73) 80.9 (± 3.76) 70.93 (± 5.97) 81.88 (± 4.26) 76.06 (± 5.15) 82.66 (± 2.06) 75.39 (± 5.74)Other 93.62 (± 0.97) 98.64 (± 1.17) 94.04 (± 1.5) 98.49 (± 0.72) 94.91 (± 1.25) 97.07 (± 1.37) 94.92 (± 1.1) 97.92 (± 1.24)
Kappa 77.15(±3.51) 78.15(±7.02) 78.67(±4.92) 76.7(±3.87)F1 92.58(±1.31) 92.95(±2.62) 93.22(±1.73) 92.51(±1.35)OA 91.65(±1.54) 92.1(±3.05) 93.22(±1.99) 91.61(±1.56)AA 85.58(±2.08) 86.4(±3.68) 86.75(±2.58) 85.57(±2.05)
Invariance to object shape; number of samples per class: 40 ; unlabeled samples : 20Bush/Tree 84.85 (± 0.83) 75.32 (± 1.35) 83.54 (± 3.02) 76.54 (± 3.05) 80.95 (± 3.18) 78.26 (± 3.45) 80.25 (± 5.41) 73.78 (± 7.28)Other 95.45 (± 0.3) 99.23 (± 0.15) 95.3 (± 0.9) 97.85 (± 0.81) 94.96 (± 0.84) 95.86 (± 1.01) 94.28 (± 1.92) 96.94 (± 1.5)
Kappa 78(± 3.68) 78.4(± 4.49) 77.96(± 3.21) 78.35(± 4.12)F1 92.85(± 1.38) 93.14(± 1.62) 93.17(± 0.97) 93.24(± 1.38)OA 91.95(± 1.61) 92.35(± 1.88) 92.46(± 1.06) 92.5(± 1.57)AA 85.95(± 2.11) 86.77(± 2.63) 87.12(± 1.52) 87.1(± 2.21)

Table 2: Cologne - Binary classification setting- Classification accuracies and otherconfigurations of semi-supervised methods
In the evaluation of the Cologne binary classification settings, single realization is pickedfrom tables 1 and 2, and visualized in figure 24 and 25. Therefore, figure 24 supports thatinvariance to shape settings on SVM-SL-U approach has a better impact on statisticalvalues, that is why classification of bush/tree class is distinguishable from the othermethods. Also, in figure 25, semi-supervised methods perform slightly better althoughthe statistical values are close to each other.
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Figure 24: Visualization of results from single realization for binary classification settingfor Cologne
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Figure 25: Visualization of results from single realization for binary classification settingfor Cologne 42



Figure 26: Cologne- Multi-class classification setting- invariance to Scale- Mean Accu-racy

Figure 27: Cologne- Multi classification setting- invariance to scale- Kappa Statistics
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Figure 28: Cologne- Multi-class classification setting- invariance to shape-Mean Accu-racy

Figure 29: Cologne- Multi-Class classification setting- invariance to shape-Kappa Statis-tics
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Class SVM SVM-M SVM-SL-UnF1 Acc F1 Acc F1 AccInvariance to object scale;number of samples per class: 40 ; unlabeled samples : 20Bush/Tree 82.08 (± 2.07) 80.19 (± 2.45) 81.99 (± 3.39) 81.63 (± 3.11) 82.22 (± 2.75) 80.29 (± 3.42)Meadow 48.3 (± 5.67) 35.29 (± 6.82) 55.38 (± 9.39) 48.63 (± 17.49) 51.47 (± 7.49) 37.86 (± 8.38)Roof 54.77 (± 8.22) 76.32 (± 4.88) 67.72 (± 5.19) 73.08 (± 4.75) 58.04 (± 8.76) 78.2 (± 3.7)Facade 57.38 (± 4.46) 50.62 (± 7.23) 54.21 (± 5.3) 48.8 (± 10.98) 56.16 (± 4.52) 49.22 (± 7.38)Other imp. surf. 35.69 (± 7.73) 25.03 (± 7.32) 18.4 (± 5.86) 24.56 (± 11.09) 38.33 (± 8.08) 27.39 (± 7.98)Shadow 86.51 (± 1.55) 90.66 (± 1.57) 83.84 (± 1.62) 82.98 (± 2.74) 86.75 (± 1.41) 91.19 (± 1.22)
Kappa 60.91 (± 3.97) 63.34 (± 3.44) 62.44 (± 4.56)F1 71.79 (± 2.89) 73.67 (± 2.27) 72.91 (± 3.31)OA 70.64 (± 3.27) 73.68 (± 2.79) 71.81 (± 3.8)AA 59.69 (± 2.25) 59.95 (± 4.39) 60.69 (± 2.32)
Invariance to object shape; number of samples per class: 40 ; unlabeled samples : 20Bush/Tree 81.54 (± 1.69) 78.99 (± 2.16) 84.03 (± 2.98) 83.01 (± 3.48) 85.68 (± 1.97) 82.74 (± 2.72)Meadow 48.04 (± 4.37) 34.15 (± 5.07) 48.37 (± 7.01) 35.15 (± 8.27) 57.01 (± 6.75) 49.73 (± 10.94)Roof 55.82 (± 7) 78.96 (± 3.38) 59.93 (± 10.69) 75.93 (± 5.25) 70.74 (± 2.83) 76.5 (± 4.02)Facade 58.27 (± 2.92) 52.26 (± 6.15) 57.93 (± 3.27) 49.93 (± 4.98) 54.25 (± 4.51) 47.34 (± 5.89)Other imp. surf. 35.06 (± 5.81) 24.41 (± 5.54) 42.71 (± 11.28) 31.21 (± 9.92) 49.93 (± 8.51) 42.49 (± 8.26)Shadow 87.02 (± 1.32) 90.61 (± 0.99) 86.25 (± 4.22) 91.96 (± 3.12) 87.41 (± 1.8) 91.41 (± 2.16)
Kappa 61.39 (± 3.37) 63.74 (± 6.79) 69.55 (± 2.48)F1 72.26 (± 2.45) 73.78 (± 4.9) 77.78 (± 1.58)OA 71.03 (± 2.82) 72.65 (± 5.63) 77.73 (± 1.88)AA 59.89 (± 1.65) 61.2 (± 3.25) 65.03 (± 2.46)

Table 3: Cologne - Multi-class classification setting- Classification accuracies and otherconfigurations of benchmark semi-supervised method.
Class VSVM VSVM-SL VSVM-SL-Un VSVM-SL-VunF1 Acc F1 Acc F1 Acc F1 AccInvariance to object scale;number of samples per class: 40 ; unlabeled samples : 20Bush/Tree 82.93 (± 3.02) 80.67 (± 3.17) 83.5 (± 2.56) 80.91 (± 3.42) 83.27 (± 2.76) 80.74 (± 2.96) 81.76 (± 3.66) 78.44 (± 4.44)Meadow 50.53 (± 6.96) 37.58 (± 7.63) 53 (± 6.45) 40.67 (± 7.81) 51.83 (± 6.63) 39.19 (± 7.61) 48.18 (± 9.16) 37.23 (± 8.63)Roof 63.4 (± 5.6) 79.19 (± 4.05) 63.96 (± 8.19) 76.84 (± 4.28) 63.12 (± 8.12) 77.42 (± 4.78) 64.3 (± 5.17) 72.76 (± 8.27)Facade 57.49 (± 3.14) 51.14 (± 6.8) 57.43 (± 2.69) 49.86 (± 5.84) 57.09 (± 2.95) 49.49 (± 6.7) 51.49 (± 5.93) 43.35 (± 7.29)Other imp. surf. 43.15 (± 7.82) 31.49 (± 7.45) 41.32 (± 7.37) 31.78 (± 7.97) 41.73 (± 8.87) 31.8 (± 8.84) 43.58 (± 5.7) 34.06 (± 5.58)Shadow 87.33 (± 1.37) 91.79 (± 1.53) 86.57 (± 1.48) 91.13 (± 1.68) 87 (± 1.5) 91.04 (± 1.53) 83.86 (± 3.76) 90.79 (± 1.71)
Kappa 65.24 (± 3.67) 65.2 (± 3.92) 65.06 (± 4.25) 63.09 (± 4.68)F1 75.08 (± 2.43) 74.99 (± 2.81) 74.86 (± 2.93) 73.2 (± 3.61)OA 74.09 (± 2.96) 74.16 (± 3.19) 74.03 (± 3.45) 72.55 (± 3.82)AA 61.98 (± 2.31) 61.86 (± 2.42) 61.62 (± 2.32) 59.44 (± 3.4)
Invariance to object shape; number of samples : 40 ; unlabeled samples : 20Bush/Tree 86.62 (± 1.67) 83.43 (± 2.38) 85.19 (± 1.7) 81.71 (± 2.78) 84.72 (± 2.54) 81.44 (± 2.58) 84.87 (± 2.04) 81.58 (± 2.61)Meadow 59.58 (± 6.01) 50.71 (± 9.13) 55.11 (± 7.25) 46.79 (± 9.65) 55.62 (± 7.42) 47.35 (± 12.23) 55.65 (± 7.76) 49.28 (± 14.96)Roof 68.02 (± 6.18) 78.48 (± 3.33) 70.37 (± 3.18) 76.31 (± 4.6) 71.07 (± 2.49) 75.78 (± 4.69) 70.01 (± 2.81) 75.44 (± 5.64)Facade 56.03 (± 5.94) 52.71 (± 5.93) 53.84 (± 4.17) 45.65 (± 4.96) 54.67 (± 4.33) 46.99 (± 4.81) 54.45 (± 3.71) 46.3 (± 5.25)Other imp. surf. 44.85 (± 10.61) 35.3 (± 9.85) 48.05 (± 9.96) 41.03 (± 6.67) 46.12 (± 10.38) 41.35 (± 7.79) 49.83 (± 9.61) 41.94 (± 7.73)Shadow 88.11 (± 1.75) 90.61 (± 1.91) 87.08 (± 1.76) 91.61 (± 2.03) 86.97 (± 2.11) 91.58 (± 1.79) 86.83 (± 2.37) 91.94 (± 1.62)
Kappa 68.92 (± 3.85) 68.93 (± 2.56) 68.94 (± 2.65) 68.7 (± 3.09)F1 77.44 (± 2.56) 77.32 (± 1.65) 77.45 (± 1.67) 77.18 (± 2.06)OA 77.22 (± 3.02) 77.23 (± 1.95) 77.24 (± 2.03) 77.03 (± 2.38)AA 65.21 (± 2.81) 63.85 (± 2.79) 64.08 (± 3.03) 64.41 (± 3.53)

Table 4: Cologne - Multi-class classification setting- Classification accuracies and otherconfigurations of semi-supervised methods
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Figure 30: Visualization of results from single realization for multi-class classificationsetting for Cologne
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Figure 31: Visualization of results from single realization for multi-class classificationsetting for Cologne 47



In the evaluation of multi-class classification settings, figure 26 and 27 for invarianceto scale settings indicate the performance of the VSVM-SL-VU method for the wholerange of the samples. Besides, the VSVM-SL-VU approach followed by VSVM-SL-Uand VSVM-SL approach and semi-supervised methods remains on top. Additionally, inthe kappa measurements of invariances of scale, the benchmark method SVM-SL-Ushows a robust performance with the VSVM-SL-VU approach. Furthermore, table 3results are supported by the visualization in figure 30 with a single run. The big majorityof the classes have significantly better statistical values, and the difference can beseen in shadow and bush/tree classes. At last, in the invariances to shape settings(Table 4), semi-supervised methods (especially VSVM-SL-U) perform higher overallaccuracy, kappa, and F1 scores, meanwhile, VSVM-SL-VU methods achieve favorableclass performance with the VSVM method. This can be further seen in the classificationmap figure 31 where the spatial distribution of the classes is accurate.
Overall, binary, and multi-class settings of the Cologne data set support the accuracyimprovements when unlabeled samples are fed into the model learning. Therefore,more favorable results obtained for the ranges of few labeled samples and also semi-supervised models stay on top when all the methods reach a plateau.

4.3 Results from Data set II: Hagadera
In the second part of the results section, the methodology is applied to the Hagaderadata set. Binary and multi-class classification settings are used to evaluate the per-formance of semi-supervised methods on different data. Generated graphs (Fig 32,33,34,35, 38,39,40,41) follows the same structure as Cologne data set. They include20 realizations for the model runs and they involve the labeled sample range 10 to 200per class. As the only difference in the hyperparameter selection, additional unlabeledsample sizes such as 80 and 100 are involved and further evaluated in the graphs.Graphs for binary settings indeed showed that semi-supervised methods (VSVM-SL-VUand VSVM-SL-U) have better overall accuracy values for the few labeled samples bothfor the invariances of scale and shape (Fig. 32 and 34). As a difference, in kappastatistic graphs, semi-supervised methods have slightly lower kappa values comparedto the VSVM method, yet they reach higher values when all the models reach a plateauon higher labeled samples per class (Fig. 33 and 35). Furthermore, graphs have beenfollowed by the tables (Table 5 and 6) indicating the results for 40 labeled samplesand 20 unlabeled samples with the 20 realizations. Table results show that althoughsemi-supervised methods perform slightly lower overall kappa, F1, and accuracy calcu-lations than the previous methods, they have better class-based results and it is furthernoticeable in the visualization results in Fig. 36 and 37.
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Figure 32: Hagadera- Binary- class classification setting- invariance to scale- MeanAccuracy

Figure 33: Hagadera- Binary- class classification setting- invariance to scale- KappaStatistics
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Figure 34: Hagadera- Binary- class classification setting- invariance to shape- MeanAccuracy

Figure 35: Hagadera- Binary- class classification setting- invariance to shape- KappaStatistics
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Class SVM SVM-M SVM-SL-UnF1 Acc F1 Acc F1 AccInvariance to object scale; number of samples: 40 ; unlabeled samples : 20Built-up area 96.34 (± 0.79) 94.6 (± 0.9) 94.6 (± 0.9) 84.19 (± 2.19) 95.79 (± 0.65) 96.09 (± 1.32)Other 98.01 (± 0.41) 99.01 (± 0.74) 99.01 (± 0.74) 94.92 (± 0.87) 97.79 (± 0.31) 97.65 (± 1.03)
Kappa 94.01(± 1.44) 78.72(± 3.57) 93.43(± 1.12)F1 97.29(± 0.66) 91.07(± 1.6) 97.05(± 0.49)OA 97.27(± 0.67) 92.1(± 1.57) 97.04(± 0.49)AA 96.7(± 0.92) 86.33(± 1.98) 96.89(± 0.49)
Invariance to object shape; number of samples : 40 ; unlabeled samples : 20Bush/Tree 96.21 (± 1.54) 96.28 (± 0.71) 73.31 (± 3.3) 84.19 (± 2.19) 96.75 (± 0.17) 95.48 (± 1.26)Other 98.13 (± 1.46) 98.04 (± 0.3) 99.7 (± 0.03) 94.92 (± 0.87) 97.02 (± 1.23) 97.66 (± 0.61)
Kappa 93(± 2.13) 78.72(± 3.57) 91.89(± 2.04)F1 96.83(± 0.99) 91.07(± 1.6) 96.37(± 0.9)OA 96.8(± 1.02) 92.1(± 1.57) 96.36(± 0.9)AA 96.18(± 1.32) 86.33(± 1.98) 96.41(± 0.89)

Table 5: Hagadera - Binary classification setting- Classification accuracies and otherconfigurations of benchmark semi-supervised method.
Class VSVM VSVM-SL VSVM-SL-Un VSVM-SL-VunF1 Acc F1 Acc F1 Acc F1 AccInvariance to object scale; number of samples per class: 40; unlabeled samples: 20Built-up area 96.11 (± 1.39) 96.25 (± 1.23) 96.22 (± 1.46) 97.05 (± 0.56) 97.75 (± 0.7) 93.75 (± 3.61) 96.12 (± 0.96) 95.73 (± 1.69)Other 97.96 (± 0.73) 97.79 (± 0.98) 98.04 (± 0.7) 97.64 (± 1.66) 95.14 (± 3.29) 96.95 (± 1.58) 97.57 (± 1.27) 97.79 (± 0.85)
Kappa 92.75(± 3.5) 93.82(± 1.55) 92.43(± 2.67) 92.66(± 2.31)F1 96.71(± 1.64) 97.22(± 0.71) 96.6(± 1.19) 96.7(± 1.06)OA 96.68(± 1.69) 97.2(± 0.72) 96.59(± 1.19) 96.68(± 1.08)AA 96.16(± 1.98) 97(± 0.96) 96.44(± 1.24) 96.52(± 1.34)
Invariance to object shape; number of samples per class: 40; unlabeled samples: 20Bush/Tree 94.64 (± 1.08) 95.58 (± 1.07) 96.15 (± 0.83) 95.84 (± 0.94) 97 (± 0.45) 95.72 (± 0.77) 96.24 (± 1.56) 95.11 (± 1.24)Other 98.18 (± 1.29) 97.64 (± 0.53) 97.66 (± 0.76) 97.82 (± 0.48) 97.12 (± 0.58) 97.88 (± 0.39) 96.87 (± 0.62) 97.46 (± 0.66)
Kappa 94.09(± 1.16) 94.03(± 1.58) 93.42(± 1.6) 93.14(± 1.97)F1 97.34(± 0.53) 97.32(± 0.71) 97.05(± 0.71) 96.12(± 0.88)OA 97.31(± 0.53) 97.3(± 0.71) 97.04(± 0.71) 96.92(± 0.87)AA 96.82(± 0.64) 97.08(± 0.79) 97.09(± 0.67) 96.93(± 0.85)

Table 6: Hagadera - Binary classification setting- Classification accuracies and otherconfigurations of semi-supervised methods
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Figure 36: Visualization of results from single realization for binary classification settingfor Hagadera
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Figure 37: Visualization of results from single realization for binary classification settingfor Hagadera 53



Figure 38: Hagadera- Multi-class classification setting- invariance to scale - MeanAccuracy

Figure 39: Hagadera- Multi-Class classification setting- invariance to scale - KappaStatistics
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Figure 40: Hagadera- Multi-class classification setting- invariance to shape - MeanAccuracy

Figure 41: Hagadera- Multi-Class classification setting- invariance to shape - KappaStatistics
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Class SVM SVM-M SVM-SL-UnF1 Acc F1 Acc F1 AccInvariance to object scale; number of samples per class: 40 ; unlabeled samples : 20Built-up Area 93.46 (± 1.9) 98.3 (± 1.07) 93.8 (± 1.81) 98.61 (± 0.8) 93.02 (± 2.36) 97.87 (± 2.27)Vegetation 97.11 (± 0.94) 99.55 (± 0.29) 97.45 (± 1.15) 99.55 (± 0.25) 97.46 (± 0.87) 99.41 (± 0.35)Bare Soil 95.92 (± 2.01) 95.42 (± 2.23) 97.19 (± 0.83) 96.95 (± 1.28) 96.03 (± 2.17) 95.57 (± 2.44)Fence 19.55 (± 8.09) 11.48 (± 5.67) 19.96 (± 4.4) 11.55 (± 3.03) 20.02 (± 7.08) 11.8 (± 5.21)Shadow 28.81 (± 7.28) 17.58 (± 5.46) 25 (± 8.09) 15.04 (± 5.77) 27.22 (± 7.32) 16.4 (± 5.41)
Kappa 90.51 (± 2.12) 63.74 (± 6.79) 90.62 (± 2.47)F1 95.27 (± 0.98) 96.47 (± 4.88) 95.19 (± 1.33)OA 93.49 (± 1.51) 72.65 (± 5.63) 93.57 (± 1.74)AA 64.45 (± 1.74) 61.2 (± 3.25) 64.62 (± 1.72)
Invariance to object shape; number of samples per class: 40 ; unlabeled samples : 20Built-up Area 93.39 (± 1.89) 98.47 (± 1.65) 93.64 (± 1.37) 97.81 (± 1.37) 94.03 (± 2.52) 97.48 (± 1.78)Vegetation 97.34 (± 0.9) 99.39 (± 0.41) 97.71 (± 0.67) 99.63 (± 0.28) 97.48 (± 1.25) 99.54 (± 0.37)Bare Soil 96.74 (± 1.36) 95.82 (± 2.47) 95.92 (± 1.2) 95.21 (± 1.61) 96.22 (± 1.83) 97.03 (± 1.11)Fence 19.84 (± 5.39) 11.56 (± 3.68) 22.34 (± 6.77) 13.21 (± 4.77) 23.48 (± 7.02) 13.95 (± 4.86)Shadow 28.88 (± 9.52) 17.83 (± 7.25) 27.73 (± 6.72) 16.97 (± 4.9) 26.45 (± 7.73) 15.86 (± 5.44)
Kappa 90.09 (± 2.11) 63.74 (± 6.79) 89.75 (± 2.97)F1 94.91 (± 1.17) 96.47 (± 4.88) 94.47 (± 2.03)OA 93.2 (± 1.49) 72.65 (± 5.63) 92.99 (± 2.04)AA 64.13 (± 1.46) 61.2 (± 3.25) 64.09 (± 1.49)

Table 7: Hagadera - Multi-class classification setting- Classification accuracies andother configurations of benchmark semi-supervised method.
Class VSVM VSVM-SL VSVM-SL-Un VSVM-SL-VunF1 Acc F1 Acc F1 Acc F1 AccInvariance to object scale; number of samples used for model learning and selection per class: 40 ; unlabeled samples : 20Built-up Area 94.25 (± 1.18) 98.64 (± 0.75) 93.74 (± 1.77) 98.27 (± 1.15) 93.86 (± 1.56) 98.66 (± 0.76) 90.95 (± 6.6) 93.9 (± 10.7)Vegetation 97.74 (± 0.64) 99.44 (± 0.35) 97.58 (± 0.75) 99.53 (± 0.29) 97.45 (± 0.78) 99.49 (± 0.34) 97.18 (± 0.94) 99.39 (± 0.67)Bare Soil 96.99 (± 0.74) 96.18 (± 1.26) 96.27 (± 1.28) 95.68 (± 1.84) 96.49 (± 1.52) 95.73 (± 1.92) 87.77 (± 16.63) 93.92 (± 6.09)Fence 23.19 (± 7.08) 13.86 (± 5.04) 20.44 (± 6.92) 11.99 (± 4.87) 20.84 (± 7.81) 12.44 (± 5.58) 18.95 (± 8.9) 11.25 (± 6.14)Shadow 30.41 (± 6.2) 18.55 (± 4.6) 32.59 (± 9.74) 20.49 (± 7.94) 28.92 (± 7.18) 17.54 (± 5.17) 25.62 (± 11.88) 15.75 (± 8.37)
Kappa 91.57 (± 2.26) 90.92 (± 2.14) 90.44 (± 3.15) 87.49 (± 7.19)F1 95.69 (± 0.99) 95.37 (± 1.05) 95.02 (± 1.88) 93.16 (± 4.73)OA 93.23 (± 1.59) 93.78 (± 1.51) 93.45 (± 2.2) 91.34 (± 5.22)AA 65.5 (± 2.21) 64.82 (± 1.69) 64.85 (± 2.04) 63.83 (± 2.82)
Invariance to object shape; number of samples used for model learning and selection per class: 40 ; unlabeled samples : 20Built-up Area 94.65 (± 1.46) 98.54 (± 1.11) 93.82 (± 1.93) 98.1 (± 1.52) 94.35 (± 1.85) 98.15 (± 1.18) 95.08 (± 6.4) 97.86 (± 10.42)Vegetation 97.72 (± 0.72) 99.46 (± 0.4) 97.69 (± 0.65) 99.32 (± 0.37) 97.42 (± 1.05) 99.51 (± 0.41) 98.44 (± 0.99) 99.63 (± 0.55)Bare Soil 97.43 (± 0.85) 96.61 (± 1.86) 96.78 (± 1.4) 95.99 (± 2.33) 96.54 (± 1.53) 96.09 (± 1.93) 96.64 (± 3.05) 96.53 (± 3.22)Fence 24.67 (± 6.8) 14.71 (± 4.89) 23.03 (± 7.9) 13.83 (± 6.2) 22.76 (± 6.29) 13.4 (± 4.31) 26.53 (± 8.49) 15.88 (± 6.08)Shadow 35.4 (± 9.53) 22.82 (± 7.86) 33.61 (± 9.75) 21.44 (± 8.17) 33.11 (± 9.44) 20.98 (± 7.44) 31.82 (± 8.91) 19.99 (± 6.03)
Kappa 92.18 (± 1.96) 90.54 (± 3.15) 91 (± 2.36) 93.10 (± 11.59)F1 95.92 (± 1) 94.93 (± 1.89) 95.23 (± 1.54) 96.22 (± 9.63)OA 94.66 (± 1.37) 93.53 (± 2.21) 93.85 (± 1.62) 95.32 (± 7.93)AA 65.85 (± 1.9) 64.82 (± 1.76) 65.2 (± 1.72) 65.98 (± 4.34)

Table 8: Hagadera - Multi-class classification setting- Classification accuracies andother configurations of semi-supervised methods
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Figure 42: Visualization of results from single realization for multi-class classificationsetting for Hagadera
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Figure 43: Visualization of results from single realization for multi-class classificationsetting for Hagadera
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Results from the multi-class classification are obtained and shown in Fig 38, 39, 40,41.As an overview in all figures, semi-supervised methods (especially SVM-SL-U and VSVM-SL-U methods) outperformed other methods in few labeled samples in all the variationsof scale and shape. In these graphs, it can be observed that after 50 labeled samples, allthe methods reach their maximum accuracy and kappa statistics, which is why all themethods hold a similar value. To sum up, the Hagadera data set can be summarized ina way that in settings to a various range of unlabeled samples, semi-supervised modelsindeed achieve higher accuracies for few labeled samples and demonstrates a clearclassification map considering the generated tables for certain labeled and unlabeledsamples.

4.4 Case Study of Extension on Active Learning
The last chapter of the results section focuses on an active learning approach by includ-ing uncertainty calculations and visualizations of the newly proposed semi-supervisedmethods. This extension on active learning is based on the theory in Chapter 3.3 andfollows Algorithm 6. Therefore, a case study is applied on the Cologne data set withbinary classification settings on invariances to scale modification. Additionally, forall the semi-supervised methods 40 labeled samples and 20 unlabeled samples perclass are selected. In order to observe uncertainty visualization’s impact on relabelingthe most uncertain certain amount of samples, semi-supervised methods have beenselected. As a result, new classification results and uncertainties are visualized, afternormalizing the values once again. All the experiments are shown in Fig. 44, 45, and 46among their binary classifications and overall accuracy, F1, and kappa statistics.
In Fig. 44, the uncertainty of the initially calculated model is displayed on the top-leftcorner of the figure. Due to the uncertainty calculation, samples that are closer tothe hyperplane get the value closer to 0. The samples which are further away fromthe hyperplane get the values closer to 1. Overall, the values that are closer to 1 areconsidered as safely labeled samples. Therefore, they are colored as white in thefollowing figure. The values that are close to 0 are colored as red and considered asmost uncertain samples and it is also indicated in the legend. Moreover, the figureshows that areas that are classified as bush/tree with an overall accuracy value of 91.10have more uncertain values on the map. Especially, the areas on the right and left cornerand middle-bottom parts of the map. Meanwhile, the second class (”other”) has moreconfident areas, more specifically the areas that are classified as shadow and roof fromthe multi-classification settings of the Cologne data set. After determining the wronglyclassified areas with the uncertainty visualizations, the most uncertain 100 sampleshave been selected. These samples have been assigned to their true classes fromthe reference labels and the overall accuracy, F1, and kappa statistics are calculatedonce again after re-running the model. Newly calculated statistics indeed showed thataccuracy is increased only with relabeling the most uncertain 100 samples and also itcan be further noticeable from the newly created uncertainty visualization. Althoughthere is not a significant change between the two uncertainty visualizations due to thesmall number of newly labeled samples. Still, it can be noticed that on the top-left cornerof the new uncertainty visualization, uncertainty has been decreased and those pixelsbecame more confident.
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Figure 44: Visualization of uncertainty results on SVM-SL-U approach
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Figure 45: Visualization of uncertainty results on VSVM-SL-U approach
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Figure 46: Visualization of uncertainty results on VSVM-SL-VU approach
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Figure 47: Comparison of uncertainty visualizations for semi-supervised methods onCologne data set
In Fig. 45. uncertainty visualization is created for the VSVM-SL-U approach and displayedon the right-top part of the figure. Initial classification results showed that overallaccuracy of 93.66 has been reached. Therefore, uncertainty visualization had brighterareas compared to the previous figure. In the relabeling process, 100 most uncertainsamples have been selected from the bottom part, left and top-right corners of the area,where the class is mainly bush/tree and uncertainty is much higher compared to themiddle sections. After relabeling, statistics have been calculated, and 0.0.4 increment ismade on overall accuracy, 0.09 in kappa statistics, and 0.04 increment is achieved in F1scores. New uncertainty values are normalized and visualized in the middle-right sideof the figure. It can be seen those areas that are relabeled, had the lowest uncertaintyvalues.
In Fig. 46 similar results with Fig. 45 are obtained because the overall accuracy valueswere higher than the SVM-SL-U approach. 100 samples have been selected from theareas where the confidence rate is low and after the rerunning, the model overall accu-racy of 94.08 is observed with a 0.03 increment. Additionally, change in uncertainty isobserved in the areas in the left part, and uncertainties are dropped after the relabelingprocess.
In the comparison of 3 models (SVM-SL-U, VSVM-SL-U, and VSVM-SL-VU) uncertaintyvalues have been scaled down into the same level for all the methods to make a truecomparison in Fig. 47. As expected, models with higher overall accuracies showedgenerally less uncertain areas, mainly in the middle part of the areas. Between theuncertainty maps of VSVM-SL-U and VSVM-SL-VU difference in uncertainty was onlyfound near the right side of the visualizations.
To sum up, two inferences can be made from the active learning approach with un-certainty visualizations. First of all, uncertainty visualizations indeed increase theaccuracies of the models especially when the overall accuracy of the model is alreadyhigh.
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Secondly, uncertainty visualizations give a good hint for the user to see the uncertainareas, and this eventually shows which class that sample belongs to, and it helps therelabeling process.

5 Conclusion
In this research, semi-supervised learning algorithms have been developed based onSVM. These new algorithms benefited from the virtual samples which are used togenerate the decisions functions of a classification model invariant. Thereafter, a self-learning strategy is followed to prune non-informative virtual samples and unlabeledvirtual samples. The baseline methods aimed to improve the learning abilities withthe newly proposed semi-supervised algorithm. For developing the models, very highspatial resolution multispectral imagery, that is acquired by the WorldView-II sensor, isused.
Experimental results are used to solve binary and multi-class classification problems forareas in Cologne and Hagadera. These results showed that semi-supervised methodsobtained higher accuracies compared to the baseline methods for both of the data sets,especially in the range for a few labeled samples. Results also indicated that involvingunlabeled sample size as a hyperparameter into the model obtains higher accuraciesand does not restrict the model to a certain number of unlabeled samples. Moreover,classification maps and tables underline the improvement of those semi-supervisedmethods regarding spatial consistency. Additionally, the SVM-SL-U as the benchmarkmethod obtained better accuracies and kappa statistics in all data sets compared withthe SVM approach. Therefore, it showed that informative unlabeled samples increasethe accuracy of the benchmark methods and give robust measurements for all rangesof labeled samples.
Furthermore, an active learning approach has been implemented on semi-supervisedmethods. It was aimed to enhance the accuracy of the new methods by relabeling themost uncertain samples based on the uncertainty of the models. Experiments wereconducted on the Cologne data set for the binary classification settings. Uncertaintyvisualizations are created to see how uncertain the models are based on their accuracy,F scores, and kappa statistics. Thereafter, uncertainty visualizations are used to relabela specific amount of most uncertain samples. One of the most important conclusionsis that research question one is successfully answered. From the semi-supervisedapproaches, VSVM-SL-U and VSVM-SL-VU achieved the highest accuracies for the rangeof a few labeled samples for all the classification settings. The SVM-SL-U approachreached higher accuracies compared to baseline SVM methods, and in kappa statisticgraphs, it reached the highest among all the methods.
Research question two is also answered and it showed that uncertainty visualization ofthe models helps the user to pick and relabel the most uncertain samples. Consequently,the overall accuracy, F1 scores, and kappa statistics of all semi-supervised methodsincrease after rerunning the models with new labels. Uncertainty change can also beobserved between the same models.
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In future works, the same methodology can be applied for classifying hyperspectral datawithin an adequate processing framework. Additionally, an active learning approachwith uncertainty visualizations can be integrated into all settings of the data sets.Moreover, this approach can be further adapted to the supervised methods as well. Atlast, a combination of the semi-supervised methods and active learning approach canbe integrated better in a collaborative learning scheme.
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