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Abstract

In real-world applications, it is difficult to collect labeled samples, and supervised
learning methods rely on the quality of this labeled training data. Therefore, in this
research, a semi-supervised learning approach is developed in order to benefit from the
unlabeled samples that can be produced effortlessly. These semi-supervised methods
are built on a popular machine learning technique called support vector machine, which
is used to classify remote-sensing imagery in this thesis. Moreover, this work aims to
enhance the accuracy of the methods in settings with very few labeled samples and
deploy a constrained set of unlabeled samples with a self-learning strategy. Additionally,
the aim includes model evaluation for existing support vectors and virtual samples.
Moreover, the methodology is further extended with an active learning method. This
extension involves uncertainty visualizations in order to increase the model accuracy
by relabelling the uncertain samples in a prioritized way. To evaluate these models,
experimental results were obtained over the city of Cologne, Germany, and the Hagadera
Refugee Camp, Kenya from a very high spatial resolution multispectral data set. Results
from newly proposed methods showed favorable performance properties, especially
on the few labeled samples. Furthermore, the uncertainty of the models was compared
with the active learning extension, and this extension also increased the accuracy.
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1 Introduction

1.1 Motivation and problem statement

In the last decades, with the advent of high spatial and spectral resolution remote
sensing data, land cover classification applications have become one of the main
subjects in remote sensing (Lu et al., 2016). Consequently, it triggered the development
of many methods to derive thematic classes from image data, and as an outcome,
supervised methods became one of the most preferred classification approaches
because of their robust and accurate information extraction properties (Geil} et al.,
2019) Although it is overly challenging to determine the best method from numerous
of existing approaches for a classification problem, Support Vector Machines (SVM)
attracted attention regarding the classification of multispectral remote sensing images.
As a working principle, SVM set suitable hyperplanes on different classes of labeled
data and those samples are projected through a nonlinear transformation from input
space to a higher-dimensional space. In that space, support vectors (SV), which are
the samples closest to the separating surface, are determined in subject to the optimal
hyperplane that maximizes the margin (Geil et al., 2019; Burges, 1998). Therefore,
SVM showed excellent performance due to their, (i) ability to manage high-dimensional
feature space; (ii) relevant generalization properties (iii); the uniqueness of the solution
(Tuia et al., 2009)

SVMs, as any other supervised method, rely on the quality of the labeled training data.
However, this constrains the training set and requires extensive manual efforts regarding
human-machine interaction. That is why active learning methods and semi-supervised
learning approaches which use unlabeled samples will benefit the classification results,
especially with respect to poorly sampled remote sensing applications (lzquierdo-
Verdiguier et al., 2012). It is here where we combine self-learning constraints on Virtual
Support Vector Machines (VSMV) with a semi-supervised approach to indicate useful
information about the underlying data distribution which eventually achieves higher
accuracies, especially with small amounts of training data.

1.2 Research identification
1.2.1 Research objectives

To eventually enhance the accuracy properties of the Virtual Support Vector Machines
with the self-learning (VSVM-SL) method in settings with very few labeled samples,
the goal is to deploy a constrained set of unlabeled samples for model learning and
for very high spatial resolution multispectral remote sensing images. As a result,
the training set which the model is learning will be enriched by informative unlabeled
samples. Those are jointly evaluated and selected with respect to existing support
vectors and virtual samples. In addition, the generation of spatial visualization for the
uncertainty of results is done by checking the distance of SVMs hyperplane from the
model and further monitoring how the uncertainty changes with the newly developed
methods. The spatial visualization will be displayed as land cover classification maps

9



showing corresponding thematic uncertainty. Subsequently, these spatial visualizations
will benefit the active learning process by providing human-machine interaction on
relabeling uncertain samples in a prioritized way and will use those samples to relearn
the model and eventually obtain higher accuracies.

RQ1: To what extent does the new Virtual Support Vector Machines with self-learning
constraints on a semi-supervised scheme (VSVM-SL- Unlabeled Samples) method
provide better classification accuracy with few labeled samples when compared to
other/older methods such as SVM, VSVM, and VSVM-SL?

« Comparison analysis will be made between newly proposed semi-supervised
methods to previous methods by comparing overall and average accuracies,
kappa value, and F1 score.

+ Line graphs will be used in order to see mean kappa values and overall accuracies
of the methods.

RQ2: Does visualizing the uncertainties of the models improve human-monitored active
learning approaches on relabeling uncertain samples?

+ Model quantifies the certainty of unlabeled samples by checking the distance
of SVM hyperplane and shows which land cover classes they belong to. Conse-
quently, this helps the user to label those uncertain samples and bring them back
to model.

* Therefore, a case study will be applied in order to assess the effects and overall
performance of relabeling with visualization of uncertainty on active learning. Ac-
curacy results of newly developed methods plus the uncertainty visualizations will
be compared to the results of newly developed methods without the uncertainty
visualizations.

1.3 Innovation aimed at

The innovation of the research aims at developing a semi-supervised classification
method based on a self-learning strategy. This will provide results with higher accuracy
on sparsely sampled remote sensing imageries and will be adaptable in the future to
the classification of hyperspectral data. These innovations are aimed at bringing a new
outlook with the extension and combination of methods on remote sensing and the
cartography fields.
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2 Theoretical Background & Literature Review

2.1 Theoretical Background

In this chapter, the theoretical background is discussed in six main subsections. In the
first section, the theoretical background of one of the robust machine learning methods,
Support Vector Machines (SVM) is introduced. The second part gives information about
the extension of the virtual support vector machines with self-learning constraints
for remote sensing image classification research and explains the semi-supervised
learning and especially semi-supervised support vector machines. In the third part, the
fundamentals of uncertainty, as well as uncertainty visualization, are explained. At last,
base methods that are used for setting semi-supervised environments are explained,
including actual SVM learning, Virtual SVM (VSVM), and Self-Learning (SL) strategy for
pruning virtual and unlabeled samples with under specific threshold.

2.1.1 Support Vector Machines

SVM are supervised learning models in machine learning, that can solve classification
and regression problems. As a working principle, SVM creates a linear decision surface
with a suitable set of parameters that sticks to the generalization principle by mapping
the input vectors to higher dimensional future space Z (Cortes and Vapnik, 1995). In
this feature space, the optimal separating hyperplane that maximizes the margin is
defined in the Eq. 1, where z is the nearest data point to the plane, w is the normal vector
to the hyperplane, and b as an absolute value.

Moreover, maximized distance p (wo, by) of optimal separating hyperplane for projection
of training vectors can be formulated in the Eq. 2 and the maximized distance is
displayed as optimal margin in Fig. 1.

2 2
| Wo | v Wo - Wo

Whrch further creates an optrmrzatron problem in order to maximize the drstance

(2)

P (w()? bO)

,,,,,,

subject to the constraints y,, (w; - 2 + b) > 1. Therefore, quadratic programming (QR) is
required to construct the optimal hyperplane because optimal hyperplane that minimizes
wy - wy is the unique under the constraints.

The formula above is a convex programming problem since in optimization step, min-
imizing f(z) with constraints to g(z) includes convex functions. A solution to this
problem is to use the Lagrange function in Eq. 3:

L(w,b,A) = w - w — ZO‘Z zi - w+b) — 1] (3)
n



The margin further can be described by determining support vectors (SVs) which
yi (w - z; +b) = 1in order to define the model. (Cortes and Vapnik, 1995; Geil} et al.,
2019). It can be seen in the figure 1 that squared samples on the border that are closest
to the separating the surface are SV’s.

Figure 1: An example of linearly separable case. (Cortes and Vapnik, 1995)

In order to continue, Vapnik—Chervonenkis(VC) dimensions and structural risk mini-
mization has to be further explained. In SVM it is important to control generalization
ability since generalization indicates the trained model’s performance on unseen data.
Therefore, this has to be controlled by two factors so as error rate and capacity of the
learning which are measured by its VC-dimensions (Cortes and Vapnik, 1995). Here,
VC dimensions provide properties of a set of functions f(«) and can be defined for
a two-class classification case. Moreover, if VC dimensions # is a set of functions,
shattered points which are N data points that the learning model can produce 2 distinct
patterns on those data points will be one set of & points. Yet, it does not mean that
every set of h points can be shattered (Burges, 1998) as it is shown in Fig 2.

Figure 2: Shattered three points by oriented lines. (Burges, 1998)
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To summarize, VC dimensions are related to parameters of the models, and the class of
functions relies on the VC confidence. However, here, the goal is to minimize empirical
risk and VC confidence by finding the subset of the chosen set of the functions yet
it cannot be achieved easily since h is an integer value. That is why structural risk
minimization (SRM) has to be defined. SRM works by dividing the class of functions
into subsets and finds the actual subsets of functions that minimize the bound of risk
(Burges, 1998).

As another point, itis vital to mention SVM strategy on dealing with non-linearly separable
cases as it is formulated in the Eq 4 and 5. In order to deal with the non-separable case,
constraints have to be modified by adding positive slack variables: ¢, to the constraints.
Therefore, in this case, the upper bound of « is introduced to the model so-called C.
Which is different from the previously mentioned optimal hyperplane. Therefore, the
input vectors are mapped through a non-linear transformation ¢ to a high dimensional
space.

1 n
%%{5”‘””2 +c;@} (4)
subject to:
yi ((@ (zi) ,w) +b) 2 1= ¢ (5)

However, applying polynomial combinations of features to transform data into higher
dimensional space is causing high computational cost, and applying kernel method
that provides solution by acting as a modified dot product. See the figure 3.

1}
Input space Feature space
O
A A U™~
A " )
O ) ) 9 o 3
] O i Kernel function AN L] 0
Al0 o oo P — ' 0
P 0
u] ] . _
" o A A 4 " Separating
Py A ‘* 4 hyperplane

Figure 3: Transformation of input vectors to the higher dimensional space (Song et al.,
2012)

To summarize, SVM are a highly robust method because of their general advantages
in the field. These advantages are; its effectiveness in high dimensional spaces, ef-
fectiveness in cases where dimensions are higher than samples size so-called the
Hughes phenomenon, and its overall strategy on using SV in the decision function
which eventually makes it memory efficient in the sense of increasing computational
speed. In addition to several researches that have been done on remote sensing field
about SVM are including many wide ranges of areas on remote sensing application
domain (biophysical tasks, land cover, and use tasks), change detection, and focusing
on algorithmic advancements (Mountrakis et al., 2011).
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2.1.2 Semi-Supervised Support Vector Machines

As an overview, semi-supervised learning is a combination of labeled data so-called
“"the training set : L = {(x1,y1) + (z2,y2) + ... + (1, u)}" and unlabeled data so-called
"the working set: U = {x},z,, ..., 2, }" and it only occurs when both training and working
sets are valid. The reason that semi-supervised learning methods are trending is that
in real-life data that have been generated are mostly unlabeled; for this reason, a lot
of work has to be put on labeling those data and some of the occasions few labeled
samples decrease the generalization ability and cause models not to adapt unseen
data .(Bennett et al., 1999; Ding et al., 2017)

Moreover, this part of the chapter will mostly consider a semi-supervised learning
method, called semi-supervised support vector machines (S2VM) which is an extension
of the standard form of the SVM method and useful when SVM are not beneficial when
the above-mentioned situations on labeled data occur. (Ding et al., 2017)

As it has been mentioned, S2VM follows the standard form of SVM and aims for finding
the maximum margin to separate two classes by using training and working sets.
Here, one of the aims is to obtain the lowest generalization error on unlabeled data on
predicting outcomes with unseen data that comes within the new separating hyperplane.
Another aim is to find the function that attains the minimum classification error and
this can be done by applying two restrictions. The first restriction presumes that the
working set belongs to class one and another restriction presumes that the working
set belongs to class two. Furthermore, by calculating the error rate, these restrictions
are satisfied. Additionally, for the nonlinear separable cases, so as SVM, usage of the
kernel functions are suitable for S*VM (Ding et al., 2017; Li and Zhou, 2014).

Decision function of S®VM is formulated in Eq. 6 and 7. Here, C is a misclassifica-
tion penalty and has to be greater than zero and it can be solved by using integer
programming by optimizing when all variables are restricted to be an integer values.

I+k

min c{gm > min (6. |+ 1w (6)

w’b7 9 ’Z
U j=it1

subject to:

—(wiCZ—Fb)—i-ZJ—l-Mdel ZJZO d]:{O,l}

To sum up, the semi-supervised approach on SVM brings promising results since it is
more suitable on real-life data and it improves the performance of SVM model and with
this extension, it extends to more application areas such as image processing. Yet, it
still has some downsides because large sets of unlabeled data cause higher complexity
in computation which eventually takes long time. However, it is possible to overcome
through the extension of S*VM method developed by Li and Zhou (2014); Ding et al.
(2017)

14



2.1.3 Uncertainty

Here in this part, uncertainty will be defined and causes of uncertainty in remote sens-
ing and image classification methods will be discussed. According to the Goodchild
(2008) uncertainty is the contrast between contents of the geospatial database and
corresponding phenomena in the real world and it can be also defined as a component
of data quality in geospatial data depending on the purpose and the application (Lucieer,
2004).

Moreover, due to several factors, for example; atmospheric conditions, geometric cal-
ibration, sensor sensitivity, and sensor resolutions, different types of uncertainty in
remote sensing exists and it became an important factor to investigate since remote
sensing data is highly used in geographic information science (GIS) and many applica-
tion fields of remote sensing. Regarding the image classification methods on remote
sensing data, uncertainty is mostly caused by the pixel values, fuzzy boundaries, tran-
sition zones, and misclassified data points. For an instance, Fig. 4 demonstrates the
situation where objects in the landscape are below the resolution of the image and this
causes the mixed pixels situation. Moreover, fuzzy classification is also introduced
for this problem. Instead of assigning the pixel with its label as Boolean values 0 or 1,
values between 0 to 1 can be assigned to show its probable class as its is displayed in
Fig 5 (Bastin et al., 2002)

B Kl
| ® }

Figure 4: Example of mixed pixels causing uncertainty (Bastin et al., 2002)

Fuzzy

o

0 1

Tiled roof Grass

Figure 5: Example of fuzzy classification (Bastin et al., 2002).

15



Furthermore, to evaluate the image classification’s overall quality, a confusion matrix is
needed and it is determined through the reference labels. However, from the confusion
matrix, it is not possible to see how the uncertainty is spatially distributed. Therefore,
thematic and spatial uncertainty, where the error or lack of knowledge is coming from
its geographic position or its thematic class, have an essential role in finding the quality
of classification (Lucieer, 2004; Bastin et al., 2002).

In this part, the uncertainty of classification method, SVM will be taken care of. In the
SVM models uncertainty is mainly occurs when data points are not labeled right and
when they are closer to the margin. The condition is formulated below by (Wang and
Pardalos, 2014) in Eq. 8 and 9. Here, uncertain data points are presented as z; and it is
free within the centered at z; with Az, radius and could move towards in any direction
within the uncertainty set.

mln—HwHQ+02& (8)

w,b,&

subject to:

yi (0" (T + Azy) +b) > 1§, & >0, i=1,...m

|| Az; [[2< 4, i=1,...m

9)

In addition, it is important to further analyze the uncertainty by quantifying, exploring,
presenting, and communicating. This can be done by visualizing the patterns and
spatial behaviors of uncertainty. Different visualization techniques can be used in
remotely sensed image classifications to explore and present these patterns. For
instance, uncertainty visualization in land cover maps and graphic variables such as
color saturation, lightness, noise annotation lines can be used (Kinkeldey, 2014; Lucieer,
2004).

Furthermore, it is possible with the use of active learning techniques to improve model
performances by ranking the uncertain pixels, exploring their uncertainty, and relabeling
them as it has been done in the research by Tuia and Munoz-Mari (2012).

16



2.1.4 Support Vector Machines Settings

In the model learning process of the research, as an initial SVM method, the Gaussian
radial basis function (RBF) kernel has been used due to its practicality in image classi-
fication and especially in its remarkable performance in remote sensing applications
(Volpi et al., 2013). Here, this RBF kernel function can be formulated below in the Eq. 10,
x and =’ represents the feature vectors in input space, and its Euclidean distance stays
under the range of zero and one.

w17

) (10)

K (x;,7;) = exp( p
Moreover, learning RBF kernels with concurrence of SVM requires a cost parameter
C' and it also requires an additional parameter ~ to define kernel-width and these pa-
rameters range in C' = {274,273 ... 22} and v = {275,275 ... 23}. As an other remark,
this mentioned SVM approach has been used to classify the inputs for binary and multi
class problems with one one-against-one SVM architecture.

2.1.5 Virtual Support Vector Machines

First of all, it should be mentioned that the Virtual Support Vector Machines (VSVM)
method is a modification of the SVM approach. For this reason, the VSVM'’s working
principle is built on SVM models which are explained in chapter 2.1.1. Where the overall
aim is to find a separating hyperplane with the maximum margin between labeled
samples of different classes and eventually determine those SV that are the labeled
points on the border of the margins. Furthermore, in the VSVM approach, SV are captured
from the initial SVM model. These captured SV control the encoding of invariances by
altering modeled objects (e.g. invariances of scale or shape of the objects) which are
after added to the input space as virtual samples.

Working principle of VSVM is explained in Fig. 6 and 7. Figure 6-a shows the input
vectors in the feature space and Fig. 6-b shows the seperating hyperplane with a
maximum margin when the initial SVM model is applied.

Thereafter, virtual samples were generated through encoding the invariances in the
context of object-based image analysis framework (Blaschke, 2010). Invariances are
encoded by the segmentation algorithm with the respect to the shape of the object and
scale such as the size of an object. This segmentation algorithm initially uses the SV
that is obtained in Fig 6-b and finds the segmentation level that involves these SV in the
image domain. Thereby, with those segmentation levels object features are computed
and introduced to the model in Fig 7-c as virtual samples. (Geil et al., 2019)

These introduced virtual samples together with SV's are used for learning the model
once more and which eventually finalize by altering the hyperplane with maximum
margin (Fig. 7-d). Finally, virtual samples as induced by SVs are called Virtual Support
Vectors (VSV). As a final remark, hyperparameters of the VSVM model, which are used
to handle the case of non-separable data, are optimized by the hold-out method (Foody,
2009). This was done to see how well the model works with unseen data by using
training data that the model is trained with to deal with the very large data set.
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Figure 6: Working principle of Virtual Support Vector Machines (a),(b). (GeiR et al., 2019)
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Figure 7: Working principle of Virtual Support Vector Machines (c), (d). (Geil et al.,
2019)
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VSVM approach is described below in detail within the pseudocode under Algorithm 1
(GeiB et al., 2019). Here, the pseudocode explains the procedure that has been displayed
in Fig6 and 7.

Algorithm 1 (Virtual Support Vector Machines (VSVM))

Inputs:

Pool of labeled samples: X7,4in, X7est

Output:

SVM classifier retained with training set X7

1: Learn initial SVM model with X7, 4
Extract SVs and add them to a pool X2V .
Perturb features based on X2V . to generate a pool of virtual samples V5"

Train

Compile training set X’Tjam =X2V. uVsV

Train

Learn SVM model with X,.;, and select model with optimal hyperparameters based
on XTest-

2.1.6 Self-learning strategy

In order to make VSVM approach more efficient, self-learning (SL) strategy is introduced.
Overall goal of the SL strategy is to prune the uninformative virtual samples from the
input space in under consideration of similarity and margin constraint (Fig. 8).

(a) (b) (c)
Virtual sample as induced by Virtual sample as induced by
. Support Vectors of class / £ Support Vectors of class |
" ot fulfilling similarity constraint not fulfilling margin sampling constraint

«. Support Vectors of class 2
" not fulfilling simlanty constramt

for class I Virtual sample as induced by

. i fongs F alopee 3
Virtual sample as induced by % Support Vectors of class 2 _
not fulfilling margin sampling constraint

for class 2

Figure 8: Working principle of Self-Learning strategy on VSV (Geil} et al., 2019)
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In the similarity constraints approach, first of all, the Euclidean distance (d) between a
virtual sample and its SV's is computed. Distance calculation is formulated below with
the Eq. (11). In the equation, v stands for virtual samples and m for the features.

diy= [ (Y — a8 (1)

As a next step, a threshold ¢ is introduced to determine the uninformative samples. § is
calculated below in Eq. (12) , here, N, refer the the number of SV per thematic class Q.

Ng—1
SV SV
% = NQNQ—1 22 Z( - Q) (12)
7 Jj=i+1

In the consideration of margin sampling constraint, it is aimed to prune those virtual
samples that are far away from the hyperplane. This is an important step since those
virtual samples that are not pruned with similarity constraint should be pruned for the
reason that samples that are far from hyperplane are unlikely to be VSV. Therefore, the
distance of a virtual sample to the hyperplane is calculated below in Equation 13.

(v5Qk) Zylal <x2,v5Q )+b (13)

Algorithm 2 (Self-learning strategy (SL))
Inputs:

Pool of SV: X°V

Pool of virtual samples: VSV Xt
Output:

A pool of constrained virtual samples V5V

fori=1to N in V°V do
Compute Euclidean distance d;; between v7" and z>";

end for

Compute class-specific maximum distance thresholds d,,, according to dgi, = d¢ - k

and Equation (12);

5. Remain virtual samples which satisfy d;; < dg; and prune the others from V5V
according to V2" = V>V N {V;*V|d;; < dqi} to establish a pool V37", which contains
only virtual samples that lie within the radius of é¢, ;

6: fori=1to Nin V3 do

7: Compute distance to hyperplane for class Q with decision function according to
Equation (13);

8: end for

9: Remain virtual samples which satisfy the maximum acceptable distance /, and

prune others from VQV to establish a final pool of constrained virtual samples V5V

ARowbd =
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Figure 8 explains the use of the described constraints and shows how the hyperplane
is adjusted after pruning the uninformative virtual samples. In Fig. 8-a similarity con-
straints approach is applied and after pruning the virtual samples, margin sampling
constraint is applied in Fig. 8-b by calculating the distance of the remaining virtual
samples to the hyperplane. In the last stage, the model is learned with remaining virtual
samples and with SV, and the hyperplane is adjusted with the maximum margin Fig. 8-b.

Furthermore, self Learning strategy is described in detail within the pseudocode Algo-
rithm 2 (Geil et al., 2019). The algorithm briefly explains the framework in Fig 8 In the
first stage, virtual samples among the SV are collected from the VSVM algorithm. After
that, the euclidean distance is calculated between SV and the virtual samples. Virtual
samples that are under a certain threshold are selected. The virtual samples that are
far away are pruned from the model. In the second step, distance to the hyperplane
is calculated between the remaining virtual samples, and samples that satisfied the
maximum acceptable distance are selected. As a final product, a pool of constrained
virtual samples are produced and these samples are used for model learning.

2.2 Literature Review

The literature review chapter is discussed in two main parts. The first part discusses the
theory of support vector machines, semi-supervised SVM, active learning methods, and
their applications mainly on the classification of remote sensing imagery. Furthermore,
the first part involves some of the partial combinations of these methods. At last, the
second part discusses uncertainty visualization and cartographic design.

2.2.1 Theory and the Applications of Machine Learning Methods

Cortes and Vapnik (1995) introduced a new machine learning method for classifying
two-class problems, the so-called the support vector networks. This method is applied
to very high-dimensional feature space and also enlarged to solve non-linearly separable
training data. Empirical studies on the research made on optical character recognition
data and further compared with various supervised algorithms such as linear classifier,
k-nearest neighbors algorithm.

Burges (1998) further demonstrates and introduces a tutorial on support vector ma-
chines(SVM) and mainly focuses on its concepts on structural risk minimization and
Vapnik—Chervonenkis dimension (VC dimension). The research explains the kernel
mapping technique to classify non-linear data in Fig. 9 below. Figure shows how SVM
transform the data from the original space into a higher dimensional feature space
and make it linearly separable and show how well SVM show good generalization
performance on very large VC dimensions.

21



D .
b . ®
v /\'
. —S .
[w]

Figure 9: Linear separating hyperplanes for the non-separable case (Burges, 1998)

Bennett et al. (1999) proposed a new method called semi-supervised support vector
machines (S?VMs). The purpose of the method is to overcome the transduction problem
by applying overall risk minimization (ORM) with the use of both labeled (training set)
and unlabeled samples (working set). Since transduction does not produce a predictive
model and when an unknown point is added to the set, it causes the transductive
algorithm to be repeated to predict the label. Subsequently, this research (S?*VMs)
tested on ten real-world application data sets and results showed that adding unlabeled
data improves the generalization.

Semi-supervised support vector machines (S*VM) are a highly favorable approach on
few labeled data but when the obscure and misleading unlabeled samples are selected
they can perform poorly. Therefore, Li and Zhou (2014) come up with a solution to
improve S?*VMs safeness. Subsequently, two approaches that are developed named
S3VMs-us and S*VMs (Safe S?VMs) that work with multiple low-density separators
eventually maximize the performance against inductive support vector machines. After
empirical studies, it has been detected that new methods can decrease the risk of poor
separation and moderately improves performance. Moreover, research from Ding et al.
(2017) gives an overview to the S?VM and they further investigate the previous method-
ology on S3VM, discuss the extension of methods such as transductive support vector
machine, Laplacian support vector machine, mean S3VM, S3VM based on cluster kernel
to overcome main challenges of semi-supervised methods especially on computation
costs on training the models. Research also indicates that extension of the methods
truly improves the computation although there are still some obstacles to overcome in
the future.

Fernandez-Delgado et al. (2014) did detailed investigation on 179 different classifiers
from 17 families including support vector machines, decision trees, rule-based classi-
fiers, and so on. According to the experimental results on 121 real-world application
data sets random forest (RF) and support vector machines (SVM) resulted in the best
accuracy. Therefore, this paper gives a comprehensive explanation of these methods
and their applications.
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In the application are of machine learning, Melgani and Bruzzone (2004) approached the
classification of hyperspectral remote sensing images problem by using support vector
machines(SVM) and compares the results with non-parametric classifiers such as radial
basis function neural networks and the K-nearest neighbor classifier. Moreover, research
further analysis the issue of applying SVM binary separator to multi-class problems
and discusses the one-against-all, the one-against-one, and two hierarchical tree-based
strategies on a real Airborne Visible/Infrared Imaging Spectroradiometer hyperspectral
data set. Results showed that SVM are effective compared to other non-parametric
classifiers in hyper-dimensional spaces and can solve multi-class problems.

Foody and Mathur (2004) evaluate the performance of support vector machines (SVM)
on multi-class image classification and compare to other classification methods such
as discriminant analysis (DA), decision tree (DT), and feed-forward neural network (NN).
According to the research, the most precise classification results were obtained with
the SVM method. Additionally, the overall performance of SVM is also evaluated by
taking the training samples size from 15 to 100 cases per class. Although SVM performs
better on a small number of training-set, increasing training set size obtained decent
accuracy.

Mountrakis et al. (2011) investigated the use of support vector machines in remote
sensing over the year and further classifies the research that has been done on this
topic. They conducted this SVM overview in remote sensing based on its application
areas, platform type, spatial and spectral resolution, and last change detection. They
further highlighted its upsides and downsides within previously published works and
they provide a guideline for future improvements.

Izquierdo-Verdiguier et al. (2012) deals with remote sensing image classification using
an invariance in Support Vector Machines (SVM) which refers to the robustness of
the classifier to any changes in data and deals with characterizes of images. The
method uses the initial SV that maximizes the margin and further includes invariances
to reflections and rotations and then object scales and finally generates synthetic SV
so-called Virtual Support Vectors. Obtained results demonstrate that method works
efficiently with few labeled samples and appears to be a robust classifier.

Ul Haq et al. (2011) present a /' minimization-based sparse representation approach
for hyperspectral data classification with a few labeled samples. Unlike the super-
vised learning, method approaches the proposed model does not acquire training and
testing phases use labeled samples to determine the representation of test samples.
Additionally, the model overcomes the challenge of classifying a few sampled but high
dimensional data as known as the Hughes phenomenon (Hughes, 1968). At last, experi-
mental results showed promising results on four hyperspectral data sets compared to
the traditional classification methods.

Geilk et al. (2017) investigated the effect of spatially non-disjoint training and test
samples on model generalization in supervised classification with spatial features.
Additionally, two different partitioning strategies for training and test sets followed to
effects of spatial auto-correlation on spatial features. Thereby, the first strategy deter-
mined spatially random selected samples meanwhile, the second strategy determined
spatially disjoint selection with topological constraints on multi- and hyperspectral
acquisitions over urban areas.
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Bruzzone and Carlin (2006) proposed a multilevel context-based system for the clas-
sification of very high spatial resolution images. To do so, they developed a feature
extraction module which is depicted in Fig. 10 below. Figure investigates the image in
multilevel and extracts the spatial context of every pixel and segments the image with a
support vector machine (SVM) classifier with a tree-based hierarchical constraint. This
allowed the feature-extraction module to work with different image scales. Moreover,
experimental results on two different data sets, urban and rural areas of Pavia(ltaly)
and Trento(ltaly) showed that overall accuracy does not change on a different number
of levels, and the model can characterize the spatial context adaptively.

—J Hierarchical and L“ Context-driven - SVM
g — | Adaptive Definition of feature —| Classification |—»
Multilevel Context | — extraction | architecture

Very high

resolution images Thematic map

Figure 10: Scheme of the proposed approach of multi-level context-based classification
strategy (Bruzzone and Carlin, 2006)

Bruzzone et al. (2006) introduced a method for the classification of remote sensing im-
ages. The method is based on semi supervised system that uses labeled and unlabeled
samples in the training phase of SVM. Besides, the SVM algorithm is enriched by the
transductive process which finds the best hyperplane iteratively. The proposed method
showed that the transductive SVM approach can achieve stable and high classification
accuracy results compared to standard inductive SVM.

Dopido et al. (2013) tailored a semi-supervised learning technique on the classification
of hyperspectral remote sensing imagery. The reason is that hyperspectral imagery
provides higher dimensional data but with a few labeled samples since it is costly and
time-consuming which eventually ends up in Hughes phenomenon (Hughes, 1968).
Therefore, with use of the unlabeled samples in a self-learning framework that selects
the most informative unlabeled samples, has achieved favorable results in multinomial
logistic regression (MLR) and a support vector machine (SVM) classifiers.

Lu et al. (2016) developed a new framework on semi-supervised learning for hyperspec-
tral and panchromatic remote sensing image classification which eventually obtains
improved overall classification accuracy with few labeled samples compared to other
supervised algorithms. The framework that is displayed in Fig. 11 also uses an active
learning approach for a self-learning strategy on image segmentation and automatically
selects unlabeled informative samples by avoiding extra human-machine interaction.
Therefore, in each iteration of the self-learning step, the candidate set chooses the
samples with the same predicted labels with object labels until the stop criteria are met.
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Tuia et al. (2009) evaluated two active learning strategies on both hyperspectral and
very high-resolution remote sensing images with support vector machines classifier.
Since SVM perform better with the high-quality labeled data, it turns into a difficult
task to determine this set and active learning methods come into action to find the
accurate set with human-image interaction. Therefore, results showed that applying
active learning strategies gives consistent accuracy and methods can reach the same
quality as large data sets.

Tuia et al. (2011) investigated active learning algorithms such as committee, large
margin, and posterior probability on remote sensing image classification in order to
create an optimal training set. They evaluate the working principle of active learning,
adding new labels and selecting the ones that are beneficial for the model in an iterative
way. Therefore, the evaluation process continued with challenging remote sensing
scenarios and tested on both very high spatial resolution and hyperspectral images.
Experimental showed that active learning algorithms have a great potential in the remote
sensing area and they are robust on noise.

Demir et al. (2010) explored batch-mode-active-learning methods for the classification
of remote sensing images. Additionally, uncertainty and diversity are selected as two
parameters to investigate techniques. In this sense, a newly proposed novel query
function that is based on a kernel clustering compared with state-of-the-art methods
for very high-resolution multispectral and hyperspectral images. Results showed better
accuracy on the newly proposed method for both data sets.

Pan et al. (2018) introduced a collaborative method on combining semi-supervised learn-
ing and active learning to classify hyperspectral imagery with limited labeled samples.
Therefore, they follow a strategy so-called collaboratively integrated using clustering
(CLUC) and this strategy clusters unlabeled samples, additionally, by calculating the
uncertainty, most uncertain unlabeled samples are labeled manually. Experimental
results showed that pseudo labeling strategy showed an important role in proposed
algorithms and the used methods are open for future alternative extensions.
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2.2.2 Uncertainty Visualization and Active Learning Methods

Kinkeldey (2014) explored major challenges in the analysis of land cover classification
that are mainly caused by inaccuracies of multiple data sets such as bias in sensors or
spatial disintegration. Therefore, Kinkeldey emerges an approach to quantifying and
visualizing uncertainty in order to overcome this challenge. By doing so two elements
are discussed in change detection and analysis steps, and visual communication of
uncertainty within a case study. Example in Fig 12. shows uncertainty change per
pixel with the real image in the bottom part and it is demonstrated as black (0.0) as no
uncertainty to white (1.0) to maximum uncertainty. Uncertainty measure for land cover
change is determined by the fuzzy membership values ;.. For each scene, ;. values are
conducted by the minimum operator.

0.8 |0:5 JoEs;

0.5

0 0.3 | 0.3 0.2 0.2 0.1

Figure 12: Example showing the change in uncertainty (Kinkeldey, 2014)

Tuia and Munoz-Mari (2012) discusses active learning (AL) scenarios in remote sensing
based on the uncertainty of the pixels. AL methods are taken into consideration in terms
of ranking the pixels by their uncertainty and users confidence in labeling depending on
the user’s experience and knowledge, example is shown in Fig 13. Moreover, experimen-
tal data sets consisted of different levels of resolution in order to test user’s confidence
in labeling after determining the areas by uncertainty and results showed that the area
of AL has great potential and opens up for many future pieces of research.

Figure 13: Images into confidence map after 5™ iteration (Tuia and Munoz-Mari, 2012)
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Murphy (2015) introduced a visualization option in the cartographic medium by com-
bining remote sensing imagery with cartographic symbolization. Therefore, a suitable
approach followed the idea of applying visual hierarchy on individual image objects and
highlighting specific objects or classes. Research shows that this approach enhanced
the user’s visual attention and also the user’s visual communication with image maps.

Since uncertainty is a major factor in processing geospatial data and ignoring the
uncertainty may result in unusable results. For this reason, Kinkeldey et al. (2014)
proposed a technique for visualizing uncertainty with the use of noise annotation lines.
Therefore, two experiments are made to assess the method. It showed that noise
annotation lines can be used in 6 uncertainty levels and can demonstrate a qualitative
comparison of constant uncertainty.

Lucieer (2004)’s paper investigates uncertainties in remote sensing image classification
and focuses on its visualizations. Research further separated into three parts. The first
part is about developing and implementing a visual exploration tool; the second part is
about developing, implementing, and applying image segmentation techniques for iden-
tifying objects and quantifying their uncertainty. The third part is about developing and
implementing visualization techniques to explore the relationship between uncertainty.
More specifically, in the first part, a fuzzy classification algorithm has been explored in
remotely sensed imagery with its related uncertainty. This algorithm was applied to the
Landsat 7 ETM+ image from Southern France and achieved an overall of 88 percent
accuracy. In the second part, the working area is selected from the IKONOS image. Data
belong to an agricultural area in the Netherlands and the segmentation technique, the
so-called split-and-merge algorithm is applied. The method was extended with two case
studies. As an example in Fig. 14 texture-based segmentation of a figure is displayed
with its related uncertainty. In the left side of the figure 14, the object is classified with
five reference classes and the related uncertainty of the classes is displayed on the
right side. At last, the third part of the research has shown the effect of uncertainty by
adjusting the threshold and generally, research showed that interactive visualization
tool has an important role in objects uncertainty in remote sensing.

Classes
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Figure 14: Supervised texture-based segmentation and related uncertainty for all object
building blocks (Lucieer, 2004)
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3 Methodology

In this section, the methodology is introduced with four new algorithms. The first three
algorithms are created semi-supervised learning. These methods are based on the
theory that is explained in the theoretical background section. At last, the fourth method
demonstrates the uncertainty approach that boosts the models by visualizing and
relabeling the uncertain samples.

3.1 Semi-Supervised Methods

This section explains three newly proposed semi-supervised methods on the SVM ap-
proach.The first method follows the initial idea of Virtual Support Vector Machines with
Self Learning (VSVM-SL) strategy and combines unlabeled samples into model learning.
The second method initializes a Virtual Unlabeled Samples approach by following the
basic principles of the VSVM method. Finally, the third approach sets a benchmark
method on a semi-supervised scheme by integrating unlabeled samples into the training
data pool, and it learns the model with initial SVM method. Furthermore, in all these
newly proposed approaches, the SL strategy is used in order to prune uninformative
unlabeled and labeled samples. This prevented the use of further heuristics regarding
which semi-labeled samples can be used.

3.1.1 VSVM-SL with Unlabeled Samples

As mentioned in the above section, VSVM-SL with the Unlabeled Samples method
follows the idea of the VSVM-SL strategy and the overall aim is to eventually further
increase the accuracy properties of the VSVM-SL in settings with few labeled samples
and deploy a constrained set of unlabeled samples for training the model. By doing so
the model is enriched by informative unlabeled samples and these informative unlabeled
samples will be considered and selected with respect to the existing SVs and virtual
samples.

Inthis model extension, Algorithm 3 starts with collecting unlabeled samples z7, z3, ..., x;
among with the labeled training data z1, z», ..., z,, that will be used for initial model learn-
ing. As a second step, SV’s are extracted from the initial SVM model and the VSVM
approach is applied to collecting virtual samples by perturbing the features of these
SVs. Moreover, at this stage, virtual samples and the selected unlabeled samples were
forgathered in a pool for pruning uninformative VSV's and unlabeled samples. For that
reason, by checking the similarity constraints (Eq. 12) and margin sampling constraints
(Eq. 13), the model is left with the virtual samples that induced with unlabeled samples
and new separating hyperplane with maximum margin has been found by the effect of
the enriched unlabeled samples. The procedure is further described in the following
figure 15. Here, in the figure 15, the blue color shows the gathered data, before or after
any process. The red color shows the steps that use unlabeled samples. The circular
cross represents the step when the training data is enriched by semi-labeled samples.
At last, the green color stands for the model training steps.
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Figure 15: Working principle of VSVM-SL with Unlabeled Samples

VSVM-SL with Unlabeled Samples method is described below in detail within the pseu-
docode under Algorithm 3.

Algorithm 3 (VSVM + Unlabeled Samples+ SL Strategy)

Inputs:

Pool of labeled samples: X7,4in, X7est

Pool of unlabeled samples: X1,qinremaining
Output:

SVM classifier retained with training set X,qin

1.

12

Select unlabeled samples from remaining training samples X, 4inremaining

Learn initial SVM model with X7, 4in

Extract SVs and add them to a pool X2V .

Perturb features based on X2V . get virtual samples V5V

Get SVs of unlabeled samples and perturb features of unlabeled samples based on
Xtraim = X5V UVSV

Apply self-learning strategy to VV°V and unlabeled samples which satisfy the maxi-
mum acceptable distance and prune others according to Algorithm (2).

Establish pool of constraint samples V5V

Compile training set Xr,qm = X2¥,;, U VSV

Learn SVM model with X,;, select model with optimal hyperparameters based on
XTest-
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3.1.2 VSVM-SL with Virtual Unlabeled Samples

The second semi-supervised approach, VSVM-SL with Unlabeled and Virtual Unlabeled
samples, is motivated by VSVM method (chapter 2.1.5). It follows the idea that adding
virtual unlabeled samples by integrating the invariances of shape and scale to already
pruned unlabeled samples. With this approach, it is aimed to possibly increase accuracy
properties of the model especially with the few labeled samples by benefiting the
robust and sparse model solutions of virtual samples since these samples enhance
generalization capabilities of the model. Therefore, method basically accompanies the
approach on Fig. 15.

VSVM-SL with Virtual Unlabeled Samples method is described below in detail within
the pseudocode under Algorithm 4.

Algorithm 4 (VSVM + Unlabeled Samples+ SL Strategy + Virtual Unlabeled Samples)
Inputs:

Pool of labeled samples: X7,4in, X7est

Pool of unlabeled samples: X714 remaining

Output:

SVM classifier retained with training set X rain

1: Select unlabeled samples from remaining training samples X1,inremaining
Learn initial SVM model with X7, 4
Extract SVs and add them to a pool X2V .
Perturb features based on X3V . get virtual samples V5V
Get SVs of unlabeled samples and perturb features of unlabeled samples based on
Xpain = X5¥. UV
6: Apply self-learning strategy to VV°V and unlabeled samples which satisfy the maxi-
mum acceptable distance and establish V5V
7: Learn SVM model with X7, = X5V U V5V
8: Extract SVs from the model.
9: Perturb features of unlabeled samples based on X7V to get virtual unlabeled
samples.
10: Prune virtual unlabeled samples with self learning strategy and establish constraint
samples V5V
11: Learn model again with X;,.:, and select model with optimal hyperparameters

based on X4

Here within the pseudocode, Algorithm 4 is displayed. In the algorithm, unlabeled sam-
ples z3, x5, ..., z; and labeled samples x1, xs, ..., x,, are collected from the pool training
samples. Thereafter, with the labeled samples the initial SVM model is learned to obtain
SV for applying the VSVM approach. With the SL strategy, these unlabeled samples and
virtual samples induced by unlabeled samples are pruned and the model has learned
again as it is shown in Fig. 15. As a next step, the unlabeled samples that have become
SV are extracted to obtain the virtual unlabeled samples. At this point, features of the
extracted SV perturbed with the VSVM approach (chapter 3.1.2) and unlabeled virtual
samples are established. As a final remark, the SL strategy (chapter 2.1.6) is applied to
prune uninformative virtual unlabeled samples, and the model is learned again. As an
output SVM classifier retained with a training set is generated.
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3.1.3 Benchmark Method for Semi-Supervised Learning

This method is created as a modified and improved version of the basic function of
SVM by basically including informative unlabeled samples. This method aims to in-
crease the generalization abilities of decision functions when training information is not
available. By doing so, the initial SVM is altered into a semi-supervised learning scheme
and becomes a benchmark method for further semi-supervised learning methods.
Furthermore, it follows simpler approach compared to the algorithms 3 and 4.

SVM with Unlabeled Samples approach is described below in detail within the pseu-
docode under Algorithm 5.

Algorithm 5 (SVM + Unlabeled Samples+ SL Strategy)
Inputs:

Pool of labeled samples: X7,4in, X7est

Pool of unlabeled samples: X1,qinremaining

Output:

SVM classifier pruned with unlabeled samples

1: Select unlabeled samples from remaining training samples Xr,ingemaining

2: Learn initial SVM model with X,.;, and extract SVs.

3: Prune the unlabeled samples with self learning strategy and establish constraint
samples X5V

4: Learn the model again with Xorvain @and select model with optimal hyperparameters
based on X ;..

In the Algorithm 5, first of all, initial SVM is learned with training samples z;, xo, ..., z,, and
SV are extracted. Thereafter, with the selected unlabeled samples so as z7, z3, ..., z}, SV
are pruned with the indication of unlabeled samples with the constraints of chapter 2.1.6.
As a final remark, the model has learned again with the training set that is enriched with
pruned unlabeled samples. After, the best optimal hyperparameters are determined
with the enhanced generalization ability by benefiting the semi-supervised learning
approach.

3.2 Uncertainty Visualization

In this chapter, as an active learning method in the SVM approach, uncertainty visu-
alization is introduced. As a primary idea uncertainty of the models is calculated and
visualized in order to aim for higher accuracy of the developed methods. Therefore,
this active learning approach initialized for the usage for all developed semi-supervised
methods.

As a working principle, this approach follows the theoretical background of uncertainty.
See in chapter 2.1.3. Therefore, the method measures the uncertainty of the SVM
models. To do so, the optimal hyperplane that maximizes the margin has to be initially
determined. By taking the margin constraints all the classified samples of certain
classes are taken into account as input vectors and the distances of these samples to
the hyperplane are aimed to be calculated with the margin constraints. Fig 16 shows
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the calculated distances of samples to the hyperplane with i. SV is also displayed as
the samples within the hyperplane in the figure.

Figure 16: lllustration of distance to the hyperplane

Thereafter, these calculated distances are normalized in the range of zero to one to scale
down the distance differences. Therefore, to determine the most uncertain samples,
samples among the calculated hyperplane distances are visualized by stretching the
uncertainty values along with the histogram. To improve the visual contrast, the tone
of a single color is selected. With the help of visualizations and normalized distances,
it can be considered that these samples closer to the hyperplane are most likely to
be uncertain samples since SV are at the zero distance on the hyperplane. Moreover,
in the relabeling procedure of these uncertain samples, an absolute number of most
uncertain samples are selected, relabelled according to the reference labels, and the
model has learned again by setting a new hyperplane with maximum margin. From
this stage, calculating the uncertainty values once more and visualizing them makes it
possible to monitor how the uncertainty of the models changes with this interactive
relabelling process. Also, uncertainties of the introduced semi-supervised methods can
be compared as a second parameter to the accuracy values. As an example, scheme of
semi-supervised learning method, VSVM-SL with Unlabeled Samples is demonstrated
with the integration of uncertainty visualization approach and it is shown in Fig. 17.
In the figure, the blue color is used for showing data pools and the red color is used
for steps that use unlabeled samples. Thereafter, training data that is enriched by
semi-labeled samples are represented by the circular cross and the green color used
for the model training steps. At last, the active learning process is showed with light
green color. Furthermore, this active learning method eventually sets a collaborative
learning method by combining this approach with semi-supervised learning methods.

The uncertainty visualization approach is demonstrated in detail within the pseudocode
under Algorithm 6. Here, in the algorithm, as a first step, a semi-supervised SVM method
is selected. Model is trained with its related methodology and labels are predicted and
the initial accuracy values. Thereafter, distances of samples to the hyperplane are
calculated and normalized. Uncertainty visualizations are created with the normalized
values and most uncertain samples are determined. After the relabeling process, as
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a last step accuracy and uncertainty are calculated and compared with the previous
values.
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Figure 17: Working principle of Active Learning Approach with Uncertainty on VSVM-SL-U
Method

Algorithm 6 (Active Learning Approach with Uncertainty)

Inputs: )
Pool of labeled samples: X7,4in
Output:

Pool of labeled and relabeled samples : X7yqin, X.
1.

—
e

W ooNTRE N

Train
Train the model with the selected SVM approach
Predict the labels the data set
Calculate the distance to hyperplane for each class @
Normalize the distance in range {0,1}
Visualize the distances to determine most uncertain samples.
fori=1to Nin X7, do
Select most uncertain top 100 labeled samples;
Relabel them according to reference label;
end for
Recalculate accuracy and uncertainty
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4 Results & Discussion

In the evaluation of newly proposed semi-supervised algorithms, VSVM-SL-U, VSVM-
SL-VU, and SVM-SL-U, two different data sets are used with their configurations. So
that these methods are evaluated with invariances to scale and shape for both of the
data sets. Additionally, binary and multi-class classification settings are further added
to evaluation processes. Furthermore, data is explained with its following thematic
classes for each data sets in the next sub-chapter. In the model learning processes of
binary and multi-class settings, labeled and unlabeled samples are selected randomly
from the training and testing data pool. Without biased quantification, to evaluate the
accuracy measurements properly, 20 independent realizations were made for generating
graphs, and tables and standard deviations of these runs are added into the results as
well. Besides the accuracy measurements, to further assess the model performance,
k statistics, weighted mean F, of F, calculations, overall accuracies (OA), average
accuracies (AA), individual class accuracies are calculated. At last, visualizations
of binary and multi-class settings are added for the specific number of labeled and
unlabeled samples.

Furthermore, to increase the accuracy and explore the uncertainties of the newly pro-
posed models, the uncertainty visualization approach is implemented as an active
learning extension. In this process, the Cologne data set that is explained in chapter 4.1
is used with its binary classification settings. Uncertainty visualizations are created and
with the help of the visualizations, most uncertain samples have been relabeled by and
new uncertainties and labels have been displayed for comparison. Additionally, all the
uncertainties of the newly proposed models have been compared with their statistical
values for a certain amount of samples and all the uncertainty values have been scaled
down for the consideration of all methods.

4.1 Data

In this section, two data sets that have been used in the experimental setup will be
discussed. The first data set covers the geographic area of 1000x1000 meters and the
second data set covers the area of 2000x2000 meters. They were captured by Very
High Resolution (VHR) multispectral imagery with blue, green, red, and near-infrared
bands from the WorldView-Il sensor. Additionally, images have a geometric resolution
of 0.5 meters.

The first data set was obtained in the city of Cologne, Germany on January 31, 2004.
Moreover, it shows an urban area, mainly dominated by buildings. That is further shown
in Fig. 18 below. The image also consists of shadow areas and facades of singular
buildings that can be further seen through the direction of sensor view due to the of-
nadir acquisition. Furthermore, pixels are organized into six thematic classes such as

“bush/tree”, “roof”, “meadow”, “facade”, “shadow”, and “other impervious surface” in
Fig. 18 (b).

34



other impervious
M bush/tree [l roof W ¢ foce

meadow [l facade [ shadow

number of labeled samples per class

class number
bush/tree 109,620
meadow 12,574
roof 196,928
facade 54 342
L 24,233
shadow 283,741

Z 681,438

train data test data validation data

Figure 18: (a)WorldView-II scene of Cologne, Germany; (b) Available labeled samples
per class; (c) spatially disjoint training, testing, and validation areas.

The second data set was captured over the Hagadera refugee camp in Kenya, on March
01, 2012 with a 2000x2000 spatial resolution that is shown in Fig. 19. Moreover, data
was spatially splited into train, test and validation areas and selection was made on
determining a heterogeneously distributed settlement area. Therefore, this separation
was made based on the objects in the image so that the image object stayed within the
certain area as train, test, or validation. As a second consideration, it was aimed to split
the area based on the idea of not overlapping over the features. This area also consists
buildings that have various types of fences, walls, shadows and open spaces. At last,
data was divided into five thematic classes such as “built-up area”, “bush/tree”, “bare
soil”, “fence/wall”, and “shadow” in Fig. 19(b).
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B built-up area bare soil [l shadow
B bush/tree [l fence/wall

number of labeled samples per class

class number
built-up area 495,717
vegetation 527.491
bare soil 528,497
fence 6.740
shadow 5572
_ ; . Z 1,564,017
train data test data validation data

Figure 19: (a)WorldView-ll scene of Hagadera Refugee Camp, Kenya; (b) Available
labeled samples per class; (c) spatially disjoint training, testing, and validation areas.

4.2 Results from Data set I: Cologne

The methodology is applied to the Cologne data set. Results are presented in two
different graphs and figure types. Semi-supervised methods (i.e., VSVM-SL-U, VSVM-
SL-VU) are mainly compared with the VSVM with and without self-learning constraints
strategy, for the reason that these methods are built upon these strategies. Additionally,
benchmark semi-supervised methods (i.e., SVM-SL-U) are compared with the initial
SVM model and for the SVM-M model where all the invariances were treated as features
of the data and did not consider as virtual samples (Geil et al., 2019).

In the first section of the Cologne data set results, graphs for binary classification
settings are discussed. These graphs differ due to the invariances to scale and shape,
and they were generated for 20 independent realizations considering the different
number of labeled samples per class. In the figure creation, unlabeled samples are
taken into the models as a hyperparameter, and the realization process is repeated for
various amounts of unlabeled sample sizes, and from these unlabeled sample sizes so
as 20,40,60 for per class, the best resulting sizes were selected. Therefore, in these
figures, highlighted light blue (VSVM-SL-VU) and blue color (VSVM-SL-U) represent

36



Mean Accuracy

the semi-supervised methods, green-colored lines present VSVM approaches. Dashed
green lines for VSVM-SL and green lines for VSVM approach. At last, black colored lines
present SVM methods, black line for SVM, dashed line for SVM-M and dashed and dotted
line for the benchmark SVM-SL-U method. Additionally, graphs show mean accuracy
values on the vertical plane where tables consider multiple statistic measurements.
Moreover, the number of labeled samples varies in the range of 10 to 200 per class for
each graph.

Base - 20 Realizations - Unlabeled Sample Size as Hyperparameter with (20,40,60)
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10 20 50 100 200

Number of Labeled Samples

Figure 20: Cologne- Binary classification setting- invariance to scale- Mean Accuracy

Moreover, Fig 20- 22 demonstrates the overall accuracies of the semi-supervised and
other methods for varying numbers of samples used in model learning for Cologne
binary classification settings. Figure 20 shows that VSVM-SL-VU approach has the
best overall accuracy measurements for the few labeled samples and it is followed
by the VSVM-SL and VSVM-SL-U methods. As another result, it can be seen that the
benchmark method SVM-SL-U performs better compared to initial SVM models for
the few labeled samples. In Fig 22, the best accuracies archived by VSVM-SL method,
followed by semi-supervised methods for the few labeled samples.
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Mean Kappa

0.65

Additionally, in both of the figures, all the methods reach a plateau when the num-
ber of labeled samples increased. However, semi-supervised methods remain on top
compared with supervised methods. In Fig 21- 23, kappa values are displayed instead
of overall accuracy for the Cologne binary classification settings, and the results are
supported with similar patterns from the kappa measurements. As an only difference,
the benchmark method, SVM-SL-U, achieves higher kappa measurements for the few
labeled samples and the higher number of samples.

Base - 20 Realizations - Unlabeled Sample Size as Hyperparameter with (20,40,60)
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Figure 21: Cologne- Binary classification setting- invariance to shape- Kappa Statistics

Results with 40 labeled samples and 20 unlabeled samples with 20 realizations are
displayed in tables 1 - 2 for the Cologne binary classification settings. As a remark,
in terms of binary classes, SVM-SL-U method had better F1 and accuracy values with
lower standard deviation especially in the invariance of shape settings. However, SVM
and SVM-M methods performed better in overall statistics. Meanwhile, semi-supervised
methods VSVM-SL-U and VSVM-SL-VU had a dominant performance in terms of overall
accuracy and kappa statistics. Also, these methods had an overall good classification
performance regarding the class bush/tree. Therefore, it can be later seen in the
classification results Fig. 25
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Base - 20 Realizations - Unlabeled Sample Size as Hyperparameter with (20,40,60)
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Figure 22: Cologne- Binary classification setting- invariance to shape-Mean Accuracy
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Class SVM SVM-M SVM-SL-Un

F1 Acc F1 Acc F1 Acc
Invariance to object scale; number of samples per class: 40 ; unlabeled samples : 20
Bush/Tree 82.82(+2.25) 73.4(x4.7) 80.7 (+1.65) 73.11(+2.82) 80.96 (+4.27) 75.45 (¢ 5.73)
Other 9476 (1) 98.75(+0.92) 94.37 (x 0.59) 97.41(x1.09) 94.66 (+1.33) 96.75(+1.4)
Kappa 77.69(13.2) 76.23(12.71) 75.93(6.28)
F1 92.78(+1.16) 92.58(+0.87) 92.32(2.2)
OA 91.89(11.34) 91.78(+0.99) 91.42(+2.54)
AA 85.85(+1.79) 86.16(x1.62) 85.51(#3.35)

Invariance to object shape; number of samples per class: 40 ; unlabeled samples : 20
Bush/Tree 82.83(£3.84) 74.28(+4.9) 83.86 (+1.91) 72.78 (+2.89) 81.78 (+1.38)  76.45 (+ 0.55)

Other 94.89 (+1.35) 98.3(x0.7) 9478 (+0.76) 99.71(+0.02)  94.96 (+ 0.27) 96.84 (+ 0.79)
Kappa 77.96(x 2.71) 78.72( 3.57) 76.1(+ 3.85)

F1 92.89(+ 0.96) 93.01(% 1.34) 92.41(+ 1.36)

OA 92.02( 1.12) 92.1( 1.57) 91.53(% 1.57)

AA 85.99(+ 1.53) 86.33(+ 1.98) 85.57(+ 2.06)

Table 1: Cologne - Binary classification setting- Classification accuracies and other
configurations compared to benchmark semi-supervised method.

Class VSVM VSVM-SL VSVM-SL-Un VSVM-SL-Vun

F1 Acc F1 Acc F1 Acc F1 Acc

Invariance to object scale; number of samples per class: 40 ; unlabeled samples : 20
Bush/Tree 79.89 (+2.16) 69.07 (+3.73) 80.9 (£3.76) 70.93 (¢ 5.97) 81.88(+4.26) 76.06 (+5.15) 82.66 (+2.06) 75.39 (+5.74)

Other 93.62(+0.97) 98.64 (+1.17)  94.04(+1.5) 98.49 (+0.72)  94.97(¢+1.25) 97.07(+1.37)  94.92(+1.1)  97.92(+1.24)
Kappa 77.15(+3.51) 78.15(7.02) 78.67(24.92) 76.7(+3.87)
F1 92.58(+1.31) 92.95(+2.62) 93.22(#1.73) 92.57(+1.35)
OA 91.65(+1.54) 92.1(+3.05) 93.22(+1.99) 91.61(+1.56)
AA 85.58(+2.08) 86.4(+3.68) 86.75(+2.58) 85.57(+2.05)

Invariance to object shape; number of samples per class: 40 ; unlabeled samples : 20
Bush/Tree 84.85(+ 0.83) 75.32(+1.35) 83.54 (+3.02) 76.54 (+3.05) 80.95 (+3.18) 78.26 (* 3.45) 80.25 (+5.41) 73.78(+7.28)

Other 95.45(+0.3) 99.23(+0.15) 953 (+0.9) 97.85(+0.81)  94.96 (+0.84) 9586 (+1.01)  94.28(+1.92) 96.94(+1.5)
Kappa 78(+ 3.68) 78.4(x 4.49) 77.96(+ 3.21) 78.35(+ 4.12)

F1 92.85(+ 1.38) 93.14(x 1.62) 93.17(+ 0.97) 93.24(+ 1.38)

OA 91.95(+ 1.61) 92.35(+ 1.88) 92.46(+ 1.06) 92.5(% 1.57)

AA 85.95(+ 2.11) 86.77(+ 2.63) 87.12( 1.52) 87.1(+ 2.21)

Table 2: Cologne - Binary classification setting- Classification accuracies and other
configurations of semi-supervised methods

In the evaluation of the Cologne binary classification settings, single realization is picked
from tables 1and 2, and visualized in figure 24 and 25. Therefore, figure 24 supports that
invariance to shape settings on SVM-SL-U approach has a better impact on statistical
values, that is why classification of bush/tree class is distinguishable from the other
methods. Also, in figure 25, semi-supervised methods perform slightly better although
the statistical values are close to each other.
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SVM SVM-M SVM-SL-U

Invariance to object scale

k =76.06 | F1 = 92.57 | OA = 91.64 k =77.81| F1 =93.02 | OA = 92.24 k=76.35| F1 =92.81 | OA = 92.13

Number of labeled samples : 40 ; unlabeled samples : 20 per class

Invariance to object shape

k = 70.25|] F1 = 89.87 | OA = 88.45 k = 69.35|] F1 = 89.37| OA = 87.75 k = 78.80| F1 = 93.04 | OA = 92.18
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Figure 24: Visualization of results from single realization for binary classification setting
for Cologne
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Base - 20 Realizations - Unlabeled Sample Size as Hyperparameter with (20,40,60)
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Figure 26: Cologne- Multi-class classification setting- invariance to Scale- Mean Accu-
racy
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Figure 27: Cologne- Multi classification setting- invariance to scale- Kappa Statistics
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Figure 28: Cologne- Multi-class classification setting- invariance to shape-Mean Accu-
racy
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Class

SVM SVM-M

SVM-SL-Un

Acc F1 Acc

F1 Acc

Invariance to object scale;number of samples per class: 40 ; unlabeled samples : 20

Bush/Tree 82.08 (+2.07) 80.19 (+2.45)  81.99 (+3.39) 81.63 (+3.11) 82.22 (+2.75) 80.29 (+3.42)
Meadow 483 (+567) 3529 (+6.82)  55.38(+9.39) 48.63 (+17.49)  51.47(+7.49) 37.86 (+8.38)
Roof 5477 (+8.22) 76.32(+4.88)  67.72(+5.19) 73.08 (+ 4.75) 58.04 (+8.76) 78.2 (*3.7)
Facade 57.38 (+4.46) 50.62(+7.23) 54.21(:5.3)  48.8 (+10.98) 56.16 (+ 4.52) 49.22 (+7.38)
Otherimp. surf.  35.69 (+7.73) 25.03(+7.32)  18.4(+5.86)  24.56(+11.09)  38.33(+8.08) 27.39 (+7.98)
Shadow 86.51(+1.55) 90.66 (+1.57)  83.84(+1.62) 82.98 (+2.74) 86.75 (+1.41) 91.19 (+ 1.22)
Kappa 60.91 (£ 3.97) 63.34 ( 3.44) 62.44 (+ 4.56)

F1 71.79 (+ 2.89) 73.67 (£ 2.27) 72.91(* 3.31)

OA 70.64 (+ 3.27) 73.68 (+ 2.79) 71.81(% 3.8)

AA 59.69 (+ 2.25) 59.95 (+ 4.39) 60.69 (+ 2.32)

Invariance to object shape; number of samples per class: 40, unlabeled samples : 20

Bush/Tree 81.54 (+1.69) 78.99 (+2.16)  84.03 (+2.98) 83.01(+3.48)  85.68(+1.97) 82.74(+2.72)
Meadow 48.04 (+4.37) 3415(+507)  48.37(x7.01) 35.15(+8.27) 57.01(# 6.75) 49.73 (+ 10.94)
Roof 55.82 (+7)  78.96 (+3.38)  59.93 (+10.69) 75.93 (+5.25) 70.74 (+2.83) 76.5 (+4.02)
Facade 58.27 (+2.92) 52.26 (+6.15)  57.93 (+3.27) 49.93 (+ 4.98) 54.25(+4.51) 47.34 (+ 5.89)
Otherimp. surf.  35.06 (+5.81) 24.41(+5.54)  42.71(+11.28) 31.21 (¢ 9.92) 49.93 (+ 8.51) 42.49 (* 8.26)
Shadow 87.02 (+1.32) 90.61(+0.99)  86.25(+4.22) 91.96 (* 3.12) 87.41(+1.8)  91.47(x 2.16)
Kappa 61.39 (+ 3.37) 63.74 (+ 6.79) 69.55 (+ 2.48)

F1 72.26 (+ 2.45) 73.78 (+ 4.9) 77.78 (+ 1.58)

OA 71.03 (+ 2.82) 72.65 (+ 5.63) 77.73 (+ 1.88)

AA 59.89 (+ 1.65) 61.2 (+ 3.25) 65.03 (+ 2.46)

Table 3: Cologne - Multi-class classification setting- Classification accuracies and other
configurations of benchmark semi-supervised method.

Class

VSVM-SL VSVM-SL-Un VSVM-SL-Vun

Fi

Acc F1 Acc F1

Acc F1 Acc

Invariance to object scale;number of samples per class: 40 ; unlabeled samples : 20

Bush/Tree
Meadow
Roof
Facade

Other imp. surf.

Shadow

Kappa
F1

OA
AA

82.93 (+3.02)
50.53 (£ 6.96)
63.4 ( 5.6)

57.49 (+ 3.14)
43.15 (+ 7.82)
87.33 (£ 1.37)

65.24 ( 3.67)
75.08 (+ 2.43)
74.09 (+ 2.96)
61.98 (+2.31)

80.67 (+3.17)  83.5(+2.56) 80.91(+3.42)  83.27 (+2.76)
3758 (+7.63) 53 (+6.45)  40.67 (+7.81)  51.83(#6.63)
79.19 (+4.05)  63.96 (+8.19) 76.84 (+4.28)  63.72 (£ 8.12)
51.14 (£ 6.8) 57.43 (+2.69) 49.86 (+5.84)  57.09 (+2.95)
3149 (+7.45) 4132 (+7.37) 3178 (+7.97)  41.73(+8.87)
91.79 (+1.53)  86.57 (+1.48) 91.13(+168)  87(+15)

80.74 (+2.96)  81.76 (+3.66) 78.44 (+4.44)
39.19 (¢ 7.61) 48.18 (+9.16)  37.23 (+ 8.63)
7742 (+4.78)  64.3(£5.17) 72.76 (+8.27)
49.49 ( 6.7) 5149 (+5.93) 43.35(+7.29)
31.8 (+ 8.84) 43.58 (+5.7) 34.06 (+ 5.58)
91.04 (+ 1.53) 83.86 (+3.76) 90.79 (+1.71)

65.2 (+ 3.92) 65.06 (+ 4.25) 63.09 (+ 4.68)
74.99 (+2.81) 74.86 (+ 2.93) 73.2 (+ 3.61)
74.16 (£ 3.19) 74.03 (+ 3.45) 72.55 (+ 3.82)
61.86 (+ 2.42) 61.62 (+ 2.32) 59.44 (+ 3.4)

Invariance to object shape; number of samples : 40 ; unlabeled samples : 20

Bush/Tree
Meadow
Roof
Facade

Other imp. surf.

86.62 (+ 1.67)
59.58 (+ 6.01)
68.02 (¢ 6.18)

56.03 (+ 5.94)
44.85 (+10.61)

83.43(+2.38) 8519 (+17) 8171(x278)  84.72(+2.54)
50.71(+9.13)  55.11(+7.25) 46.79 (+9.65)  55.62 (+7.42)
78.48 (+3.33)  70.37 (+3.18) 76.31(¢ 4.6) 71.07 (+ 2.49)
52.71(£5.93)  53.84(+4.17) 4565 (+4.96)  54.67 (+4.33)
35.3 (+ 9.85) 48.05(+9.96) 41.03 (+6.67)  46.12 (+ 10.38)

8144 (+2.58)  84.87(+2.04) 81.58 (+2.67)
47.35(+12.23)  55.65 (+7.76) 49.28 (+ 14.96)
7578 (+4.69)  70.01(+2.81) 75.44 (+ 5.64)
46.99 (+4.81)  54.45(+3.71) 46.3 (+5.25)
41.35(x7.79)  49.83(+9.61) 41.94(+7.73)

Shadow 88.11(£1.75) 90.61(+1.91)  87.08(+1.76) 91.61(+2.03)  86.97(+2.11) 91.58 (+1.79) 86.83 (+2.37) 91.94 (+1.62)
Kappa 68.92 (+ 3.85) 68.93 (+ 2.56) 68.94 (+ 2.65) 68.7 (+ 3.09)
F1 77.44 (+ 2.56) 77.32 (£ 1.65) 77.45 (£ 1.67) 77.18 (+ 2.06)
0A 77.22 (+ 3.02) 77.23 (+ 1.95) 77.24 (+ 2.03) 77.03 (+ 2.38)
AA 65.21 (+ 2.81) 63.85 (+ 2.79) 64.08 (+ 3.03) 64.41 (+ 3.53)

Table 4: Cologne - Multi-class classification setting- Classification accuracies and other
configurations of semi-supervised methods
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Invariance to object scale

Invariance to object shape

SVM-SL-U

k = 70.46| F1 = 78.43| OA = 78.39

k = 55.88| F1 = 67.77| OA = 69.00

Number of labeled samples : 40 ; unlabeled samples : 20 per class
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Figure 30: Visualization of results from single realization for multi-class classification
setting for Cologne
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In the evaluation of multi-class classification settings, figure 26 and 27 for invariance
to scale settings indicate the performance of the VSVM-SL-VU method for the whole
range of the samples. Besides, the VSVM-SL-VU approach followed by VSVM-SL-U
and VSVM-SL approach and semi-supervised methods remains on top. Additionally, in
the kappa measurements of invariances of scale, the benchmark method SVM-SL-U
shows a robust performance with the VSVM-SL-VU approach. Furthermore, table 3
results are supported by the visualization in figure 30 with a single run. The big majority
of the classes have significantly better statistical values, and the difference can be
seen in shadow and bush/tree classes. At last, in the invariances to shape settings
(Table 4), semi-supervised methods (especially VSVM-SL-U) perform higher overall
accuracy, kappa, and F1 scores, meanwhile, VSVM-SL-VU methods achieve favorable
class performance with the VSVM method. This can be further seen in the classification
map figure 31 where the spatial distribution of the classes is accurate.

Overall, binary, and multi-class settings of the Cologne data set support the accuracy
improvements when unlabeled samples are fed into the model learning. Therefore,
more favorable results obtained for the ranges of few labeled samples and also semi-
supervised models stay on top when all the methods reach a plateau.

4.3 Results from Data set Il: Hagadera

In the second part of the results section, the methodology is applied to the Hagadera
data set. Binary and multi-class classification settings are used to evaluate the per-
formance of semi-supervised methods on different data. Generated graphs (Fig 32,
33,34,35, 38,39,40,41) follows the same structure as Cologne data set. They include
20 realizations for the model runs and they involve the labeled sample range 10 to 200
per class. As the only difference in the hyperparameter selection, additional unlabeled
sample sizes such as 80 and 100 are involved and further evaluated in the graphs.
Graphs for binary settings indeed showed that semi-supervised methods (VSVM-SL-VU
and VSVM-SL-U) have better overall accuracy values for the few labeled samples both
for the invariances of scale and shape (Fig. 32 and 34). As a difference, in kappa
statistic graphs, semi-supervised methods have slightly lower kappa values compared
to the VSVM method, yet they reach higher values when all the models reach a plateau
on higher labeled samples per class (Fig. 33 and 35). Furthermore, graphs have been
followed by the tables (Table 5 and 6) indicating the results for 40 labeled samples
and 20 unlabeled samples with the 20 realizations. Table results show that although
semi-supervised methods perform slightly lower overall kappa, F1, and accuracy calcu-
lations than the previous methods, they have better class-based results and it is further
noticeable in the visualization results in Fig. 36 and 37.
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Base - 20 Realizations - Unlabeled Sample Size as Hyperparameter with (20,40,60,80,100)
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Figure 32: Hagadera- Binary- class classification setting- invariance to scale- Mean
Accuracy
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Figure 34: Hagadera- Binary- class classification setting- invariance to shape- Mean
Accuracy
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Class SVM SVM-M SVM-SL-Un

F1 Acc F1 Acc F1 Acc
Invariance to object scale; number of samples: 40 ; unlabeled samples : 20
Built-up area 96.34 (£ 0.79) 94.6 (x0.9) 94.6 (+ 0.9) 84.19 (+ 2.19) 95.79 (+ 0.65) 96.09 (+ 1.32)
Other 98.01(x0.41) 99.01(x0.74) 99.01(+ 0.74) 94.92 (+0.87) 97.79 (+0.31) 97.65(+1.03)
Kappa 94.01( 1.44) 78.72(+ 3.57) 93.43(+ 1.12)
F1 97.29(% 0.66) 91.07(% 1.6) 97.05( 0.49)
OA 97.27(+ 0.67) 92.1(+ 1.57) 97.04(+ 0.49)
AA 96.7(+ 0.92) 86.33(+ 1.98) 96.89(% 0.49)

Invariance to object shape; number of samples : 40 ; unlabeled samples : 20

Bush/Tree 96.21(+1.54) 96.28 (£0.71)  73.31(+3.3) 8419 (+2.19)  96.75(0.17) 95.48 (+1.26)
Other 98.13 (+ 1.46) 98.04 (+ 0.3) 99.7(+0.03) 94.92(+0.87)  97.02(+1.23) 97.66 (+0.67)
Kappa 93(+ 2.13) 78.72(% 3.57) 91.89( 2.04)
F1 96.83(+ 0.99) 91.07(+ 1.6) 96.37(+ 0.9)
0A 96.8(% 1.02) 92.1(+ 1.57) 96.36(+ 0.9)
AA 96.18(+ 1.32) 86.33(+ 1.98) 96.41(+ 0.89)

Table 5: Hagadera - Binary classification setting- Classification accuracies and other

configurations of benchmark semi-supervised method.

Class

VSVM VSVM-SL VSVM-SL-Un

VSVM-SL-Vun

F1 Acc F1 Acc F1

Acc

F1 Acc

Invariance to object scale; number of samples per class: 40; unlabeled samples: 20
Built-uparea  96.11(+1.39) 96.25(+1.23)  96.22 (+1.46) 97.05(+0.56)  97.75(+0.7) 93.75(+ 3.61)

96.12 (+ 0.96) 95.73 (+1.69)

Other 97.96 (+0.73) 97.79 (+0.98)  98.04 (+0.7) 97.64(+1.66) 95714 (+3.29) 96.95(+1.58)  97.57(+1.27) 97.79 (* 0.85)
Kappa 92.75(+ 3.5) 93.82( 1.55) 92.43(+ 2.67) 92.66(+ 2.31)
F1 96.71(+ 1.64) 97.22(x 0.71) 96.6(+ 1.19) 96.7(+ 1.06)
OA 96.68(x 1.69) 97.2( 0.72) 96.59(+ 1.19) 96.68(+ 1.08)
AA 96.16(+ 1.98) 97(x 0.96) 96.44(+ 1.24) 96.52(+ 1.34)

Invariance to object shape; number of samples per class: 40; unlabeled samples: 20
Bush/Tree 94.64 (+1.08) 95.58 (+1.07) 96.15(+ 0.83) 95.84 (+ 0.94) 97 (+ 0.45) 95.72 (¢ 0.77)

96.24 (+1.56)  95.11 (+ 1.24)

Other 98.18 (+1.29) 97.64 (+0.53)  97.66 (+0.76) 97.82(+0.48)  97.72(0.58) 97.88(+0.39)  96.87 (+0.62) 97.46 (+ 0.66)
Kappa 94.09(+ 1.16) 94.03(+ 1.58) 93.42(+ 1.6) 93.14(+ 1.97)
F1 97.34(+ 0.53) 97.32(+ 0.71) 97.05(+ 0.71) 96.12(+ 0.88)
0A 97.31( 0.53) 97.3(+ 0.71) 97.04(+ 0.71) 96.92(+ 0.87)
AA 96.82(+ 0.64) 97.08(+ 0.79) 97.09(% 0.67) 96.93(+ 0.85)

Table 6: Hagadera - Binary classification setting- Classification accuracies and other

configurations of semi-supervised methods
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Figure 36: Visualization of results from single realization for binary classification setting
for Hagadera
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Base - 20 Realizations - Unlabeled Sample Size as Hyperparameter with (20,40,60)
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Figure 38: Hagadera- Multi-class classification setting- invariance to scale - Mean
Accuracy
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Figure 39: Hagadera- Multi-Class classification setting- invariance to scale - Kappa
Statistics
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Base - 20 Realizations - Unlabeled Sample Size as Hyperparameter with (20,40,60)
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Figure 40: Hagadera- Multi-class classification setting- invariance to shape - Mean
Accuracy
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Class SVM SVM-M SVM-SL-Un

F1 Acc F1 Acc F1 Acc
Invariance to object scale; number of samples per class: 40 ; unlabeled samples : 20
Built-up Area 93.46 (+1.9) 98.3(¢x1.07) 93.8 (+1.81) 98.61(x0.8) 93.02 (+2.36) 97.87 (+2.27)
Vegetation 97.11(£0.94) 99.55(+ 0.29) 97.45(x1.15) 99.55 (+ 0.25) 97.46 (+ 0.87) 99.41 (% 0.35)
Bare Soil 95.92 (+2.01) 95.42(+2.23) 97.19 (+ 0.83) 96.95 (+ 1.28) 96.03 (+2.17) 95.57 (+ 2.44)
Fence 19.55(+8.09) 11.48 (+ 5.67) 19.96 (+4.4)  11.55(+ 3.03) 20.02 (+7.08) 11.8 (+5.21)
Shadow 28.81(+7.28) 17.58 (+ 5.46) 25 (+ 8.09) 15.04 (+ 5.77) 2722 (+7.32) 16.4(+5.41)
Kappa 90.51 (£ 2.12) 63.74 (£ 6.79) 90.62 (+ 2.47)
F1 95.27 (+ 0.98) 96.47 (+ 4.88) 95.19 (¢ 1.33)
OA 93.49 (£ 1.57) 72.65 (£ 5.63) 93.57 (+ 1.74)
AA 64.45 (£ 1.74) 61.2 (£ 3.25) 64.62 (+1.72)

Invariance to object shape; number of samples per class: 40 ; unlabeled samples : 20

Built-up Area  93.39 (+1.89) 98.47 (+1.65)  93.64 (+1.37) 97.81(x1.37)  94.03 (+2.52) 97.48 (+1.78)

Vegetation 97.34(+0.9) 99.39 (+0.41)  97.71(x0.67) 99.63 (+0.28)  97.48(+1.25) 99.54 (*0.37)
Bare Soil 96.74 (+1.36) 95.82(+2.47) 9592 (x1.2) 9521 (1.67) 96.22 (+1.83) 97.03 (+1.11)

Fence 19.84 (+5.39) 1156 (+3.68)  22.34 (+6.77) 13.21(x4.77)  23.48(+7.02) 13.95 (+4.86)
Shadow 28.88 (+9.52) 17.83(+7.25)  27.73(+6.72) 16.97 (+4.9) 26.45(+7.73) 15.86 (+ 5.44)

Kappa 90.09 (+ 2.11) 63.74 (+ 6.79) 89.75 (+ 2.97)

F1 94.91 (+ 1.17) 96.47 (+ 4.88) 94.47 (+ 2.03)

OA 93.2 (+ 1.49) 72.65 (+ 5.63) 92.99 (+2.04)

AA 64.13 (+ 1.46) 61.2 (¢ 3.25) 64.09 (+ 1.49)

Table 7: Hagadera - Multi-class classification setting- Classification accuracies and
other configurations of benchmark semi-supervised method.

Class VSVM VSVM-SL VSVM-SL-Un VSVM-SL-Vun

F1 Acc F1 Acc F1 F1 Acc
Invariance to object scale; number of samples used for model learning and selection per class: 40 ; unlabeled samples : 20
Built-up Area  94.25(+1.18) 98.64 (+0.75)  93.74(+1.77) 98.27 (+1.15) 93.86 (+1.56) 98.66 (+0.76)  90.95(+6.6)  93.9 (+10.7)
Vegetation 97.74 (+ 0.64) 99.44 (£ 0.35) 97.58 (+ 0.75) 99.53 (+ 0.29) 97.45(+ 0.78) 99.49 (£ 0.34) 97.18 (+ 0.94) 99.39 (+ 0.67)
Bare Soil 96.99 (£ 0.74) 96.18 (+1.26)  96.27 (+1.28) 9568 (+1.84)  96.49 (+1.52) 9573 (+1.92)  87.77 (+16.63) 93.92 (+ 6.09)
Fence 23.19 (+7.08) 13.86 (+5.04)  20.44 (+6.92) 11.99 (+ 4.87) 20.84 (+7.81) 12.44(+5.58)  18.95(+8.9)  11.25 (£ 6.14)
Shadow 30.41(+6.2)  18.55(+ 4.6) 32.59 (£9.74) 20.49 (+7.94)  28.92(+7.18) 17.54 (+5.17) 25.62 (+11.88) 15.75 (+ 8.37)
Kappa 91.57 (+ 2.26) 90.92 (+ 2.14) 90.44 (+ 3.15) 87.49 (+7.19)
F1 95.69 (+ 0.99) 95.37 (+ 1.05) 95.02 (+1.88) 93.16 (£ 4.73)
0A 93.23 (+1.59) 93.78 (+ 1.51) 93.45 (£ 2.2) 91.34 (+ 5.22)
AA 65.5 (+ 2.21) 64.82 (+ 1.69) 64.85 (+ 2.04) 63.83 (£ 2.82)

Invariance to object shape; number of samples used for model learning and selection per class: 40 ; unlabeled samples : 20

Built-up Area  94.65(+1.46) 98.54 (+1.11)  93.82(+1.93) 98.1(1.52) 94.35(+1.85) 98.15(+1.18)  95.08 (+6.4) 97.86 (+ 10.42)
Vegetation 97.72 (+0.72)  99.46 (+ 0.4) 97.69 (+ 0.65) 99.32 (+0.37)  97.42 (+1.05) 99.51(+0.41)  98.44 (+0.99) 99.63 (* 0.55)
Bare Soil 97.43 (+0.85) 96.61(+1.86) 9678 (+1.4) 9599 (+2.33)  96.54 (+1.53) 96.09(+1.93)  96.64 (+3.05) 96.53 (+3.22)

Fence 2467 (+6.8) 1471(+4.89)  23.03(+7.9) 13.83(+6.2) 22.76 (+ 6.29) 13.4 (+ 4.31) 26.53 (+ 8.49) 15.88 (+ 6.08)

Shadow 35.4(+9.53) 22.82(+7.86) 33.61(+9.75) 21.44(+817)  33.11(+9.44) 20.98(+7.44)  31.82(+8.91) 19.99 (+ 6.03)

Kappa 92.18 (£ 1.96) 90.54 (+ 3.15) 91 (+ 2.36) 93.10 (£ 11.59)

F1 95.92 (+ 1) 94.93 (+1.89) 95.23 (+ 1.54) 96.22 (+ 9.63)

0A 94.66 (+ 1.37) 93.53 (£ 2.21) 93.85 (+ 1.62) 95.32 (£ 7.93)

AA 65.85 (+ 1.9) 64.82 (+1.76) 65.2 (+1.72) 65.98 (+ 4.34)

Table 8: Hagadera - Multi-class classification setting- Classification accuracies and
other configurations of semi-supervised methods
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Figure 42: Visualization of results from single realization for multi-class classification
setting for Hagadera
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Results from the multi-class classification are obtained and shown in Fig 38, 39, 40,41.
As an overview in all figures, semi-supervised methods (especially SVM-SL-U and VSVM-
SL-U methods) outperformed other methods in few labeled samples in all the variations
of scale and shape. In these graphs, it can be observed that after 50 labeled samples, all
the methods reach their maximum accuracy and kappa statistics, which is why all the
methods hold a similar value. To sum up, the Hagadera data set can be summarized in
a way that in settings to a various range of unlabeled samples, semi-supervised models
indeed achieve higher accuracies for few labeled samples and demonstrates a clear
classification map considering the generated tables for certain labeled and unlabeled
samples.

4.4 Case Study of Extension on Active Learning

The last chapter of the results section focuses on an active learning approach by includ-
ing uncertainty calculations and visualizations of the newly proposed semi-supervised
methods. This extension on active learning is based on the theory in Chapter 3.3 and
follows Algorithm 6. Therefore, a case study is applied on the Cologne data set with
binary classification settings on invariances to scale modification. Additionally, for
all the semi-supervised methods 40 labeled samples and 20 unlabeled samples per
class are selected. In order to observe uncertainty visualization’s impact on relabeling
the most uncertain certain amount of samples, semi-supervised methods have been
selected. As a result, new classification results and uncertainties are visualized, after
normalizing the values once again. All the experiments are shown in Fig. 44, 45, and 46
among their binary classifications and overall accuracy, F1, and kappa statistics.

In Fig. 44, the uncertainty of the initially calculated model is displayed on the top-left
corner of the figure. Due to the uncertainty calculation, samples that are closer to
the hyperplane get the value closer to 0. The samples which are further away from
the hyperplane get the values closer to 1. Overall, the values that are closer to 1 are
considered as safely labeled samples. Therefore, they are colored as white in the
following figure. The values that are close to 0 are colored as red and considered as
most uncertain samples and it is also indicated in the legend. Moreover, the figure
shows that areas that are classified as bush/tree with an overall accuracy value of 91.10
have more uncertain values on the map. Especially, the areas on the right and left corner
and middle-bottom parts of the map. Meanwhile, the second class (“other”) has more
confident areas, more specifically the areas that are classified as shadow and roof from
the multi-classification settings of the Cologne data set. After determining the wrongly
classified areas with the uncertainty visualizations, the most uncertain 100 samples
have been selected. These samples have been assigned to their true classes from
the reference labels and the overall accuracy, F1, and kappa statistics are calculated
once again after re-running the model. Newly calculated statistics indeed showed that
accuracy is increased only with relabeling the most uncertain 100 samples and also it
can be further noticeable from the newly created uncertainty visualization. Although
there is not a significant change between the two uncertainty visualizations due to the
small number of newly labeled samples. Still, it can be noticed that on the top-left corner
of the new uncertainty visualization, uncertainty has been decreased and those pixels
became more confident.
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Figure 44: Visualization of uncertainty results on SVM-SL-U approach
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Figure 45: Visualization of uncertainty results on VSVM-SL-U approach
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Figure 46: Visualization of uncertainty results on VSVM-SL-VU approach
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Figure 47: Comparison of uncertainty visualizations for semi-supervised methods on
Cologne data set

In Fig. 45. uncertainty visualization is created for the VSVM-SL-U approach and displayed
on the right-top part of the figure. Initial classification results showed that overall
accuracy of 93.66 has been reached. Therefore, uncertainty visualization had brighter
areas compared to the previous figure. In the relabeling process, 100 most uncertain
samples have been selected from the bottom part, left and top-right corners of the area,
where the class is mainly bush/tree and uncertainty is much higher compared to the
middle sections. After relabeling, statistics have been calculated, and 0.0.4 increment is
made on overall accuracy, 0.09 in kappa statistics, and 0.04 increment is achieved in F1
scores. New uncertainty values are normalized and visualized in the middle-right side
of the figure. It can be seen those areas that are relabeled, had the lowest uncertainty
values.

In Fig. 46 similar results with Fig. 45 are obtained because the overall accuracy values
were higher than the SVM-SL-U approach. 100 samples have been selected from the
areas where the confidence rate is low and after the rerunning, the model overall accu-
racy of 94.08 is observed with a 0.03 increment. Additionally, change in uncertainty is
observed in the areas in the left part, and uncertainties are dropped after the relabeling
process.

In the comparison of 3 models (SVM-SL-U, VSVM-SL-U, and VSVM-SL-VU) uncertainty
values have been scaled down into the same level for all the methods to make a true
comparison in Fig. 47. As expected, models with higher overall accuracies showed
generally less uncertain areas, mainly in the middle part of the areas. Between the
uncertainty maps of VSVM-SL-U and VSVM-SL-VU difference in uncertainty was only
found near the right side of the visualizations.

To sum up, two inferences can be made from the active learning approach with un-
certainty visualizations. First of all, uncertainty visualizations indeed increase the
accuracies of the models especially when the overall accuracy of the model is already
high.
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Secondly, uncertainty visualizations give a good hint for the user to see the uncertain
areas, and this eventually shows which class that sample belongs to, and it helps the
relabeling process.

5 Conclusion

In this research, semi-supervised learning algorithms have been developed based on
SVM. These new algorithms benefited from the virtual samples which are used to
generate the decisions functions of a classification model invariant. Thereafter, a self-
learning strategy is followed to prune non-informative virtual samples and unlabeled
virtual samples. The baseline methods aimed to improve the learning abilities with
the newly proposed semi-supervised algorithm. For developing the models, very high
spatial resolution multispectral imagery, that is acquired by the WorldView-Il sensor, is
used.

Experimental results are used to solve binary and multi-class classification problems for
areas in Cologne and Hagadera. These results showed that semi-supervised methods
obtained higher accuracies compared to the baseline methods for both of the data sets,
especially in the range for a few labeled samples. Results also indicated that involving
unlabeled sample size as a hyperparameter into the model obtains higher accuracies
and does not restrict the model to a certain number of unlabeled samples. Moreover,
classification maps and tables underline the improvement of those semi-supervised
methods regarding spatial consistency. Additionally, the SVM-SL-U as the benchmark
method obtained better accuracies and kappa statistics in all data sets compared with
the SVM approach. Therefore, it showed that informative unlabeled samples increase
the accuracy of the benchmark methods and give robust measurements for all ranges
of labeled samples.

Furthermore, an active learning approach has been implemented on semi-supervised
methods. It was aimed to enhance the accuracy of the new methods by relabeling the
most uncertain samples based on the uncertainty of the models. Experiments were
conducted on the Cologne data set for the binary classification settings. Uncertainty
visualizations are created to see how uncertain the models are based on their accuracy,
F scores, and kappa statistics. Thereafter, uncertainty visualizations are used to relabel
a specific amount of most uncertain samples. One of the most important conclusions
is that research question one is successfully answered. From the semi-supervised
approaches, VSVM-SL-U and VSVM-SL-VU achieved the highest accuracies for the range
of a few labeled samples for all the classification settings. The SVM-SL-U approach
reached higher accuracies compared to baseline SVM methods, and in kappa statistic
graphs, it reached the highest among all the methods.

Research question two is also answered and it showed that uncertainty visualization of
the models helps the user to pick and relabel the most uncertain samples. Consequently,
the overall accuracy, F1 scores, and kappa statistics of all semi-supervised methods
increase after rerunning the models with new labels. Uncertainty change can also be
observed between the same models.
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In future works, the same methodology can be applied for classifying hyperspectral data
within an adequate processing framework. Additionally, an active learning approach
with uncertainty visualizations can be integrated into all settings of the data sets.
Moreover, this approach can be further adapted to the supervised methods as well. At
last, a combination of the semi-supervised methods and active learning approach can
be integrated better in a collaborative learning scheme.
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