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Abstract  

 

As machine learning techniques are  contributing to scientific research and advancement, 

the interpretability  and visualization of these algorithms grow in importance . These 

techniques have introduced many improvements to advance our understanding of fire 

regime dynamics  outperforming  proces s-based approaches. Neural networks have 

achieved great accuracy with fire modeling, however, challenges arise with unbalanced 

time series. In this thesis, LSTM neural networks, which are designed for sequence 

modeling and handling unbalanced data , are investigated  to explore their ability to predict 

fire ignition points . The research  is conducted  for a small area in western Africa  using 

monthly meteorological  variables and fAPAR as an indicator for vegetation  for a period 

spanning  from  2003 to 2016 . The chosen  methodology is based on training one LSTM for 

each pixel independently . Datasets are pre -processed , structured  as a multivariate time 

series and then  arranged  to fit  LSTM 3D data format. The network architecture was 

chosen by conducting  multiple experiments.  The pixel-based LSTM was able to capture 

the seasonal and spatial varieties  with RMSE value computed at  3.333. However, it  

underestimated the high values of ignitions during the peak of fire season  and was not 

able to record sudden events . To better understand  LSTM behavior, multiple 

interpretation techniques were investigated  to evaluate their abilities to determine the 

most  important features and visualize their dependencies . Permutation feature 

importance gave an overview of overall feature importance  while variance -based feature 

importance was able to map the spatial distribution of each feature. SHAP summary plots 

gave a detailed interpretation of feature importance of precedent time steps. The most 

important features to predict fire ignitions were found to be  fAPAR, precipitation and 

maximum temperature . Recent conditions were found more important north of the study 

area, whereas,  in the middle and southern regions, precedent year conditions were of 

higher importance. SHAP dependence plots were  able to depict  feature -output 

relationships . Using these plots , it was observed that LSTM represented the fire -predictor 

relationship correctly only for  a few variables.  For feature interactions, a 3D extension of 

SHAP dependence plot with added color visual variable was found to be the best 

visualization technique. Visualization of LSTM helped with understand ing how the model 

is learning and which variables were modeled correctly. From here , further improvements 

could be applied leading to increasing trust in machine learning approaches.  

 

Key words : Machine learning, LSTM,  fire ignitions,  interpretability , data visualization  
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1 Introduction  
 

The advancement of machine learning algorithms in all fields has grown a new branch of 

scientific research. Now machine learning techniques have become an essential element 

for solving problems, unraveling hidden patterns , and discovering underlying 

relati onships. The growing volume  of geospatial data collected from remote sensing 

satellites, location detection systems , and social media  is presenting formidable  

challenges to  Geographic Information Scientists, Cartographers , and data analysts leading  

to the investigat ion of  various Artificial Intelligence  (AI) and deep learning approaches in 

an attempt to bridge the gap between GIS, Cartography, and data science (Wilkening, 

2019).  

Many researchers have started using machine learning technique s to facilitate  creat ing 

maps  by automatically detecting geographical features such as mountains, forests, 

borderlines , and human settlement patterns from scanned historical maps  (Chiang et al., 

2020; Schnürer et al., 2021 ; Uhl et al., 2020 ), or by automatic extraction of terrain features 

from digital elevation models (DEMs)  (Torres et al., 2020 ). Other important AI applications 

in Cartography are  the classification of map types (Yang et al., 2020; Zhou et al., 2018 ), 

creating maps by automatically classifying remote sensing images (Zou et al., 2015 ), 

aligning vector data with geographical features automatically (Duan et al., 2017 ), and map 

generalization for vector and raster data (Chen et al., 2020; Yan et al., 2019). 

Despite the advances in machine learning approaches, trusting these models has been a 

point of debate . Deep complex model s are considered black  boxes which means  the 

algorithms do not provide a clear explanation of why they made a certain decision . 

Therefore, many researchers have preferred applying traditional simpler models at the 

expense of accuracy. But since this complexity is what gives the extraordinary predictive 

abilities  for machine learning models, others have developed multiple techniques to 

interpret these models and visualize what is happening  inside  (Molnar, 2020 ). To visualize 

a machine learning model means to visualize the relationships  between  each factor in the 

model and the output prediction using multivariate or multi -dimensional data 

visualization  techniques.  

One of t he ongoing research question s in the environmental remote sensing field  is the 

suitability of machine learning models or proc ess-oriented models to represent the 

different relationships between fire and the factors controlling its occurrence. Process-

oriented fire models are widely used to predict different aspects of fire regimes  (Hantson 

et al., 2016). However,  recent studies have found disagreement among available models 

when predicting future fire trends  (Andela et al., 2017 ; Forkel et al., 2019b ). This is due to 

inaccurately  represented some fire -predictor relationships  (Forkel et al., 2019a ). 
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Therefore, ongoing research is headed towards  using complex machine learning 

techniques  to better understand the dependencies between fire and its driving factors.  

Feed-forward Artificial Neural Networks  (ANNs) have displayed great accuracies with 

predicting burned area s (Joshi et al., 2021; ÖzbayoỆlu et al., 2012 ). However, new satellite -

derived datasets allow to also estimate other attributes of fire regime such as fire 

occurrence , i.e. the number of ignition points (Andela et al., 2019 ). Recently, more 

advanced type s of ANNs such as Long Short -Term Memory neural networks (LSTM) have 

been used to predict and understand the controls on environmental dynamics  (Besnard 

et al., 2019), but it has not been widely used to predict fire dynamics.  

In this thesis,  remote sensing datasets  are used  to  develop a machine learning model using 

LSTM neural networks to predict  fire occurrence . LSTM promising features in predicting 

time series data  have encouraged this research . Furthermore, this research will focus on 

the available visualization techniques which can be used to interpret LSTM neural 

networks and their capability to visualize the relationships between the variables  and the 

modelɅs output. 

Following this introduction, this chapter discusses the motivation and reasons behind the 

choice of this type of neural network s supported by a literature overview of previous 

research and studies. Chapter 2 describes the methodology used to choose the structure 

of LSTM and the available techniques  to explain and visualize the modelɅs output. Chapter 

3 shows the results of predicting fire ignitions with LSTM and evaluates its performance. 

This chapter also compares the abilities of visualization techniques to display LSTM featu re 

importance and dependencies.  Finally, chapter 4 concludes this  thesis  and gives a 

summary of future work . 

 

1.1 Fire in the Earth system  

 

Fire is one of the main components of the Earth system. It has been a part of the natural 

cycle for a long time, dating back to the emergence  of terrestrial plants around 420 million 

years ago (Scott et al., 2006 ). Wildfire has an important impa ct on the major global cycles 

that regulate climate , which includes energy fluxes, hydrologic cycles and biogeochemical 

cycles (Harrison et al., 2010 ). Fire can impact the atmospheric chemistry through trace 

gases and aerosols emissions. The presence of these gases is believed to influence energy 

fluxes through affecting radiationɅs scattering and absorption. This also has an influence 

on cloud cover and albedo, and therefore, precipitation (Lasslop et al., 2019 ).  

As a part of the carbon cycle, natural wildfire causes a sudden release of the carbon 

dioxide  stored in vegetation.  Wildfire releases around 2 to 4 Pg (Peta Gram) Carbon per 
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year in addition to several greenhouse gases (Bowman et al., 2009 ). Combustion affects 

the soil properties in terms of nutrients supply , as fire alters the nitrogen and phosphorus 

cycle. This in turn exerts influence on fuel quantity, and by that, biomass structure and 

land cover distribution and composition are affected. Fire also impacts deforestation, 

plant mortality and reproduction. Fire affects human lives either by direct mortality due to 

fires expansion to urban regions or by influencing air quality. In addition to CO, biomass 

burning produces toxic matters and pollutants such as benzene which could lead to major 

health effects (Voulgarakis et al., 2015 ).  

Fire occurrence depends on the existence of three main controls. A minimum temperature 

which the fuel should reach for the fire to start. Simultaneously, Fuel moisture content 

should be lower  than a certain threshold (Albini, 1976 ). When the moisture content of the 

fuel is high, all energy will be utilized to vaporize the moisture, and therefore, ignition 

would fail (Viegas, 1997). This is related to the general climate temperature and the 

prolonged dry period without any kind of precipitation. Even when all weather conditions 

are suitable for combustion, a sufficient amount of fuel on site is crucial to sustaining a 

fire. In c ase of non -continuous vegetation, ignitions might happen but the fire would be 

extinct in a short time (Thonicke et al., 2001 ). 

To represent each factor, numerous variables can be used. Therefore, m ultiple studies 

have highlighted the most important drivers using satellite data and machine learning 

techniques (Aldersley et al., 2011 ; Archibald et al., 2009 ; Bistinas et al., 2014 ; Forkel et al., 

2019a). The climate variables which were identified as important fire controls globally are 

maximum temperature and diurnal temperature range (DTR). DTR  is considered as a 

proxy for vapor pressure deficit which controls the drying rate of dead fuel (Bistinas et al., 

2014). Dryness-related variables such as  precipitation and the number of wet days per 

month were highly important in tropical forest regions (Forkel et al., 2019a ). Antecedent 

dry -day period was also found to significantly influence fire occurrence and burned area 

(Aldersley et al., 2011 ; Kuhn-Régnier et al., 2020 ). 

For fuel presence and productivity, the most important variables are vegetation type, fuel 

litter and acc umulation (Forkel et al., 2019a ). According to  Kuhn-Régnier et al.  (2020), 

shorter timescale conditions a re more important in the tropics , and among fuel -related 

vegetation predictors, the Fraction of Absorbed Photosynthetically Active Radiation 

(fAPAR) appeared to be the most important predictor. fAPAR is considered as a measure 

of the solar radiation absorb ed by live leaves for the photosynthesis activity and can be 

used as an indicator of vegetation cover. fAPAR ranges between 0 and 1, where a value of 

zero indicates no flammable vegetation (Knorr et al., 2014 ).  

To better understand the dynamics between all the elements several models have been 

built to simulate these connections and discover the underlying relationships among them  

(Hantson et al., 2016 ). Dynamic Global Vegetation Models (DGVMs) and Earth system 
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models tr y to combine all biogeochemical cycles and disturbances, such as wildfire. The 

comprehension of these dynamics is essential to understand the local and global changes 

in natural cycles espe cially due to human interferences.  

 

1.2 Predicting fire with process -oriented models  

 

Prediction of wildfire is extremely difficult due to the complexity of factors controlling the 

occurrence and spread of fire. Those physical factors are now well known after  years of 

descriptive research, however, configuring the exact physical relationships between fire 

and its predictors is not yet fully comprehended. As fire is a product of not only direct 

relationships with multiple environmental and anthropogenic  variabl es, but also with their 

mutual influence at an exact point in time. Several models have been developed to study 

the relative importance of each factor to different aspects of wildfire and to predict its 

occurrence, risk and danger (Chuvieco et al., 2010 ). 

 

The most ubiquitous models are fire models coupled with dynamic global vegetation 

models (DGVMs) or terrestrial ecosystem models (TEMs). The complexity of these models 

varies from simple empirical models (Reick et al., 2013; Thonicke et al., 2001 ) which were 

coupled with different DGVMs (Levis et al., 2004; Pechony et al., 2009 ; Sitch et al., 2003), to 

process-based models of medium or high complexity (Arora et al., 2005 ; Lehsten et al., 

2010; Li et al., 2012, 2013; Melton et al., 2016 ; Pfeiffer et al., 2013 ; Thonicke et al., 2010 ; 

Venevsky et al., 2002; Yue et al., 2014). The process-oriented models try to describe the 

environmental processes using a set of equations derived from physical relationships. 

These models evolved over time and represented more complex environmental and 

anthropogenic variables and now they are able to predict all aspects of fire regimes such 

as burned areas, fire occurrence, fire size, spread and speed (Hantson et al., 2016 ).  

 

Process-oriented fire models simulate the predictor -response relationships  in different 

ways. Hence, current fire models sh ow different results in prediction of future trends. 

Whereas satellite -derived datasets show a declining trend in burned areas globally (Andela 

et al., 2017; Forkel et al., 2019b ), current fire -enabled dynamic global vegetation models 

(DGVMs) do not produce this apparent decline, while some models underestimate it, 

others show an increase in global burned areas. Using identica l forcing datasets to 

compare these models behaviour when predicting future scenarios (Rabin et al., 2017) 

showed the ability of fire models to simulate burned areas spatial pattern, however, the 

size of the total burned areas differ significantly (Hantson et al., 2020 ). This means that the 

relationships between fire and its dri ving factors are not yet understood and correctly 

represented.  Forkel et al. (2019a) found that DGVMs are ab le to reproduce the sensitivities 

between burned areas and climate variables, however, they underestimate the 

relationship with socio -economics drivers and do not simulate vegetation distribution and 

fuel correctly.  
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Driven from the ideas that process-based fire models are still poorly representing fire 

behaviour, trend and extreme events under changing conditions of the climate (Sanderson 

et al., 2020), ongoing research is focusing more on using data -driven empirical models 

especially machine learning models fr om simple models to a combination of deep Artificial 

Neural Networks (ANNs). The field of artificial  intelligence  has presented many solutions 

to complex problems as these algorithms account for non -linearities which could better 

describe the relationships between fire and its drivers and help to understand the 

complexity of the conditions of fire occurrence and spre ading.  

 

1.3 Predicting fire with machine learning models  

 

The increase of data availability due to remote sensing techniques have allowed the de-

velopment of environmental data -driven approaches which require significant amount s of 

data and long time series to  learn and produce results. A variety of machine learning (ML) 

models have been used in literature. Random Forests (RFs) are the most used technique 

to study the fire -driver relationships  and further explore which factors are more important 

to fire regimes  on a sub -continent scale (Archibald et al., 2009 ; Kim et al., 2019 ) and global 

scale (Aldersley et al., 2011 ; Forkel et al., 2019a ). RFs account for non -linearity and this  

gives them an advantage over traditional regression models which presume the fire -pre-

dictor relationship to be linear.  

 

Comparative studies have been conducted to establish the most accurate technique to 

predict wildfire.  Several researchers have compared the traditional regression models 

with higher order ML techniques such as neural networks and random forests  (Guo et al., 

2016; Jafari Goldarag et al., 2016 ). In these studies , regression models failed to capture the 

patterns of fire probabilities. Another study has compared five data mining algorithms in-

cluding Multiple Regression model, Support Vector Machines (SVMs), Random Forests and 

a neural network to predict forest fire using only meteorological data. In this study, SVMs 

performed the best and w ere capable of predicting  small fires, however, for large fires, 

they had lower accuracy (Cortez et al., 2007 ). In another research,  Song et al. (2020) applied 

a linear model, a regression tree and a neural network to forecast monthly wildfire predic-

tions on a global scale. The neural network outperformed the latter techniques when using 

the same predictor variables .  

 

Different types of Artificial Neural Networks have been also used in several research to 

predict wildfires. On  a regional scale,  Maeda et al.  (2009) used a feed forward neural net-

work with different architectures and a backpropagation algorithm to predict forest fires 

in the Brazilian  Amazons. In this study, a simple network with one hidden layer and four 

neurons achieved satisfactory results with fire risk spatial distribution areas consistent 

with fire season observations. Multiple studies have also obtained high accuracy mapping 

fores t fire probability  and burned forest areas using feed forward multilayer perceptron  

(MLP) networks (ÖzbayoỆlu et al., 2012 ; Satir et al., 2016 ). On a global scale,  Joshi et al. 

(2021) presented a global model to predict burned areas using a multilayer feed forward 
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neural network. In this study, the dataset was split into geographical regions that share 

common features (e.g., same vegetation structure, level of human influence). Then,  the 

model was trained to detect fire drivers in each region. The model achieved high levels of 

accuracy with global spatial correlation of 0.92. On the other hand, the model failed to 

distinguish fire extremes at an annual regional scale and was able to c apture only 23% of 

the observed global decline in burned areas . 

 

Neural networks have achieved great accuracy with modelling and predicting spatial pat-

terns of different aspects of fire regimes. However, challenges arise when modelling a time 

series with extreme or sudden events. For this purpose, more advanced types of NNs 

could perform better and might be able to model more complex relationships.  

 

1.4 Long-short term memory (LSTM) neural networks  
 

Long-short term memory neural networks  (LSTM) are a special type of Recurrent Neural 

Networks (RNNs). The basic difference between RNNs and feed -forward neural networks 

is the presence of feedback loops (Figure 1). This means, in RNNs, each hidden neuron 

takes current input from the previous layer and also what it has learned from the prior 

inputs. This allows RNNs to use previous knowledge when making future events 

predictions. The concept of the loop can be unders tood by unrolling the RNN. The loop 

represents a chain or sequence of copies of the same network, and this makes RNNs more 

appropriate for sequence modelling such as speech recognition, handwriting detection, 

sentiment analysis and time series forecasting.  The main pitfall of RNNs is the vanishing 

gradient problem when dealing with long sequences (Goyal et al., 2015, pp. 129ɀ134). To 

solve this problem , Hochreiter et al.  (1997) proposed to use a new memory cell structure 

with input, output and forget gates that allow better control over which information to 

preserve and which to forget. The structure of the LSTM un it can be seen in Figure 2. LSTM 

allows RNNs to remember their input over a long period of time.  

 

 
Figure 1: Architectural difference between feed -forward neural networks (b) and recurrent neu ral 

networ ks (a) (Goyal et al., 2015, pp. 122ɀ123) 
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Figure 2: LSTM cell structure  (Van Houdt et al., 2020 ) 

 

Multi -layer Perceptrons (MLPs) can be applied to sequence prediction problems, however, 

they have certain limitations (Brownlee, 2020, pp. 7 ɀ9) that can be compensated by using 

RNNs. LSTMs have proven to solve many sequence prediction problems that cannot be 

solved by MLPs (Gers et al., 2001). Time series forecasting is a challenging problem for 

most algorithms given the fact that here the temporal structure and the order of steps 

should be preserved. Multiple techniques have been used to study time series processes. 

The Autoregressive Integrated Moving Average (ARIMA) model is often used, however, this 

technique tends to center past events around the mean which preve nts the prediction of 

extreme values (Hua et al., 2019 ). Furthermore, Support Vector Machines (SVMs) have 

been extensively stu died for time series analysis but it is presented with multiple technical 

challenges (Sapankevych et al., 2009 ). 

 

LSTM has been used in different fields to handle imbalanced or noisy time se ries issues 

(Giles et al., 2001; Han et al., 2004 ) and has given promising results. It has also been 

employed for anomaly detection (Taylor et al., 2016 ) giving its ability to preserve long term 

dependencies and remembering past events.  

 

In the field of fire prediction, LSTM has not been widely used. Liang et al., (2019) employed 

three types of neural networks including LSTMs to estimate wildfire scale using only 

meteorological  predictors. LSTM gave the highest accuracy with 90.9%.  Perumal et al.  

(2020) compared two types of RNNs and their ability to model the duration an d direction 

of wildfire. LSTM and Gated Recurrent Unit (GRU) which is a variant of LSTM that is able to 

capture dependencies of different time scales were tested. In this study, GRU performed 

better than LSTM for longer time series.  Kong et al.  (2018) used MODIS data to calculate 

the global environmental monitoring index (GEMI) for each pixel. Each pixel then had one 

time series and one LSTM was trained for each one independently. Afterwards , the 

prediction was depicted in one burned area map. The prop osed approach gave effective 

and stable results for online disturbance detection.  
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LSTMs have shown impressive results in predicting time series data and extreme events. 

Therefore, in this thesis, LSTMs are used to predict fire oc currence with different 

fr equencies over a period of time to explore their predictive ability and study their 

efficiency to correctly capture the relationships and sensitivities between fire and driving 

factors.   

 

1.5 Visualization of machine learning and neural network models  
 

Trusting machine learning models has always been a point of debate in scientific fields. 

Given the fact that most of these algorithms do not  explain how they made their decisions 

or  explicitly demonstrate the functions they concluded to represent relations hips and 

since these functions are completely driven from the datasets provided , arguments  have 

been made that using different data might lead to different results because they are  not 

built on clear physical relations. However, the achievements  and accura cy of these models 

have proven that they are learning in a correct manner , and this encouraged researchers 

to use them in multiple fields including Cartography  especially with the widespread use of 

geo-spatial data.  

To help with understanding what is happ ening inside these black boxes, recent 

developments have succeeded in making  these models interpretable  by using data 

visualization techniques to facilitate human interpretation and give confidence when 

adopting a data -driven approach. To visualize a machi ne learning model means to 

visualize the relationships  between each factor in the model and the output prediction in 

an n-dimensional  space. Visualization of these dependencies helps with understanding 

how the model is working, why the model is making this decision , and if  the model is 

working correctly or failing. The complexity of decomposing these relationships depends 

on the model type and its ability for interpretation .  

Miller (2019) gave a non -mathematical definition of interpretability Ʉϥnterpretability is the 

degree to which a human can understand the cause of a decisionɅ. Therefore, if a model  is 

of high interpretability, this mean s that predictions or decisions made by the model  and 

the reasons behind them  are easy for humans to understand (Molnar, 2020 ). In this 

context, we can distinguish basically between two ty pes of models, Interpretable Models , 

and black -box models. Interpretable Models, such as linear regression, logistic regression, 

Naive Bayes and decision trees, provide an understandable way of how the algorithm 

created the model. With these models , we can understand how the trained model makes 

predictions, how the model coefficients or weights affect the predictions and why the 

model predicted a certain value or class for one instance and for a group of instances 

(Molnar, 2020 ).  
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Blackbox models, such as neural networks, are more difficult to explain.  One prediction in 

a neural network might go through millions of mathematical operations and this make s it 

impossible for humans to simply interpret the behavior.  Therefore, multiple Model -

Agnostic Methods  were developed to separate  the explanation from th e machine learning 

model. These technique s can be applied to any model  in theory  but some technical 

limitations might prevent this. The nature of LSTM data format limits the application of 

many interpretation techniques. Therefore, in this thesis, availabl e approaches are studie d 

and compared to investigate which of these methods can be applied to interpret and 

visualize LSTM neural networks in an n-dimensional space.  

 

1.6 Research objectives and questions  
 

The research will be divided into two main objectives  and derived sub -objectives:  

a- The first objective of this research is to predict wildfire  occurrence  using remote sensing 

data by applying Long Short -Term Memory (LSTM) neural networks and investigate its 

potential to understand the controls on fire dyna mics. 

Recently, deep learning methods such as long short -term memory networks (LSTM) have 

been used to predict and understand the controls on environmental dynamics . However, 

this kind of neural networks have not been used to predict fire dynamics. Therefore, we 

aim at :  

1. Explore LSTM predictive ability of  fire ignition points  

2. Detect LSTM ability to correctly capture the relationships between fire and  driving 

factors  

b- The second objective is to compare available methods Ʌ abilities to  visualize and interpret 

LSTM neural networks . 

Visualizing the machine learning modelɅs dependencies in a correct way is essential for 

better interpretation and understanding of results . Therefore, this research will focus on:  

1. Investigate current interpretation techniques and their ability to characterize  global 

and local feature importance, the spatial distribution of feature importance and 

predictor -response relationships and interactions . 

2. Analyzing the most effective visualiz ation techniques for this type of models  
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Therefore, this research will try to answer the following questions:  

Q1: What are the opportunities and limitations of using LSTM neural networks to predict 

fire occurrence?  

Q2: What is the ability of LSTM to rec ord the relationships of fire drivers ? 

Q3: What is the best available method to interpret and visualize LSTM neural networks in 

an efficient and understandable way ? 

This research is intended to contribute to the Remote Sensing field, especially, 

environmen tal research which uses satellite data to observe, analyze, model, and predict 

changes in ecosystems. The results of this thesis will provide useful insights for wildfire 

modelling about the potential and predictive power of LSTM neural networks. 

Furthermore, this study will be beneficial to the area of data visualization, specifically 

cartographers, statisticians, and data scientists working with multivariate visualization 

techniques  and machine learning . 
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2 Methodology  
 

This chapter explains  the steps taken to design the neural network structure starting from  

available datasets , required data pre -processing techniques, and choosing the networkɅs 

hyper -parameters based on experimentation . To investigate if the network is representing 

the correct dependencie s, multiple visualization techniques are studied  to assess which 

available approach works best with this type of neural networks.  

 

2.1 Fire predictors and Datasets  

 

The main variables of fire occurrence can  be generally summarized as the presence of an 

ignition source, availability of fuel and weather conditions.  In this research, t he 

meteorological variables  considered are  2-metre maximum and minimum temperature, 

total precipitation, and wind speed . All met eorological  variables were obtained from the 

CRU JRA V2.0 dataset (Harris, 2019 ). The units of measurements are for temperature 

variables in Kelvins, for precipitation in kg/m 2, and for wind speed in m/s.  All variables are 

provided on a 0.5 deg latitude x 0.5 deg longi tude grid.  DTR was calculated based on daily 

maximum and minimum temperature obtained from the same dataset .  

To account for the antecedent dry -day period, many fire danger indices were used in 

literature. In this thesis, the Nesterov Index (Nesterov, 1949 ) is used. It is a simple daily fire 

danger rating index that requir es daily air temperature, dew point temperature and 

precipitation as input data. This index accumulates weather -related conditions to measure 

the period of consecutive days without precipitation. When the daily precipitation exc eeds 

3mm, it is then set to zero. The Nesterov index is calculated as follows:  

ὔὍ ὝὝ Ὀ  

Equation 1: The Nesterov Index  

Where: W = number of days since last rainfall > 3 mm, T = midday temperature (°C), D = 

dew point temperature (°C)  

The Nesterov Index was also calculated based on meteorological data obtained from CRU 

JRA V2.0. For fuel presence and accumulation,  fAPAR variable was obtained from the 

MOD15A2H dataset (Myneni et al., 2015 ), with spatial resolution of 0.25 deg latitude x 0.25 

deg longitude grid.  
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To train and validate the neural network, the Global Fire Atlas dataset (Andela et al., 2019 ) 

is used. The dataset contains monthly data of ignition count estimated by Number/ month. 

The algorithm for fire ignition detection is based on MODIS datasets of moderate 

resolution, this means that the s mallest fire detected is one MODIS pixel (approximately 

21 ha) (Andela et al., 2019 ).  The monthly fire atlas data has a spatial resolution of 0.25 deg 

latitude x 0.25 deg longitude grid and spans  over the years 2003 -2016. 

A list of all the variables used can be found in (Table 1). All variables are given in temporal 

resolution of one month and co vers the period from January 2003 till December 2016. For 

other important variables such as plant functional type, biomass and fuel litter, only static 

maps were available. The use of such type s of variables could cause bias in the LSTM 

neural network, the refore,  these factors  were excluded . An ignition source is considered 

to be always available , whereas the concentration will be on studying the surrounding 

conditions .  

 

Table 1: Overview of the variables and available datasets  

Variable  Description  Data source  Spatial 

Resolution  

Temporal 

Resolution  

Predictors  

Tmax Mean of monthly  maximum 

temperature  

CRU JRA v2.0 (Harris, 2019 ) 0.5x0.5 Monthly  

Tmin  Mean of monthly  minimum 

temperature  

CRU JRA v2.0 (Harris, 2019 ) 0.5x0.5 Monthly  

Pre Total precipitation  CRU JRA v2.0 (Harris, 2019 ) 0.5x0.5 Monthly  

NI Nesterov Index  CRU JRA v2.0 (Harris, 2019 ) 0.5x0.5 Monthly  

Wind  Wind Speed CRU JRA v2.0 (Harris, 2019 ) 0.5x0.5 Monthly  

fAPAR Fraction of Absorbed 

Photosynthetically Active 

Radiation  

MODIS: MOD15A2H (Myneni 

et al., 2015) 

0.25x0.25 Monthly  

Target variables  

Fire ignitions  Count of ignition points per 

cell 

Fire Atlas (Andela et al., 2019 ) 0.25x0.25 Monthly  
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2.2 Study area  

 

For this thesis, a region in the African continent spanning from 4°  to 16° North of the 

Equator and 18° West to 4° East was chosen  (Figure 3). This area includes two main climate 

zones, a Tropical savanna climate  zone that corresponds to the Köppen climate 

classification categories ɄAwɅ (for a dry winter) , and a Semi-Arid climate  zone in the north 

where it is close r to the Sahara desert  (Transition between humid climate and desert 

climate) (W. Köppen, 1936 ). In the southern parts of the region humid forests are the 

dominant vegetation.  In tropical savanna climate, the vegetation is generally characterized 

by tree -studded grasslands and the tall, coarse grass called savanna. In semi -arid regions, 

short vegetation like grass or shrubs are usually found  (Figure 4). Fire occurrence is 

frequent in this region. Fire season usually extend s from September till June every year as 

it corresponds with the dry  season.  

 

 
Figure 3: Study Area with  a sample of ignition count  for one month  
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Figure 4: Land cover map in the Sahel zone. The red rectangle was added to indicate the location 

of the study area in this thesis. Source: From GLC 2000, EU-JRC data (Mbow, 2017 ) 

 

2.3 Data pre -processing  

 

When building a machine learning model, data preprocessing  is the first step to clean, 

format , and organize raw data to make it suitable for the neural network. The steps here 

involve homogenizing the datasets to similar spatial and temporal resolution, data 

integration, data cleaning to handle missing  values, data reduction to eliminate correlated 

variables  and data transformation to transform the data to an appropriate form. These 

steps are highly important to avoid misleading results.  

2.3.1 Data aggregation and resampling  

 

The original dataset s of Tmax, Tmin, W ind  and NI cover the period from 1901 to 2018. As 

a first step, the datasets  were sliced  to match the study period. All datasets are available 

in NetCDF file format. As seen in Table 1, the target variable dataset is on a different grid 

size from the predictor variables except for fAPAR. This makes it difficult to work out the 

differences or combine the datasets together. Therefore, it is  necessary to remap the 

coarser grid into a finer one to match the target dataset. Since the resolution of the target 

grid is exactly half the resolution of the variable grid, this means that each cell value will 
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be interpolated to the neighboring  four cel ls. For this , the bilinear interpolation remapping 

method using Climate Data Operators  (CDO) (Kaspar et al., 2010 ) is used. All the variables 

were remapped to 0.25 deg latitude x 0.25 deg longitude grid .  

The diurnal  temperature range (DTR) is the difference between the daily maximum and 

minimum temperature. DTR was calculated for the daily data and then  aggregated to 

monthly time steps to match the target dataset. Afterward, DTR was also r emapped to the 

new grid using bilinear interpolation.  

After matching all the variables  to the same spatial and temporal resolution, all files were 

merged into one NetCDF file which contained all 7 predictor variables and the target one. 

Furthermore, a mas k was applied to exclude all ocean pixels to reduce the size of the 

dataset.  

 

2.3.2 Missing values  

 

The presence of missing values in a dataset could cause serious problems for data analysis 

and the neural network. Inappropriate handling of missing values could cause bias and 

misleading results (García et al., 2015). Therefore , it is important to understand the dataset 

in order to handle the missing values in the most efficient way. First, the missing values  

were calculated  in all variables over the whole study area (Table 2) after excluding the 

ocean region. We can observe that the missing values are only present in the ignitions and 

fAPAR features.  

One of the most common methods in dealing with missing values i s simply dropping  them. 

However, in this  case this is not possible. First ly, each pixel represents a time series and 

dropping these values would ruin the continuity  of the data, and secondly, the limited size 

of the dataset. Nonetheless, after further studying the data, it is safe to fill the missing 

values with zeros. The missing data represent no fire occurrence in the ignitions variable,  

and since a part of the st udy region is a desert, this implies no plants exist in these areas, 

therefore, no fAPAR.  
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Table 2: Exploring the dataset to allocate the missing values  

Variable  Count of Missing Values  

DTR 0 

fAPAR 524669 

Ignitions  2025479 

NI 0 

Pre 0 

Tmax 0 

Tmin  0 

Wind  0 

 

 

2.3.3 Multicollinearity test  

 

Multicollinearity is the occurrence of high intercorrelations among two or more 

independent variables in a multiple regression model. Multicollinearity is different than 

correlation. Whereas correlation is a linear relationship between two variables, 

multi collinearity can happen between two variables or between one variable and a linear 

combination of others (Alin, 2010). Multicollinearity makes the regression estimate highly 

unstable. This instability will increase the variance of estimates and make them unreliable 

(Donald et al., 1967 ). If the estimates are not reliable, the prediction accuracy for the model 

will not be trustworthy and this  can lead to skewed or misleading results when we try to 

understand the importance of each  predictor variable to predict a target variable 

(Shrestha, 2020 ).  

In literature, there are different techniques to detect multicollinearity  (Daoud, 2018 ; 

Shrestha, 2020 ). The Variance Inflation Factor (VIF) assesses how much the variance of the 

estimated regression coefficient increases if the predictors are correlated. The idea of 

variance inflation is that first , we run an auxiliary  linear  regression of one of the 

indep endent variables on all the other independent variables to get a value of R -squared. 

Here, R2 essentially tells us how well the regressed variable describes the movements in 

the other variables. High values of R 2 mean that th e variable is multicollinear  with linear 

combinations of the other variables . VIF is calculated using Equation 2: 
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Equation 2: Variance Inflation Factor (VIF)  

Where: Ὑ  is the coefficient of multiple determination of x i on the remaining variables 

(Shrestha, 2020 ). The higher values of R 2 give smaller value s of the denominator, therefore, 

higher value of VIF.  

Table 3 shows the results of  calculating  VIF values for  the entire dataset. We can see that 

the variables with  the  highest values of VIF are tmax, tmin , and DTR. The lowest value of 

VIF is 1 which indicates no correlation , on the contrary , VIF values have no upper limit. If 

VIF < 10, thereɅs a moderate multicollinearity among the variables, however, itɅs preferable 

for the VIF to be lower than 5. To treat multicollinearity, the correlated variables are 

removed one at a time and VIF s are then  recalculated . The variables are dropped 

according to t heir importance. Therefore, tmin  was excluded first  and VIF values were 

recalculated  (Table 3). It is observable now that all VIF values are low and it is safe to say 

that there is no multicollinearity among the predictors.  

 

Table 3: The variance inflation factors (VIFs) of the variables before and after dropping one of the 

correlated predictors  (tmin)  

Variable  VIF VIF after 

dropping tmin  

Wind  1.96 1.96 

DTR 538577.07  1.66 

fPAR 2.91 2.91 

NI 1.31 1.31 

Pre 2.09 2.09 

tmax  2257348.76  1.49 

tmin  2229555.77   

 

 

2.3.4 Data transformation  

     

In general, linear regression models like simple linear regression or logistic regression 

expect the outcome variable to be normally distributed but they do not make assumptions 

about the distribution of the predictor variables. Non -linear regression model s do not 

have this assumption, yet  some studies  have taken interest in the prediction accuracy of 

artificial neural networks  (ANN) when the outcome variable is highly skewed.  Larasati  et 
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al., (2019) have found no significant decrease in the ANN accuracy when dealing with 

skewed data. On the other hand, studies have found that  transforming severely skewed 

variables to a roughly normal distribution often results in a better performance (Kubben 

et al., 2020, pp. 79ɀ81; U. A. Kumar, 2005).  

Therefore, a sample of the data  was taken  i.e., a random pixel , and the distribution  of data 

was visualized  (Figure 5). It is visually observe d that the target variable (ignitions) is 

extremely positively skewed.  This also applies for NI and pre.  This is detected  in the whole 

dataset after running many  samples. To handle the problem of skewed data, two main 

approaches can be followed. The first o ne is looking for  appropriate data processing 

techniques and the other technique is finding an appropriate model approach. In this 

section, several data transformation techniques will be applied to  mitigate  the data 

imbalance as possible. The focus will be  on the target variable i.e., ignitions.  

Several of the most ubiquitous  data transformation techniques were applied  to all 

variables , for example, log transformation, square root transformation, box -cox 

transformation (Box et al., 1964 ), and yeo -Johnson transformation (YEO et al., 2000) (Figure 

6). Prior to applying the transformations, a small value of one was added to the variable 

to avoid the logarithm of zero and dividing by zero in the cox -box technique as it applies 

the reciprocal transformation in some cases. It is clearly observed that the transformat ion 

techniques did not convert the data distribution to Gaussian, nonetheless , the box -cox 

and yeo -johnson transformations slightly  mitigated the skewness of data. The reasons 

could be that the data size is small, in addition to being severely skewed with inflated zeros. 

Furthermore, multiple combinations of techniques  were applied  to test their effects, 

however, the final product did not improve significantly and in some cases performed 

worse.  

The effect s of these transformations on the neural network resu lts are yet to be tested in 

the following sections. Therefore, no preferable transformation technique is selected at 

this point.  
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Figure 5: Histogram plots with kernel density for all variables of  a random pixel in the data set 

 

 

Figure 6: The effect of applying multiple transformation technique on the highly skewed output 

variable  (ignitions count)  
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2.3.5 Feature scaling 

 

When the dataset has multiple variables with different units of measurement, feature 

scaling facilitates direct comparison between variables . Machine learning techniques 

basically see only numbers. When we have large numbers in one feature and rea lly small 

numbers in another, the algorithm makes an assumption that higher numbers get higher 

priority and this increases the difficulty of the problem being modeled and causes bias in 

the output.  

The choice of scaling technique depends on the data distr ibution. Data normalization 

using the Min -Max scaler which scales the data within the chosen range [0,1] was applied  

considering that all the variables in our dataset (inputs and output) are not normally 

distributed. The Min -Max scaler is calculated as in Equation 3: 

ὼ
ὼ ὼ

ὼ ὼ
 

Equation 3: Min -Max Scaler 

 

2.4 LSTM architectures and experiments  
 

As explaine d in  1.4, LSTM is designed for sequence modeling and prediction. This means 

that the plain model of LSTM does not consider 2D data and therefore any spatial 

information will be lost  (Van Houdt et al., 2020 ). However, due to the powerful abilities of 

LSTM to predict and capture long -term dependencies, several researchers  have used ei-

ther pure LSTM models (Arslan et al., 2019 ; Kong et al., 2018 ) or developed new models to 

extend the application of LSTM to handle spatio -temporal data.   

The inclusion of spatial information has been done in various techniques. One of the meth-

ods is using a graph network to capture the spatial connectedness before passing the re-

sults to another neural network like LSTM (Khodayar et al., 2019 ; Perumal et al., 2020 ). 

Other researchers have worked on the improvement of the LSTM cell design by adding an 

additional cell that  memorizes the spatial information (Wang et al., 2017, 2019). Moreover , 

the most ubiquitous method used among researchers is embedding a convolutional neu-

ral network that reads the spatial informat ion and then pass es them  to an LSTM network 

as a sequence (A. Kumar et al., 2020 ; Moskolaï et al., 2020 ). However, these approaches 

were developed to work with a univariate  sequence, where a time series of the same var-

iable is fed to the network to learn from previous observations and then predict the next 

value. In  this thesis , the aim is to predict one independent variable based on other inputs 
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i.e., multivariate time serie s. In literature , there are few available models to predict multi-

variate time series that consider the spatio -temporal dependencies , and this is done  also 

by embedding  different types of neural networks as a front -end of the model  to read the 

spatial infor mation  (Gou et al., 2020 ; Xiao et al., 2021). Nonetheless , in this thesis, we would 

like to evaluate the capacity of  pure  LSTM to predict a multivariate time series when deal-

ing with highly irregular data such as fire ignitions.  

One approach to achieve this is by using pixel -based LSTM, where each pixel is treated as 

an independent multivariate time series. Using this metho d, we would like to better un-

derstand how LSTM will handle different frequencies of fire occurrence and the sudden 

changes in ignitions count along subsequent months.  

 

2.4.1 Preparing data  for LSTM 

 

To understand how to structure the data in the correct form for LSTM, the model type  

needs to be determined first ( Figure 7). This is basically set based on the number of input 

sequences and the number of ste ps we would like the network to predict.  As mentioned 

before, the dataset is one NetCDF file with one outcome variable and six predictors. The 

format of the data for  one example pixel is shown in Table 4. Each pixel is a multivariate 

time series with 168 time steps where the six predictors are used to forecast the next 

month's  ignition count. This problem can be structured as  a Many-to-one sequence model 

in which sequences of n vectors of input features are processed and then  the output  is 

produced  only after the whole sequence of feature vectors has passed through. This can 

be formatted as follows:  

ὣὸ ὪὢρὸȟȟȢȢȟ ȟὢςὸȟȟȢȢȟ ȟȣȢȟὢὲὸȟȟȢȢȟ  

Equation 4: Many-to -one sequence representation  

Where Y(t) is the outcome variable,  and (X1, X2, Ɏ) are the predictors for previous n time 

steps (t1,2,Ɏ) 
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Table 4: Format of the data  

longitude  Latitude  index  time  Ignition  

count  

DTR fPAR pre  tmax  wind  NI 

-12.597 8.858 0 2003-

01-01 

3.5000 5.437

53 

0.53677 0.05428 304.15045  1.17915 0.0 

  1 2003-

02-01 

1.3333 5.509

04 

0.51708 0.70357 304.52508  2.20828 0.0 

  2 2003-

03-01 

8.6666 4.828

53 

0.52482 0.47201 304.93811  2.12751 0.0 

ɎɎɎɎɎ.. 

  166 2016-

11-01 

0.0000 3.702

97 

0.69636 2.75937 302.67605  0.73359 0.0 

  167 2016-

12-01 

2.0000 4.071

77 

0.63130 0.53639 302.95983  0.82405 0.0 

 

 
Figure 7: Different model types of LSTM. Each rectangle represents  a vector and the arrows 

represent functions . 

 

Regarding data transformation  (2.3.4), several experiments  have been conducted to de-

termine the most suitable technique . Both the Box -cox and Yeo-Johnson transformation 

did not show any improvement in performance, furthermore, wh en the neural network 

overestimates some predictions and these values are out of the transformation range, the 

results are being returned as not a number (NAN)  and causing problems with the network . 

On the other hand, using the log transformation, even tho ugh it did not have  a major effect 

on the variable distribution, did improve the output results.  

Following this, t he data should be framed as a supervised learning problem. After data 

transformation and feature scaling ( 2.3.5), the time series is then split into training  and 
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testing set s. For the training data, the whole time series is taken until September  2015. 

The testing data i s considered from October  2015 until September  2016 to cover the fire 

season which annually starts in September. To train the model, a sliding window approach 

is applied to generate samples. The sliding window is defined by the window length i.e., 

the sequ ence length considered by LSTM to make a prediction, and the window horizon 

or the number of predicted time steps. The input data of LSTM must be three -dimensional 

[samples, timesteps, features]. In this case, each step of the sliding window is considered 

as one sample, the window length is equivalent to the time steps and the number of fea-

tures is the number of predictors. Afterward, the data is split into input i.e., the predictors , 

and output i.e., ignitions.  

 

2.4.2 Metrics of evaluation  

 

To assess the network performance, the Root Mean Square Error (RMSE), Root Mean 

Absolute Error (MAE) and Coefficient of determination (R 2)  metrics are used .  

ὙὓὛὉ
В ώ ώ

ὔ
 

Equation 5: Root Mean Square Error (RMSE) 

ὓὃὉ
В ȿώ ώȿ
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Equation 6: Mean Absolute Error (MAE)  

Ὑ ρ
Вώ ώ

Вώ ώ
 

Equation 7: Coefficient of determination (R2)  

Where ώ is the actual value and ώ is the predicted value of sample  i, ώ is the mean value 

of all samples  

 

2.4.3 Experiments  

 

The selection of the best LSTM structure usually involves performing multiple experiments 

with different  hyperparameters using  a trial and error approach, where the error is 

measured after each attempt to quantify the implications of using one specific parameter. 

Those parameters include  the  number of hidden layers, number of LSTM units in each 
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layer, time lags, different activatio n functions , different loss functions , and different 

optimiz ers.  

Activation functions in neural networks determine how the weights are summed up in the 

node to produce an output. When the activation  function is nonlinear, it help s the model 

to account for  non -linear relationships between the input variables and the output . The 

choice of the activation function has a large impact on the neural network performance. 

Therefore , three functions were tested, the logistic function (Sigmoid), the Hyperbolic 

Tangent function (Tanh) , and the rectified linear activation function  (ReLU). In this 

research , the ReLU (Figure 8) out performed  the other  functions  and improve d the  neural 

network by speeding up the training.  

Neural networks learn  using gradient descent algorithms. Gradient descent is an 

optimization algo rithm used to minimize the values of the loss  function by updating the 

network weights  iteratively  unti l it finds the minima of the function. The algorithm 

calculates the gradient in each iteration towards the direction of the steepest ascent . The 

size of the step that the algorithm takes in each iteration to reach the local minima is called 

the learning rate (Goodfellow et al., 2017, pp. 294 ɀ310). There are multiple optimization 

algorithms with adaptive learning rates, however, the Adapt ive Moment Estimation (Adam) 

optimiz er has been adapted in many  studies as it outperformed the other algorithms 

(Ruder, 2016). In this thesis, the Adam optimiz er was used with a learning rate of 0.001.  

 

Figure 8: ReLU activation function.  The function is half rectified, this means  it outputs zero across 

half its domain , therefore,  any negative input given to the ReLU activation function turns the value 

into zero immediately (Goodfellow et al., 2017, pp. 193 ɀ195).  It is also less susceptible to 

vanishing gradients that prevent deep models from being  trained.  
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To avoid overfitting , a dropout layer  was used which is a simple but remarkably effective 

regularization method (Srivastava et al., 2014 ). This techniqu e temporarily  skips or drop s 

out randomly a number of neurons to prevent them from learning an interdependent set 

of features weights  which could lead to  overfitting.  

To systematically choose the other parameters, we start with a simple structure with one 

LSTM layer of 64 units and the Relu activation function.  The loss function is the Root Mean 

Squared Error and the  optimizer is  Adam optimizer with a learning rate of 0 .001. Since the 

model is training each pixel independently , running the network takes a significant amount 

of time. Therefore, batches of the data were selected from different locations of the study 

area which represent  about 800 pixels. Table 5 shows the RMSE and MAE values with 

different experiments . For the number of hidden layers, It is observed that the error 

increased with the increased depth of the network. In the author's  opinion, this indicates 

either that the model is overfitting or the relationship does not require a very complex 

model to be explained. The table also  demonstr ates the results for the experiments  with 

different time step lengths  and different activation functions. The different time step 

length affects the performance of LSTM as it accounts for the number of previous time 

steps used to make a prediction. Taking into account the previous year when predicting 

the next month has yielded the least error. Furthermore , the mean absolute error (MAE) 

loss function has decreased the error. MAE loss function is usually useful when the data 

has outliers as it is more robust  to higher values. This makes sense given the nature of the 

ignition data which suddenly display s really high values in particular  months.   

Different types of LSTM could have considerable effect on the output. So far, the structure 

used is a vanilla LSTM which is defined with one input layer, one fully connected LSTM 

hidden layer and a fully connected output layer. This type of LSTM ,also called 

unidire ctional, preserves information of the past because the only inputs it has seen are 

from the past . Bidirectional LSTMs are an extension of traditional LSTMs  which learn the 

entire sequence in both forward and backward direction before making a prediction . Table 

5 shows that using Bidirectional LSTM did not improve the results in this case. The final 

chosen hyperparameters of LSTM can be found in Table 6.   
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Table 5: Setup tests results for different parameters  to determine  LSTM structure  

Experiment  RMSE MAE 

Different Number of hidden layers  

One LSTM layer 5.915882 2.801811936  

Two hidden layers  6.239518 2.867196477  

Three hidden layers  6.499306 3.01 

Different time lags  

One layer 6 months  5.915882 2.801811936  

One layer 12 months  5.760793 2.71326 

One layer 18 months  5.815041 2.759578 

One layer 24 months  5.766851 2.734103 

Different Activation Function s 

RMSE 5.760793 2.71326 

MAE 5.715536 2.6674773  

Different types of LSTM  

Vanilla LSTM 5.715536 2.6674773  

Bidirectional LSTM  5.807794393  2.707526329  

 

Table 6: LSTM neural network hyperparameters used in this thesis  

hyperparameter  Value 

Learning rate  0.001 

Batch size 12 

Window size  12 

Loss function  Mean Absolute Error (MAE)  

Activation function  Relu 

Optimizer  Adam 

Hidden layers  1 

Input data size  (12,12,7) 

Drop out  True (0.2) 

Feature scaling  True [0,1]  

 

 

2.5 Evaluation  
 

The evaluat ion of LSTM neural network performance involves  compar ing it to  other 

baseline models . In this thesis , the performance of LSTM is compared to the performance 

of linear regression  and ridge regression. The linear regression algorithm tries to find the 

linear relationship between the variables and the output. Ridge regression is an extension 

of linear regression which  belongs  to  a class of regression tools that use L2 regularization. 
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This regularization technique adds a penalty to the linear regression to avoid overfitting. 

The comparison between the  three models is based on the value of RMSE and MAE for the 

entire study area, and scatter plots to display the behaviour of the models for each month.  

The three models are applied using the same variables and conditions.  

 

2.6 Visualization techniques  
 

In machine learning, it is equally important to have a model with good results and 

interpretable prediction s. This can be achieved by applying specific techniques to find out 

which patterns the algorithm s are learning and which features a re affecting its decisions.  

Feature importance values indicate which variable  has the highest impact on the output 

of the model. The purpose is to get a better understanding of the modelɅs logic to 

determine whether the predictions are sensible. It can be also used to select the most 

significant variables which helps in reducing the complexity of the model while keeping 

the same  prediction  accuracy. 

There are multiple techniques to explain machine learning models. Some of these 

techniques are model specific  and can be applied only on interpretable  models as 

explained in  1.5. For complex model s, global and local model -agonistic methods are 

applied.  Most of these techniques apply independent explanation  approaches. Global 

methods interpret  the average behaviour of the mode l whereas local methods explain 

individual predictions (Molnar, 2020 ). When the goal is to measure the effect magnitude 

of each feature for the entire model, permutation feature importance is applied. Whereas, 

to describe the general relationship between one feature and the predicted values,  Partial 

Dependence Plots (PDPs), Indivi dual Conditional Expectation (ICE)  or Accumulated Local 

Effects (ALE) plot s can be employed . Feature interaction techniques are also used to 

describe how two features affect each other .  

LSTM neural networks are complex models. Therefore, only model -agonistic methods can 

be applied. However, giv en that LSTM takes data in 3D, this limits the  implementation of 

some approaches from a technical point of view. In this section, multiple methods that can 

be applied to  LSTM neural networks are explained.  The implem entation and limits of these 

techniques are further discussed to select the most appropriate  one for LSTMs.  

 

2.6.1 Permutation f eature importance  

 

The concept of measuring feature importance with permutation was first introduced for 

Random Forests (Breiman, 2001 ). Afterwards,  Fisher et al.,  (2019) introduced a model -
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agnostic approach based on the same idea. The theoretical  principle is rather simple. To 

measure the importance of one feature to the model output, we shuffle the values of this 

feature randomly then calculate the error increase. If the variable is of high importance, 

the error would increase significantly becau se the model relies on this feature to make a 

prediction (Mo lnar, 2020 ).  

The advantages of this approach are that it works with any model type, is easy to 

understand and implement, gives global insight for the whole output, and takes into 

account all interactions among all variables. On the other hand, the disa dvantages can be 

summari zed as follows  (Molnar, 2020 ): 

1. It is not clear if the error should be measured o n training or test set  

2. This approach does not give in depth insight on featuresɅ interactions or the 

accurate relationship between the feature and model output  

3. This method describes only the error and does not give a clear explanation how 

the modelɅs output variance differs by permuting  one feature  

4. Shuffling the features randomly will give different results if the calculations were 

performed more than once. The optimal  solution here is to repeat the calculations 

several times then compute the mean but this requires higher computation time 

and effort.  

5. If there is correlation between variables, the results might be bias. When permuting 

one feature that is correlated with another, in this case the importance will be split 

between the two features.  

In this thesis, permutation feature importance was appli ed for the whole area. For each 

predictor in each pixel, the values were shuffled randomly then the error was measured. 

This procedure was repeated six times. The importance of each feature was determined 

based on the magnitude of the error increase relate d to the original error of the model.  

 

2.6.2 Variance-based Feature Importance  

 

This approach was proposed by (de Sá, 2019) to determine the relative importance of 

features in neural networks generally. The concept of this method depends on capturing 

the weights of the neurons connected to each feature. When making a decision or a 

prediction with the neur al network, the variables with the highest importance will get the 

highest change in neuronsɅ weights while training the model and this will determine the 

contribution of each feature to the final output. This technique measures the variance of 

each neuron Ʌ weight changes regardless of their values, and by measuring the total 

variance of the weights for each node connected to one feature, the relative importance 

can be calculated.   
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The application of this technique is rather simple. It works by only adding an extension to 

the neural network. This extension is readily available by the author using Python 

programming language.  After modifying the network, the training was run again for  the 

entire study area.  This method works only with neural networks and is not general for all 

machine learning models.  

 

2.6.3 Explaining model predictions through explanation method  

 

Model -agnostic methods separate the explanations from the machine learning mod el 

where they use simpler algorithms independent of the model to explain the feature 

importance and the relationships between them.  The biggest advantage of these methods  

is that they are flexible and can work with any model type (Molnar, 2020 ).  

Current methods, such as DeepLIFT  (Shrikumar et al., 2017 ), LIME (Ribeiro et al., 2016 ), 

Layer-Wise Relevance Propagation (Bach et al., 2015) and  Classic Shapley Value Estimation 

(Lipovetsky et al., 2001 ; Štrumbelj et al., 2014) use the same explanation method called 

Additive Feature Attribution Method.  This method explains the model output by assigning 

an effect for each feature then summing the effects of all values attributed to all features 

(Lundberg et al., 2017 ). In their paper,  Lundberg and Lee  (2017) introduced a new 

approach that unifies the attributes of all methods mentioned be fore into one game 

theoretic approach to explain the output of any machine learning model.  

SHAP (SHapley Additive exPlanation) explains each prediction individually by calculating a 

value for each feature . These values are called Shapley values and were originally created 

by Shapely (1953) using a cooperative game theory approach that assigns a payout to each 

player based on their contribution to the entire  output (Molnar, 2020 ). This approach was 

adapted for mac hine learning models to calculate the features Ʌ contribution to the modelɅs 

output  by considering them as players in the game which is making predictions. These 

values could be positive or negative indicating in which direction they  are pushing the 

output.  

SHAP introduces multiple explanation techniques for different models . For example, 

LinearExplainer is used for linear models, TreeExplainer is designed f or models that are 

based on a tree -like decision tree, random forest, gradient boosting  and many more 

explainers. In this thesis, the focus will be on explainers which work with neural networks 

and specifically LSTM. SHAP Explainers that are compatible wit h deep machine learning 

models  are Kernel SHAP and Deep SHAP. Kernel SHAP is a model-agonistic approximation 

method which works with all models, however, kernel SHAP requires data of 2D shape 

[samples, features].  This technique can be applied for LSTM in c ase it considers one time 

step only to predict the next one. Since our LSTM model takes into account the previous 
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twelve  months to make a prediction, the kernel SHAP cannot be applied here.  For 3D data, 

DeepSHAP explainer can be used.  

SHAP explains each prediction locally but these values can be aggregated to represent 

global views of feature importance. Therefore, DeepSHAP explainer is applied first to one 

prediction, then explanations  for multiple pixels are combined to examine which type of 

SHAP plots are appropriate for pixel -based LSTM. Furthermore, other  visualization 

techniques are investigated to depict feature importance, feature dependence , and 

feature interactions.  
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3 Results and discussion  

3.1 Model evaluation  

 

The structure of LSTM was selected based on multiple experiments ( 2.4.3). The selected 

LSTM hyperparameters ( Table 6) are used then  to predict one year in advance for the 

whole study area. The prediction covers the fire season starting from October 2015 until 

September 2016. The neural network was trained pixel -wise which means each 

multivariate time series with 168 monthly data point s represents one pixel of the study 

area. A visual comparison between the predicted data and the Fire Atlas data can be seen 

in Figure 9.  

 

 

Figure 9: Comparison between the results of LSTM neural network and Fire Atlas data for one 

year prediction  
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In general, the model was able to depict the spatial pattern of fire ignitions even though 

no spatial information was passed to the ne ural network . Figure 9 shows that the network 

has predicted the fire season pattern in all months successfully. However, LSTM was not 

able to forecast th e extremely high values during the peak of the season. In most of the 

cases, LSTM underestimated fire ignitions and predicted values around the mean.  This can 

be clearly observed in November, December and January (Figure 10). During the months 

when there is a small number of fires or no fire at all, in June, July and August, LSTM 

predicts small numbers of fire occurrences in scattered locations. Those random fire 

ignitions, which are shown in blue, range only between 0 and 1 ignition points  (Figure 9).  

 

 

Figure 10: The difference between original and predicted fire ignitions for one year prediction  
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To evaluate the model, fire ignitions are predicted using two baseline models  then 

compared to LSTM results .  

Table 7 shows the mean error for the whole study area obtained by those three models. 

Furthermore, comparative s catter plots of the models Ʌ outputs with  the original  values for 

each month is shown in Figure 11. Each point represents one prediction for one pixel. The 

x-axis represents the real values whe reas the y -axis depicts the predictions by different 

models. The dashed black line represents the ideal case where the predictions match the 

real values perfectly and the error is zero. The distance between each dot and the dashed 

line shows the magnitude of the error.  

In general, the linear regression performed the worst with really larger errors, this can be 

seen especially in February  (Figure 11). We can also observe that the Ridge Regression 

behaviour is similar to LSTM in some months. However, it tends to overestimate the zero 

values when there is no fire, for example, this is notic ed from June till September. Even 

though LSTM is underestimating high fire values, the model is showing more robust 

behaviour towards small to medium number s of fires than the linear models.  Overall, 

LSTM performed better and this indicates that the relati onships between fire ignitions and 

the predictors are non -linear and cannot be modeled with simple linear models.  

 

 

Figure 11: Comparative scatter plots of LSTM predictions (purple) with two baseline models, 

Linear Regression (LR) (orange) and Ridge Regression (RR) (green) 

 

 


































































