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Abstract

This thesisforms part of a team project to produce an Alpine Club map sheet forthe Ushba
region in Svaneti, Georgia. Tie Ushba regionspansthe border between Georgia and Russiaand
forms part of the Greater Caucasus mountain rangeThe areais characterised by high mountains
and large, openvalleys which lead to the formation of distinctive vegetation zones of which this
thesis aims to clasify and represent Classification was caried out using a mixture of remote-
sensed image data and relevant literature. Due to the ongoing Covid-19pandemic throughout
2020 thepracticality of a field trip to take measurenents wasunfeasible. Therefore, accurate
references for training data weresourced online in the form of geotagged photos and high-
resolution satellite images A hierarchical image classfication approach using ERDAS IMAGINE
software was employedo extract vegetation from non-vegetation components, followed by the
classification of individual vegetation classes.Using this method, it was possible to exract 3
separateclassesmixed, high forest stands Krummholz and Alpine meadow. These classewere
further vectorised with an appropriate colour scheme usedfor represerting eachvegetation type,
that matched the generallegend usedby other Alpine Club maps.Further visualisations and
classifications proved the general trend of vegetation over time both seasonally and over nitiple
yearsand establishedthe compatibility between using Landsat-8 and Sentinel2 satelite imagery.
Overall accuracy using thecorrelation coefficient was proved to be 86%with a Kappa value of
0.78 which suggests the vector layers produced ari for the purpose ofuse It should be
mentioned that the reliability of classifications is under question dwe to the lack oftraining data
from the field, but it is hoped that future studies will correct for this.
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1.0 Introduction

This thesis encompasses a cdribution to the Alpine Club map of the Ushba region regarding the
mapping of the vegetation zones. The vegetation layeis produced from a combination of remote
sensed daa, image classification and relevant literature sourcesThe report shall focus on he
identification of the predefined vegetation zones and their extraction from the images of the
Landsat-8 and Sentinel2 satellite missions. Following this a suitable clasification of the
vegetation zones will be chosen.

Mount Ushba is situated on the RussiaGeorgia border within the Greater Caucasus mountain
range. The original focus of this thesis was on the Georgianide with subsequent expeditions
planned to map across the Russian border, however, due to the Covid9 @mndemic this focus
became redurdant. The mapping area lies within the Svaneti region of North Western Georgia, a
region characterised by high mountainsand large valleys. In recent years the area arouniestia,
the main town within the Upper Svaneti region, has experienced a rapid incrase in tourism (119%
from 2017 to 20181). This increase in tourism is sparked by a recent tourism drive by the
government and enhanced by beautiful hiking conditions in the surrounding landscape. A map
sheet of this area is considered seful for hikers and general tourists alike.

The Covid-19 pandemic had a number ofnpacts on this thesis in particular the feasibility of a
field trip as well as access to university computer software. Tase problems had to be overcome in
order to succesfully meet the outcomes, all of which shall be discused later in this thesis paper.

1.1 Research Obijectives

As previously mentioned, the main research objective is to produce a symbolised layer of acal
vegetation cover based on the remotely scannedatellite images. This will be done by answering
seveaml research questions:

How is the vegetation of the Ushba region composed in terms of natural vegetation zones?
How are the different zones of vegetaion related on the slopes of the Ushba mountain
range?
How can these vegetation zones be classified usinsatellite data (Landsat8, Sentinel -2)?
In what way can the vegetation zones be categorised/symbolised according to Alpine Club
Map standards?

0 How is it possible to characterise the different transtions between vegetation zones
(sudden boundary vs. gadual change etc.)?

This thesiscovers the expansion of the Alpine Club map series into a new, currently uncovered
region which, as previously mentioned is experiencing an increase in international touism year
on year. This research is to focus mainly orthe Georgian side of the Ushbaegion and will cover
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the mapping of the vegetation zones not the ice or rock layers. It is hoped that the vegetation
layers from this study will be used in a final verson of the map sheet that can be used by
mountaineers, hikers and general tourists interested in exploring this region.

1.2 Climate of the Ushba Region

The climate of the Ushba region of Georgia is relatrely warm and humid with up to 2200 mm of
rainfall per year[2]. Half of this annual precipitation f alls as snowfall during the cobler months
meaning large areas of the mountains are covered by snow for much of the year; depending upon
the elevation. Georgia is protected from cold, northern air intrusions by the Greater Caucasus
mountain range and an influx of warm, moist air is provided from the direction of the black sea
[3]. In the Svaneti region (where Ushba is located) this influence is particularly appagnt due to
relative proximity to the Black sea. Numerous similarities can be seen between the climate ofhe
Caucasus and that of the Aps as described, in more detail, in studies by Nakhutsrishvili and
Kdrner [2], [4], [5]. Although the two ranges show similarities the Caucasus exhibit a much
stronger continental effect and show much sharper climaic variations over relatively small
distances[2]. The impact of the humid climat e on the Ushba region is to lower the temperature
and thereby lower the isotherms in respect to Eastern or further inlandregions of the Caucasus.
As a result, both the tree line and snow line are lower in comparison.

1.3 \egetation zones of the Ushbagien

The vegetation of the Ushba region is dominated by mesophilic taxa (which concerns organisms
that grow in moderate temperature ranges) as influenced by the relativelyhumid and sheltered
climate [3] this region exhibits. Typical Colchis vegetation elements[2] characterise the Svaneti
region which refers to the locality (the area of land covering the shores of the black sseand south
of the Caucasian mountains). Nakhutsrghvil et al. [2] describe the vegetation in detail forests
made up of coniferouspine trees such as Oriental Spruce, mixed deciduous forest with Oriental
Beech canopy and Rhododendron understory. Othespecies such as Oak, Fir, and Hornbeam are
also noted as present within the forest zone according to Bedzenishvili et al. [6]. For a visual
example of these speciesrad forest types, sed-igure 1[7]z[9]. At the upper limit the forests give
way to Krummholz, an area of stunted windblown trees that grow near the canopy[10], which, in
the Svaneti Regon, are composed of more oriental beech, red bud maple and birch [1].
Nakhutsrishvil et al. goes on to describe that beyad the tree line shrubs are more dominant; in
particular, Caucasian Rhododendron and Common Juniper. Higher still, tall herb fields beame
prolific in the subalpine meadows with both the size and occurrence of plants decreasing with
increasing altitude. These vegetation zones are typical for this region ad directly affected by
altitude and the associated climate.
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The tree limit, as identified by Nakhutsrishvil et al. [2], is 2500 metres at its highest and is
represented by local patches of low statve, birch trees. This matches the tree line foundin other
mountain ranges (such as the certain parts of the Alps, Hawaii and the Canadn Rockies[11}[14)
where the thermal conditions match. The upper limit of pine forest is found not to pass the 11 *C
isotherm during the warmest months of the year[15] This means the tree line can move, both
higher and lower, within the same mountain range depending on the position of this temperature
line. Therefore, in locations closer to the sea, such as with Ushba, the relatively &t climate cools
the average tempeature within the summer months meaning the tree line is lower than
comparative elevatons further inland. Forest communities within the subalpine belt are mainly
restricted to steep slopes due to the impacts of grazing hels and other farming practices[2]. The
natural conifer treeline has disappeared and the birch trees only remain beause of protection due
to their religious signific ance[2] indicating significant levels of hemeroby [16]. This makes the

\ ' Mixed high forest stand ) /

Figurel - Image examples for higlorest stands within the Ushba region.
mapping of a boundary between different vegetation zones hader as the boundary is often
neither straight nor distinct. The tree line is highligh ted by high levels of plant diversty and the
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majority of wood species are found to be endemic to the Caucasus and neigloliring mountains
[2]. However, many species sbw similarities to those found in the mountain ranges in other parts
of Europe (the Alps and Scandinavia)[17]

The subalpine belt is recognised as having been under pesure from the grazing of both wild and
farmed animals for many years which have shaped the vegetation zones and their &nt today
[2]. Tortuous stemmed birch forests (Krummholz) are formed in two ways; the weight of snow in
winter pushes down on their stems and results in an elfin form and exposure to strong mountain
winds which results in their crooked stem appearance2], [18] These attributes mark their
position at the higher limit of the subalpine belt between 2350255 metres in elevation[2].
Usually accompanyirg or coexisting with the Krummholz is the Caucasian Rhododendron (see
Figure 2[19) which is the dominant species in snow cover dependent ecosystem&]. This allows
the species to form dense coverage of nearly 100% in the subalpine regions betwe2300-2900
metres elevation. Raher than a continuous layer, the location of these thickets, will exist
sporadically depending on local environmental conditions. Thes two species will constitute the
O+00I T ETTUS8 1T AP 1 AUAO x EE AEoodtakd pievioksy EnénGonedl And x A AT
the forb and grass communities which will be mentioned in subsequent paragraphs.

Caucasian Rhodenron
\_ y,

Figure2 - Image of flowering Caucasian &todendron

The tall herbs of the Caucasus are described ia number of studies[20]z[22] due to their height
(between 100300 centimetres[2]), relative abundance and divesity. The majority of the spedes,
62% according to Nakhutsrishvil et al.[2], are considered endemic. These tall herb species are all
characterised by rapid sping growth to make the most of short summers relying on high air
humidity and soil moisture to propogate their growth. They are found at altitudes of around 1900
2300 metres where fluctuations of daily temperature remain moderate[2]. The subalpine
meadows can occupy anywhere within the subalpine belt between 150@500 metres depending
upon the species. Nakhutsrishvil[2], [4] describes them as mesic habitats, meaning thathey have
access to a modeate water supply, provided by the existing humid conditions in this part of the
Caucasus. The subalpine meadows are not natural in formation but rather formed by mwing or



Pagel|b

grazing and often make up either hayfields or pastures eépresenting further hemeroby [16] The
alpine meadows can be split intotwo classes: Tussocky and nofTussocky grassland. These are
represented by differences in loth their appearance and species present but would be considered
a single entity on the proposed map. Tragacanthic and herb communities occur sporadically
throughout the subalpine belt with the latter occurring in depressions andvalleys where there is
more moisture present[2]. Tragacanthic species occur in areas once occupied Ipmne forest and
include grasses and dwarf shrubs. As the coverage of these areasigssmall, they will be
considered as an extension of the subalpie meadows layer on the map Several other vegetation
communities of insignificant extent are recognised byNakhutsrishvil et al. [2] as growing within
the subalpine region, these include;rock and scree, Ephemeroid and Phenorythratype species.

Above the tree line and into the Alpine belt of the Caucasus the dominance of Krummholz and
Rhododendron thickets is replaced by Alpine grassland and other shorstature vegetaion. Alpine
grasshnds occupy vast areas and are often used for grazing by cattleheep or goats. The Alpine
grasslands are made up of a few different communities including sedge grasslasdherb fields and
tussocks[2]. Alpine grasses often occupyhe steepest and mosexposed slopes where larger plant
species are unable to growMeadow species associated with the alpine region can be found
anywhere between 1508000 metres. Alpine grases form carpetlike meadows over vast areas of
relatively deep and peaty soils (seeFigure 3[23]). In the highest regions of the Alpine belt snow
cover can last up to three quartersof the year therefore plant communities here have to adapt to
survive in these extremes. Snowbed communities are found at elevations near to or above 3000
metres. They aremainly composed of low stature forb species with low floristic richness. Despite
similarities in species present seen between other mountain rangeand Caucasus lower down
within the subalpine belt, several studies have shown that Snowbed communities herare distinct

( )

Alpine Grassland

\ /

Figure3 - Alpine grassland shown with Ushba in the background.
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from Snowbed communities seen in other mountain rangeg2] (particu larly the Anatolian
Mountains in Turkey [24], [25]). Low-stature Caucasian Rhododendron shrubs occupy steep
gullies between the 23003000 metre elevations. Here they are protected by long and secure snow
cover within the peri-glacial region [26] providing high humidity and peaty soils. Dwarf shrubs
such as Dryas occupy stony slopes within the Alpine region mixing with other AlpineRock and
Scree vegetation. These plant communities will all formthe proposed Alpine grassland and forb
layer on the Ushba map.

The final vegetation community ascending 00 metres above sea level is described as the
Subnival layer. This zone occupies theegion between the alpine grasslands and the permanent
snow line and glaciers. Life for plants at this altitude is extremely tough and snow cover can often
last throughout th e year with short, cold summers dominated by long winters[2]. Wind,
inclination of slopes, direction of slope face, and surface roughnessldiave an impact on plant
communities that survive here [5], [27], [28]. Most Subnival plants exist in microclimates where
they form cushion or carpet-lik e stands that are warmer than the outside temperature[2].
However others grow as isolated individuals or within small groups sheltering amorgst areas of
rock and scree[29]. According to Kdrner et al. [5] the substrate, nutrient and water availability are
all shaped by the actions of gravity awl thus control the geodiversity of the Subnival belt.
Therefore the majority of plant species survive within individual microclimates (ecological niches)
and are consequently endemic to the Caucasus rangd] with specific substrate preferenceq30].
Nakhutsrishvil et al. [2] even noted 94 species as living above the snowline within the Svaneti
region. The subnival layer is difficult to map due to its patchy coverage intermixed with rock and
snow therefore further observaion through remote sensing and field observations are equired to
fully map this zone.

From reviewing the literature, it is apparent there is a possibility of identifying three or four
vegetation zones seen both on the ground and through remog¢ sensing. Mxed deciduous
woodland, Krummbholz, and Alpine grasslard and herbs make up the most visible layers with a
subnival layer likely sporadic in appearance and more difficult to identify using image
classification techniques. Based on literature may smaller vegetation classes appear present
within the Ushba region but for purposes of this study these smaller plant communities shall be
grouped together into the three larger vegetation zones. The primary importance of vegetation
representation for the proposed Usba hiking map is zonation. This allows hikers and othe users
the ability to see how changes in elevation are represented by the changing vegetation around
them and therefore exact marking of each species is unnecessary.



Page|7

1.4 Vegetation Repsentation inthe Alpine Club Map Series

The Alpine club maps serieshas no established legend or common classification scheme. This is
due to the differences, in vegetation zones present and coverage of vegetation, across the diverse
locations which Alpine Club mapsare offered. Alpine club maps are praised on their levebf
accuracy and terrain detail but from observing multiple series maps the number of vegetation
zones are usually kept to a minimum. This prevents the maps from becomig too confusing ard
thus more difficult to read and interpret. An example of an Alpine Club map is shown inFigure 5
[31] From this figure it is clear to see how the forest on the lower slopes (around the edges of the
map) leads up into the rocky areas at higher grand. Here there is some differentiation of the
forest; between Krummholz and high forest stands, where patchy darker green elements are
shown at the forest fringes. In other Alpine Club map examples; such as Dachstein, the vegetation
is clearly split into two types including small pine and bushes (Krummholz), and forest (s&

Figure 4 [32]). The simple vegetation scheme clearly shows the reader the zonation of vegetation
coverage without making it the focus of the map. Other map elements such as the presence of
rocky areas,contours and, of course, the hiking trails themselves ae prioritised so that the
vegetation merely acts as a background layer or base map.

Beispiele zur Gebirgsdarstellung

Bewachsener Boden

. Hahenbnien von 20 20 20m \,
; 100rm- Linie verstarkt mit bergauf '\ Wald, ginzeine Bauma
| arge&chr:emﬂen Hihenzahlen Ll

| Baschungen, Moranen . Krummholz {Latschen, Geblsch)

el

Figure4 - Legend example for the Alpine Club map series.

Boundaries between vegetation zones are distinctive and show exact changes from one vegetation
type to another. This is likely not occurring on the ground, but this representation provides the
reader with an idea of where they should see the vegetation zones begin to changEigure 5
provides a good example of how ggetation boundaries are not always so precise; some forest and
Krumm holz occur simultaneously with some Krummbholz present within the forest zone and both
areas of forest and Krummholz cohabitating the uppe limits of the tree line. Therefore, although
the boundaries between the two vegetation layers are hard, the visualigion shown within Alpine
Club maps clearly represents a close interpretation of what is occurring within the natural
environment. This shall be considered when deciding on the vegetationayer boundaries within

this thesis study.
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Figure5 - Map extract from the Alpine Clulap of Triglav in the Slovenian Alps.

1.5 Past Research aiitieory

Many studies note the difficulty in modelling the vegetation characteristics in high-altitude
environments. Characterised by a shorter growing season ahlong cold winters, as prevously
mentioned in chapter 1.2, the opportunity to reliably and accuately classify vegetation, based on
NDVI in these regions, is limited [33], [34]. Parallels can be drawn with he quantification of the
vegetation index at high-latitude regions as in the study by Beck et al[35]. In this study a
Moderate Resolution Imaging Spectroradiomeer (MODIS) NDVI is used instead of the typical
NDVI time series due to its better performance within such latitudes. The importance of
observing the winter time series as well as the typical leabn period between March and October
is highlighted in severd studies [35]z[37] and the relevance of snow cover in regards to its impact
on mountain phenology is highlighted in many more [38]z[40]. In a detailed study on the impact
of snow, Xie et al.[41]measured the impact of snow accumulation and duration on mountain
phenology and concluded that snow cover duration had the nost impact on the timings and
behaviour of vegetation as a whole. Previous research promotes thenportance of considering the
snow cover during a study of vegetation within high mountain regions [36], [42]. Although this
study is primarily focused on arriving at a vegetation classification and not analysing phenology it
is a point of consideration for the methodology and the practical aspect of arriving atan accurate
classification product.

Three problems with accurately mapping the vegetation zonesising mid-resolution satellites
such as Landsat8 are described in the study by Cingolani A. et al[43]. One such problem is the
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presence of vegetation community patches which are smallethan the pixel size of the Landsat
image and thus difficult to reliably classify [44]. The study suggests the appyach of defining
informational units at a higher hierarchy (where classes are defined by terrain attributes) to give a
more realistic classification product [45]. Another problem focussing in the study by Cingolani et
al. [43] is the definition of exact mapping units that are discernible by the satellite itself. It is

noted that a process of trial and error occurs until a satisfactory output is produced44]. This is
realised within the Ushba region by the presence of several smadl plant communities which are
mentioned within literature but would be indiscernible by a satellite classification. Thus, a
suitable number of classes and training areas must be used to best represent a classification and
output that is appropriate for an Alpine Field Club map. This then leadsto the third problem of
perceiving suitable training areas of adequate size. In the paper mentioned43], an objective
method of selecting training sites and assigning pixels based on discriminant functions is
suggested. These discriminant funtions are obtained from the statistical analysis of the spectral
signatures of each vegetation class which subjected each pixel to eight linear functions (for each
band of the Landsat TM satellite). Each of these 8 values were subsequently compared follodie
by the assgnment of the pixel to the class with the highest value[43]. This method resulted in a
relatively high accuracy (~87%) but for this study the problem lies with a lack of reliable field data
to give accurate spectral comparisons. Therefore, it would not be feasible to wsthis method for
the classification of vegetation in the Ushba regim.

Airborne multispectral imagery has been used as a source for vegetation and water remote
sensing since the 1960B16]. This type of imagery is limited in the number of bands that it can
measure thus limiting the spectral resolution of multispectral satellite imaging. In the study by
Govender et al.[47] the use of hyperspectral remote sasing is desribed as the answer to these
limitations. Hyperspectral sensors measure continuous spectral bands as opposed to multispectral
imaging which measure spaced spectral bandpl8]. Hyperspectral sensors can collect up to 200
bands allowing for the complete reconstruction of a contiguous reflectance spectrum or every
pixel in an image [47]. This can then be used to produce a more detailed analysis of surface cover
with finer discrimination between different classes arriving at a more accurate or detailed
classificaton. Althoug h the spectral resolution of the hyperspectral sensor ishigher the spatial
resolution is not. This is due to the differences betweerspectral and spatial resolutiort Spectral
resolution is referring to the number and width of electromagnetic spectrums whereas spatial
resolution refers to the level of spatial deail that can be visualised[47]. This is very relevant to

this thesis as an application of hyperspectral sensing is the discrimination of different vegetation
types something whichis possiblewith multispectral sensors (such as Sentinel2 and Landst-8)
but not as accurate.

The most important part of the methodology for this thesis is the implementation of the
classification. Many different classification methods are discussed thoughout diff erent studies
focussing onthe pre-processing or differert classification techniques available. In the study by
lovan et al. [49] the different variances of grass and trees is used to separate and individually
classify the two surface types. Other studies describe detailed prprocessing n order to remove
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noise and make imageiomogenous in appearancg41], [50] Xie et al.[41]remarks that the pre-
processing of images usually compromises aesies of opeaations including but not | imited to;
image enhancement,mosaicking, radiometric correction, geometric correction and masking. The
use of masking is particularly important regarding the removal of cloud cover from images. The
Ushba image scenesised in this study were chosen basedmthe least amount of cloud cover but
even a small amount of cloud cover present can drastically affect the classification results. The
study by Xue et al.[51]describes in detail the useof specific Vegetation Index (VI) algorithms in
terms of their application and target vegetation classes. The VI used in most studies is the
Normalized Difference Vegetation Index (NDVI) which is the primary method of extracting
vegetation using unsupervied classification techniques and the technique that will be used in this
study. Most studies make use of the NDVI classification technique to extract the vegetation and
then use a more pecise supevised classification methodto extract the individual vegetation
types[50], [52], [53] In the study by Vanonchelen et al.[53] the Maximum Likelihood (ML) and
Support Vedor Machine (SVM) classifierswere used. Both classifiers are examples of supervised
classification technigues which require the input of training data. For the study mentioned [53],
the SVM classfier works by identifying a hyperplane that separates the classes in feature space
[54], [55]. This hyperplane maximises the difference along class boundaries and is found to
outperform other classification techniques whilst demanding fewer training sites [56]z[60].
However, in order to execute this type of classification the carect level of software is required. In
this study by Vanonchelen et al.[53] as well as most of the others mentioned the estal$hed
ENVI/I DL software was used. In this paper, due to university acess constraints, the only software
available was ERDAS IMAGINE and SNAP neither of which have the availability of functions that
ENVI software allows.

In several past studies the main tassifier used was the Random Forest (R) classifier[50], [61]
The primary function of this classifier type is to extract individual forest or vegetation types, for
example; in the study by Liu et al.[50] different tree species were classified from SentineR and
Landsat8 data sources. RF along with the KNearest Neighbour (kNN) algorithm and the SVM
classifier, which was mertioned in the previous paragraph, are examples of Machind.earning
Algorithms (MLAs). MLAs are useful for classifying vegetation in mountainous regions because
there is no need to assume the data is distributed normally. This means that theselassifiers @an
deal with noisy training data and produce more accurag classifications in complex environments
[53], [62]. Lu and Weng [62] mention that non -parametric classifiers, such as MLAs, do not
require assumptions aout the data. This is in reverse to parametric classifiers, such adaximum
Likelihood, which assume a Gaussian distribution and rely mainly on training data in order to
arrive at a successful classification. This highlights the benefit of MLAs which caincorporate
non-remote sensing data into the classification processTherefore a reduced reliance on training
AAOA EO OANOEOAA AT A OAOGOI OET ¢ Al AOGOEEZEAAOQOETT O AD
the same ared62]. RFclassification consists of a collection of tree structured classifiers in which
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each tree contributes a vote to determine the most frequent classccording to the input data (see
Equation J) [61], [63]

L:’:rh:l = majority tlﬂf{'{Cmr.[r}]-Tr,

Equationl - Random Forest equation

acquired from the study byega Isuhuayla:

et al. 20B.
To form a split point node the algorithm randomly selects a subset of variables and then seariges
among these variables to arrive at the bestlassification boundary between classe$63]. The
algorithm performan ce is limited by the number of tree-structured classifiers. Often other non-
remote sensed data must be added when classifying trees with similar spectral signatures. In the
study by Liu et al. [50] topographic and phenology information was added into the algorithm in
order to distinguish between individual tree species.

Support Vector Machine (SVM) is used in multiple studies[53], [57k[59], [64], [65] and
represents anexample of a nonparametric, supetvised classification technigue. As mentioned in
previous paragraphs, SVM works by finding a hyperplane which optimises the classification by
minimising the upper classification boundary [61]. The hyperplane surface is used to determine
the classification and arrivesfrom the inp ut variables including training data and other non-
remote sensed components. In the paper by Cortes and Vapnif64] the use of soft margins within
the MLA allow for errors within the training data. This is useful for regions of complex vegetation
coverage such as those found in muntain environments. In the study by Vega Isuluaylas et al.
[61]), SVMwas found to outperform other MLA, including RF, when classifying the Andes
mountain environment. It was found to have the highest mean area under the curve (AUC) as
well as the smallest standard deviation61] when compared to the poorest performing
classification technique. There were differencesdund betweenthe performance of the SVM using
different input data; for example, using NDVI as the only classification feature for SVM severely
limited its performance capability. Thus, the main benefit of MLAs is once again highlighted by
their ability to acknowledgeother data features including phenology, topography andelevation
data. The overall benefits of SVM as a classifier is evident by its ability to deal with noisy training
data in complex environments. Therefore, it would be a useful classificabn techniqu e for
mapping the vegetation of Ushba.

The final non-parametric technique evaluated in the study be Vega Isuhuaylas et aj61] and used

in a variety of studies in order to classify forest environments[66]z[68] is the k-Nearest

Neighbours (KNN) classification algorithm. This technique is simple to implement; requires low

training data, computational costs and relies on tle k-closest training data vectors in order to

AT i pOOA AAAOOAOA AlI AOGOEEZEAAOQEI T 08 4EA E.. Al AOGOGEE
OEA Al AOO OADPOAOCATEGBA A AMIghBAIFRTS1] The Ealu©dE hepoiiit variable

is predicted based on the similarity betweenneighbouring points th at show observed values

within a covariate space[68]. Similarity between the nearest neighbour values is determined by

distance but as with all non-parametric MLASs other variables can be included in the overall
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calculation. In terms of performance, the KNN classification method has manygood performance
indicators when used in foredry mapping. Attention must be paid when calibrating the kNN
classification technique as noted by McRoberts et al[68]. By weighting some variables more than
others it was found that the accuracy of the classification could be increased. However, in the
study by Vega Isuhuaylas et al[61], KNN was found to have a much lower performance when
mapping vegetation with noisy, multivariate datasets in comparison toother MLA classifiers such
as RF and SVM. This was concluded to be a result of the sensitivity of the kNN classifier to noisy
data, in particular - outliers, which could have a large impact on the differencesn similarit y
which the algorithm relies upon. Therefore, it has beenconcluded that, in comparison to other
classifiers, KNN is maybe not as reliable especially regarding the mapping of more complex and
challenging environments such as mountainous regions

The three non-parametric or Machine Learning Algorithms (MLA) ment ioned in the last few
chapters all have positive and negative features that make them suitable or unsuitable for use in
mapping a mountainous region such as Ushba. The main issue with thee methods & whether
they are supported on thesoftware available fa use at TU Dresden (2016 version or ERDAS
IMAGINE). Another issue is the lack of reliable training data which is accessible to us due to the
cancellation of the planned field trip in July. For thesereasons the application of these
classification techniques within this study seems unattainable and therefore the supervised
classification technique Maximum Likelihood (ML) is to be used instead. ML is the principal
parametric classification technique, supported by all image processing sétware, and the most
widely used of all supervised classification technique$69], [70]. Maximum Likelihood assumes
that the statistics for each class are normally distributed in a linear manor. It is therefore assumed
that image pixel data follows a Gaussian distribution which is something that is often not true of
more complex regions. Each pixel is assigned to a given class based on the highest probability
(maximum likelihood) that the pixel belongs to that class based on similaities in the input
variables (e.g. NDVI). ML reguires sufficient ground truth data in order to arrive at a classification
of acceptable accuracy. A greater number of training areas provide a more accurate estimation of
the mean vector and variancecovariance matrix of the population. This subsequently arrives at a
more accuate classification. Several studies do show that the ML method has its issues and
produce less accurate results, particularly in heterogenous mountain environments, when
compared to other classificaion techniques. [43], [52], [61] However, the study by Sisodia et al.
[71]proved ML to be a robust technique; obtaining classification accuracies of 93.75%.

As the last few paragraphs haveshown, there is a wide array of posible classification techniques

available, all of which can compute sufficient results. One of the most important parts of the

method when carrying out a classification of remote sensed data is the ability tacheck the

accuracy of the results. Literature sows that there are several popular methods to compare the

Al AGOEZEAAOQEI T O Au AEAAEET ¢ OEA 1 OAOAI 1T AAAOOAAUS
OOAOEOOEAS8 #1 EAT 60 EHymBA2EO AAEET AA AAIT T x j OAA
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Equation2 - Cdhen's kappa coefficient.

where P, is the obsened agreement andPeis the expected agreemen{72]. Resulting values are

between 0 and 1 wth any value greater than 0.8 being considered as an almost perfect agreement.

Generally, the kappa value can be calculated using a confusiamatrix whic h compares the

number of correctly classified classes wit the number of misclassified classes. Using aonfusion

i AOOEgn OEA OOAOh DOI AGAAO AT A T OAOAT 1 AAAOOAAU 1
useful tool for measuring multi-class and mbalanced class problems. Another performance

indicator used for classification accuracy is the area uter the curve (AUC). This was used in the

study by Vega Isuhuaylas et al[61]who used the receiving operating characteristic (ROC) theory

to determine the corresponding optimum threshold for each classification analysis. The AUC

value, calculated in this way, is thieshold independent meaning that the result ofthis indicator is

an overall accuracy based on a number of different probability thresholdg61], [73] In his study,

Friedman [74] employs the use of ranks to check that the vaince between different performance

indicators is statistically agreeable. From the results of the kappa coefficient and AUC the

different classifications can be ranked (1,2,3 etc.) and ssequently these ranks can be compared

either pairwise or across allrank classes. In the study by Vega Isuhuaylast al. [61], the ranks were

compared using the Nemenyi pos-hoc test which examined whether models showed a notable
AEZEZEAOAT AA j O# OEOEAAT $EAAAOAT AAS qssification shudids AT OOET 1
must check the overall accuracy of their classifiation results. The most popular and widely usel

i AOCET A EO #1 EAT 60 EAPDPA AOO 1T OEAO I AOET AO AOA AOGA
performance indicator in order to get the most preciseaccuracy assessments?2], [61], [62] This

is due to, and especially regarding vegetation mapping at coarse ses[52],# 1 EAT 8 O EADDA
masking errors of significant difference and making the possibility of agreement as a result of

chance[75].

2. Data Acquisition

2.1 Multi-Spectral Images

The Multi -Spectral Images (MSI) used in this study are from the SentineP and Landsat8 satellite
missions. A brief overview of the satellite data used is shown ifTable 1
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(Satellite No. of Spatial Orbit Type  Temporal Product Type )
Bands Resolution Resolution
(metres) (days)
Sentinel-2A 13 10/20/60 Polar 10 Level 1Cand Level 2A
Landsat-8 11 30/15 Near-Polar 16 Level 1 - Terrain precision
\_ Correction )

Table 1- Overview of SentineR and Landsai8 satellites.

The Multi -Spectral Sentinet2 images are made of a satellite constellation of two identical
satellites; Sentinelt2A and Seninel -2B. The Sentinel-2A satellite was launched on the 23 of June
2015 by the European Space Agency (ESA) and the Senti28 was launched on the 1 of March
201776]. The frequency revisit of each satellite is 10 days with a combined constellation revisit of
5 days at the equator and 23 days at midlatitudes. The two satellites exhbit a polar orbit
synchronising the movements of the sun[76]. The instrument consists of a Multispectral Imager
(MSI) covering 13 spectral bands (443 nm 2190 nm) with swath width of 290 km and spatial
resolutions of 10 metres (4 visible and neainfrared bands), 20 metres (6 rededge/shortwave-
infrared bands) and 60 metres (3 atmosphelg correction bands) [77].

The Landsat8 satellite was launched on the Iof February 213 and indlides both the
Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) onboard50]. These two
sensors provide seasonal coverage of the globkndmass atspatial resolutions of 30 metres
(Visible, NIR and SWIR), 100 metres (thermal) and 15 metres (panchromatid)8].

The MSI used within this study are composed of 64&ropped images taken from both satellites
covering the leafon period between April and November over the past 3 years (204gresent).
Dates were chosen based on percentage cloud covend in partic ular; cloud cover over the study
area, with less than 20%cloud cover considered acceptable. SentineR images for 2018/9 were
freely acquired from the Copernicus Open Access Hubl{ttps://scihub.cope rnicus.eu/). However,
due to the length of time taken to access somef the older archived data using this hub, ONDA
(https://www.onda -dias.eu/cms/) was used to access all of the 2017 archived data. Resulting
products are either Level-1C (L1C) or Leve2A (L2A). L1C describesipduct images that display
top-of-atmosphere reflectances whereas L2A are bottoraf-atmosphere and are derived from the
L1C products. L2A tiles are most useful for this study as they prage a cleareg image of the ground
geometry and vegetation coverage. fierefore, these data types were preferentially chosen where
possible (subject to cloud cover and dates). All sentinel products are released in a Universal
Transverse Mercator (UTM) projection and World Geodetic System (WGS) 84 datum. A total of 31
tiles were collected with 17 from tile 37 and 14 from tile 38. A description of these images is
available in Table 2.

Landsat8 images were accessed ugy the USGSEarth Explorer site
(https://earthexplorer.usgs.gov/) which provides standard Levetl topographcally corrected
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products (LT1). LT1 data is corrected with regards to relief displacement. Lands& products are
released with a UTM projection and a Clarke 1866 datumin total 33 Landsat8 tiles were
obtained, 16 for tile 37 and 17 for tile 38 able 2 provides a description of these images.

- 3
IDENTIFIER IDENTIFIER

LANDSAT-8 uTe  12/04/2017  L8_20170412
LANDSAT-8 ure 24/06/2017 18_20170624

LANDSAT:2  LITR 28/06/2017 18_20170428
LANDSAT-8 ure 26/07/2017 L8_20170726

LANDSAT-8 ure 30/05/2017 L8_20170530
LANDSAT-8 ure 11/08/2017  L8_20170811

LANDSAT-8 uTp 01/07/2017  L8_20170701

LANDSAT-8 ure 15/11/2017  LB_2017I5

LANDSAT:8  LITP  02/08/2017 L8_20170802
LANDSAT-8 Lre 17/04/2018 LB_20180417

LANDSAT:8  LITP  19/08/2017 LB_20170918

LANDSAT:8 ure 05/10/2017 L8_20171005 LANDSAT-8  LITE 21/06/2018 L8 20180627

LANDSAT:8 ure 01/05/2018  L8_20180501 LANDSAT-8 re 29/07/2018 L8_20180729

LANDSAT:8  LITP  17/05/2018 L8_20180517 LANDSAT-A  LITP  14/0A/2018 LA_20180816

LANDSAT-8  LITP  21/08/2018 L&_20180821

LANDSAT-8 ure 01/10/2018  L&_20181001

LANDSAT:8 ure 22/09/2018 18_20180922
LANDSAT-=8 ure 12/10/2018  L8_20181017

LANDSAT:8 ure 08/10/2018 LA_20181008
LANDSAT-8 ure 27/04/2019 LB_20180427

LANDSAT:8 ure 25/11/2018  L8_20181125

LANDSAT:8 ure 29/05/2019 L8_20190529

LANDSAT:8 ure 08/08/2019 L8_20190808

LANDSAT-8 uTp 15/11/2019  L8_20191113

LANDSAT-8 ure 20/10/2019  LE_20191020

LANDSAT-8 ure 07/06/2020 L8_20200607

N >y

LANDSAT-8 [Ri0] 13/04/2020 LB_20200413

LANDSAT-8 uTp 18/07/2020 L8_20200718

- /

Table2 - Description ofhe data accessed from each satellite and each tile.

Figure 6 shows the distribution of Ushba scenes taken from the 2017 2020 period. As previously
mentioned, scenes were chosen based on cloud cover, b#tugust, September and October were
chosen particularly because they have thedast amountof snow cover and highest mean NDVI
values. Overall, thedistribution of scenes were kept as even as possible with an average of 8
scenes per month and an average if0 scenes for each year (excluding the current year 2020).
















































































































































