Testing approaches to visualize land cover/land use changes in time series with cloud-based tools

Jesse Friend
Testing approaches to visualize land cover/land use changes in time series with cloud-based tools
Problem Statement

Introduction and Motivation

The aim of this thesis is to develop a framework to visualize changes to LC/LU classes in time-series through the researching and prototyping of cloud-based visualization tools.

1. Communicate complex information clearly
2. Assist decision making of end-users
3. Display time-series effectively
4. Provide intuitive graphical interfaces
5. Focus on user-centered design
Motivation

Introduction and Motivation

• Improve understanding of how to harmonize research within multiple cartographic fields to create time-series visualizations in microservices

• Work together with GAF AG to investigate methods in context of Corine Land Cover+ (CLC+) project based on historic CLC data

Testing approaches to visualize land cover/land use changes in time series with cloud-based tools
Testing approaches to visualize land cover/land use changes in time series with cloud-based tools
Land Cover/Land Use Data

Context & Background

• **Land Cover:** Description of the natural or man-made cover of the surface of the earth

• **Land Use:** The purpose for which the land is used

Testing approaches to visualize land cover/land use changes in time series with cloud-based tools (Balla et al., 2017)
User-Centered Design Processes
Context & Background

Testing approaches to visualize land cover/land use changes in time series with cloud-based tools

Web GIS visualization design guidelines

Context & Background

- Web front-ends
- Web GIS graphical user interfaces

Testing approaches to visualize land cover/land use changes in time series with cloud-based tools

(Mena et al., 2019)
Cloud-based microservice architectures

Context & Background

- Individually executable services
- Reduce server load
- Increase reusability of services/code
- High flexibility with the use of APIs

Testing approaches to visualize land cover/land use changes in time series with cloud-based tools

(Mena et al., 2019)
Hypothesis
Research Objectives & Hypothesis

• Hypothesis

1. Cloud-based cartographic time-series visualizations of remote sensing derived products can be an advantage to include within organizational microservice architectures.

2. Cartographic projects with integrated user-feedback cycles can help improve the understanding of earth observation derived products.
Research Question 1
Research Objectives & Hypothesis

How can the concept of digital cartographic visualizations be constructed so that it conveys information in an effective form with regard to information developed within the context of the CLC+ project?

1. What are the needs of end-users and clients, who will be using the service?
2. How can a product be designed with intuitive use as a core function?
3. What visual aspects are necessary within the final product?

Testing approaches to visualize land cover/land use changes in time series with cloud-based tools
Research Question 2
Research Objectives & Hypothesis

How can visualizations of remote sensing derived time-series be integrated into a cloud-based digital microservice infrastructures?

1. Do new web-based cartographic visualizations offer value to ongoing work flows in the cartographic domain?
Research Question 3
Research Objectives & Hypothesis

What are the advantages of creating new visualization applications over implementing existing technologies, or traditional methods such as static maps, reports, and other graphics?

Testing approaches to visualize land cover/land use changes in time series with cloud-based tools
Methods

To answer all the research objectives, the thesis has been separated into three distinct methods:

1. Expert Interviews
2. Microservice Prototype Application
3. User Study
Expert Interviews

- Semi-structured one-on-one interviews

- 4 interviews conducted with GIS experts
 - Backend developer, frontend developer, geohazard visualization manager, CLC+ raster product manager
RQ1

How can the concept of digital cartographic visualizations be constructed so that it conveys information in an effective form with regard to information developed within the context of the CLC+ project?

- Deliver raster geotiff product for experts and public
- Capabilities are priority
 - Appearance is important
- Understanding the data is key
RQ2

How can visualizations of remote sensing derived time-series be integrated into a cloud-based digital microservice infrastructure?

- Pulling data directly from distributed servers to keep web app as “light” as possible
- Utilizing existing JavaScript libraries to perform on-the-fly operations directly in the app
RQ3

What are the advantages of creating time-series visualization applications over implementing methods such as static maps, reports, and other graphics?

- Democratization of data
- Users have a sense of ownership over the results if they see an application complete their request
- Unified presentation of large amounts of data offers relative ease in understanding the data
Microservice Prototype

Technology Stack

- JavaScript/HTML/SCSS
- jQuery
- Parcel

APIs

- OpenLayers
- Chart.js
- Grid.js

Testing approaches to visualize land cover/land use changes in time series with cloud-based tools
Data
Microservice Prototype

Copernicus Land Cover (CLC)
• Land cover dataset for the EEA38+UK
• Post processed raster and vector products
• 44 land cover classes
• 25 ha MMU
• 2000-2018

ArcGIS Rest Services Directory
• Feature label layer
• Transportation layer
• Basemap layers

Testing approaches to visualize land cover/land use changes in time series with cloud-based tools
Results
Microservice Prototype

http://129.187.45.33/TimeServer/

Testing approaches to visualize land cover/land use changes in time series with cloud-based tools
User Study

• Three U’s of Cartographic Interface Success

 • **Usability**: How easy is it to use an interface to complete the objectives at hand?

 • **Utility**: How useful is the interface to complete the objectives at hand?

 • **User base**: Who is the target group that will be using the interface?

Testing approaches to visualize land cover/land use changes in time series with cloud-based tools

(R. Roth et al., 2015)
User Study

• Three U’s of Cartographic Interface Success

 • **Usability**: How easy is it to use an interface to complete the objectives at hand?

 • **Utility**: How useful is the interface to complete the objectives at hand?

 • **User base**: Who is the target group that will be using the interface?

Testing approaches to visualize land cover/land use changes in time series with cloud-based tools (R. Roth et al., 2015)
User Study

• Investigative study
• 20 questions
 • 1 consent question
 • 3 background questions
 • 4 task related questions
 • 12 quantitative questions
Task
User Study

• Find the coniferous forest % in AOI around Munich
 • Two groups
Reduced Functionality Results

User Study

<table>
<thead>
<tr>
<th>Participant</th>
<th>2000</th>
<th>2006</th>
<th>2012</th>
<th>2018</th>
<th>Average Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truth</td>
<td>12.79%</td>
<td>11.10%</td>
<td>5.96%</td>
<td>5.94%</td>
<td>~</td>
</tr>
<tr>
<td>1</td>
<td>20%</td>
<td>19%</td>
<td>12%</td>
<td>10%</td>
<td>6.30%</td>
</tr>
<tr>
<td>2</td>
<td>30%</td>
<td>29%</td>
<td>24%</td>
<td>23%</td>
<td>17.55%</td>
</tr>
<tr>
<td>3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>18%</td>
<td>17%</td>
<td>9%</td>
<td>8%</td>
<td>4.05%</td>
</tr>
<tr>
<td>5</td>
<td>40%</td>
<td>38%</td>
<td>28%</td>
<td>25%</td>
<td>23.80%</td>
</tr>
<tr>
<td>6</td>
<td>20%</td>
<td>19%</td>
<td>15%</td>
<td>14.5%</td>
<td>8.18%</td>
</tr>
<tr>
<td>7</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>100%</td>
<td>70%</td>
<td>50%</td>
<td>20%</td>
<td>51.05%</td>
</tr>
<tr>
<td>9</td>
<td>12%</td>
<td>11%</td>
<td>7%</td>
<td>6%</td>
<td>.05%</td>
</tr>
<tr>
<td>10</td>
<td>30%</td>
<td>28%</td>
<td>25%</td>
<td>24%</td>
<td>17.80%</td>
</tr>
</tbody>
</table>

Average Δ

16.10%
Full Functionality Results

User Study

<table>
<thead>
<tr>
<th>Participant</th>
<th>2000</th>
<th>2006</th>
<th>2012</th>
<th>2018</th>
<th>Average Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truth</td>
<td>12.79%</td>
<td>11.10%</td>
<td>5.96%</td>
<td>5.94%</td>
<td>~</td>
</tr>
<tr>
<td>1</td>
<td>12.78%</td>
<td>11.10%</td>
<td>5.96%</td>
<td>5.95%</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>12.81%</td>
<td>11.06%</td>
<td>5.96%</td>
<td>5.95%</td>
<td>-.003%</td>
</tr>
<tr>
<td>3</td>
<td>12.73%</td>
<td>11.05%</td>
<td>5.88%</td>
<td>5.87%</td>
<td>-.065%</td>
</tr>
<tr>
<td>4</td>
<td>12.82%</td>
<td>11.08%</td>
<td>5.98%</td>
<td>5.97%</td>
<td>.015%</td>
</tr>
<tr>
<td>5</td>
<td>12.81%</td>
<td>11.07%</td>
<td>5.97%</td>
<td>5.95%</td>
<td>.003%</td>
</tr>
<tr>
<td>6</td>
<td>35.6%</td>
<td>32.55%</td>
<td>30.05%</td>
<td>29.35%</td>
<td>22.94%</td>
</tr>
<tr>
<td>7</td>
<td>12.76%</td>
<td>11.06%</td>
<td>5.97%</td>
<td>5.95%</td>
<td>-.013%</td>
</tr>
<tr>
<td>8</td>
<td>12.68%</td>
<td>11.08%</td>
<td>5.92%</td>
<td>5.07%</td>
<td>-.26%</td>
</tr>
<tr>
<td>9</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>10</td>
<td>12.81%</td>
<td>11.06%</td>
<td>5.97%</td>
<td>5.96%</td>
<td>.003%</td>
</tr>
</tbody>
</table>

Average Δ 2.51%

Testing approaches to visualize land cover/land use changes in time series with cloud-based tools.
Full Functionality Results

User Study

<table>
<thead>
<tr>
<th>Participant</th>
<th>2000</th>
<th>2006</th>
<th>2012</th>
<th>2018</th>
<th>Average Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.78%</td>
<td>11.10%</td>
<td>5.96%</td>
<td>5.95%</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>12.81%</td>
<td>11.06%</td>
<td>5.96%</td>
<td>5.95%</td>
<td>-.003%</td>
</tr>
<tr>
<td>3</td>
<td>12.73%</td>
<td>11.05%</td>
<td>5.88%</td>
<td>5.87%</td>
<td>-.065%</td>
</tr>
<tr>
<td>4</td>
<td>12.82%</td>
<td>11.08%</td>
<td>5.98%</td>
<td>5.97%</td>
<td>.015%</td>
</tr>
<tr>
<td>5</td>
<td>12.81%</td>
<td>11.07%</td>
<td>5.97%</td>
<td>5.95%</td>
<td>.003%</td>
</tr>
<tr>
<td>6</td>
<td>35.6%</td>
<td>32.55%</td>
<td>30.05%</td>
<td>29.35%</td>
<td>22.94%</td>
</tr>
<tr>
<td>7</td>
<td>12.76%</td>
<td>11.06%</td>
<td>5.97%</td>
<td>5.95%</td>
<td>-.013%</td>
</tr>
<tr>
<td>8</td>
<td>12.68%</td>
<td>11.08%</td>
<td>5.92%</td>
<td>5.07%</td>
<td>-.26%</td>
</tr>
<tr>
<td>9</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>10</td>
<td>12.81%</td>
<td>11.06%</td>
<td>5.97%</td>
<td>5.96%</td>
<td>.003%</td>
</tr>
<tr>
<td>Average Δ</td>
<td>2.51%</td>
<td>2.51%</td>
<td>2.51%</td>
<td>2.51%</td>
<td>2.51%</td>
</tr>
</tbody>
</table>

Testing approaches to visualize land cover/land use changes in time series with cloud-based tools.
Full Functionality Results

User Study

<table>
<thead>
<tr>
<th>Participant</th>
<th>2000</th>
<th>2006</th>
<th>2012</th>
<th>2018</th>
<th>Average Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.78%</td>
<td>11.10%</td>
<td>5.96%</td>
<td>5.95%</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>12.81%</td>
<td>11.06%</td>
<td>5.96%</td>
<td>5.95%</td>
<td>-.003%</td>
</tr>
<tr>
<td>3</td>
<td>12.73%</td>
<td>11.05%</td>
<td>5.88%</td>
<td>5.87%</td>
<td>-.065%</td>
</tr>
<tr>
<td>4</td>
<td>12.82%</td>
<td>11.08%</td>
<td>5.98%</td>
<td>5.97%</td>
<td>.015%</td>
</tr>
<tr>
<td>5</td>
<td>12.81%</td>
<td>11.07%</td>
<td>5.97%</td>
<td>5.95%</td>
<td>.003%</td>
</tr>
<tr>
<td>6</td>
<td>33.6%</td>
<td>32.33%</td>
<td>30.03%</td>
<td>29.33%</td>
<td>22.94%</td>
</tr>
<tr>
<td>7</td>
<td>12.76%</td>
<td>11.06%</td>
<td>5.97%</td>
<td>5.95%</td>
<td>-.013%</td>
</tr>
<tr>
<td>8</td>
<td>12.68%</td>
<td>11.08%</td>
<td>5.92%</td>
<td>5.07%</td>
<td>-.26%</td>
</tr>
<tr>
<td>9</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>10</td>
<td>12.81%</td>
<td>11.06%</td>
<td>5.97%</td>
<td>5.96%</td>
<td>.003%</td>
</tr>
</tbody>
</table>

Average Δ

- .04%
Functionality Results

User Study

I was able to complete the task with the built in functions of the application

A

Responses

Full Function
Statistics Removed

Responses

Highly disagree 1 2 3 4 5 Highly agree

I had all of the tools necessary to correctly answer the questions

B

Responses

Full Function
Statistics Removed

Responses

Highly disagree 1 2 3 4 5 Highly agree

The tools to view changes over time are easily accessible in the application

C

Responses

Full Function
Statistics Removed

Responses

Highly disagree 1 2 3 4 5 Highly agree

I think the application could provide more tools to view changes to the land cover over time

D

Responses

Full Function
Statistics Removed

Responses

Highly disagree 1 2 3 4 5 Highly agree
Change Analysis Results

User Study

A. I was able to easily distinguish the changes to coniferous forest cover over time with the application

- Full Function
- Statistics Removed

B. I could understand how the forest cover has evolved over time in the study area

- Full Function
- Statistics Removed

C. I would use information from visualizations such as this application to help shape my understanding of the changes to our earth

- Full Function
- Statistics Removed

D. I can grasp the changes occurring over time to earth when viewing interactive land cover maps such as this prototype

- Full Function
- Statistics Removed
Intuitiveness Results

User Study

I understood how to use the application

The application is intuitive

I feel comfortable with the accuracy of my answers

Using an interactive web visualization has advantages over other formats such as static maps, reports, and other graphics.

Testing approaches to visualize land cover/land use changes in time series with cloud-based tools
Discussion

Web GIS Application

- Land cover data
- User centered design
- Time Series visualizations
- Microservice architectures
Discussion

Three U’s of Cartographic Interface Success

- **Usability**: How easy is it to use an interface to complete the objectives at hand?

- **Utility**: How useful is the interface to complete the objectives at hand?

- **User base**: Who is the target group that will be using the interface?
Hypothesis

Discussion

1. Cloud-based cartographic visualizations of remote sensing derived products can be an advantage to include within organizational microservice architecture.

2. Cartographic projects with integrated user-feedback cycles can help improve the continual development of earth observation derived products.
1. Cloud-based cartographic visualizations of remote sensing derived products can be an advantage to include within organizational microservice architecture.

2. Cartographic projects with integrated user-feedback cycles can help improve the continual development of earth observation derived products.
1. Cloud-based cartographic visualizations of remote sensing derived products can be an advantage to include within organizational microservice architecture.

2. Cartographic projects with integrated user-feedback cycles can help improve the continual development of earth observation derived products.
Testing approaches to visualize land cover/land use changes in time series with cloud-based tools.
Conclusion

Web GIS time-series microservice prototype

• Better understanding
• Increased accessibility
• Higher overall satisfaction

Microservice positives and negatives

Real world applicability
Outlook

Web GIS Microservice Potential

• Mena et al. (2019)

Topics

• Value of modularized maps as a component of web and micro-frontends
• Statistic visualizations in slippy maps
• Speed performance of Web GIS microservices

Copernicus Land Monitoring Service

Thank you for your attention

https://github.com/jessefriend

This is a koala
(Source, 2018)

Testing approaches to visualize land cover/land use changes in time series with cloud-based tools
References

