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Fire in the Earth system

Resources
(Biomass)

Ignition
(Lightning, 
humans)

Conditions
(Weather)

Fire

The most important
variables to predict fire

Maximum 
Temperature

Diurnal 
Temperature 
Range (DTR)

Precipitation

Antecedent dry-
day period

Vegetation type

Fuel litter and 
accumulation

fAPAR

(Aldersley et al., 2011; Archibald
et al., 2009; Bistinas et al., 2014;
Forkel et al., 2019a; Kuhn-
Régnier et al., 2020)

Process-based models–
ML models
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With Process-oriented models With Machine Learning models

• Fire models coupled with DGVMs /
TEMs (Hantson et al., 2016)

• Different results in prediction of
future trends (burned areas) (Andela

et al., 2017; Forkel et al., 2019b)

• Fire-predictor relationships are not
presented correctly (Forkel et al.,

2019a)

• Random Forests (Archibald et al., 2009;

Aldersley et al., 2011; Forkel et al., 2019a)

• Support Vector Machines (SVMs)
(Cortez et al., 2007)

• Neural Networks

• Feed-forward neural networks
(Maeda et al., 2009; Özbayoǧlu et al.,
2012; Satir et al., 2016; Joshi et al.,
2021)

• High accuracy

• Challenges with time series
with extreme or sudden events

Predicting Fire
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LSTM cell structure (Van Houdt et al., 2020)

LSTM for fire prediction:
• Wildfire scale classification (Liang et al., 2019)

• Wildfire duration and direction (Perumal et al.,
2020)

• Burned area map generation based on fire 
indexes (Kong et al., 2018)

Long-short term memory (LSTM) neural networks

RO1

- Explore LSTM predictive
ability of fire occurrence

- Detect LSTM ability to
correctly capture the
relationships between fire
and driving factors
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Visualization of machine learning models

Interpretation and visualization of machine learning models means 
determining the most important variables and depicting the 
predictor-response relationship

• Global feature importance
• Feature importance spatial distribution
• Feature-output relationships
• Features interactions

Investigate current interpretation 
techniques and their ability to 
characterize 

Blackbox models

Neural Networks

Model-agnostic 
methods

Interpretation

RO2
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Q1: What are the opportunities and limitations of using LSTM neural networks 
to predict fire occurrence?

Q2: What is the ability of LSTM to record the relationships of fire drivers?

Q3: What is the best available method to interpret and visualize LSTM neural 
networks in an efficient and understandable way?
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Variable Description Data source
Measuring unit

Spatial 

Resolution

Temporal 

Resolution

Predictors

Tmax Mean of monthly maximum 

temperature

CRU JRA v2.0 (Harris, 2019)
Kelvin

0.5x0.5 Monthly

Tmin Mean of monthly minimum 

temperature

CRU JRA v2.0 (Harris, 2019)
Kelvin

0.5x0.5 Monthly

DTR Diurnal temperature range CRU JRA v2.0 (Harris, 2019) Kelvin 0.5x0.5 Monthly
Pre Total precipitation CRU JRA v2.0 (Harris, 2019) kg/m2 0.5x0.5 Monthly
NI Nesterov Index CRU JRA v2.0 (Harris, 2019) - 0.5x0.5 Monthly
Wind Wind Speed CRU JRA v2.0 (Harris, 2019) m/s 0.5x0.5 Monthly
fAPAR Fraction of Absorbed 

Photosynthetically Active 

Radiation

MODIS: MOD15A2H (Myneni et al.,

2015) -
0.25x0.25 Monthly

Target variables

Fire ignitions Count of ignition points per 

cell

Fire Atlas (Andela et al., 2019)
-

0.25x0.25 Monthly

𝑁𝐼 =

𝑖=1

𝑤

𝑇𝑖 𝑇𝑖 − 𝐷𝑖The Nesterov Index:
W = number of days since last rainfall > 3 mm

T = midday temperature (°C)

D = dew point temperature (°C)

Fire predictors and datasets
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Study Area with a sample of ignition count for one month 
Land cover map in the Sahel zone. The red rectangle was added to 
indicate the location of the study area in this thesis. Source: From GLC 
2000, EU-JRC data (Mbow, 2017) 

Study Area
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Data aggregation 
and resampling

Missing 
values

Multicollinearity 
test

0.25 deg latitude x 
0.25 deg longitude 

grid 

One NetCDF file with 
7 variables

M
er

ge

Variable Count of Missing

Values

DTR 0

fAPAR 524669

Ignitions 2025479

NI 0

Pre 0

Tmax 0

Tmin 0

Wind 0

𝑉𝐼𝐹 =
1

1 − 𝑅𝑖
2 𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑘

Variable VIF VIF after 

dropping tmin

Wind 1.96 1.96

DTR 538577.07 1.66

fPAR 2.91 2.91

NI 1.31 1.31

Pre 2.09 2.09

tmax 2257348.76 1.49

tmin 2229555.77

Data pre-processing

(Shrestha, 2020)
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Data aggregation 
and resampling

Missing 
values

Multicollinearity 
test

Data 
transformation

Histogram plots with kernel density for all variables of a random pixel in the dataset The effect of applying multiple transformation technique on the 
highly skewed output variable (ignitions count) 

Data pre-processing
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Feature 
scaling

𝑥𝑛𝑒𝑤 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

Min-Max Scaler
within range [0, 1]

Data pre-processing

Data aggregation 
and resampling

Missing 
values

Multicollinearity 
test

Data 
transformation
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Data transformation:
Log transformation

Model type

Chosen methodology: 
Pixel-based LSTM

Train-test split:
Training set: 01/2003 – 09-2015
Test set: 10/2015 – 09/2016

3D data structure using sliding 
window approach:
[samples, timesteps, features]

LSTM architecture
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Experiment RMSE MAE

Different Number of hidden layers

One LSTM layer 5.915882 2.801811936

Two hidden layers 6.239518 2.867196477

Three hidden layers 6.499306 3.01

Different time lags

One layer 6 months 5.915882 2.801811936

One layer 12 months 5.760793 2.71326

One layer 18 months 5.815041 2.759578

One layer 24 months 5.766851 2.734103

Different loss Functions

RMSE 5.760793 2.71326

MAE 5.715536 2.6674773

Different types of LSTM

Vanilla LSTM 5.715536 2.6674773

Bidirectional LSTM 5.807794393 2.707526329

hyperparameter Value

Learning rate 0.001

Batch size 12

Window size 12

Loss function Mean Absolute 

Error (MAE)

Activation

function

Relu

Optimizer Adam

Hidden layers 1

Input data size (12,12,7)

Drop out True (0.2)

Feature scaling True [0,1]

Setup tests results for different parameters to determine LSTM structure LSTM neural network hyperparameters used in this thesis 

LSTM architecture
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1. Permutation feature importance

2. Variance-based Feature Importance (de Sá, 2019)

3. Explaining model predictions through explanation method

• SHAP (DeepSHAP Explainer) (Lundberg et al., 2017)

Visualization techniques of LSTM-based model 
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Comparison between the results of LSTM neural network and Fire Atlas 
data for one year prediction 

The difference between original and predicted fire ignitions for one year 
prediction 

Model evaluation
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Prediction for one year RMSE MAE
LSTM 3.333 1.509
Linear Regression 4.48353 2.8453
Ridge Regression 4.0209 2.5585

Comparison of RMSE and MAE for one 
year prediction for the entire study area 

Comparative scatter plots of LSTM predictions (purple) with two baseline models, Linear Regression 
(LR) (orange) and Ridge Regression (RR) (green) 

Model evaluation
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Pixel-based map of coefficient of determination (R2) 
values for one year prediction 

Two samples where R2 values are high and fire 
ignitions are more frequent and annual 

Two samples where R2 values are high 
and fire ignitions are rare 

Two samples where R2 values are low. Fire 
occurrence has different frequencies but with 

extreme values in the last fire season 

Model evaluation



Predicting, understanding and visualizing fire dynamics with neural networks | Larissa Saad | 22.11.202122

Comparison of visualization techniques for explainable LSTM-based fire modelling 

Permutation feature importance for the entire study area. The 
error increase is represented as percentage of the original 

RMSE of the model 

Variance-based feature importance for the entire study area. The relative 
importance of each feature in each pixel is represented as a percentage 
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Comparison of visualization techniques for explainable LSTM-based fire modelling 

SHAP values for the first time steps for predicting one month (October) for one pixel 

SHAP values for the previous twelve time steps for predicting one month (October) for one pixel 

Force plot for a small subset of the study area showing feature importance 

SHAP Force plots
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SHAP feature importance plot (left) and SHAP summary plot (right) for the precedent month 

Comparison of visualization techniques for explainable LSTM-based fire modelling 

SHAP summary plots



Predicting, understanding and visualizing fire dynamics with neural networks | Larissa Saad | 22.11.202126

Importance of predictor variables

Sub-regions for SHAP feature importance analysis (black rectangles), 
taken from land cover map in the Sahel zone (Mbow, 2017). The red 

rectangle represents the entire study area. 

Spatial distribution of feature importance using 
variance-based feature importance method
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Southern region Middle region Northern region

Feature importance for the previous 12 months using SHAP absolute values

The negative and positive effect of each feature for the previous 12 months 
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SHAP dependence plots 
SHAP interaction plots for precipitation 

with the other variables 

Predictor-response relationships and interactions
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3D interaction plots. DTR-pre interaction plot (left) and fAPAR-pre 
interaction plot (right). 

Predictor-response relationships and interactions
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Q1: What are the opportunities and limitations of using LSTM neural networks to 
predict fire occurrence?

• The pixel-based LSTM captured the seasonal and spatial varieties with RMSE value 
computed at 3.333 for the entire study area 

• LSTM underestimated the high values of ignitions during the peak of fire season. 
• LSTM was not able to capture the extreme values and performed better during the 

months of lower fire occurrence

Limitation:
• The inclusion of all important fire drivers as recommended in the literature was not 

possible
• Limited length of time series
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Q2: What is the ability of LSTM to record the relationships of fire drivers?

• LSTM was able to model the fire-predictor relationship correctly only for 
precipitation, DTR and fAPAR

• Maximum temperature and wind the relationship were vague
• The Nesterov index did not play a major role for LSTM and no clear relationship was 

concluded from the model

The most important features to predict fire ignitions were mainly fAPAR, precipita-
tion and maximum temperature. The order of importance for other variables differs 
based on location and precedent month.
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Q3: What is the best available method to interpret and visualize LSTM neural 
networks in an efficient and understandable way?

• Global feature importance → Permutation feature importance

• Feature importance spatial distribution → Variance-based feature importance

• Precedent conditions → SHAP summary plots

• Feature-output relationships → SHAP dependence plots

• Features interactions → 3D SHAP dependence plots

- No general approach was able to visualize local and general feature importance

- Visualization techniques have contributed to better understanding of the machine 
learning model and presented useful insights for further developments. 
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Future research

• More advanced types of LSTM such as Attention LSTM

• Inclusion of spatial information with convolutional neural networks 

(Multivariate spatio-temporal convolutional LSTM)

• One comprehensive model facilitates implementing different 

visualization techniques
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