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Abstract 

This thesis forms part of a team project to produce an Alpine Club map sheet for the Ushba 

region in Svaneti, Georgia. The Ushba region spans the border between Georgia and Russia and 

forms part of the Greater Caucasus mountain range. The area is characterised by high mountains 

and large, open valleys, which lead to the formation of  distinctive vegetation zones of which this 

thesis aims to classify and represent. Classification was carried out using a mixture of remote-

sensed image data and relevant literature. Due to the ongoing Covid-19 pandemic throughout 

2020 the practicality  of a field trip to take measurements was unfeasible. Therefore, accurate 

references for training data were sourced online in the form of geotagged photos and high-

resolution satellite images. A hierarchical image classification approach using ERDAS IMAGINE 

software was employed to extract vegetation from non-vegetation components, followed by the 

classification of individual vegetation classes. Using this method, it was possible to extract 3 

separate classes; mixed, high forest stands, Krummholz and Alpine meadow. These classes were 

further vectorised with an appropriate colour scheme used for representing each vegetation type, 

that matched the general legend used by other Alpine Club maps. Further visualisations and 

classifications proved the general trend of vegetation over time both seasonally and over multiple 

years and established the compatibility between using Landsat-8 and Sentinel-2 satellite imagery. 

Overall accuracy using the correlation coefficient was proved to be 86% with a Kappa value of 

0.78 which suggests the vector layers produced are fit for the purpose of use. It should be 

mentioned that the re liability of classifications is under question due to the lack of training  data 

from the field, but it is hoped that future studies will correct for this.  
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1.0 Introduction 

This thesis encompasses a contribution to the Alpine Club map of the Ushba region regarding the 

mapping of the vegetation zones. The vegetation layer is produced from a combination of remote 

sensed data, image classification and relevant literature sources. The report shall focus on the 

identification of the predefined vegetation zones and their extraction from the images of the 

Landsat-8 and Sentinel-2 satellite missions. Following this a suitable classification of the 

vegetation zones will be chosen.   

Mount Ushba is situated on the Russia-Georgia border within the Greater Caucasus mountain 

range. The original focus of this thesis was on the Georgian side with subsequent expeditions 

planned to map across the Russian border, however, due to the Covid-19 pandemic this focus 

became redundant. The mapping area lies within the Svaneti region of North Western Georgia, a 

region characterised by high mountains and large valleys. In recent years the area around Mestia, 

the main town within the Upper Svaneti region, has experienced a rapid increase in tourism (119% 

from 2017 to 2018 [1]). This increase in tourism is sparked by a recent tourism drive by the 

government and enhanced by beautiful hiking conditions in the surrounding landscape. A map 

sheet of this area is considered useful for hikers and general tourists alike.  

The Covid-19 pandemic had a number of impacts on this thesis in particular the feasibility of a 

field trip as well as access to university computer software. These problems had to be overcome in 

order to successfully meet the outcomes, all of which shall be discussed later in this thesis paper.  

 

1.1 Research Objectives  

As previously mentioned, the main research objective is to produce a symbolised layer of actual 

vegetation cover based on the remotely scanned satellite images. This will be done by answering 

several research questions:  

ü How is the vegetation of the Ushba region composed in terms of natural vegetation zones?  

ü How are the different zones of vegetation related on the slopes of the Ushba mountain 

range? 

ü How can these vegetation zones be classified using satellite data (Landsat-8, Sentinel -2)?  

ü In what way can the vegetation zones be categorised/symbolised according to Alpine Club 

Map standards?  

ü How is it possible to characterise the different transitions between vegetation zones 

(sudden boundary vs. gradual change etc.)? 

This thesis covers the expansion of the Alpine Club map series into a new, currently uncovered 

region which, as previously mentioned, is experiencing an increase in international tourism year 

on year. This research is to focus mainly on the Georgian side of the Ushba region and will cover 
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the mapping of the vegetation zones not the ice or rock layers. It is hoped that the vegetation 

layers from this study will be used in a final version of the map sheet that can be used by 

mountaineers, hikers and general tourists interested in exploring this region.   

 

1.2 Climate of the Ushba Region 

The climate of the Ushba region of Georgia is relatively warm and humid with up to 2200 mm of 

rainfall  per year [2]. Half of this annual precipitation f alls as snowfall during the colder months 

meaning large areas of the mountains are covered by snow for much of the year; depending upon 

the elevation. Georgia is protected from cold, northern air intrusions by the Greater Caucasus 

mountain range and an influx of warm, moist air is provided from the direction of the black sea 

[3]. In the Svaneti region (where Ushba is located) this influence is particularly apparent due to 

relative proximity to the Black sea. Numerous similarities can be seen between the climate of the 

Caucasus and that of the Alps as described, in more detail, in studies by Nakhutsrishvili and 

Körner [2], [4], [5] . Although the two ranges show similarities the Caucasus exhibit a much 

stronger continental effect and show much sharper climatic variations over relatively small 

distances [2]. The impact of the humid climat e on the Ushba region is to lower the temperature 

and thereby lower the isotherms in respect to Eastern or further inland regions of the Caucasus. 

As a result, both the tree line and snow line are lower in comparison.  

 

1.3 Vegetation zones of the Ushba region 

The vegetation of the Ushba region is dominated by mesophilic taxa (which concerns organisms 

that grow in moderate temperature ranges) as influenced by the relatively humid and sheltered 

climate [3] this region exhibits. Typical Colchis vegetation elements [2] characterise the Svaneti 

region which refers to the locality (the area of land covering the shores of the black sea and south 

of the Caucasian mountains). Nakhutsrishvil et al. [2] describe the vegetation in detail; forests 

made up of coniferous pine trees such as Oriental Spruce, mixed deciduous forest with Oriental 

Beech canopy and Rhododendron understory. Other species such as Oak, Fir, and Hornbeam are 

also noted as present within the forest zone according to Berdzenishvili et al. [6] . For a visual 

example of these species and forest types, see Figure 1 [7]ɀ[9]. At the upper limit the forests give 

way to Krummholz , an area of stunted wind-blown trees that grow near the canopy [10], which, in 

the Svaneti Region, are composed of more oriental beech, red bud maple and birch [1]. 

Nakhutsrishvil et al. goes on to describe that beyond the tree line shrubs are more dominant; in 

particular, Caucasian Rhododendron and Common Juniper. Higher still, tall herb fields become 

prolific in the subalpine meadows with both the size and occurrence of plants decreasing with 

increasing altitude. These vegetation zones are typical for this region and directly affected by 

altitude and the associated climate.  
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The tree limit, as identified by Nakhutsrishvil et al. [2], is 2500 metres at its highest and is 

represented by local patches of low stature, birch trees. This matches the tree line found in other 

mountain ranges (such as the certain parts of the Alps, Hawaii and the Canadian Rockies [11]ɀ[14]) 

where the thermal conditions match. The upper limit of pine forest is found not to pass the 11 °C-

isotherm dur ing the warmest months of the year [15]. This means the tree line can move, both 

higher and lower, within the same mountain range depending on the position of this temperature 

line. Therefore, in locations closer to the sea, such as with Ushba, the relatively wet climate cools 

the average temperature within the summer months meaning the tree line is lower than 

comparative elevations further inland. Forest communities within the subalpine belt are mainly 

restricted to steep slopes due to the impacts of grazing herds and other farming practices [2]. The 

natural conifer treeline has disappeared and the birch trees only remain because of protection due 

to their religious signific ance [2] indicating significant levels of hemeroby [16]. This makes the 

mapping of a boundary between different vegetation zones harder as the boundary is often 

neither straight nor distinct. The tree line is highligh ted by high levels of plant diversity and the 

Figure 1 - Image examples for high forest stands within the Ushba region. 
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majority of wood species are found to be endemic to the Caucasus and neighbouring mountains 

[2]. However, many species show similarities to those found in the mountain ranges in other parts 

of Europe (the Alps and Scandinavia) [17].  

The subalpine belt is recognised as having been under pressure from the grazing of both wild and 

farmed animals for many years which have shaped the vegetation zones and their extent today 

[2]. Tortuous stemmed birch forests (Krummholz) are formed in two ways; the weight of snow in 

winter pushes down on their stems and results in an elfin form and exposure to strong mountain 

winds which results in their crooked stem appearance [2], [18]. These attributes mark their 

position at the higher limit of the subalpine belt between 2350-2550 metres in elevation [2]. 

Usually accompanying or coexisting with the Krummholz is the Caucasian Rhododendron (see 

Figure 2 [19]) which is the dominant species in snow cover dependent ecosystems [2]. This allows 

the species to form dense coverage of nearly 100% in the subalpine regions between 2300-2900 

metres elevation. Rather than a continuous layer, the location of these thickets, will exist 

sporadically depending on local environmental conditions. These two species will constitute the 

Ȭ+ÒÕÍÍÈÏÌÚȭ ÍÁÐ ÌÁÙÅÒ ×ÈÉÃÈ ×ÉÌÌ ÅØÉÓÔ ÂÅÔ×ÅÅÎ ÔÈÅ ÍÉØÅÄ woodland previously mentioned and 

the forb and grass communities which will be mentioned in subsequent paragraphs.  

 

The tall herbs of the Caucasus are described in a number of studies [20]ɀ[22] due to their height 

(between 100-300 centimetres [2]), relative abundance and diversity. The majority of the species, 

62% according to Nakhutsrishvil et al. [2], are considered endemic. These tall herb species are all 

characterised by rapid spring growth to make the most of short summers relying on high air 

humidity and soil moisture  to propogate their growth. They are found at altitudes of around 1900-

2300 metres where fluctuations of daily temperature remain moderate [2]. The subalpine 

meadows can occupy anywhere within the subalpine belt between 1500-2500 metres depending 

upon the species. Nakhutsrishvil [2], [4]  describes them as mesic habitats, meaning that they have 

access to a moderate water supply, provided by the existing humid conditions in this part of the 

Caucasus. The subalpine meadows are not natural in formation but rather formed by mowing or 

Figure 2 - Image of flowering Caucasian Rhododendron. 
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grazing and often make up either hayfields or pastures representing further hemeroby [16]. The 

alpine meadows can be split into two classes: Tussocky and non-Tussocky grassland. These are 

represented by differences in both their appearance and species present but would be considered 

a single entity on the proposed map. Tragacanthic and herb communities occur sporadically 

throughout  the subalpine belt with the latter occurring in depressions and valleys where there is 

more moisture present [2]. Tragacanthic species occur in areas once occupied by pine forest and 

include grasses and dwarf shrubs. As the coverage of these areas is so small, they will be 

considered as an extension of the subalpine meadows layer on the map. Several other vegetation 

communities of insignificant extent are recognised by Nakhutsrishvil et al. [2] as growing within 

the subalpine region, these include; rock and scree, Ephemeroid and Phenorythm-type species.   

Above the tree line and into the Alpine belt of the Caucasus the dominance of Krummholz and 

Rhododendron thickets is replaced by Alpine grassland and other short-stature vegetation. Alpine 

grasslands occupy vast areas and are often used for grazing by cattle, sheep or goats. The Alpine 

grasslands are made up of a few different communities including sedge grasslands, herb fields and 

tussocks [2]. Alpine grasses often occupy the steepest and most exposed slopes where larger plant 

species are unable to grow. Meadow species associated with the alpine region can be found 

anywhere between 1500-3000 metres. Alpine grasses form carpet-like meadows over vast areas of 

relatively deep and peaty soils (see Figure 3 [23]). In the highest regions of the Alpine belt snow 

cover can last up to three quarters of the year therefore plant communities here have to adapt to 

survive in these extremes. Snowbed communities are found at elevations near to or above 3000 

metres. They are mainly composed of low stature forb species with low floristic richness. Despite 

similarities in species present seen between other mountain ranges and Caucasus lower down 

within the subalpine belt, several studies have shown that Snowbed communities here are distinct 

Figure 3 - Alpine grassland shown with Ushba in the background. 
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from Snowbed communities seen in other mountain ranges [2] (particu larly the Anatolian 

Mountains in Turkey [24], [25]). Low-stature Caucasian Rhododendron shrubs occupy steep 

gullies between the 2300-3000 metre elevations. Here they are protected by long and secure snow 

cover within the peri -glacial region [26] providing high humidity and peaty soils. Dwarf shrubs 

such as Dryas occupy stony slopes within the Alpine region mixing with other Alpine Rock and 

Scree vegetation. These plant communities will all form the proposed Alpine grassland and forb 

layer on the Ushba map.  

The final vegetation community ascending 3000 metres above sea level is described as the 

Subnival layer. This zone occupies the region between the alpine grasslands and the permanent 

snow line and glaciers. Life for plants at this altitude is extremely tough and snow cover can often 

last throughout th e year with short, cold summers dominated by long winters [2]. Wind, 

inclinat ion of slopes, direction of slope face, and surface roughness all have an impact on plant 

communities that survive here [5], [27], [28]. Most Subnival plants exist in microclimates where 

they form cushion or carpet-lik e stands that are warmer than the outside temperature [2]. 

However others grow as isolated individuals or within small groups sheltering amongst areas of 

rock and scree [29]. According to Körner et al. [5] the substrate, nutrient and water availability are 

all shaped by the actions of gravity and thus control the geodiversity of the Subnival belt. 

Therefore the majority of plant species survive within individual microclimates (ecological niches) 

and are consequently endemic to the Caucasus range [4]  with specific substrate preferences [30]. 

Nakhutsrishvil et al. [2] even noted 94 species as living above the snowline within the Svaneti 

region. The subnival layer is difficult to map due to its patchy coverage intermixed with rock and 

snow therefore further observation through remote sensing and field observations are required to 

fully map this zone.  

From reviewing the literature, it is apparent there is a possibility of identifying three or four 

vegetation zones seen both on the ground and through remote sensing. Mixed deciduous 

woodland, Krummholz, and Alpine grassland and herbs make up the most visible layers with a 

subnival layer likely sporadic in appearance and more difficult to identify using image 

classification techniques. Based on literature many smaller vegetation classes appear present 

within the Ushba region but for purposes of this study these smaller plant communities shall be 

grouped together into the three larger vegetation zones. The primary importance of vegetation 

representation for the proposed Ushba hiking map is zonation. This allows hikers and other users 

the ability to see how changes in elevation are represented by the changing vegetation around 

them and therefore exact marking of each species is unnecessary.  
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1.4 Vegetation Representation in the Alpine Club Map Series 

The Alpine club maps series has no established legend or common classification scheme. This is 

due to the differences, in vegetation zones present and coverage of vegetation, across the diverse 

locations which Alpine Club maps are offered. Alpine club maps are praised on their level of 

accuracy and terrain detail but from observing multiple series maps the number of vegetation 

zones are usually kept to a minimum. This prevents the maps from becoming too confusing and 

thus more difficult to read and interpret. An example of an Alpine Club map is shown in Figure 5 

[31]. From this figure it is clear to see how the forest on the lower slopes (around the edges of the 

map) leads up into the rocky areas at higher ground. Here there is some differentiation of the 

forest; between Krummholz and high forest stands, where patchy darker green elements are 

shown at the forest fringes. In other Alpine Club map examples; such as Dachstein, the vegetation 

is clearly split into two types including small pine and bushes (Krummholz), and forest (see 

Figure 4 [32]). The simple vegetation scheme clearly shows the reader the zonation of vegetation 

coverage without making it the focus of the map. Other map elements such as the presence of 

rocky areas, contours and, of course, the hiking trails themselves are prioritised so that the 

vegetation merely acts as a background layer or base map.  

Boundaries between vegetation zones are distinctive and show exact changes from one vegetation 

type to another. This is likely not occurring on the ground, but this representation provides the 

reader with an idea of where they should see the vegetation zones begin to change. Figure 5 

provides a good example of how vegetation boundaries are not always so precise; some forest and 

Krummholz occur simultaneously with some Krummholz present within the forest zone and both 

areas of forest and Krummholz cohabitating the upper limits of the tree line. Therefore, although 

the boundaries between the two vegetation layers are hard, the visualisation shown within Alpine 

Club maps clearly represents a close interpretation of what is occurring within the natural 

environment. This shall be considered when deciding on the vegetation layer boundaries within 

this thesis study.  

Figure 4 - Legend example for the Alpine Club map series. 
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1.5 Past Research and Theory 

Many studies note the difficulty in modelling the vegetation characteristics in high-altitude 

environments. Characterised by a shorter growing season and long cold winters, as previously 

mentioned in chapter 1.2, the opportunity to reliably and accurately classify vegetation, based on 

NDVI in these regions, is limited [33], [34]. Parallels can be drawn with the quantification of the 

vegetation index at high-latitude regions as in the study by Beck et al. [35]. In this study a 

Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI is used instead of the typical 

NDVI time series due to its better performance within such latitudes. The importance of 

observing the winter time series as well as the typical leaf-on period between March and October 

is highlighted in several studies [35]ɀ[37] and the relevance of snow cover in regards to its impact 

on mountain phenology is highlighted in many more [38]ɀ[40]. In a detailed study on the impact 

of snow, Xie et al. [41] measured the impact of snow accumulation and duration on mountain 

phenology and concluded that snow cover duration had the most impact on the timings and 

behaviour of vegetation as a whole. Previous research promotes the importance of considering the 

snow cover during a study of vegetation within high mountain regions [36], [42]. Although this 

study is primarily focused on arriving at a vegetation classification and not analysing phenology it 

is a point of consideration for the methodology and the practical aspect of arriving at an accurate 

classification product.  

Three problems with accurately mapping the vegetation zones using mid-resolution satellites 

such as Landsat-8 are described in the study by Cingolani A. et al. [43]. One such problem is the 

Figure 5 - Map extract from the Alpine Club map of Triglav in the Slovenian Alps. 
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presence of vegetation community patches which are smaller than the pixel size of the Landsat 

image and thus difficult to reliably classify [44]. The study suggests the approach of defining 

informational units at a higher hierarchy (where classes are defined by terrain attributes) to give a 

more realistic classification product [45]. Another problem focussing in the study by Cingolani et 

al. [43] is the definition of exact mapping units that are discernible by the satellite itself. It is 

noted that a process of trial and error occurs until a satisfactory output is produced [44]. This is 

realised within the Ushba region by the presence of several smaller plant communities which are 

mentioned within literature but would be indiscernible by a satellite classification. Thus, a 

suitable number of classes and training areas must be used to best represent a classification and 

output that is appropriate for an  Alpine Field Club map. This then leads to the third problem of 

perceiving suitable training areas of adequate size. In the paper mentioned [43], an objective 

method of selecting training sites and assigning pixels based on discriminant functions is 

suggested. These discriminant functions are obtained from the statistical analysis of the spectral 

signatures of each vegetation class which subjected each pixel to eight linear functions (for each 

band of the Landsat TM satellite). Each of these 8 values were subsequently compared followed 

by the assignment of the pixel to the  class with the highest value [43]. This method resulted in a 

relatively high accuracy (~87%) but for this study the problem lies with a lack of reliable field data 

to give accurate spectral comparisons. Therefore, it would not be feasible to use this method for 

the classification of vegetation in the Ushba region.  

Airborne multispectral imagery has been used as a source for vegetation and water remote 

sensing since the 1960s [46]. This type of imagery is limited in the number of bands that it can 

measure thus limiting the spectral resolution of multispectral satellite imaging. In the study by 

Govender et al. [47] the use of hyperspectral remote sensing is described as the answer to these 

limitations. Hyperspectral sensors measure continuous spectral bands as opposed to multispectral 

imaging which measure spaced spectral bands [48]. Hyperspectral sensors can collect up to 200 

bands allowing for the complete reconstruction of a contiguous reflectance spectrum for every 

pixel in an image [47]. This can then be used to produce a more detailed analysis of surface cover 

with finer discrimination between different classes arriving at a more accurate or detailed 

classification. Althoug h the spectral resolution of the hyperspectral sensor is higher the spatial 

resolution is not. This is due to the differences between spectral and spatial resolution: Spectral 

resolution is referring to the number and width of electromagnetic spectrums whereas spatial 

resolution refers to the level of spatial detail that can be visualised [47]. This is very relevant to 

this thesis as an application of hyperspectral sensing is the discrimination of different vegetation 

types something which is possible with multispectral sensors (such as Sentinel-2 and Landsat-8) 

but not as accurate.  

The most important part of the methodology for this thesis is the implementation of the 

classification. Many different classification methods are discussed throughout diff erent studies 

focussing on the pre-processing or different classification techniques available. In the study by 

Iovan et al. [49]  the different variances of grass and trees is used to separate and individually 

classify the two surface types. Other studies describe detailed pre-processing in order to remove 
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noise and make images homogenous in appearance [41], [50]. Xie et al. [41] remarks that the pre-

processing of images usually compromises a series of operations including but not l imited to; 

image enhancement, mosaicking, radiometric correction, geometric correction and masking. The 

use of masking is particularly important regarding the removal of cloud cover from images. The 

Ushba image scenes used in this study were chosen based on the least amount of cloud cover but 

even a small amount of cloud cover present can drastically affect the classification results. The 

study by Xue et al. [51] describes in detail the use of specific Vegetation Index (VI) algorithms in 

terms of their application and target vegetation classes. The VI used in most studies is the 

Normalized Difference Vegetation Index (NDVI) which is the primary method of extracting 

vegetation using unsupervised classification techniques and the technique that will be used in this 

study. Most studies make use of the NDVI classification technique to extract the vegetation and 

then use a more precise supervised classification method to extract the individual vegetation 

types [50], [52], [53]. In the study by Vanonchelen et al. [53] the Maximum Likelihood (ML) and 

Support Vector Machine (SVM) classifiers were used. Both classifiers are examples of supervised 

classification techniques which require the input of training data. For the study mentioned [53], 

the SVM classifier works by identifying a hyperplane that separates the classes in feature space 

[54], [55]. This hyperplane maximises the difference along class boundaries and is found to 

outperform other classification techniques whilst demanding fewer training sites [56]ɀ[60]. 

However, in order to execute this type of classification the correct level of software is required. In 

this study by Vanonchelen et al. [53] as well as most of the others mentioned the established 

ENVI/I DL software was used. In this paper, due to university access constraints, the only software 

available was ERDAS IMAGINE and SNAP neither of which have the availability of functions that 

ENVI software allows.  

In several past studies the main classifier used was the Random Forest (RF) classifier [50], [61]. 

The primary function of this classifier type is to extract individual forest or vegetation types, for 

example; in the study by Liu et al. [50] different tree species were classified from Sentinel-2 and 

Landsat-8 data sources. RF along with the k-Nearest Neighbour (kNN) algorithm and the SVM 

classifier, which was mentioned in the previous paragraph, are examples of Machine Learning 

Algorithms (MLAs). MLAs are useful for classifying vegetation in mountainous regions because 

there is no need to assume the data is distributed normally. This means that these classifiers can 

deal with noisy training  data and produce more accurate classifications in complex environments 

[53], [62]. Lu and Weng [62] mention that non -parametric classifiers, such as MLAs, do not 

require assumptions about the data. This is in reverse to parametric classifiers, such as Maximum 

Likelihood, which assume a Gaussian distribution and rely mainly on training data in order to 

arrive at a successful classification. This highlights the benefit of MLAs which can incorporate 

non-remote sensing data into the classification process. Therefore a reduced reliance on training 

ÄÁÔÁ ÉÓ ÒÅÑÕÉÒÅÄ ÁÎÄ ÒÅÓÕÌÔÉÎÇ ÃÌÁÓÓÉÆÉÃÁÔÉÏÎÓ ÁÐÐÅÁÒ ÌÅÓÓ ȬÎÏÉÓÙȭ ÔÈÁÎ ÐÁÒÁÍÅÔÒÉÃ ÃÌÁÓÓÉÆÉÃÁÔÉÏÎÓ ÏÆ 

the same area [62]. RF classification consists of a collection of tree-structured classifiers in which 
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each tree contributes a vote to determine the most frequent class according to the input data (see 

Equation 1) [61], [63].  

To form a split point node the algorithm randomly selects a sub-set of variables and then searches 

among these variables to arrive at the best classification boundary between classes [63]. The 

algorithm performan ce is limited by the number of tree-structured classifiers. Often other non-

remote sensed data must be added when classifying trees with similar spectral signatures. In the 

study by Liu et al. [50] topographic and phenology information  was added into the algorithm in 

order to distinguish between individual tree species.  

Support Vector Machine (SVM) is used in multiple studies [53], [57]ɀ[59], [64], [65] and 

represents an example of a non-parametric, supervised classification technique. As mentioned in 

previous paragraphs, SVM works by finding a hyperplane which optimises the classification by 

minimising the upper classification boundary [61]. The hyperplane surface is used to determine 

the classification and arrives from the inp ut variables including training dat a and other non-

remote sensed components. In the paper by Cortes and Vapnik [64] the use of soft margins within 

the MLA allow for errors within the training data. This is useful for regions of complex vegetation 

coverage such as those found in mountain environments. In the study by Vega Isuhuaylas et al. 

[61], SVM was found to outperform other MLA, including RF, when classifying the Andes 

mountain environment. It was found to have the highest mean area under the curve (AUC) as 

well as the smallest standard deviation [61] when compared to the poorest performing 

classification technique. There were differences found between the performance of the SVM using 

different input data; f or example, using NDVI as the only classification feature for SVM severely 

limited its performance capability. Thus, the main benefit of MLAs is once again highlighted by 

their ability to  acknowledge other data features including phenology, topography and elevation 

data. The overall benefits of SVM as a classifier is evident by its ability to deal with noisy training 

data in complex environments. Therefore, it would be a useful classification technique for 

mapping the vegetation of Ushba.  

The final non-parametric technique evaluated in the study be Vega Isuhuaylas et al. [61] and used 

in a variety of studies in order to classify forest environments [66]ɀ[68]  is the k-Nearest 

Neighbours (kNN) classification algorithm. This technique is simple to implement; requires low 

training data, computational costs and relies on the k-closest training data vectors in order to 

ÃÏÍÐÕÔÅ ÁÃÃÕÒÁÔÅ ÃÌÁÓÓÉÆÉÃÁÔÉÏÎÓȢ 4ÈÅ Ë.. ÃÌÁÓÓÉÆÉÃÁÔÉÏÎ ×ÏÒËÓ ÂÙ ÁÓÓÉÇÎÉÎÇ Á ÓÁÍÐÌÅ ÖÅÃÔÏÒ ȬØȭ ÔÏ 

ÔÈÅ ÃÌÁÓÓ ÒÅÐÒÅÓÅÎÔÅÄ ÂÙ ÔÈÅ ÍÁÊÏÒÉÔÙ ÏÆ ȬËȭ ÎÅÁÒÅÓÔ Îeighbours [61]. The value of the point variable 

is predicted based on the similarity between neighbouring points th at show observed values 

within a covariate space [68] . Similarity between the nearest neighbour values is determined by 

distance but as with all non-parametric MLAs other variables can be included in the overall 

Equation 1 - Random Forest equation 
acquired from the study by Vega Isuhuaylas 
et al. 2018. 
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calculation. In terms of performance, the kNN classification method has many good performance 

indicators when used in forestry mapping. Attention  must be paid when calibrating the kNN 

classification technique as noted by McRoberts et al. [68] . By weighting some variables more than 

others it was found that the accuracy of the classification could be increased. However, in the 

study by Vega Isuhuaylas et al. [61], kNN was found to have a much lower performance when 

mapping vegetation with noisy, mult ivariate datasets in comparison to other MLA classifiers such 

as RF and SVM. This was concluded to be a result of the sensitivity of the kNN classifier to noisy 

data, in particular - outliers, which could have a large impact on the differences in similarit y 

which the algorithm relies upon. Therefore, it has been concluded that, in comparison to other 

classifiers, kNN is maybe not as reliable especially regarding the mapping of more complex and 

challenging environments such as mountainous regions.  

The three non-parametric or Machine Learning Algorithms (MLA) ment ioned in the last few 

chapters all have positive and negative features that make them suitable or unsuitable for use in 

mapping a mountainous region such as Ushba. The main issue with these methods is whether 

they are supported on the software available for use at TU Dresden (2016 version or ERDAS 

IMAGINE). Another issue is the lack of reliable training data which is accessible to us due to the 

cancellation of the planned field trip in July. For these reasons the application of these 

classification techniques within this study seems unattainable and therefore the supervised 

classification technique Maximum Likelihood (ML) is to be used instead. ML is the principal 

parametric classification technique, supported by all image processing software, and the most 

widely used of all supervised classification techniques [69], [70] . Maximum Likelihood assumes 

that the statistics for each class are normally distributed in a linear manor. It is therefore assumed 

that image pixel data follows a Gaussian distribution which is something that is often not true of 

more complex regions. Each pixel is assigned to a given class based on the highest probability 

(maximum likelihood) that the pixel belongs to that class based on similarities in the input 

variables (e.g. NDVI). ML requires sufficient ground truth data in order to arrive at a classification 

of acceptable accuracy. A greater number of training areas provide a more accurate estimation of 

the mean vector and variance-covariance matrix of the population. This subsequently arrives at a 

more accurate classification. Several studies do show that the ML method has its issues and 

produce less accurate results, particularly in heterogenous mountain environments, when 

compared to other classification techniques. [43], [52], [61]. However, the study by Sisodia et al. 

[71] proved ML to be a robust technique; obtaining classification accuracies of 93.75%.  

As the last few paragraphs have shown, there is a wide array of possible classification techniques 

available, all of which can compute sufficient results. One of the most important parts of the 

method when carrying out a classification of remote sensed data is the ability to check the 

accuracy of the results. Literature shows that there are several popular methods to compare the 

ÃÌÁÓÓÉÆÉÃÁÔÉÏÎÓ ÂÙ ÃÈÅÃËÉÎÇ ÔÈÅ ÏÖÅÒÁÌÌ ÁÃÃÕÒÁÃÙȢ /ÎÅ ÓÕÃÈ ÍÅÔÈÏÄ ÉÓ ÔÈÅ ÕÓÅ ÏÆ #ÏÈÅÎȭÓ ËÁÐÐÁ 

ÓÔÁÔÉÓÔÉÃȢ #ÏÈÅÎȭÓ ËÁÐÐÁ ÉÓ ÄÅÆÉÎÅÄ ÂÅÌÏ× ɉÓÅÅ Equation 2): 
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where Po is the observed agreement and Pe is the expected agreement [72]. Resulting values are 

between 0 and 1 with any value greater than 0.8 being considered as an almost perfect agreement. 

Generally, the kappa value can be calculated using a confusion matrix whic h compares the 

number of correctly classified classes with the number of misclassified classes. Using a confusion 

ÍÁÔÒÉØȠ ÔÈÅ ÕÓÅÒȟ ÐÒÏÄÕÃÅÒ ÁÎÄ ÏÖÅÒÁÌÌ ÁÃÃÕÒÁÃÙ ÏÆ Á ÄÁÔÁÓÅÔ ÃÁÎ ÂÅ ÃÁÌÃÕÌÁÔÅÄȢ #ÏÈÅÎȭÓ ËÁÐÐÁ ÉÓ Á 

useful tool for measuring multi -class and imbalanced class problems. Another performance 

indicator used for classification accuracy is the area under the curve (AUC). This was used in the 

study by Vega Isuhuaylas et al. [61] who used the receiving operating characteristic (ROC) theory 

to determine the corresponding optimum threshold for each classification analysis. The AUC 

value, calculated in this way, is threshold independent meaning that the result of this indicator is 

an overall accuracy based on a number of different probability thresholds [61], [73]. In his study, 

Friedman [74] employs the use of ranks to check that the variance between different performance 

indicators is statistically agreeable. From the results of the kappa coefficient and AUC the 

different classifications can be ranked (1,2,3 etc.) and subsequently these ranks can be compared 

either pairwise or across all rank classes. In the study by Vega Isuhuaylas et al. [61], the ranks were 

compared using the Nemenyi post-hoc test which examined whether models showed a notable 

ÄÉÆÆÅÒÅÎÃÅ ɉȬ#ÒÉÔÉÃÁÌ $ÉÆÆÅÒÅÎÃÅȭɊȢ )Î ÃÏÎÃÌÕÓÉÏÎȟ ÐÁÓÔ ÒÅÓÅÁÒÃÈ ÓÈÏ×Ó ÈÏ× ÁÌÌ ÃÌÁÓsification studies 

must check the overall accuracy of their classification results. The most popular and widely used 

ÍÅÔÈÏÄ ÉÓ #ÏÈÅÎȭÓ ËÁÐÐÁ ÂÕÔ ÏÔÈÅÒ ÍÅÔÈÏÄÓ ÁÒÅ ÁÖÁÉÌÁÂÌÅ ÁÎÄ ÉÔ ÉÓ ÐÒÅÆÅÒÒÅÄ ÔÏ ÕÓÅ ÍÏÒÅ ÔÈÁÎ ÏÎÅ 

performance indicator in order to get the most precise accuracy assessments [52], [61], [62]. This 

is due to, and especially regarding vegetation mapping at coarse scales [52], #ÏÈÅÎȭÓ ËÁÐÐÁ 

masking errors of significant difference and making the possibility of agreement as a result of 

chance [75].   

 

2. Data Acquisition 

2.1 Multi-Spectral Images 

The Multi -Spectral Images (MSI) used in this study are from the Sentinel-2 and Landsat-8 satellite 

missions. A brief overview of the satellite data used is shown in Table 1. 

Equation 2 - Cohen's kappa coefficient. 
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Table 1 - Overview of Sentinel-2 and Landsat-8 satellites. 

The Multi -Spectral Sentinel-2 images are made of a satellite constellation of two identical 

satellites; Sentinel-2A and Sentinel -2B. The Sentinel-2A satellite was launched on the 23rd of June 

2015 by the European Space Agency (ESA) and the Sentinel-2B was launched on the 7th of March 

2017 [76]. The frequency revisit of each satellite is 10 days with a combined constellation revisit of 

5 days at the equator and 2-3 days at mid-latitudes. The two satellites exhibit a polar orbit 

synchronising the movements of the sun [76]. The instrument consists of a Multispectral Imager 

(MSI) covering 13 spectral bands (443 nm ɀ 2190 nm) with swath width of 290 km and spatial 

resolutions of 10 metres (4 visible and near-infrared bands), 20 metres (6 red-edge/shortwave-

infrared bands) and 60 metres (3 atmospheric correction bands) [77].  

The Landsat-8 satellite was launched on the 11th of February 2013 and includes both the 

Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) onboard [50]. These two 

sensors provide seasonal coverage of the global landmass at spatial resolutions of 30 metres 

(Visible, NIR and SWIR), 100 metres (thermal) and 15 metres (panchromatic) [78].  

The MSI used within this study are composed of 64 cropped images taken from both satellites 

covering the leaf-on period between April and November over the past 3 years (2017-present). 

Dates were chosen based on percentage cloud cover and in partic ular; cloud cover over the study 

area, with less than 20% cloud cover considered acceptable. Sentinel-2 images for 2018/9 were 

freely acquired from the Copernicus Open Access Hub (https://scihub.copernicus.eu/). However, 

due to the length of time taken to access some of the older archived data using this hub, ONDA 

(https://www.onda -dias.eu/cms/) was used to access all of the 2017 archived data. Resulting 

products are either Level-1C (L1C) or Level-2A (L2A). L1C describes product images that display 

top-of-atmosphere reflectances whereas L2A are bottom-of-atmosphere and are derived from the 

L1C products. L2A tiles are most useful for this study as they provide a clearer image of the ground 

geometry and vegetation coverage. Therefore, these data types were preferentially chosen where 

possible (subject to cloud cover and dates). All sentinel-2 products are released in a Universal 

Transverse Mercator (UTM) projection and World Geodetic System (WGS) 84 datum. A total of 31 

tiles were collected with 17 from tile 37 and 14 from tile 38. A description of these images is 

available in Table 2.  

Landsat-8 images were accessed using the USGS Earth Explorer site 

(https://earthexplorer.usgs.gov/) which provides standard Level-1 topographically corrected 

https://scihub.copernicus.eu/
https://www.onda-dias.eu/cms/
https://earthexplorer.usgs.gov/
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products (LT1). LT1 data is corrected with regards to relief displacement. Landsat-8 products are 

released with a UTM projection and a Clarke 1866 datum. In total 33 Landsat-8 tiles were 

obtained, 16 for tile 37 and 17 for tile 38. Table 2 provides a description of these images. 

Figure 6 shows the distribution of Ushba scenes taken from the 2017 - 2020 period. As previously 

mentioned, scenes were chosen based on cloud cover, but August, September and October were 

chosen particularly because they have the least amount of snow cover and highest mean NDVI 

values. Overall, the distribution of scenes were kept as even as possible with an average of 8 

scenes per month and an average of 20 scenes for each year (excluding the current year ɀ 2020).  

Table 2 - Description of the data accessed from each satellite and each tile. 
































































































