Developing Gaze-Based Map Interactions in Mixed Reality Devices

Master's thesis presentation

Kurumbayeva Nargiz

Chair Professor: Prof. Dr.-Ing. Liqiu Meng

Supervisor: Dr.-Ing. Christian Murphy

Reviewer: MSc. Wangshu Wang

Introduction

Introduction Research Approach Case Study Results & Discussion Conclusio

Motivation

- Eye-tracking is becoming pervasive in various research fields (Mardanbegi et al., 2016) and entering the mass market (HoloLens 2 from Microsoft).
- ... gaze-supported interaction can contribute to cartographic applications.
- ... can facilitate the hand gestures combined with the gaze control as suggested by Schweigert et al. (2019).
- ... can offer unusual possibilities for differently-abled people and propose new opportunities in human-computer interaction (Piotrowski & Nowosielski, 2020).
- ... can possibly allow for an easy, natural, and fast way of interacting in mixed reality devices.

Introduction Research Approach Case Study Results & Discussion Conclusion

Problem Statement

- In only few approaches, the interaction with cartographic interfaces has utilized gaze as an input (Giannopoulos et al., 2015; Giannopoulos, Kiefer, & Raubal, 2013).
- ... research is missing on how alternative human-computer inputs like hand gestures in a Mixed Reality (MR) environment can be substituted by gaze-control for user-map interactions.

Research Objectives

OI TO IDENTIFY user-map interactions for the gaze control in the MR MO TO DEVELOP gaze-based **02** TO ASSEMBLE interactions MR interfaces for the selected to facilitate user-map interactions interaction in the MR environment **03** TO EVALUATE the performance and user experience of assembled interfaces.

Introduction Research Approach Case Study Results & Discussion Conclusio

Research Questions

- RQI How can users interact with the map in a Mixed Reality environment?
 - a) What are the fundamental cartographic interactions?
 - b) How can eyes control interactions?
 - c) What are the fundamental interactions in the MR environment?
- RQ2 How are MR interfaces assembled for the selected gaze-based interactions?
 - a) What are the limitations of the developed gaze-based interfaces?
 - b) What are the challenges in the development of the selected gaze-based interfaces?
- RQ3 How effective are the implemented user-map interactions in MR?
 - a) What is the performance of the assembled interfaces?
 - b) What is the user experience with the implemented user-map interactions in the MR environment?

Research Approach

Structure

Introduction Research Approach Case Study Results & Discussion Conclusion

Literature Review - RQ1

(Roth,2013)

(Mollenbach et al.,2013)

(Bachmann et al., 2018 Papapdopoulos et al.,2013)

Literature Review - RQ1

Papapdopoulos et al.,2013)

Introduction Research Approach Case Study Results & Discussion Conclusio

Modality - Context - Interaction (Papadopoulos et al., 2021)

Case Study

Implementation – RQ2 - Interfaces

ntroduction Research Approach <mark>Case Study</mark> Results & Discussion Conclusior

Implementation - RQ2 - 3D Maps

City

- Retrieve
- Overlay

Terrain

Rotate

Implementation – RQ2 – Utilized Software & Hardware

HoloLens 2 cameras setup (front view)
a) 4 head tracking cameras - stereo and periphery;
b) RGB camera for photos/videos;
c) depth camera - near and far range;
d) 2 eye-tracking cameras - infrared.
Adapter from Microsoft

ntroduction Research Approach <mark>Case Study</mark> Results & Discussion Conclusio

Implementation – RQ2 - Workflow

Experiment - RQ3

- 1. Pre-study questionnaire
- 2. Calibration
- 3. Interface 1 exploring
- 4. Tasks
 - Terrain
 - rotate the terrain to the task position
 - The city
 - turn on the satellite view and add the hotels
 - activate the name tag for the Sky Tower

Recording the performance

5. User experience questionnaire

for the 2nd

iterate

Experiment – RQ3

Gaze-based Interface (eyes-controlled, eyes)

Gaze-aware Interface (eyes & voice -controlled, eyes-voice)

Conventional Interface (hands-controlled, hands)

Results & Discussion

Participants

- 24 users
- 22 records
- 77% use maps often, 33% sometimes
- 54% experts or experienced with GIS
- 27% used MR devices once or several times
- 1 user uses MR device often

ntroduction Research Approach Case Study <mark>Results & Discussion</mark> Conclusior

Performance

- The outliers the Midas touch.
- Individual approach to assigning the dwell time
- The gaze prediction area increasing
- Stopping the rotation
- The voice-command processing time.
- The voice command in a sentence or without pauses.
- Confusing press with tap
- Learning the rotation gesture

User experience – User Experience Questionnaire

- Excitement to use interfaces (0.1)
- Activity preferences
- Challenging gesture learning
- Common technologies
 affect the inventiveness

ntroduction Research Approach Case Study <mark>Results & Discussion</mark> Conclusion

User experience – Task Load Questionnaire

ntroduction Research Approach Case Study <mark>Results & Discussion</mark> Conclusio

Interface Ranking

ntroduction Research Approach Case Study <mark>Results & Discussion</mark> Conclusior

Difficulties

Introduction Research Approach Case Study <mark>Results & Discussion</mark> Conclusion

Suggestions

Outlook
Map
Dwell-time
Labels
Multi-modality
Colliders Menu

Introduction Research Approach Case Study Results & Discussion Conclusion

Challenges & Limitations

Combining the gaze and voice modality for the interactions

Constant order of the interfaces

This can present a limitation for the comparative evaluation of the three interfaces.

The visual and audial feedback design for the gaze-based and gaze-aware interfaces

The incomplete design of the maps: colliders, not restricted rotation.

This can influence the user experience results.

Introduction Research Approach Case Study Results & Discussion Conclusion

Conclusion

The fastest retrieve and overlay when using gaze as a controller.

The overlay interaction performance (gaze-based) is lower than with the voice-controlled.

The gaze-based interface - the most inventive interface, more enjoyable, easier to learn, and less confusing than the conventional.

Inferior to the gaze-aware interface in the same qualities.

Requires less mental and physical demand and effort than the; however, but more than the gaze-aware interface.

The conventional - the most problematic interface. However, the gaze-based interface has also presented some difficulties, such as focusing on the target due to accuracy in the position of the gaze-pointer, or insufficient dwell time, or the incomplete map design.

Introduction Research Approach Case Study Results & Discussion <mark>Conclusion</mark>

Outlook

Improving the user experience of gaze-based user-map interactions

The multimodality can be explored for gaze-based interactions.

