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Abstract 

This thesis forms part of a team project to produce an Alpine Club map sheet for the Ushba 

region in Svaneti, Georgia. The Ushba region spans the border between Georgia and Russia and 

forms part of the Greater Caucasus mountain range. The area is characterised by high mountains 

and large, open valleys, which lead to the formation of distinctive vegetation zones of which this 

thesis aims to classify and represent. Classification was carried out using a mixture of remote-

sensed image data and relevant literature. Due to the ongoing Covid-19 pandemic throughout 

2020 the practicality of a field trip to take measurements was unfeasible. Therefore, accurate 

references for training data were sourced online in the form of geotagged photos and high-

resolution satellite images. A hierarchical image classification approach using ERDAS IMAGINE 

software was employed to extract vegetation from non-vegetation components, followed by the 

classification of individual vegetation classes. Using this method, it was possible to extract 3 

separate classes; mixed, high forest stands, Krummholz and Alpine meadow. These classes were 

further vectorised with an appropriate colour scheme used for representing each vegetation type, 

that matched the general legend used by other Alpine Club maps. Further visualisations and 

classifications proved the general trend of vegetation over time both seasonally and over multiple 

years and established the compatibility between using Landsat-8 and Sentinel-2 satellite imagery. 

Overall accuracy using the correlation coefficient was proved to be 86% with a Kappa value of 

0.78 which suggests the vector layers produced are fit for the purpose of use. It should be 

mentioned that the reliability of classifications is under question due to the lack of training data 

from the field, but it is hoped that future studies will correct for this.  
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1.0 Introduction 

This thesis encompasses a contribution to the Alpine Club map of the Ushba region regarding the 

mapping of the vegetation zones. The vegetation layer is produced from a combination of remote 

sensed data, image classification and relevant literature sources. The report shall focus on the 

identification of the predefined vegetation zones and their extraction from the images of the 

Landsat-8 and Sentinel-2 satellite missions. Following this a suitable classification of the 

vegetation zones will be chosen.   

Mount Ushba is situated on the Russia-Georgia border within the Greater Caucasus mountain 

range. The original focus of this thesis was on the Georgian side with subsequent expeditions 

planned to map across the Russian border, however, due to the Covid-19 pandemic this focus 

became redundant. The mapping area lies within the Svaneti region of North Western Georgia, a 

region characterised by high mountains and large valleys. In recent years the area around Mestia, 

the main town within the Upper Svaneti region, has experienced a rapid increase in tourism (119% 

from 2017 to 2018 [1]). This increase in tourism is sparked by a recent tourism drive by the 

government and enhanced by beautiful hiking conditions in the surrounding landscape. A map 

sheet of this area is considered useful for hikers and general tourists alike.  

The Covid-19 pandemic had a number of impacts on this thesis in particular the feasibility of a 

field trip as well as access to university computer software. These problems had to be overcome in 

order to successfully meet the outcomes, all of which shall be discussed later in this thesis paper.  

 

1.1 Research Objectives  

As previously mentioned, the main research objective is to produce a symbolised layer of actual 

vegetation cover based on the remotely scanned satellite images. This will be done by answering 

several research questions:  

➢ How is the vegetation of the Ushba region composed in terms of natural vegetation zones?  

➢ How are the different zones of vegetation related on the slopes of the Ushba mountain 

range? 

➢ How can these vegetation zones be classified using satellite data (Landsat-8, Sentinel-2)?  

➢ In what way can the vegetation zones be categorised/symbolised according to Alpine Club 

Map standards?  

➢ How is it possible to characterise the different transitions between vegetation zones 

(sudden boundary vs. gradual change etc.)? 

This thesis covers the expansion of the Alpine Club map series into a new, currently uncovered 

region which, as previously mentioned, is experiencing an increase in international tourism year 

on year. This research is to focus mainly on the Georgian side of the Ushba region and will cover 
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the mapping of the vegetation zones not the ice or rock layers. It is hoped that the vegetation 

layers from this study will be used in a final version of the map sheet that can be used by 

mountaineers, hikers and general tourists interested in exploring this region.   

 

1.2 Climate of the Ushba Region 

The climate of the Ushba region of Georgia is relatively warm and humid with up to 2200 mm of 

rainfall per year [2]. Half of this annual precipitation falls as snowfall during the colder months 

meaning large areas of the mountains are covered by snow for much of the year; depending upon 

the elevation. Georgia is protected from cold, northern air intrusions by the Greater Caucasus 

mountain range and an influx of warm, moist air is provided from the direction of the black sea 

[3]. In the Svaneti region (where Ushba is located) this influence is particularly apparent due to 

relative proximity to the Black sea. Numerous similarities can be seen between the climate of the 

Caucasus and that of the Alps as described, in more detail, in studies by Nakhutsrishvili and 

Körner [2], [4], [5]. Although the two ranges show similarities the Caucasus exhibit a much 

stronger continental effect and show much sharper climatic variations over relatively small 

distances [2]. The impact of the humid climate on the Ushba region is to lower the temperature 

and thereby lower the isotherms in respect to Eastern or further inland regions of the Caucasus. 

As a result, both the tree line and snow line are lower in comparison.  

 

1.3 Vegetation zones of the Ushba region 

The vegetation of the Ushba region is dominated by mesophilic taxa (which concerns organisms 

that grow in moderate temperature ranges) as influenced by the relatively humid and sheltered 

climate [3] this region exhibits. Typical Colchis vegetation elements [2] characterise the Svaneti 

region which refers to the locality (the area of land covering the shores of the black sea and south 

of the Caucasian mountains). Nakhutsrishvil et al. [2] describe the vegetation in detail; forests 

made up of coniferous pine trees such as Oriental Spruce, mixed deciduous forest with Oriental 

Beech canopy and Rhododendron understory. Other species such as Oak, Fir, and Hornbeam are 

also noted as present within the forest zone according to Berdzenishvili et al. [6]. For a visual 

example of these species and forest types, see Figure 1 [7]–[9]. At the upper limit the forests give 

way to Krummholz, an area of stunted wind-blown trees that grow near the canopy [10], which, in 

the Svaneti Region, are composed of more oriental beech, red bud maple and birch [1]. 

Nakhutsrishvil et al. goes on to describe that beyond the tree line shrubs are more dominant; in 

particular, Caucasian Rhododendron and Common Juniper. Higher still, tall herb fields become 

prolific in the subalpine meadows with both the size and occurrence of plants decreasing with 

increasing altitude. These vegetation zones are typical for this region and directly affected by 

altitude and the associated climate.  
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The tree limit, as identified by Nakhutsrishvil et al. [2], is 2500 metres at its highest and is 

represented by local patches of low stature, birch trees. This matches the tree line found in other 

mountain ranges (such as the certain parts of the Alps, Hawaii and the Canadian Rockies [11]–[14]) 

where the thermal conditions match. The upper limit of pine forest is found not to pass the 11 °C-

isotherm during the warmest months of the year [15]. This means the tree line can move, both 

higher and lower, within the same mountain range depending on the position of this temperature 

line. Therefore, in locations closer to the sea, such as with Ushba, the relatively wet climate cools 

the average temperature within the summer months meaning the tree line is lower than 

comparative elevations further inland. Forest communities within the subalpine belt are mainly 

restricted to steep slopes due to the impacts of grazing herds and other farming practices [2]. The 

natural conifer treeline has disappeared and the birch trees only remain because of protection due 

to their religious significance [2] indicating significant levels of hemeroby [16]. This makes the 

mapping of a boundary between different vegetation zones harder as the boundary is often 

neither straight nor distinct. The tree line is highlighted by high levels of plant diversity and the 

Figure 1 - Image examples for high forest stands within the Ushba region. 
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majority of wood species are found to be endemic to the Caucasus and neighbouring mountains 

[2]. However, many species show similarities to those found in the mountain ranges in other parts 

of Europe (the Alps and Scandinavia) [17].  

The subalpine belt is recognised as having been under pressure from the grazing of both wild and 

farmed animals for many years which have shaped the vegetation zones and their extent today 

[2]. Tortuous stemmed birch forests (Krummholz) are formed in two ways; the weight of snow in 

winter pushes down on their stems and results in an elfin form and exposure to strong mountain 

winds which results in their crooked stem appearance [2], [18]. These attributes mark their 

position at the higher limit of the subalpine belt between 2350-2550 metres in elevation [2]. 

Usually accompanying or coexisting with the Krummholz is the Caucasian Rhododendron (see 

Figure 2 [19]) which is the dominant species in snow cover dependent ecosystems [2]. This allows 

the species to form dense coverage of nearly 100% in the subalpine regions between 2300-2900 

metres elevation. Rather than a continuous layer, the location of these thickets, will exist 

sporadically depending on local environmental conditions. These two species will constitute the 

‘Krummholz’ map layer which will exist between the mixed woodland previously mentioned and 

the forb and grass communities which will be mentioned in subsequent paragraphs.  

 

The tall herbs of the Caucasus are described in a number of studies [20]–[22] due to their height 

(between 100-300 centimetres [2]), relative abundance and diversity. The majority of the species, 

62% according to Nakhutsrishvil et al. [2], are considered endemic. These tall herb species are all 

characterised by rapid spring growth to make the most of short summers relying on high air 

humidity and soil moisture to propogate their growth. They are found at altitudes of around 1900-

2300 metres where fluctuations of daily temperature remain moderate [2]. The subalpine 

meadows can occupy anywhere within the subalpine belt between 1500-2500 metres depending 

upon the species. Nakhutsrishvil [2], [4] describes them as mesic habitats, meaning that they have 

access to a moderate water supply, provided by the existing humid conditions in this part of the 

Caucasus. The subalpine meadows are not natural in formation but rather formed by mowing or 

Figure 2 - Image of flowering Caucasian Rhododendron. 
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grazing and often make up either hayfields or pastures representing further hemeroby [16]. The 

alpine meadows can be split into two classes: Tussocky and non-Tussocky grassland. These are 

represented by differences in both their appearance and species present but would be considered 

a single entity on the proposed map. Tragacanthic and herb communities occur sporadically 

throughout the subalpine belt with the latter occurring in depressions and valleys where there is 

more moisture present [2]. Tragacanthic species occur in areas once occupied by pine forest and 

include grasses and dwarf shrubs. As the coverage of these areas is so small, they will be 

considered as an extension of the subalpine meadows layer on the map. Several other vegetation 

communities of insignificant extent are recognised by Nakhutsrishvil et al. [2] as growing within 

the subalpine region, these include; rock and scree, Ephemeroid and Phenorythm-type species.   

Above the tree line and into the Alpine belt of the Caucasus the dominance of Krummholz and 

Rhododendron thickets is replaced by Alpine grassland and other short-stature vegetation. Alpine 

grasslands occupy vast areas and are often used for grazing by cattle, sheep or goats. The Alpine 

grasslands are made up of a few different communities including sedge grasslands, herb fields and 

tussocks [2]. Alpine grasses often occupy the steepest and most exposed slopes where larger plant 

species are unable to grow. Meadow species associated with the alpine region can be found 

anywhere between 1500-3000 metres. Alpine grasses form carpet-like meadows over vast areas of 

relatively deep and peaty soils (see Figure 3 [23]). In the highest regions of the Alpine belt snow 

cover can last up to three quarters of the year therefore plant communities here have to adapt to 

survive in these extremes. Snowbed communities are found at elevations near to or above 3000 

metres. They are mainly composed of low stature forb species with low floristic richness. Despite 

similarities in species present seen between other mountain ranges and Caucasus lower down 

within the subalpine belt, several studies have shown that Snowbed communities here are distinct 

Figure 3 - Alpine grassland shown with Ushba in the background. 
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from Snowbed communities seen in other mountain ranges [2] (particularly the Anatolian 

Mountains in Turkey [24], [25]). Low-stature Caucasian Rhododendron shrubs occupy steep 

gullies between the 2300-3000 metre elevations. Here they are protected by long and secure snow 

cover within the peri-glacial region [26] providing high humidity and peaty soils. Dwarf shrubs 

such as Dryas occupy stony slopes within the Alpine region mixing with other Alpine Rock and 

Scree vegetation. These plant communities will all form the proposed Alpine grassland and forb 

layer on the Ushba map.  

The final vegetation community ascending 3000 metres above sea level is described as the 

Subnival layer. This zone occupies the region between the alpine grasslands and the permanent 

snow line and glaciers. Life for plants at this altitude is extremely tough and snow cover can often 

last throughout the year with short, cold summers dominated by long winters [2]. Wind, 

inclination of slopes, direction of slope face, and surface roughness all have an impact on plant 

communities that survive here [5], [27], [28]. Most Subnival plants exist in microclimates where 

they form cushion or carpet-like stands that are warmer than the outside temperature [2]. 

However others grow as isolated individuals or within small groups sheltering amongst areas of 

rock and scree [29]. According to Körner et al. [5] the substrate, nutrient and water availability are 

all shaped by the actions of gravity and thus control the geodiversity of the Subnival belt. 

Therefore the majority of plant species survive within individual microclimates (ecological niches) 

and are consequently endemic to the Caucasus range [4] with specific substrate preferences [30]. 

Nakhutsrishvil et al. [2] even noted 94 species as living above the snowline within the Svaneti 

region. The subnival layer is difficult to map due to its patchy coverage intermixed with rock and 

snow therefore further observation through remote sensing and field observations are required to 

fully map this zone.  

From reviewing the literature, it is apparent there is a possibility of identifying three or four 

vegetation zones seen both on the ground and through remote sensing. Mixed deciduous 

woodland, Krummholz, and Alpine grassland and herbs make up the most visible layers with a 

subnival layer likely sporadic in appearance and more difficult to identify using image 

classification techniques. Based on literature many smaller vegetation classes appear present 

within the Ushba region but for purposes of this study these smaller plant communities shall be 

grouped together into the three larger vegetation zones. The primary importance of vegetation 

representation for the proposed Ushba hiking map is zonation. This allows hikers and other users 

the ability to see how changes in elevation are represented by the changing vegetation around 

them and therefore exact marking of each species is unnecessary.  
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1.4 Vegetation Representation in the Alpine Club Map Series 

The Alpine club maps series has no established legend or common classification scheme. This is 

due to the differences, in vegetation zones present and coverage of vegetation, across the diverse 

locations which Alpine Club maps are offered. Alpine club maps are praised on their level of 

accuracy and terrain detail but from observing multiple series maps the number of vegetation 

zones are usually kept to a minimum. This prevents the maps from becoming too confusing and 

thus more difficult to read and interpret. An example of an Alpine Club map is shown in Figure 5 

[31]. From this figure it is clear to see how the forest on the lower slopes (around the edges of the 

map) leads up into the rocky areas at higher ground. Here there is some differentiation of the 

forest; between Krummholz and high forest stands, where patchy darker green elements are 

shown at the forest fringes. In other Alpine Club map examples; such as Dachstein, the vegetation 

is clearly split into two types including small pine and bushes (Krummholz), and forest (see 

Figure 4 [32]). The simple vegetation scheme clearly shows the reader the zonation of vegetation 

coverage without making it the focus of the map. Other map elements such as the presence of 

rocky areas, contours and, of course, the hiking trails themselves are prioritised so that the 

vegetation merely acts as a background layer or base map.  

Boundaries between vegetation zones are distinctive and show exact changes from one vegetation 

type to another. This is likely not occurring on the ground, but this representation provides the 

reader with an idea of where they should see the vegetation zones begin to change. Figure 5 

provides a good example of how vegetation boundaries are not always so precise; some forest and 

Krummholz occur simultaneously with some Krummholz present within the forest zone and both 

areas of forest and Krummholz cohabitating the upper limits of the tree line. Therefore, although 

the boundaries between the two vegetation layers are hard, the visualisation shown within Alpine 

Club maps clearly represents a close interpretation of what is occurring within the natural 

environment. This shall be considered when deciding on the vegetation layer boundaries within 

this thesis study.  

Figure 4 - Legend example for the Alpine Club map series. 
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1.5 Past Research and Theory 

Many studies note the difficulty in modelling the vegetation characteristics in high-altitude 

environments. Characterised by a shorter growing season and long cold winters, as previously 

mentioned in chapter 1.2, the opportunity to reliably and accurately classify vegetation, based on 

NDVI in these regions, is limited [33], [34]. Parallels can be drawn with the quantification of the 

vegetation index at high-latitude regions as in the study by Beck et al. [35]. In this study a 

Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI is used instead of the typical 

NDVI time series due to its better performance within such latitudes. The importance of 

observing the winter time series as well as the typical leaf-on period between March and October 

is highlighted in several studies [35]–[37] and the relevance of snow cover in regards to its impact 

on mountain phenology is highlighted in many more [38]–[40]. In a detailed study on the impact 

of snow, Xie et al. [41] measured the impact of snow accumulation and duration on mountain 

phenology and concluded that snow cover duration had the most impact on the timings and 

behaviour of vegetation as a whole. Previous research promotes the importance of considering the 

snow cover during a study of vegetation within high mountain regions [36], [42]. Although this 

study is primarily focused on arriving at a vegetation classification and not analysing phenology it 

is a point of consideration for the methodology and the practical aspect of arriving at an accurate 

classification product.  

Three problems with accurately mapping the vegetation zones using mid-resolution satellites 

such as Landsat-8 are described in the study by Cingolani A. et al. [43]. One such problem is the 

Figure 5 - Map extract from the Alpine Club map of Triglav in the Slovenian Alps. 
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presence of vegetation community patches which are smaller than the pixel size of the Landsat 

image and thus difficult to reliably classify [44]. The study suggests the approach of defining 

informational units at a higher hierarchy (where classes are defined by terrain attributes) to give a 

more realistic classification product [45]. Another problem focussing in the study by Cingolani et 

al. [43] is the definition of exact mapping units that are discernible by the satellite itself. It is 

noted that a process of trial and error occurs until a satisfactory output is produced [44]. This is 

realised within the Ushba region by the presence of several smaller plant communities which are 

mentioned within literature but would be indiscernible by a satellite classification. Thus, a 

suitable number of classes and training areas must be used to best represent a classification and 

output that is appropriate for an Alpine Field Club map. This then leads to the third problem of 

perceiving suitable training areas of adequate size. In the paper mentioned [43], an objective 

method of selecting training sites and assigning pixels based on discriminant functions is 

suggested. These discriminant functions are obtained from the statistical analysis of the spectral 

signatures of each vegetation class which subjected each pixel to eight linear functions (for each 

band of the Landsat TM satellite). Each of these 8 values were subsequently compared followed 

by the assignment of the pixel to the class with the highest value [43]. This method resulted in a 

relatively high accuracy (~87%) but for this study the problem lies with a lack of reliable field data 

to give accurate spectral comparisons. Therefore, it would not be feasible to use this method for 

the classification of vegetation in the Ushba region.  

Airborne multispectral imagery has been used as a source for vegetation and water remote 

sensing since the 1960s [46]. This type of imagery is limited in the number of bands that it can 

measure thus limiting the spectral resolution of multispectral satellite imaging. In the study by 

Govender et al. [47] the use of hyperspectral remote sensing is described as the answer to these 

limitations. Hyperspectral sensors measure continuous spectral bands as opposed to multispectral 

imaging which measure spaced spectral bands [48]. Hyperspectral sensors can collect up to 200 

bands allowing for the complete reconstruction of a contiguous reflectance spectrum for every 

pixel in an image [47]. This can then be used to produce a more detailed analysis of surface cover 

with finer discrimination between different classes arriving at a more accurate or detailed 

classification. Although the spectral resolution of the hyperspectral sensor is higher the spatial 

resolution is not. This is due to the differences between spectral and spatial resolution: Spectral 

resolution is referring to the number and width of electromagnetic spectrums whereas spatial 

resolution refers to the level of spatial detail that can be visualised [47]. This is very relevant to 

this thesis as an application of hyperspectral sensing is the discrimination of different vegetation 

types something which is possible with multispectral sensors (such as Sentinel-2 and Landsat-8) 

but not as accurate.  

The most important part of the methodology for this thesis is the implementation of the 

classification. Many different classification methods are discussed throughout different studies 

focussing on the pre-processing or different classification techniques available. In the study by 

Iovan et al. [49] the different variances of grass and trees is used to separate and individually 

classify the two surface types. Other studies describe detailed pre-processing in order to remove 
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noise and make images homogenous in appearance [41], [50]. Xie et al. [41] remarks that the pre-

processing of images usually compromises a series of operations including but not limited to; 

image enhancement, mosaicking, radiometric correction, geometric correction and masking. The 

use of masking is particularly important regarding the removal of cloud cover from images. The 

Ushba image scenes used in this study were chosen based on the least amount of cloud cover but 

even a small amount of cloud cover present can drastically affect the classification results. The 

study by Xue et al. [51] describes in detail the use of specific Vegetation Index (VI) algorithms in 

terms of their application and target vegetation classes. The VI used in most studies is the 

Normalized Difference Vegetation Index (NDVI) which is the primary method of extracting 

vegetation using unsupervised classification techniques and the technique that will be used in this 

study. Most studies make use of the NDVI classification technique to extract the vegetation and 

then use a more precise supervised classification method to extract the individual vegetation 

types [50], [52], [53]. In the study by Vanonchelen et al. [53] the Maximum Likelihood (ML) and 

Support Vector Machine (SVM) classifiers were used. Both classifiers are examples of supervised 

classification techniques which require the input of training data. For the study mentioned [53], 

the SVM classifier works by identifying a hyperplane that separates the classes in feature space 

[54], [55]. This hyperplane maximises the difference along class boundaries and is found to 

outperform other classification techniques whilst demanding fewer training sites [56]–[60]. 

However, in order to execute this type of classification the correct level of software is required. In 

this study by Vanonchelen et al. [53] as well as most of the others mentioned the established 

ENVI/IDL software was used. In this paper, due to university access constraints, the only software 

available was ERDAS IMAGINE and SNAP neither of which have the availability of functions that 

ENVI software allows.  

In several past studies the main classifier used was the Random Forest (RF) classifier [50], [61]. 

The primary function of this classifier type is to extract individual forest or vegetation types, for 

example; in the study by Liu et al. [50] different tree species were classified from Sentinel-2 and 

Landsat-8 data sources. RF along with the k-Nearest Neighbour (kNN) algorithm and the SVM 

classifier, which was mentioned in the previous paragraph, are examples of Machine Learning 

Algorithms (MLAs). MLAs are useful for classifying vegetation in mountainous regions because 

there is no need to assume the data is distributed normally. This means that these classifiers can 

deal with noisy training data and produce more accurate classifications in complex environments 

[53], [62]. Lu and Weng [62] mention that non-parametric classifiers, such as MLAs, do not 

require assumptions about the data. This is in reverse to parametric classifiers, such as Maximum 

Likelihood, which assume a Gaussian distribution and rely mainly on training data in order to 

arrive at a successful classification. This highlights the benefit of MLAs which can incorporate 

non-remote sensing data into the classification process. Therefore a reduced reliance on training 

data is required and resulting classifications appear less ‘noisy’ than parametric classifications of 

the same area [62]. RF classification consists of a collection of tree-structured classifiers in which 
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each tree contributes a vote to determine the most frequent class according to the input data (see 

Equation 1) [61], [63].  

To form a split point node the algorithm randomly selects a sub-set of variables and then searches 

among these variables to arrive at the best classification boundary between classes [63]. The 

algorithm performance is limited by the number of tree-structured classifiers. Often other non-

remote sensed data must be added when classifying trees with similar spectral signatures. In the 

study by Liu et al. [50] topographic and phenology information was added into the algorithm in 

order to distinguish between individual tree species.  

Support Vector Machine (SVM) is used in multiple studies [53], [57]–[59], [64], [65] and 

represents an example of a non-parametric, supervised classification technique. As mentioned in 

previous paragraphs, SVM works by finding a hyperplane which optimises the classification by 

minimising the upper classification boundary [61]. The hyperplane surface is used to determine 

the classification and arrives from the input variables including training data and other non-

remote sensed components. In the paper by Cortes and Vapnik [64] the use of soft margins within 

the MLA allow for errors within the training data. This is useful for regions of complex vegetation 

coverage such as those found in mountain environments. In the study by Vega Isuhuaylas et al. 

[61], SVM was found to outperform other MLA, including RF, when classifying the Andes 

mountain environment. It was found to have the highest mean area under the curve (AUC) as 

well as the smallest standard deviation [61] when compared to the poorest performing 

classification technique. There were differences found between the performance of the SVM using 

different input data; for example, using NDVI as the only classification feature for SVM severely 

limited its performance capability. Thus, the main benefit of MLAs is once again highlighted by 

their ability to acknowledge other data features including phenology, topography and elevation 

data. The overall benefits of SVM as a classifier is evident by its ability to deal with noisy training 

data in complex environments. Therefore, it would be a useful classification technique for 

mapping the vegetation of Ushba.  

The final non-parametric technique evaluated in the study be Vega Isuhuaylas et al. [61] and used 

in a variety of studies in order to classify forest environments [66]–[68] is the k-Nearest 

Neighbours (kNN) classification algorithm. This technique is simple to implement; requires low 

training data, computational costs and relies on the k-closest training data vectors in order to 

compute accurate classifications. The kNN classification works by assigning a sample vector ‘x’ to 

the class represented by the majority of ‘k’ nearest neighbours [61]. The value of the point variable 

is predicted based on the similarity between neighbouring points that show observed values 

within a covariate space [68]. Similarity between the nearest neighbour values is determined by 

distance but as with all non-parametric MLAs other variables can be included in the overall 

Equation 1 - Random Forest equation 
acquired from the study by Vega Isuhuaylas 
et al. 2018. 
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calculation. In terms of performance, the kNN classification method has many good performance 

indicators when used in forestry mapping. Attention must be paid when calibrating the kNN 

classification technique as noted by McRoberts et al. [68]. By weighting some variables more than 

others it was found that the accuracy of the classification could be increased. However, in the 

study by Vega Isuhuaylas et al. [61], kNN was found to have a much lower performance when 

mapping vegetation with noisy, multivariate datasets in comparison to other MLA classifiers such 

as RF and SVM. This was concluded to be a result of the sensitivity of the kNN classifier to noisy 

data, in particular - outliers, which could have a large impact on the differences in similarity 

which the algorithm relies upon. Therefore, it has been concluded that, in comparison to other 

classifiers, kNN is maybe not as reliable especially regarding the mapping of more complex and 

challenging environments such as mountainous regions.  

The three non-parametric or Machine Learning Algorithms (MLA) mentioned in the last few 

chapters all have positive and negative features that make them suitable or unsuitable for use in 

mapping a mountainous region such as Ushba. The main issue with these methods is whether 

they are supported on the software available for use at TU Dresden (2016 version or ERDAS 

IMAGINE). Another issue is the lack of reliable training data which is accessible to us due to the 

cancellation of the planned field trip in July. For these reasons the application of these 

classification techniques within this study seems unattainable and therefore the supervised 

classification technique Maximum Likelihood (ML) is to be used instead. ML is the principal 

parametric classification technique, supported by all image processing software, and the most 

widely used of all supervised classification techniques [69], [70]. Maximum Likelihood assumes 

that the statistics for each class are normally distributed in a linear manor. It is therefore assumed 

that image pixel data follows a Gaussian distribution which is something that is often not true of 

more complex regions. Each pixel is assigned to a given class based on the highest probability 

(maximum likelihood) that the pixel belongs to that class based on similarities in the input 

variables (e.g. NDVI). ML requires sufficient ground truth data in order to arrive at a classification 

of acceptable accuracy. A greater number of training areas provide a more accurate estimation of 

the mean vector and variance-covariance matrix of the population. This subsequently arrives at a 

more accurate classification. Several studies do show that the ML method has its issues and 

produce less accurate results, particularly in heterogenous mountain environments, when 

compared to other classification techniques. [43], [52], [61]. However, the study by Sisodia et al. 

[71] proved ML to be a robust technique; obtaining classification accuracies of 93.75%.  

As the last few paragraphs have shown, there is a wide array of possible classification techniques 

available, all of which can compute sufficient results. One of the most important parts of the 

method when carrying out a classification of remote sensed data is the ability to check the 

accuracy of the results. Literature shows that there are several popular methods to compare the 

classifications by checking the overall accuracy. One such method is the use of Cohen’s kappa 

statistic. Cohen’s kappa is defined below (see Equation 2): 



P a g e  | 13 

 

where Po is the observed agreement and Pe is the expected agreement [72]. Resulting values are 

between 0 and 1 with any value greater than 0.8 being considered as an almost perfect agreement. 

Generally, the kappa value can be calculated using a confusion matrix which compares the 

number of correctly classified classes with the number of misclassified classes. Using a confusion 

matrix; the user, producer and overall accuracy of a dataset can be calculated. Cohen’s kappa is a 

useful tool for measuring multi-class and imbalanced class problems. Another performance 

indicator used for classification accuracy is the area under the curve (AUC). This was used in the 

study by Vega Isuhuaylas et al. [61] who used the receiving operating characteristic (ROC) theory 

to determine the corresponding optimum threshold for each classification analysis. The AUC 

value, calculated in this way, is threshold independent meaning that the result of this indicator is 

an overall accuracy based on a number of different probability thresholds [61], [73]. In his study, 

Friedman [74] employs the use of ranks to check that the variance between different performance 

indicators is statistically agreeable. From the results of the kappa coefficient and AUC the 

different classifications can be ranked (1,2,3 etc.) and subsequently these ranks can be compared 

either pairwise or across all rank classes. In the study by Vega Isuhuaylas et al. [61], the ranks were 

compared using the Nemenyi post-hoc test which examined whether models showed a notable 

difference (‘Critical Difference’). In conclusion, past research shows how all classification studies 

must check the overall accuracy of their classification results. The most popular and widely used 

method is Cohen’s kappa but other methods are available and it is preferred to use more than one 

performance indicator in order to get the most precise accuracy assessments [52], [61], [62]. This 

is due to, and especially regarding vegetation mapping at coarse scales [52], Cohen’s kappa 

masking errors of significant difference and making the possibility of agreement as a result of 

chance [75].   

 

2. Data Acquisition 

2.1 Multi-Spectral Images 

The Multi-Spectral Images (MSI) used in this study are from the Sentinel-2 and Landsat-8 satellite 

missions. A brief overview of the satellite data used is shown in Table 1. 

Equation 2 - Cohen's kappa coefficient. 
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Table 1 - Overview of Sentinel-2 and Landsat-8 satellites. 

The Multi-Spectral Sentinel-2 images are made of a satellite constellation of two identical 

satellites; Sentinel-2A and Sentinel-2B. The Sentinel-2A satellite was launched on the 23rd of June 

2015 by the European Space Agency (ESA) and the Sentinel-2B was launched on the 7th of March 

2017 [76]. The frequency revisit of each satellite is 10 days with a combined constellation revisit of 

5 days at the equator and 2-3 days at mid-latitudes. The two satellites exhibit a polar orbit 

synchronising the movements of the sun [76]. The instrument consists of a Multispectral Imager 

(MSI) covering 13 spectral bands (443 nm – 2190 nm) with swath width of 290 km and spatial 

resolutions of 10 metres (4 visible and near-infrared bands), 20 metres (6 red-edge/shortwave-

infrared bands) and 60 metres (3 atmospheric correction bands) [77].  

The Landsat-8 satellite was launched on the 11th of February 2013 and includes both the 

Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) onboard [50]. These two 

sensors provide seasonal coverage of the global landmass at spatial resolutions of 30 metres 

(Visible, NIR and SWIR), 100 metres (thermal) and 15 metres (panchromatic) [78].  

The MSI used within this study are composed of 64 cropped images taken from both satellites 

covering the leaf-on period between April and November over the past 3 years (2017-present). 

Dates were chosen based on percentage cloud cover and in particular; cloud cover over the study 

area, with less than 20% cloud cover considered acceptable. Sentinel-2 images for 2018/9 were 

freely acquired from the Copernicus Open Access Hub (https://scihub.copernicus.eu/). However, 

due to the length of time taken to access some of the older archived data using this hub, ONDA 

(https://www.onda-dias.eu/cms/) was used to access all of the 2017 archived data. Resulting 

products are either Level-1C (L1C) or Level-2A (L2A). L1C describes product images that display 

top-of-atmosphere reflectances whereas L2A are bottom-of-atmosphere and are derived from the 

L1C products. L2A tiles are most useful for this study as they provide a clearer image of the ground 

geometry and vegetation coverage. Therefore, these data types were preferentially chosen where 

possible (subject to cloud cover and dates). All sentinel-2 products are released in a Universal 

Transverse Mercator (UTM) projection and World Geodetic System (WGS) 84 datum. A total of 31 

tiles were collected with 17 from tile 37 and 14 from tile 38. A description of these images is 

available in Table 2.  

Landsat-8 images were accessed using the USGS Earth Explorer site 

(https://earthexplorer.usgs.gov/) which provides standard Level-1 topographically corrected 

https://scihub.copernicus.eu/
https://www.onda-dias.eu/cms/
https://earthexplorer.usgs.gov/
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products (LT1). LT1 data is corrected with regards to relief displacement. Landsat-8 products are 

released with a UTM projection and a Clarke 1866 datum. In total 33 Landsat-8 tiles were 

obtained, 16 for tile 37 and 17 for tile 38. Table 2 provides a description of these images. 

Figure 6 shows the distribution of Ushba scenes taken from the 2017 - 2020 period. As previously 

mentioned, scenes were chosen based on cloud cover, but August, September and October were 

chosen particularly because they have the least amount of snow cover and highest mean NDVI 

values. Overall, the distribution of scenes were kept as even as possible with an average of 8 

scenes per month and an average of 20 scenes for each year (excluding the current year – 2020).  

Table 2 - Description of the data accessed from each satellite and each tile. 
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2.2 Reference Data 

The collection of reference data for this study was unfortunately affected by the Covid-19 

pandemic resulting in the cancellation of a planned trip to the Ushba region for July 2020. This 

meant that accurate measurements of vegetation zones in the field could not take place. To 

mitigate this lack of field measurements, reference data was instead obtained using high 

resolution satellite imagery such as Bing and Google maps. Accompanying this satellite imagery, 

geotagged photos posted on to google maps were used to identify which vegetation zones a 

certain photo ‘hotspot’ lay within. Areas of reference data were chosen as 20x20 pixel blocks of 

homogenous vegetation. To check areas matched the average NDVI value of the pixels could be 

calculated using SNAP and ERDAS imagine with matching NDVI values confirming that a 

training area is concerned of that vegetation type. As well as the use of high-resolution satellite 
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Figure 6 - No. of image scenes taken from each month. 

Figure 7 - Extract of Russian military map from 1989. Highlighted Circles in red 
show forest types present.  



P a g e  | 17 

 

imagery, old Russian military maps can be used to identify the type of forest and its presence or 

absence. In Figure 7 the different forest types are represented by symbols on the map. These can 

be used to give a clue as to whether an area lies within a deciduous, coniferous or mixed forest 

stand. However, in the case of this study, classification of forest was grouped into single high 

forest stands of mixed tree species. This was due to difficulties identifying purely homogenous 

areas of deciduous or coniferous forest stand from satellite imagery. Furthermore, it was 

considered unnecessary to separate individual forest types for this category of hiking map based 

on Alpine Field Club maps of other regions and other hiking maps of the Ushba region.  

Figure 8 – Map showing the general distribution of training areas across Ushba study area. 
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As shown in Figure 8 the training areas were chosen to allow an even distribution across the 

entire study area. The central region of the map (Ushba) is devoid of training areas because it is 

covered by glaciers and areas of rock and therefore not of interest to this study which focusses 

only on the natural vegetation coverage. In total 22 training areas were chosen for forest, 16 for 

Krummholz and 18 for homogenous meadow areas. Training areas were at least 20x20 pixels in 

size to allow for accurate calculations of mean NDVI for that vegetation type and subsequently 

the most accurate spectral signatures for classification. The average area size and description of 

samples taken is shown in Table 3.  

The mean spectral reflectance of the 3 target vegetation classes for the Sentinel-2 and Landsat-8 

images can be seen in Figure 9. These graphs show the changing spectral signatures of the 3 

vegetation types from a low band wavelength to a high band wavelength from left to right across 

the graph. Several different training areas were used to calculate a mean spectral signature at each 

band allowing comparison between Sentinel-2 and Landsat-8 data. As shown on the graphs the 

lower number of bands for the landsat-8 satellite makes the spectral curve appear more pointed 

but the overall values are similar (NIR plateau of ~2000 for the Krummholz and green peak of 

~500 for the meadow).  However, some differences are quite apparent with the meadow having a 

higher NIR plateau than the pine forest in the Landsat-8 images which is the opposite in sentinel-

2 images. As to be expected, from previous studies such as Govender et al. 2007 [47], Smith R.B. 

2001 [79], the spectral signature of the grass should be higher than that of the mixed forest stand. 

Yet it is possible that due to the forest stands being of mixed coniferous and deciduous species the 

spectral signature for this class can be quite variable depending upon location. This could 

therefore account for this anomaly and further the agreement that Sentinel-2 and Landsat-8 

images are comparable.  

As clearly shown in Figure 9 the Krummholz vegetation class emits the lowest spectral signature. 

This is to be expected as Krummholz is almost entirely composed of coniferous tree species which 

give off much lower spectral values than coniferous, grass and forb species. The meadow class 

emits the highest green peak as grasses and forb vegetation making up this class reflect the 

highest amount of green light. This is due to their rapid growth during the short summer season 

fuelled by photosynthesis requiring the presence of a much higher chlorophyll percentage than 

conifer species. The characteristic spectral curve of the three vegetation classes can be used to 

Table 3 - Description of training areas. 
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compare with other possible training areas and, further, to identify the presence or absence of a 

certain vegetation class in that part of the Ushba region.  

A fully detailed description of all the sources (references) for each of the training areas used for 

the classifications are shown in Table 4 - 9. The photo extract and coordinate are shown along 

with the type of reference used (e.g. high-resolution satellite photo or geotagged photo). As is 

shown within the tables, where possible, a geotagged photo was used due to its higher level of 

accuracy. However, geotagged photos are only present within regions of interest leaving large 

parts of the map uncovered. To prevent this lack of coverage high resolution satellite images at 

scales of 20 – 10 metres were used. Due to the image sizes and clarity, the tables for each 

vegetation class are split into two groups.   
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Table 4 - First half of the description of training area references for the Forest Class vegetation. 
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Table 5 - Second half of the references for the Forest Class vegetation. 
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Table 6 - First half of references for the Krummholz vegetation class. 
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Table 7 - Second half of references for the Krummholz vegetation class. 
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Table 8 - First half of references for the Meadow vegetation class. 
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Table 9 - Second half of references for the Meadow vegetation class. 
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3.0 Method 

The method of vegetation extraction used in this study relies on three main components; image 

segmentation, vegetation extraction and vegetation type extraction. Image pre-processing 

produced clear, homogenous image objects with the same projection to allow for cross-

referencing and identification of training areas. 2 levels of classification were used to first identify 

the vegetation, extraction and thresholding using NDVI calculations followed by identification of 

training areas and subsequent vegetation type extraction using a method of supervised 

classification. The overall workflow pipeline can be seen in Figure 11 on the page below. 

The pipeline shows how operations were performed in sequential steps to allow for the best 

overall classification product. Pre-processing and image segmentation provide the basic steps 

needed to start classification resulting in the formation of clean, equal image scenes. In the level 1 

classification stage the vegetation NDVI threshold analysis was performed to separate the 

vegetation and non-vegetation components. Finally, NDVI scenes were stacked to generate a 

timeline of vegetation NDVI change throughout the year (Figure 10) in level 2 classification. From 

this is was possible to visualize the clear vegetation zonation and to extract areas of similar NDVI. 

In the final stage, previously identified training areas were used in supervised classification (of 

these NDVI stacks) to extract the separate vegetation zones and form the final product.  

 

Figure 10 - Example of stacking bands using the ERDAS IMAGINE software. 
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Figure 11 - Workflow pipeline of the method used in this study. 
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3.1 Data Pre-processing  

As mentioned previously pre-processing of the data allowed for homogeneity across all data sets 

and produced formatted results which could then be used for the level 1 and 2 classifications. 

Some of the data from online data access hubs had already undergone some level of pre-

processing. Sentinel level-2A products have already undergone some level of atmospheric 

correction and scene classification performed by algorithms. Landsat-8 products at level-1 terrain 

processing have undergone radiometric calibration and orthorectification using ground control 

points and DEM data to correct for relief displacement.  

Sentinel-2 data was, firstly, unzipped and bands were stacked using ERDAS IMAGINE 2016. These 

stacked bands were then subset to the correct map boundary coordinates (see Figure 12) using the 

sentinel application platform (SNAP). This was carried out using predetermined geocoordinates 

that mark the boundary of the map area as agreed by members of the Ushba mapping team. Back 

in ERDAS the cropped band stacks were reprojected to the Universal Transverse Mercator (UTM) 

coordinate system and resampled to a 10m spatial resolution based on the nearest neighbour 

algorithm. The nearest neighbour resampling method works by assigning the digital value of the 

closest input pixel (in terms of coordinate location) to the corresponding output pixel in the 

image [80]. The advantages of using this method over bilinear interpolation or cubic convolution 

are that the method is simple to implement and the original pixel values are preserved. Pixel 

edges were also snapped so that scenes from different tiles could be overlaid during comparison 

(see Figure 13).  

Landsat-8 data was stacked in ERDAS first before being subset to the map boundary coordinates 

in SNAP. The restacked bands were further reprojected to the UTM coordinate system and 

resampled to a 30m spatial resolution. During this phase, as with the Sentinel-2 bands, the 

reprojected output image stacks could be snapped at the top left corner to other reprojected 

image stacks to allow for easier comparison.  

Figure 1 – Spatial subset of stacked Sentinel-2 and Landsat-8 bands 
to correct map boundary coordinates.  

Figure 12 - Spatial subset of stacked Sentinel-2 and Landsat-8 bands 
to correct map boundary coordinates. 
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3.2 Level 1 Vegetation Classification and Segmentation 

The first step of classification involved extracting the vegetation from the ground cover. This was 

carried out using the Normalised Difference Vegetation Index (NDVI) equation which is a type of 

threshold analysis used in numerous studies (as mentioned in the chapter 1.5) to extract the 

vegetation index and highlight areas of vegetation cover [50], [52], [81]. The equation used can be 

seen in Equation 3.    

 

In this study the near-infrared and red bands were extracted automatically using the unsupervised 

NDVI option within the ERDAS software. It was also possible to calculate the NDVI manually 

within SNAP but due to the large number of scenes it was decided that ERDAS was the best and 

quickest method for this process. The NDVI is calculated on ERDAS by extracting the known 

bands which are preregistered within its software (bands 4 and 8 for Sentinel-2 and bands 4 and 5 

for Landsat-8). Each sensor type is already recognised by the software from the number of bands 

and their wavelengths of each input image file. It’s possible to select the bands for classification 

manually but generally these are recognised automatically once the correct category (vegetation) 

Figure 13 - Reprojection of the image stacks and resampling to correct output cell size. Output 
is also snapped to pixel edges of other stacks. 

Equation 3 - Normalised Difference 
Vegetation Index equation. 
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and index (NDVI) are selected. It is also possible to focus on different natural elements such as 

certain rock minerals etc. but for this study the obvious focus was on vegetation extraction. Other 

indices available included the Modified Soil Adjusted Vegetation Index (MSAVI), Green 

Normalised Difference Vegetation Index (GNDVI) and the Ratio Vegetation Index (RVI) but these 

were not considered as useful for vegetation extraction within the study area. The NDVI was 

calculated for each scene on each individual date giving 64 products in total. These NDVI 

products were then stacked within their respective tiles (T37/T38) in order of dates to give 

chronologically ordered timelines of vegetation change throughout the growing season. From 

these NDVI stacks it was possible to extract the spectral signature which showed the 

characteristic bell-shaped curve as vegetation grows throughout the year as shown in Figure 14. 

Unfortunately, in some of the spectral profiles, discrepancies were noticed. In some bands, large 

drops in the vegetation index occurred which disrupted the expected bell-shaped curve. An 

example of such a discrepancy can be seen in Figure 15. These were realised to be a result of cloud 

cover in some of the scenes which, although limited in extent, had a large impact on the spectral 

profile as can be seen in the graph. As a result, further processing was required to remove the 

limited cloud cover that was present in some of the image scenes. A model was created in ERDAS 

to lessen the impact of this cloud cover as shown in Figure 16. This model calculates the average 

difference between the two scenes in the stack that are either side of a scene. A conditional 

EITHER / OR function is then used to assess whether the cloud cover is present by calculating the 

difference between the average and the actual value. If the difference is greater than 0.2 then 

cloud cover is assumed present and the tile’s NDVI value is replaced with the average as 

calculated in the previous step. The result of this method was to remove the rapid drops in NDVI 

value seen in the spectral profile graphs (see Figure 15) and lead towards the formation of a much 

smoother bell-shaped curve as seen in Figure 14. This also helped to reduce and remove anomalies 

from the overall NDVI stack that may have been incorrectly assigned during the second phase of 

classification.  

Figure 14 - Spectral profile for the vegetation index of tile 37, landsat-8 scenes. The X axis shows the 
image scenes in chronological order from April to November. 
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Figure 16 - Model for removal of cloud cover from individual scenes within the image stack. 

Figure 15 - Example of problematic spectral profile with probable cloud cover appearing in scenes 5 and 
9. 
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The final element of pre-processing required in stage 1 was the use of thresholding to remove the 

non-vegetation components from the images. This was completed using a second model built 

using ERDAS as shown in Figure 17. This model used a threshold NDVI value of 0.3 as the cut-off 

point with all values beneath it removed from the image scenes within the NDVI stack. This 

removed any rock, ice or water that had been misrepresented as vegetation during the earlier 

NDVI classification. As a result of this thresholding only pure vegetation remained within the 

images in readiness for level 2 classification.  

 

3.3 Level 2 Vegetation Classification 

The final phase of classification was to extract the individual vegetation types from the image. 

Supervised classification was used for this phase with the Maximum Likelihood (ML) function 

employed to assess whether a pixel belonged to the target class or not. The training areas, 

previously mentioned in part 2.2, were used for all four image scene stacks; Landsat-8 (tile 37 and 

tile 38) and Sentinel-2 (tile 37 and tile 38), that had undergone the pre-processing and 

classification mentioned earlier within this chapter. The training areas were digitised and placed 

within an AOI (area of interest) layer used to create a spectral signature file within the signature 

Figure 17 - Model used to add a threshold to the image scenes removing 
all non-vegetation from all the images. 
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editor. The signature editor is used to calculate the mean spectral values for each class and 

produces the spectral signature references which are used to assign a pixel to one of the three set 

classes. An example of a spectral signature file used in this study is shown in Figure 18. 

 

Spectral signatures had to be calculated for each of the four image scene stacks due to the 

different number of scenes and bands present within each. Each spectral signature is then input 

into the supervised classification on the ERDAS platform as seen in Figure 19. The ML function 

used for this classification operation works by assuming the statistics for each class in each band 

Figure 19 - Supervised classification on ERDAS using the 
maximum likelihood function and pre-determined signatures. 

Figure 18 - Signature editor for the Landsat-8, tile 37 image stack as calculated using ERDAS 
software. 
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are normally distributed [82]. Each pixel is assigned to a class based on the highest probability 

(maximum likelihood) that the pixel belongs to that class. No threshold limit for the probability 

classification was needed as the threshold had already been calculated in earlier processing (see 

preceding section).  The equation used by ERDAS is shown in Equation 4 [82]. More reasoning on 

the choice of ML for this study and research on the use of the classification itself can be found in 

the previous chapter: part 1.5.   

 

3.4 Post-Processing of Classifications 

The final part of the method involved processing and extracting the classified scenes from ERDAS. 

Firstly, the classified files had to be recoded as each class needed to be assigned the value 0, 1 or 2 

in order to be able to join different classifications together and display the classes correctly based 

on their attributes. Due to the way the supervised classification works each class was assigned the 

value, of the number of training areas used, from the spectral signature editor. For the case of the 

s38, used for the final classification, this was values of 25 for the forest class and 23 for the 

meadow class with the unclassified class remaining zero. Recoding is quite simple to implement 

using the ERDAS software. Within the Raster – Thematic menu the Recode function is easy to 

access and can be manually changed by selecting each row and inputting the new value as shown 

in Figure 20.  

Following this stage different classification could be combined using a model in the model builder 

function of the ERDAS software. The different classifications could be joined in a union much like 

union tool on ArcGIS or QGIS. The purpose of unifying the two different classifications was due 

to problems with differentiating between the Forest and Krummholz classes. In most of the 

classifications carried out, using the method described previously, either Forest was classified 

under Krummholz or Krummholz was classified under Forest. However, the Krummholz 

classification was much larger than the Forest classification as the Forest class training sites did 

Equation 4 - Maximum likelihood equation (from the study by Richards J. 1999). 
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not register the actual Krummholz present in the images whereas the Krummholz class training 

sites did. Therefore, it was inferred that the difference between the two classification, in terms of 

only the Forest and Krummholz class layers, was the actual classification of Krummholz from the 

images. The model used to form the union was a simple model that combined the two 

classifications, each containing two classes, into a three-class model (see Figure 21). The resulting 

Figure 21 - Model used to unify the two classifications into a single 3-class product. 

Figure 20 - Recoding of the s38_2 classified image. 
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output was the final three-class output containing; Forest layer, Krummholtz layer and a 

combined Alpine Meadow and Herb layer.  

A description of features derived from the combined pre-processing, level 1 and 2 classifications 

and post-processing used within the method of this study are shown in Table 10. 

Table 10 - Description of the final products derived from the method used in this study. 
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The final stages of post-processing for the classifications involved the conversion of the raster 

image into a vector shapefile. The was done using the ESRI software: ArcMap. From the output 3-

vegetation class product, described earlier and in Table 10, the vectorisation can be easily 

accomplished using the ArcToolbox capabilities. Using the conversion tool, the raster image can 

be converted into a polygon feature (see Figure 22) with the output requirements set. In the case 

of this study the ‘simplify polygons’ button was left unchecked to prevent the formation of 

triangles structures within the output. The ‘create multipart features’ checkbox was ticked as the 

output must have the 3 different classes or else it would not be possible to differentiate between 

them within the generated shapefile. Finally, an XY tolerance of 1 metre was set to define the 

minimum condition for polygon features to be conjoined or stand-alone. The resulting shapefile 

was then symbolised using the layer properties tool where each vegetation class was assigned the 

colours suggested during previous thesis presentations. These colours were chosen based on their 

similarity to the colour schemes used in other Alpine Club maps and on their close resemblance 

to the colours of their corresponding natural vegetation zones. More will be discussed on the final 

product in the results and discussion section.  

 

 

 

 

 

Figure 22 - Process of vectorising the raster image using tools on ArcMap. 
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4.0 Results and Discussion 

4.1 Results of Vegetation Classifications 

The vegetation classification (at the level-2 stage) was extracted within this study by use of the 

classic NDVI equation. Figure 23 shows the extent of vegetation cover for the area of interest with 

vegetation classified in green and non-vegetation classified in white. From this classification the 

presence of rock, ice and rivers are clearly viewed. Of interest is the presence of a large area of 

non-vegetation cover directly north of the town of Mestia (circled in brown). This is shown, in 

more detailed satellite imagery, to be the result of successive landslip and erosion which has 

prevented vegetation growth over this localised region. The presence of major river valleys are 

clearly shown with larger rivers outlined by the surrounding forest. From this image classification, 

the vegetation is shown as growing predominantly within the valleys something which is plainly 

visualised within Figure 24 and Figure 25. Figure 24 visibly shows how established vegetation 

species (trees and shrubs) are more dominant within the valleys where they are protected from 

the harsher winter snows and winds that affect the higher altitudes [2], [3]. This classification also 

highlights the regions of pasture and farming which exist within the valleys. These areas have 

been classified under the Alpine meadow layer, due to the presence of similar grassland species, 

and subsequently show small to medium sized, localised patches with an absence of forest. These 

areas, as highlighted within section 1.3, represent the high levels of hemeroby that occur 

throughout the Ushba region [2], [16]. Along with pastures the presence of hill tops is more 

noticeable within this classification as highlighted by the absence of vegetation. The most notable 

example of these can be seen to the south east of Mestia where a thin region showing an absence 

of forest runs from the WSW – ENE. This is the top of the Hatsvali ski lift and is part of a larger 

skiing area within the Ushba region – something which requires areas of meadow pastures with 

little tree cover. As noted during the introduction (section 1.0), Ushba is experiencing rapid 

growth in tourism and it is expected that the vegetation cover will change in the future depending 

upon the land use and growing need for more infrastructure [1].  Figure 25 provides an extract of 

mixed high stand forest which, as mentioned in section 1.3, is dominated by a mixture of tall pine 

and coniferous tree species. As expected from prior literature [2], [4], [15] and general knowledge 

of tree growth, the high forest stands dominate the lower valley sections and are particularly 

prevalent on the southern, more sheltered side of Ushba. On the northern slopes, and within the 

north facing valleys, the tree cover is sparser and more sporadic in distribution. This is to be 

expected as cold, northern winds likely stunt forest growth and the Ushba range itself will provide 

more relief for those valleys that are located to the south.  

Unfortunately, due to the postponement of the field excursion, which was planned for July 2020, a 

lack of true field measurements prevents the ability to conduct a proper accuracy assessment for 

the classification. This means that the Kappa coefficient calculated for the data (section 4.8) is not 

completely reliable, as mentioned in section 1.5; the Kappa coefficient is used in numerous past 

studies [61], [73], [74] and is a useful definition for the overall reliability and accuracy of the data 

concerned. One way of working around this was considered: By overlaying the classification 
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scheme on the digital elevation model, contouring could be used to assess whether the classified 

vegetation zones lie within the correct elevations which were previously mentioned in section 1.3 

[2], [4]. Figure 27 shows this test of the classification accuracy with mixed, high forest stands 

marked in light green, Krummholz in dark green and Alpine meadow in pale yellow.  

Figure 23 - Extract of vegetation and non-vegetation components within the Ushba region. Scale of 
1:115,000. 
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Figure 24 - Combined extract of all forest types (dark green) and Alpine meadow (light yellow). Scale of 1:115,000. 
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 Figure 25 - Extract of only high forest stands, shown in light green, compared to other vegetation layers (Krummholz 
and Alpine meadow) which are shown in brown-yellow. Scale of 1:115,000. 
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At a height of 1500 metres, the town of Mestia, situated in the valley, is surrounded by mixed high 

forest stands due to its position well below the tree line. This is shown throughout Figure 27 

where forest covers all the sheltered valley areas. The highest tree line observed is around 2500 

metres in sheltered settings which is supported by literature in section 1.3 [2]. In Figure 26, it is 

possible to see an enlarged, small-scaled section of the map shown in Figure 27. Clearly shown is 

the existence of Krummholz between the 2300 – 2500 metre contour lines. This is again in 

support of detailed literature and knowledge of the usual Krummholz habitat. The maximum 

altitude at which Krummholz was observed is 2900 metres in sheltered valleys but this is typically 

within the Alpine grassland zone and is therefore rare in occurrence. Alpine grassland is shown to 

occur more sporadically in exposed mountain-top regions at lower altitudes (between 2100 - 2400 

metres) but typically dominates at altitudes above 2400 metres. Generally, the vegetation zones, 

as shown in both figures, end between 2800 – 3100 metres altitude which is considered the 

boundary between the sub-alpine and subnival layers. As expected very little vegetation has been 

classified beyond this boundary due to a lack of significant vegetation cover present. Figure 26 

and Figure 27 largely prove that the classification has been a success as the vegetation classes 

appears to exist within the pre-known altitude zones. This helps prove the overall reliability of the 

classification and support the classifications use for the marking vegetation on the Alpine Club 

map series. Figure 27 also shows the compatibility the vegetation map has with the digital 

elevation model and general relief of the Ushba area which further supports its use for the final 

map of the Ushba region.  

Figure 26 - Magnified view of the final 
classification output with contour lines marked. For 
the full-sized version see figure 5. 



P a g e  | 43 

 

 

Figure 27 – Classification output (mixed high forest stands in light green, Krummholz in dark green and Alpine meadow in 
light yellow) overlaid on top of the Ushba DEM showing contours at 100 metre elevations. Scale of 1:115000. 
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The final classification output is shown in Figure 28. The colours used to represent the classified 

vegetation classes were chosen to allow for clear distinction between each vegetation zone. This 

was achieved, whilst keeping the colour scheme principally neutral, so as not to detract attention 

away from other map components. The colour scheme was also chosen with consideration of 

previous Alpine Club maps where different shades of green are used to represent the differences 

between the forest and Krummholz zones. The classification shows the clear zonation between 

mixed, high forest stands, Krummholz and Alpine meadow as a result of changes in elevation. 

Alpine meadows dominate the higher latitudes with Krummholz existing in the more sheltered 

fringes at elevations where high forest stands can no longer be supported. Smaller pockets of 

meadow do exist within the valleys; a result of forest clearing to make way for pastures and other 

farming practices, gardens or parks. The overall classification result is not perfect, and several 

training areas were noticed as being misclassified. The overall accuracy and Kappa coefficient will 

be evaluated later in section 4.8.  

The classification result and its appearance reflect the usefulness of using multi-source satellite 

data and multiple scenes from different time periods in classifying the vegetation in an area of 

interest. All data used was freely available online and presents an extremely useful source in 

carrying out remote-sensed classifications at no cost to the producer. The Maximum Likelihood 

function and ERDAS IMAGINE software both represent quality tools with which an accurate and 

reliable classification can be produced. Overall, this classification result shows that despite 

setbacks resulting from external factors, a classification that appears reliable both visually and 

statistically can be produced from the data sources and using the tools mentioned within this 

thesis study.  
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Figure 28 - Final classified product from the best Sentinel-2 scene combinations. Mixed high forest stands in light 
green, Krummholz in dark green and Alpine meadow in light yellow Scale of 1:115,000. 
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4.2 NDVI Annual Time Series 

In Figure 29 and Figure 30 it is possible to view how the changes in the growing season are 

reflected within the NDVI classifications. As expected, the Vegetation Index increases throughout 

the year, reaching a peak in late August to Early September, before decreasing again into late 

October and November. This reflects the changing presence of green, photosynthesising leaves 

and their coverage on the ground. In Figure 29 (a), which reflects the start of the growing season 

in April, the NDVI values are mostly negative suggesting heavy snow cover over most of the 

Ushba region. The positive NDVI values present are mainly weak as most deciduous tree species 

will have not yet grown leaves and only coniferous species will be classified. This agrees with 

previous literature findings [47], [79], which show how coniferous species, such as pine trees, emit 

a lower spectral signature than coniferous species of comparable size thus accounting for the 

weaker NDVI signals. It is not until much later in the year (d) that the NDVI reflect the presence 

of these deciduous species. It can be assumed that the deciduous plant species must reach 

photosynthetic capabilities between May and July which agrees with the known growing patterns 

of species present within the Ushba region [2], [4], [20], [34]. It is also apparent from Figure 29 

and Figure 30 that the snow melt occurs quite rapidly throughout April and into early May. This is 

reflected in the appearance of minor NDVI readings from the high mountain zone which reflect 

the presence of fast-growing, Alpine grasses and subnival species which grow rapidly following 

the snow melt [2], [4], [26]. Even until the 5th of October, Figure 30 (g), the classified Vegetation 

Index is quite high suggesting that leaf fall occurs after this date. This also advocates that 

significant snow cover must not arrive until later October or November as NDVI readings are still 

present, on this date, within the high mountain areas. By November (h), the NDVI is much 

weaker suggesting that most deciduous trees have shed their leaves and that grasses and other 

forb species are not photosynthesising at the same rate. Only coniferous species will still be 

emitting weaker NDVI signals by November as other species go into shut down in readiness for 

the winter months.   

The NDVI time series, extracted from the Sentinel-2 satellite images, proves a useful tool in 

understanding the changes in vegetation cover and their subsequent timings. This is relevant to 

this study in furthering the understanding of how the different vegetation zones should be 

displayed on the map of Ushba. Different vegetation species reach peak photosynthesis at 

different stages throughout the year as suggested by the time series. Vegetation zones at different 

altitudes are affected by annual changes in temperature at different times of year which is 

mirrored by the NDVI value under which they are classified. This illustrates where the zonation 

boundaries, between forest and Krummholz and Krummholz and meadow, occur and can be used 

in the overall classification and mapping. One of the major issues of vegetation classification is 

representing the vegetation in a way that reflects zonation throughout the year. By building a 

time series the classification can be based; not only on a snapshot of the vegetation appearance on 

one date of the year, but on multiple dates throughout the entire year. This provides a more 

accurate classification and a better representation of the changing vegetation boundaries at 

different times of the growing season.  
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Figure 29 - NDVI times series for the Sentinel-2 satellite covering the period between April and July. 
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Figure 30 - NDVI times series for the Sentinel-2 satellite covering the period between August and November. 
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4.3 Yearly Comparisons  

As part of this thesis study several images were taken from separate years (between 2017 – 2020) 

in order to give the most accurate combined classification. From each year, distinct NDVI 

classifications can be used to allow the comparison of different vegetation parameters between 

the different years. This allows the assumption and evaluation of vegetation characteristics or 

climatic factors for each year. Within Figure 31, this comparison is visualised with the highest 

NDVI values visualised in darker green and negative NDVI values in darker red. From this figure 

the separate years are compared across three months which correspond to three important stages 

of the growing season: The beginning of vegetation growth (spring), the peak of vegetation 

growth (summer) and the beginning of vegetation hibernation (autumn). Within the month of 

April, the NDVI classifications for each year appear remarkably similar. There is perhaps a slightly 

higher level of growth seen in 2018 suggesting warmer than average temperatures for that time of 

year; allowing for an earlier spring and thus an earlier growing season. This is further supported 

Figure 31 - Comparison between the months of different years within the Sentinel-2 image data. Images scenes were 
chosen based on similar sensing dates. 
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by the historical weather forecasts for Georgia which show the month of April in 2018 having a 

higher average temperature than the other years observed [83]. For the month of August, the 

different years again appear to display similar NDVI classification results. Slightly lower NDVI 

values in 2017 signify a drier or hotter summer. This is something which is again backed up by the 

historical weather forecasts for the region which shows a slightly less humid and much hotter 

August on record than other years of interest [83]. Finally, in the month of October it is very 

apparent that 2017 had a much later growing season than the other years. This could again be due 

to climatic reasons such as a later summer or more hot and humid conditions than usually 

experienced for October allowing for an extended vegetation growing season. However, in this 

case the general forecast for the region is not so supportive of this theory. Therefore, it could be 

due to more localised climatic factors for that year possibly influenced by the drier summer, as 

mentioned previously, extending the growing season later than usually seen in other years.  

It is important to compare the different years as the vegetation growth changes not just annually 

but also over much larger time scales. By bringing together data from multiple years the overall 

classification is made more accurate, but it is also influenced by climate change. The well-

recognised phenomenon of global warming will have a distinctive impact on the timings of 

vegetation growth and, in the long term, affect vegetation coverage and speciation. Within Figure 

31, by comparing the different years, at selective times during the growing season, it is shown that 

the data used in this study is recognisably similar and can therefore be used without any worry of 

anomalies influencing the overall classification. In combining the image data extracted over the 

last three years it can be confirmed that the data is in general agreement and that any 

classification produced using this combination of years is sufficiently accurate.  

 

4.4 Satellite Comparisons 

Figure 32 provides a direct comparison between the Landsat-8 and Sentinel-2 NDVI classification 

from image scenes taken 3 days apart (22nd and 25th of September 2018). As shown in this figure, 

when compared, the two NDVI outputs appear virtually identical with some minor differences in 

the vegetation index extracted to the south of the study area. The comparison proves that 

although differences in spatial resolution exist, overall, the two image types are interoperable 

without significant processing to enhance co-ordination between the two source images. Figure 33 

shows the comparison between the NDVI classified images of the two satellite types used in this 

study; Sentinel-2 and Landsat-8, over 3 different months. The purpose of using both satellite 

image types was to increase the amount of data available for the classification as well as to 

increase the accuracy of the overall classification by comparing between the two data sources. As 

mentioned in the section 2.1, the two satellites produce images of different spatial resolutions and 

therefore were unfit for combination. However, by creating classifications from both satellite data 

sets it was believed that the best overall classification could be produced from comparisons of the 

separate results. As seen in Figure 33, the NDVI classifications show little to no noticeable 

difference in resulting NDVI values meaning supervised classifications of vegetation are 



P a g e  | 51 

 

comparable. The only real difference between resulting classifications is the level of detail, with 

Sentinel-2 results showing a slightly higher level of detail than Landsat-8 due to the differences in 

spatial resolution. However, at the set scale used in this study this difference is not perceptible. 

Resulting from this study, it is believed that although the results of classifications from the two 

satellite systems cannot be combined into a single classification, the use of both satellites is 

beneficial in achieving the best overall classification. This is possible due to allowance for a 

greater number of cloud-free image scenes, leading to subsequent comparison between the two 

results to find the most accurate vegetation classification of the vegetation within the Ushba 

region.  

In Figure 34, the comparison between the classification results of the Sentinel-2 and Landsat-8 

satellites is revealed. Despite the clear similarities in NDVI shown in Figure 33, the classification 

results show substantial differences between the two satellite image sources. This is despite the 

use of the exact same training areas as identified in chapter 2.2. The differences observed include 

the classification of more extensive regions of both Krummholz and Alpine meadow met with less 

extensive mixed, high-stand forest coverage. The differences observed are most likely due to the 

dates and number of image scenes used in the classifications from each satellite. With the 

Sentinel-2 image scenes; they are most likely formed from more peak-growing season stages of 

the year, whereas the Landsat-8 image scenes were perhaps originating from the beginning 

(spring) or end (autumn) of the growing season. This would mean Landsat-8 classifications would 

Figure 32 - Comparison between the NDVI classification taken from Landsat-8 (a) and Sentinel-2 (b). Scale of 1:115,000. 
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not pick up deciduous trees as well as the classification using Sentinel-2 data, thus resulting in the 

heavier preference for Krummholz and Alpine grasses. This can be explained by differences in the 

strength of each classes’ spectral signature with the Alpine meadow class giving the highest 

Figure 33 - Comparison between NDVI classification taken from Sentinel-2 images and 
Landsat-8 images over the stated months. Image scenes were chosen based on close sensing 
dates. 
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spectral signature and allowing preferent classification over the forest and Krummholz classes. 

Another likely reason for these variances in classification result are the differences in spatial 

resolution between the two satellite images. Sentinel-2 has a much higher resolution than the 

Landsat-8 satellite meaning classifications using Sentinel-2 data are often found to be more 

accurate than those using Landsat-8 images [50]. The study by Chen et al. [84], who focussed on 

assessing the impact spatial resolution has on classification, also supports this. They found that 

spatial resolution had a large effect on the spatial distribution of classification errors, and in areas 

of complex terrain, it was always superior to use images of a higher spatial resolution to result in 

the most accurate classification result. It was for the reasons discussed in this literature [50], [84], 

[85] and seen in the classification result, that the Sentinel-2 classification was preferentially 

chosen as the overall classification for vegetation in the Ushba region.  

 

Figure 34 - Comparison between the classification results of the two satellite image types used in this study. Both at Scale of 
1:115,000. 
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4.5 Distinction of Vegetation Boundaries  

One of the primary research objectives was the question of how to represent the boundaries, 

between separate vegetation zones from the classification, on the final map. From looking at 

other Alpine Club maps and considering the classification results, it was decided that the 

vegetation borders would be exact and directly represent the outputs of the classification. A closer 

Figure 35 - Close view of the vegetation borders resulting from the classifications. 
Respective image scales from the top to the bottom image are 1:55,000, 1:25,000 and 
1:10,000. 
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look at the vegetation borders at different scales is shown in Figure 35. Due to the changes in 

vegetation cover over time, and throughout the growing season, it was considered that by 

representing the vegetation zones as fixed boundaries would be more helpful to the map user 

than representing a vague zonation border. This decision is consistent in style with the other 

Alpine Club maps as mentioned in section 1.4.   

 

4.6 Timeline of Overall Classification 

Figure 36 shows the timeline of vegetation classification for the Ushba region. Visualised is the 

growing season and class of vegetation species which dominates the visual spectrum at different 

points throughout the year. This figure is of interest in the case of this thesis study as it shows 

how classifications at different temporal snapshots can exhibit different resulting classification 

outputs. Shown throughout the timeline is the general increase in overall vegetation cover from 

April into August and September before decreasing again into October and November. This 

reflects the general pattern of the growing season with the peak vegetation activity and extent 

existing at some point in late August. This supports the discussion within the NDVI time series 

(section 4.2) and that shown within the yearly comparisons (section 4.3). What Figure 36 shows 

clearly is how each vegetation class differs in terms of peak photosynthesis. Some vegetation 

classes achieve peak growth (photosynthesis) earlier in the year than others as is shown in the 

visualisation. During the beginning and end of the growing season, Alpine meadow grassland 

exhibits very little photosynthetic activity meaning that classifications based on NDVI recognise 

very little of this class in the overall classifications during these periods. This allows for the forest 

and Krummholz classes to dominate classifications during the colder months as shown in April, 

May and November. The reason for this is the Alpine meadow species often go dormant during 

the winter months due to the colder climate and higher altitudes they generally occupy [2], [4]. 

Snow cover will also generally coexist within Alpine meadow altitudes preventing the growth of 

meadow species until later months when the snow has melted. Forest species on the other hand, 

particularly coniferous species, will not have such problems as they occupy lower parts of the 

valley where snow cover melts first, allowing them to spring into growth the moment snow melts 

and grow much later into the year than meadow species [26]. Coniferous forest species which also 

include Krummholz species do not have to re-grow leaves meaning they can photosynthesise 

throughout the year depending upon snow cover and will therefore be picked up by classifications 

during these winter, spring and late autumn months.  

The dominance of the forest and Krummholz classes within the classification gradually ends 

going into the summer months. This is due to the growth of the Alpine meadow class which 

reaches its peak in a late August - early September time frame. Alpine grasslands dominate the 

classification output due to the higher spectral signature they emit (higher than mixed forest and 

Krummholz [47], [79]) as mentioned in section 2.2. This means that even is the extent of the 

Alpine grassland is small the NDVI classification of the image will highlight regions of grass over, 

and to the detriment of, forest areas. This accounts for the large extent of Alpine meadow cover 

seen from the months of August to October. The Krummholz class is shown as having its greatest 
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extent during the colder months at the start and beginning of the growing season; in April, May 

Figure 36 - Timeline of classification outputs for the Ushba region. All maps are at a scale of 1:115,000. 
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and November. This is due to the type of tree species that typically constitute the Krummholz 

zone. As mentioned in section 1.3, Krummholz is usually made up of a mixture of crooked-stem 

Birch and Coniferous tree species intermixed with Caucasian Rhododendron [2]. Rhododendron is 

an example of a coniferous plant species which does not shed its leaves during the winter months 

thus allowing it to photosynthesise all year round. Birch trees are deciduous but often one of the 

earliest tree species to bud in spring [86], giving them an advantage over other tree species, but 

more importantly accounting for the dominance of this vegetation class in the off-peak growing 

period. This dominance of the classification output, like with that of the combined forest areas, is 

gradually reduced into the summer months as the deciduous tree species with higher spectral 

signatures reach their peak stage of growth at the end of the summer months.  

Figure 36 shows the importance in the choice and combination of image scenes to use in 

classifying the vegetation of a region. In the context of Ushba, Forest and meadow each dominate 

the classification outputs during different months due to their differing annual stages of growth 

and spectral signatures. By combining all the NDVI classifications into a stack within this study it 

was possible to get the best representation of the average vegetation extent for each class at any 

one time of the year. Thereby the overall classification produced is the most representative and 

reliable output to represent the vegetation within the Ushba region. This section recognises that 

there is great difficulty in representing the vegetation for a specified region due to seasonal 

changes which can result in drastically different classifications in terms of appearance. This is 

something which must be considered for any study that is concerned with the mapping of 

vegetation using remote-sensed image data.  

 

4.7 Forest-type Classification 

In Figure 37, a classification of the separate forest types, coniferous and deciduous, is exhibited. 

The classification visualised here is based on training areas previously mentioned in section 2.2, as 

well as supplementary high-resolution satellite imagery. Sentinel-2 bands 11 and 12 (SWIR) were 

used to identify the difference between broad leaved and pine tree species, which is not shown 

through NDVI classification techniques. The same colour scheme as the final classification is used 

with the deciduous tree class visualised in light green, the coniferous class in dark green, and 

meadow in light yellow. As expected for mountainous environments, pine trees (coniferous 

species) dominate due to their adaptation to harsh winter temperatures and general adaptiveness 

to high altitude environments. Deciduous tree species flourish in the valleys where they are 

sheltered from high winds and protected from the harshest temperatures that exist on the 

exposed slopes. This is also shown in the existence of very few deciduous tree species to the north 

of Ushba due to the cold northern air intrusions mentioned in section 1.2 [3]. Boundaries between 

the two forest-type classes cannot be considered completely reliable as often areas of forest are 

composed of a mixture of both coniferous and deciduous tree species. In some areas of the map 

deciduous species are possibly over classified due to the greater strength of their spectral 

signature compared with that of coniferous species (as mentioned in section 2.2). However, Figure 

37 does provide a rough outline of where each forest species dominates which agrees with the 

expected findings from previous research on the Ushba region [2], [4] and general knowledge of 
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mountainous forest habitats. From this classification it would be possible to add the two forest 

Figure 37 - Classification of the different forest types; coniferous in dark green, deciduous in light green and 
meadow in light yellow. Map is at the scale of 1:115,000. 
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types to the overall classification to provide more information on the regional vegetation for users 

of the suggested map. For the case of the Alpine Club map, it was decided not to include this 

information to match the general style of this map series and to prevent over-complication. As 

mentioned previously, due to a lack of accurate field data the reliability of this classification 

(along with all other classifications in this study) is questionable, but the classification closely 

matches the expected distribution of forest species from literature and satellite images. For future 

studies, the addition of reliable field data would greatly enhance both the accuracy and usability 

of this map.  

 

4.8 Confusion Matrix  

The confusion matrix shown in Table 11 was calculated by analysing which training areas were 

correctly classified and which were misclassified. The reference data is shown along the top row of 

the table and classifications are shown on the left side. Due to the nature and general inaccuracy 

of the training data sources (google photos and high-resolution satellite data) the confusion 

matrix cannot be considered of high reliability. Instead it can be used to show a rough accuracy 

assessment of the classifications carried out during this study. For the mixed, high forest stands 

the classification results proved mostly accurate with only two training areas misclassified as 

                       
           

            

 
  
  
 
  

 
 
 
 
 

 
  
 
 
 
 
  
 

 
  
 
 
  
  
 
 

 
 
  
 
  
 
  
 
 

 

 

 

 

 

 

      

  

  

  

Table 11 - Confusion matrix for the classification based on correct or incorrect 
classification of training areas. 
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Krummholz and Alpine meadow. Krummholz was also correctly classified in general with again, 

two misclassified training areas. Alpine meadow had the lowest accuracy in classification result 

with 4 training areas misclassified mostly as Krummholz. This gave the Alpine meadow class a 

producer’s accuracy of 78% calculated by dividing the number of correctly classified training areas 

by total number of training areas. Reasoning for this could be due to the close and often mixed 

occurrence of Krummholz within Alpine meadow zones leading to a higher occurrence of 

confusion during classification. The overall accuracy from the classification result was 86% which, 

despite the lack of precise field data, signals a respectable outcome. The lowest user accuracy was 

achieved for the Krummholz class with a value of 78% and the highest error of omission was 22% 

for the Alpine meadow class. Overall a Kappa Coefficient value of 0.78 was calculated for the 

classification output which corresponds with values from other reputable studies [50]. The Kappa 

Coefficient was calculated using Equation 5 shown below and is a very useful statistical tool for 

evaluating the quality of the classification. Despite the lack of true field data measurements, the 

accuracy values and Kappa coefficient show a positive classification result. Overall, the 

classification produced appears to match the natural presentation of vegetation in the Ushba 

region and the vegetation layers produces from this classification can be used to accurately 

describe the vegetation zones.  

 

5.0 Conclusions 

In this study, the classification of vegetation zones around the Ushba region was carried out using 

freely available, remote-sensed images to arrive at a classification of three, separate vegetation 

classes. The resulting classification and annual time series can be used to clearly interpret the 

phenology of the three vegetation zones and classify the borders between them. The three 

vegetation zones classified; mixed, high forest stands, Krummholz and Alpine meadow, represent 

amalgamations of vegetation species found in distinct zones within the Ushba region as noted in 

literature and imagery. The choice of these classes was based on prior knowledge of other Alpine 

Club maps and the reliability of classifications carried out using the available data. The final 

vegetation-type map was generated using hierarchical classification that made use of commonly 

used classification practices as outlines in previous research and available to implement using the 

ERDAS IMAGINE software. The method provided a clear approach to achieve an accurate and 

reliable classification using the training data accessed from online resources which replaced the 

Equation 5 - Kappa Coefficient. 
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lack of true ground data from the field. A confusion matrix calculated using the training data 

showed an overall accuracy of 86% and a Cohen’s kappa value of 0.78. Although these values 

cannot be considered completely reliable, they suggest the classification is accurate. This is 

something which is also supported by the clear zonation showed in the final vegetation map 

reinforced by previously discussed literature and knowledge of vegetation zones in similar 

mountain ranges.  

The vegetation was symbolised in a way that closely matches with other Alpine Club maps. 

Distinct vegetation boundaries were proposed to clearly represent where one vegetation zone 

finished. This is something which is often not the case naturally but provides clearer information 

for users of the map when navigating. The use of hard vegetation boundaries is also something 

which is used in present Alpine Club maps, so it was considered as fitting the general theme of 

this map series. Neutral colour tones were chosen to allow the vegetation to act as the map 

background rather than dominate the viewers’ attention and so not to detract visually from more 

important map components. The final map layers show clear representation of the vegetation 

zones within the Ushba region, and therefore completes the overall aim of this study as well as 

answers the accompanying research objectives. Consequently, the vegetation layers are suitable 

for use on the suggested Alpine Club map, at the suggested scale of 1:33,000, with full-scale 

versions available for viewing within the digital appendix. 

As mentioned in the beginning of the introduction, the Coronavirus pandemic had a large impact 

on the feasibility of carrying out the classification of the study area as well as on the quality of the 

classified results. For a more reliable classification, there is a requirement for accurate ground 

truth data retrieved from the Ushba region itself. The planned Ushba field trip has now been 

postponed until July 2021 where it is hoped that the recovery of accurate field data can be 

achieved. Within the studied literature, the progress of vegetation classification throughout the 

past 20 years has increased greatly due to developments in software and satellite imaging 

technologies. Although ERDAS is a reliable image processing software ENVI seems to be the 

preferred software due to amount of possible classification techniques which can be conducted 

using it. These include the use of Machine Learning Algorithms (MLAs) which produce more 

reliable results and can distinguish between a much higher number of classes. Despite the 

existence of better software and higher resolution remote-sensed images, the classification 

conducted in this study represents a method that used the available resources to arrive at an 

accurate classified product. Future studies should look at improving the reliability of the 

classification results and the possibility of using other classification techniques to classify a higher 

number of vegetation classes.  
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