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Abstract 

Extreme climate variability has become a worldwide phenomenon. While developed countries 

put preventive measures in place to deal with the impact of climate change, most of the 

developing countries in Sub- Saharan Africa bear the full brunt of the changing environment. 

In Arid and Semi-Arid areas, where water scarcity limits most activities such as agriculture, 

livestock, and household chores, the majority of the citizens’ lives depend on agriculture for 

livelihood. Thus, it causes substantial stress for the local communities. This thesis, therefore, 

focuses on mapping vegetation dynamics from remote sensing time series data in the Republic 

of Sudan, in order to analyse and visualize the past events, e.g., drought and their impact on 

vegetation of the selected case studies from different dimensions. Disaggregating the years into 

seasons, with a focus on 2015 and 2017 rainy seasons, seasonal integral results computed by 

the Pearson correlation coefficients showed a strong positive correlation between NDVI, soil 

moisture and evapotranspiration. Mean annual NDVI graphs show a general increasing trend 

in vegetation. For the long term, breakpoints and seasonal trajectories, low standard deviations 

were recorded across the case studies.  A cross correlation graph to determine the lag in 

response between NDVI, soil moisture and evapotranspiration on monthly basis show no 

significant lags.  Vegetation dynamics have been visualized using “small multiple” static maps 

in order to depict trends, changes and dynamics of vegetation change. The maps show the 

spatio-temporal dynamics of vegetation, where high NDVI values were generally recorded 

from July to September. 

 Keywords: mapping, vegetation dynamics, NDVI, soil moisture, evapotranspiration, mean, 

correlation, standard deviation, lag 
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1. Introduction  
       In recent years, remote sensing datasets have proved to be efficient and indispensable in a 

range of applications. Distinguishing these diverse fields of applications have been 

demonstrated in several studies such as land degradation monitoring (Abdel-Kader, 2019), 

assessing the impact of droughts (West, Quinn, & Horswell, 2019), forest inventory (Hou et 

al., 2019; Latifi & Heurich, 2019), wildfire monitoring (Lippitt, Stow, & Riggan, 2016; 

Szpakowski & Jensen, 2019), ecosystems services assessment and environmental impact 

assessments (Dawson, Cutler, & Brown, 2016; Vargas, Willemen, & Hein, 2019), flood hazard 

and risk assessment(Rahman & Di, 2017), understanding the impact of climate change on 

agriculture (Siddig, Stepanyan, Wiebelt, Grethe, & Zhu, 2020), land use and land cover 

changes(Raziq, Xu, & Li, 2016; Hua, 2017), and of particular interest, mapping vegetation 

dynamics (Mohammadi, Costelloe, & Ryu, 2017; Reddy & Prasad, 2018) and exploring its 

trends, spatial and temporal dimensions. 

        Monitoring vegetation dynamics is crucial as it plays a significant role in regulating water-

energy balance and sequestering carbon dioxide, one of the main GHGs (greenhouse gases) 

accelerating climate change. Invariably, the dynamics of local vegetation phenology is a 

significant indicator of environmental change (Reed et al., 1994; Fensholt and Proud, 2012; 

Begue et al., 2014). In Sub-Saharan Africa, vegetation loss is on the rise, probably due to 

excessive deforestation (Brandt et al., 2017). Dominant plant species (terrestrial ecosystems) 

are on the brink of extinction, which will further exacerbate the impact of climate change. This 

adverse effect becomes severe in water-limited climatic environments such as arid and semi-

arid regions. The Republic of Sudan, amidst other socio-economic challenges, is losing its 

vegetative cover at an alarming rate partly due to the increasing population with a ripple effect 

of high demand for land use well as the intrinsic impacts of climate change. It is, therefore, 

relevant to monitor vegetation dynamics to take proactive steps in reducing further vegetation 

loss in Sudan. Against this backdrop, using remote sensing datasets to map vegetation 
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dynamics is crucial since it is cost and time effective, readily available compared to in situ 

observations and other national datasets that are difficult to get in developing countries for 

research. 

1.1. Motivation  
       Climate change is a global phenomenon with its attendant consequences. This change is 

characterized by increasing heat waves, irregular rainfall patterns, rising sea levels, drought, 

desertification, floods, and diminishing flora and fauna in various ecosystems. Extreme short-

term weather events, intra-seasonal and inter-decadal variability occur against a backdrop of 

longer-term climatic changes (Easterling et al., 2000), to which systems display complex 

responses (Schurman et al., 2018; Von Buttlar et al., 2018). This has created imbalances in 

various ecosystems at global, regional, national, and local levels.  

       It is, therefore, of high relevance to foster the knowledge on how vegetation types respond 

to different climatic conditions such as precipitation, evapotranspiration and temperature over 

time. Similarly, the anthropogenic infractions on the environment are increasing at an alarming 

rate. These infractions are mainly caused by changes in land use patterns driven by population 

growth and resource exploitation, as well as the destruction of vegetation cover, which in effect 

influences climatic conditions. Vegetation plays an essential role in maintaining natural 

ecosystems by which plants act as Carbon sinks in sequestering Carbon dioxide from the 

atmosphere. However, plant growth depends on climate variables such as soil moisture, 

evapotranspiration, precipitation, temperature, as well as land use changes to some extent. In 

this regard, mapping vegetation dynamics in this era of global climate change needs to be 

addressed, particularly in regions where vegetation loss is on the increase. The issue is usually 

exacerbated when in developing countries, research regarding vegetation loss is minimal. To 

this end, soil moisture, evapotranspiration, precipitation and its interrelationships with 

vegetation in regions with variable climatic conditions have taken a centre stage in 

developmental discussions. This is because, in these regions, limitations to water have negative 
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impacts on plants growth; an important indicator of rapid environmental change. This has 

necessitated the study regarding vegetation changes in the Republic of Sudan, using remote 

sensing time series. 

1.2.  Problem statement  
       Our environment is continuously changing. Global climate change resulting in droughts, 

irregular rainfall patterns, and increasing temperatures across major ecosystems have increased 

over the years. Plant communities have been adversely affected due to their sensitivity to 

environmental elements (Yue et al., 2010) “Vegetation cover change is gaining popularity as a 

key determinant of global environmental change” (Rees, Condit, Crawley, Pacala, & Tilman, 

2001); hence, vegetation dynamics have been identified to be of primary importance in the 

global change of terrestrial ecosystems (Eugster et al., 2000; Suzuki, Masuda, & G. Dye, 2007). 

Several studies have been conducted regarding the nexus between climate variables and 

vegetation changes. Yan et al., (2017), for example, studied the relationship between the 

dynamic change of vegetation cover and driving forces in Nanxiong Basin, China.  W. Zhao et 

al., (2017), also conducted a study on climatic factors driving vegetation declines in the 2005 

and 2010 Amazon droughts. Other researchers looked at how vegetation responds to climate 

with a certain time lag (Huiling, Xiaobing, Yun, Lingmei, & Zhongfei, 2010; Saatchi et al., 

2013; D. Wu et al., 2015; Assal, Anderson, & Sibold, 2016). However, it suffices to note that 

these studies have been conducted in geographical units that receive a significant amount of 

rainfall. As a result, little has been done in semi-arid and arid regions where rainfall amounts 

are minimal and temperatures are excessively high, thereby presenting adverse conditions to 

plants’ life exacerbated by anthropogenic infractions. Putting the study area, the Republic of 

Sudan, into context, the literature regarding the quantitative relationship between vegetation 

and meteorological conditions is sparse. Also, most of the studies conducted relied on in-situ 

observations although Remote sensing data holds many prospects for mapping vegetation 

dynamics with a high degree of accuracy (Weng, 2001; Rimal, 2011; Olokeogun, Iyiola, & 
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Iyiola, 2014; Appiah, Schröder, Forkuo, & Bugri, 2015; Raziq et al., 2016). It is against this 

background that the study seeks to address this yawning gap in the Republic of Sudan, which 

presents a unified and typical example with different climate zones where water scarcity limits 

vegetation growth, agriculture, livestock, and household chores by using remote sensing data 

available in a cloud computing environment. In this context, the study seeks to map vegetation 

dynamics against its controlling factors; soil moisture, evapotranspiration, and precipitation.  

1.3. Research objectives and questions  
       This sub-section elucidates the objectives underlying the study. It does so by identifying 

and disaggregating the main goal into specific objectives as well as their corresponding 

research questions. The main aim of the thesis is to map vegetation dynamics from remote 

sensing time series by leveraging on cartographic principles to visualize the spatio-temporal 

changes in vegetation over a given area. Vegetation dynamics will be studied not on a plant 

level but in terms of the vitality dynamics of larger plant associations as far as observable by 

optical medium resolution space sensors. The time range covered will roughly be from the year 

2005 in cognizance with other controlling factors for about 10 to 15 years. The thesis will 

specifically address the following objectives;  

  

1. To determine and analyse the quantitative changes in vegetation over time against 

controlling factors (soil-moisture, evapotranspiration, and precipitation) based on the 

representative case studies.  

2. To map vegetation dynamics based on the spatio-temporal extent of various 

representative case studies as observed from remote sensing time series.  

3. To identify and analyse the trends and patterns of vegetation dynamics based on the 

representative case studies. 

 

 



 

17 
 

The corresponding research questions following the research objectives that will be addressed 

in this thesis are as follows; 

1. How can controlling factors influence vegetation changes over time? 

2. How can vegetation dynamics be cartographically represented within the spatio-

temporal extent of various representative case studies? 

3. How different are the trends and patterns of vegetation dynamics within the various 

study areas (representative case studies)? 

 

1.4. Research scope and proposed solution  
       The focus of the research is geographically in the Republic of Sudan, a region with varied 

climatic conditions. However, due to the large expanse of the country, there will be spatial 

aggregations resulting in clusters of areas that will serve as a reference point for exploring the 

questions of spatial relations. The study will focus on the relationship between meteorological 

conditions and vegetation changes over time-based on remote sensing data. It is worthwhile 

noting that these spatial clusters will help to do an informed analysis. A clear distinction 

regarding irrigated and rain-fed areas will be made to understand their relationship to climatic 

factors. To analyse the strength of correlation between soil moisture, evapotranspiration, 

precipitation, and vegetation, suitable mathematical approaches will be used; mean, standard 

deviation and Pearson correlation coefficient.  Besides, this thesis will provide a prototypical 

series of maps and graphics that represent the vegetation dynamics over the area of interest. As 

stated earlier, there is a general deficiency in the usage of Remote sensing data coupled with 

cloud computing in advancing vegetation research in the Republic of Sudan. “Cloud-

computing resources enable efficient image processing on otherwise computationally intensive 

tasks, such as with the classification of large volumes of image data, and particularly when 

using advanced machine learning algorithm. Google Earth Engine, a cloud-based platform for 

geospatial analysis, aptly addresses that need” (Gorelick et al., 2017).  
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       The proposed solution utilizes the Google Earth Engine (GEE) platform for conducting 

studies on vegetation dynamics, as this platform allows researchers to analyse all the datasets 

needed. All a user required to access the portal is a Google user account and an active internet 

connection. After, the JavaScript code editor can be accessed, which in effect enhances the 

direct data retrieval permitting users to test and develop algorithm and preview results in real-

time interactively. Ultimately, there are other exciting features about the platform that makes 

it useful from different dimensions. Firstly, GEE stores satellite imagery with nearly 600 

datasets from about 50 distinguished datasets providers obtained from 30 satellites such as 

PROBA-V, AVHRR, GSMAP, MODIS, and TRMM. Secondly, GEE organizes and makes it 

available for scientists and researchers for global-scale data mining, scientific analysis, and 

visualization of geospatial datasets. Below is figure 1 which shows the interface of Google 

Earth Engine environment. 
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Figure 1: Google Earth Engine Interface 

 

1.5.  Research limitations  
       Although this Master thesis seeks to explore the various dimensions of vegetation 

dynamics; spatio-temporal representation of quantitative changes in order to address the 

knowledge gap, further work that goes beyond the available time is necessary. Some of the 

concepts will form the basis or directions for future research, where they will be addressed in 

an in-depth manner. This is because of time constraints and the complexity if all the 

dimensions, for example a specialization on specific plant species and a regional refinement of 

the historical meteorological records are to be examined at once. In this regard, the study 

addressed not the species-specific response to climatic conditions; thus, it did not highlight 

which particular species of plants withstand adverse climatic conditions or not. Similarly, the 
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focus of the analysis was done on the basis of representative case studies representing the 

various climate types not the whole country. The selection of these representative case studies 

was based on an exploratory approach to identify areas with vegetation cover. From a similar 

perspective, the study did not analyse the controlling effects of precipitation and temperature 

as well as land use and land cover changes on vegetation dynamics. 
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2. Foundations and Related work   
2.1. Climate variables  

       According to Intergovernmental Panel on Climate Change (IPCC), Fourth Assessment 

Report by Solomon, S. et al., (2007), climate change refers to “a change in the state of the 

climate that can be identified using, for example, statistical tests as changes in the mean and or 

the variability of its properties, and that persists for an extended period, typically decades or 

longer. It refers to any change in climate over time, whether due to natural variability or as a 

result of human activity.” Climate variables play a significant role in influencing vegetation 

changes either in the short term or long term. For the purposes of this thesis, evapotranspiration 

(meteorological condition), and soil moisture (hydrological factor) have been discussed.  

 

Evapotranspiration  

       Evapotranspiration involves two main processes: evaporation and transpiration. 

Evaporation occurs when water in its liquid state is converted to water vapour and removed 

from the evaporating surface. It usually takes place on surfaces such as lakes, rivers, soils, and 

wet vegetation. Evaporation and transpiration occur concurrently, which makes it difficult to 

differentiate the two processes. Apart from the water availability in the topsoil, the evaporation 

from a cultivated soil is primarily calculated by the fraction of the solar radiation incident on 

the soil surface. This fraction diminishes over the growing season as the crop (vegetation) 

develops, and the canopy covers the majority of the ground area (FAO, 2020) 

 

Soil Moisture  

       Soil moisture is one of the main variables in determining the vitality of land surface 

ecosystems and cultivated fields. It is an inevitable component of the “three-phase system” of 

the soil, which consists of air, moisture, and soil minerals (Bangalore, 2004; Craig, 2005). Soil 
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moisture depicts the amount of water available in the pores between soil particles. The amount 

of water held in the upper 10cm of the soil is referred to as surface soil moisture, whiles the 

moisture within the upper 200cm of the soil available to plants is called root zone soil moisture 

(NASA, n.d.). Soil moisture impacts geological, ecological, biological, and hydrological 

behaviours (Campbell, 1974; HILLEL, 1980; Fang & Daniels, 2006) of the soil. In addition, it 

plays a major role pertaining to plants growth, functioning of the natural ecosystems and 

biodiversity (Robinson et al., 2008). Application of adequate and timely moisture for irrigation 

based on soil-moisture-plant environment is crucial in the agriculture sector (Howell, 2001; 

Falloon, Jones, Ades, & Paul, 2011). 

2.2. Remote sensing for vegetation studies  
       Using remote sensing for monitoring vegetation change has advanced over the years, 

although monitoring vegetation change is a challenge since it is continuously changing. 

However, remotely sensed time series are mostly efficient. The Intergovernmental Panel on 

Climate Change (IPCC) report by Solomon, S. et al., (2007), underscores the need to assess 

climate change impacts on vegetation dynamics through repeated, long term, and accurate 

satellite measurements.    

       Remote sensing techniques are therefore needed over a range of scales to effectively capture 

and quantify the significant spatio-temporal dimensions of vegetation change. According to 

Bruzzone, Smits, & Tilton (2003), the advancement of unique techniques for the analysis of 

multi-temporal data are complicated in the remote sensing domain. Nevertheless, remote 

sensing techniques and datasets provide useful means for global  vegetation mapping (Boyd & 

Danson, 2005). As a result, there is considerable interest in using remotely sensed time series 

to map vegetation change, which is relatively easy compared to field observations. Among the 

methods significant for monitoring vegetation change in remote sensing, spectral vegetation 

indices (VIs) are the most prominent. Practically, spectral vegetation indices are calculated as 
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the ratio of two wavebands to contrast an absorbing feature with a reflective reference feature, 

and ultimately the status, biogeochemical composition, and structure of the vegetation is 

revealed by the spectral reflectance signatures (Ustin, Roberts, Gamon, Asner, & Green, 2004). 

2.3. Vegetation indices  
        Vegetation indices commonly involve a ratio and, or a linear combination of the Red and 

Near-infrared (NIR) wavelengths of the electromagnetic spectrum (Huete, Justice, & Liu, 

1994). According to Townshend, Justice, Li, Gurney, & McManus, (1991) and Roy, (1997),  

vegetation indices are essential for the scientific community in a range of fields such as 

detecting changes, calculate fractional vegetation cover, biomass and leaf area index (LAI). As 

a result, vegetation indices in remote sensing have formed the basis of a scientific approach for 

monitoring vegetation dynamics at various scales, e.g. seasonal, inter-annual, and inter-decadal 

variations. In 1969, Jordan proposed a vegetation index (VI) called Ratio Vegetation Index 

(RVI) based on the assumption that leaves absorb comparatively more red than infrared light; 

RVI can be mathematically expressed as: 

RVI = R / NIR 

where NIR is the Near-infrared band reflectance, and R is Red band reflectance. The RVI is 

frequently used for green biomass calculations and monitoring, especially in high-density 

vegetation areas. Nonetheless, when the vegetation cover is less dense, about 50% of vegetation 

coverage, RVI becomes sensitive to atmospheric effects, and its representation of biomass is 

weak, therefore limiting its applicability.  

       Similarly, Richardson & Wiegand (1977), developed the Perpendicular Vegetation Index 

(PVI), which is a simulation of the Green Vegetation Index (GVI) in R and NIR two-

dimensional data. The spectral response from the soil is presented as a slash in the NIR−R 

coordinate system. The effect can be described as the soil shows a high spectral reflectance in 

the NIR and R bands. The distance between the point of reflectivity (R, NIR) and the soil line 

is defined as the Perpendicular Vegetation Index.  
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       Another widely used vegetation index is the Leaf Area Index (LAI). Leaf Area Index is 

used to explain the potential surface area available for leaf gas exchange between the terrestrial 

biosphere and the atmosphere (Cowling & Field, 2003). LAI is a useful parameter controlling 

a lot of bio-physical processes of the vegetation, such as the interception of sunlight and 

rainfall, transpiration, photosynthesis, carbon and nutrient cycles. Although the Leaf Area 

Index has been useful, it is limited since it is species specific and not readily robust when it 

cuts across a variety of species with different canopies and leaf structures (Boegh et al., 

2002; Broge & Mortensen, 2002; Xiao et al., 2002;Colombo, Bellingeri, Fasolini, & Marino, 

2003). Enhanced Vegetation Index (EVI) is another widely used spectral vegetation index. The 

main advantage of EVI is that, it is more sensitive to differences in densely vegetated areas and 

better accounts for atmospheric influences.  

        A study conducted by Viña, Gitelson, Nguy-Robertson, & Peng (2011), compared the 

effectiveness of different vegetation indices. Among those used were the Normalized 

Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), the Green 

Atmospherically Resistant Vegetation Index (GARI), the Wide Dynamic Range Vegetation 

Index (WDRVI) and the Simple Ratio (SR). A sensitivity analysis revealed that EVI and 

WDRVI had higher sensitivities. According to Gago et al., (2015), assessing vegetation status 

is typically based on the Normalized Difference Vegetation Index.  This is because, in low 

biomass environments, NDVI is the most preferred vegetation index for assessing vegetation 

status. Along with the different techniques, other factors like soil moisture, humidity, 

precipitation, and temperature are analysed to support studies in vegetation dynamics. 

Consequently, NDVI appeared to the preferred vegetation index for monitoring vegetation 

status and dynamics. After considering the advantages and limitations of applicability 

regarding the diverse nature of the study area, NDVI is considered to be most appropriate in 

achieving useful results.  
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Normalized Difference Vegetation Index (NDVI) 

       Normalized Difference Vegetation Index (NDVI) is one of the most widely used 

vegetation indices to determine the health conditions of vegetation. It is a measure of how 

visible light is absorbed and infrared light reflected by plants in the electromagnetic spectrum. 

(NASA, n.d. a)   

Principally, NDVI based time series are primary to the remote sensing of vegetation growth 

and also in deriving statistical observations related to vegetation dynamics (Hall-Beyer, 2003; 

Pettorelli et al., 2005). To quantitatively assess the vegetation, the difference between Near-

infrared and Red-light spectral reflectance is used to arrive at a value. The NDVI values range 

from -1 to +1, although there is no clear distinction for each type of land cover. Similarly, an 

NDVI value close to +1 (0.8 - 0.9) likely represents dense green vegetation. 

       Mathematically, the NDVI value can be derived using the ratio: NDVI= (NIR – R) / (NIR + R)  

where, NIR is Near-Infrared and R is Red light from the visible spectrum.  

Generally, NDVI assessment has become an established way to calculate healthy vegetation in 

the scientific domain based several NDVI products derived over the years from different 

sensors that readily support extensive time-series analyses. Nonetheless, in other to detect 

vegetation dynamics over time based on optical data, e.g., MODIS, atmospheric correction 

must be performed. Atmospheric corrections include cloud masking to remove cloudy pixels 

and linear interpolation to account for the cloudy pixels.  

       NDVI time series are normally variable. In most instances, these series are characterized 

by patterns like seasonality, trends and localized sudden changes (De Beurs & Henebry, 2005). 

Remote sensing techniques based on time series analysis are normally used to depict vegetation 

changes (Bradley, Jacob, Hermance, & Mustard, 2007), and at the same time, taking care of 

the varying processes.  

The vegetation growth can be characterized by calculating “NDVI metrics” such as the date of 

green-up, magnitude of maximum NDVI, time-related integration of NDVI, duration of the 
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growing season, and amount of NDVI change (Borak, Lambin, & Strahler, 2000; Hall-Beyer, 

2003; De Beurs & Henebry, 2005). NDVI time series can be used to obtain the parameters 

mentioned above. Furthermore, the inter-annual changes of vegetation dynamics can also 

reveal significant information on the response of vegetation to climatic conditions such as 

sparse rainfall patterns and increasing temperature.  

 

2.4. Controlling factors and NDVI  
       Soil moisture is widely used to quantify the amount of water available in the soil, and is 

arguably the key element in understanding the climate-soil-vegetation system both in time and 

in space (Rodriguez-Iturbe, 2000; Laio, Porporato, Ridolfi, & Rodriguez-Iturbe, 

2002)  However, soil water balance also plays a major intermediate role between seasonal 

changes and plant water usage. According to Nicolai-Shaw, Zscheischler, Hirschi, 

Gudmundsson, & Seneviratne (2017), assessing the correlation between soil moisture and 

vegetation dynamics is key in water-limited environments such as arid and semi-arid regions 

where the greenness-precipitation ratio (GPR); the amount of net primary productivity per unit 

rainfall, has been largely used to quantify vegetation growth and productivity. Thus, the study 

area for this thesis serves as a unique testbed for exploring and understanding the relationship 

between soil moisture and plants’ growth.  

       According to Song, Wesely, Coulter, & Brandes (2000), in vegetated ecosystems, root-

zone soil moisture serves as a linkage between surface phenology and underground water 

storages which robustly influences surface water stability and energy segregation due to 

evapotranspiration. T. Chen, de Jeu, Liu, van der Werf, & Dolman (2014), found strong 

positive correlations, especially between soil moisture and NDVI. It was observed that 

vegetation responds to changes in soil moisture gradients from arid to moist conditions and 

affirmed the possibility to use satellite soil moisture data to monitor vegetation dynamics. In 
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the temporal extent, the relationship becomes stronger where soil moisture and NDVI exhibits 

coherent trend changes. 

       Evidence of recent studies with regards to vegetation changes on the one hand and the 

relationship between these vegetation changes and controlling factors (drivers) is necessary to 

provide insight and serve as the basis for the methodological approaches. 

       Measho et al., (2019), conducted a time series spatio-temporal analysis of vegetation 

dynamics in Eritrea spanning 18 years. Results of the linear regression model indicated that 

about 57.1% of the areas covered demonstrated a decreasing annual NDVI trend along the 

South-Western Eritrea. Similarly, results of mean annual precipitation and mean vegetation 

index revealed a strong positive correlation between NDVI and precipitation with the Pearson 

correlation coefficient (PCC), averaging around 0.84. Of the areas sampled as test sites, 87.16% 

show a positive correlation between NDVI and precipitation during the growing season 

(39.34%, p < 0.05). Based on the results, the study concluded that decreasing trends of 

vegetation with spatial heterogeneity is as a result of rainfall variability. In a related research, 

W. Zhao et al., (2017), applied multiple linear regression to investigate factors responsible for 

the 2005 and 2010 Amazon droughts. It was found that the Amazonian vegetation greenness 

responded to precipitation, radiation, and temperature with time-lag effects averaging at 

intervals of 0±4, 0±6 and 0±9 months, respectively. 

       On the overarching impact of soil moisture on vegetation, Ahmed, Else, Eklundh, Ardö, 

& Seaquist (2017), conducted a study on the dynamic response of NDVI to soil moisture 

variations in the Sahel region. The strength of correlation between NDVI and soil moisture was 

tested by a windowed cross-correlation at different time lags. Thus, a significant positive trend 

in NDVI was found in central and western Sahel with the affinity for high correlation values 

with shorter lags were recorded when soil moisture is correlated with the same month as NDVI 

(“lag0”). On the vegetation types, grassland and cropland were found to respond with “lag0”. 

The relationship between soil moisture and NDVI is further explored by X. Wang, Xie, Guan, 



 

28 
 

& Zhou (2007), with an emphasis on the reaction of NDVI to root-zone soil moisture. The 

study found a statistically significant correlation between soil moisture and NDVI at different 

soil depths ranging from 5cm to 20cm. It was further indicated that there is more time lag of 

10 days compared to 5 days for NDVI to respond to soil moisture variation in humid regions 

than in semi-arid regions; equally the response of grass to variations in soil moisture in semi-

arid environments is mostly instantaneous.  

       Land cover and land use changes (LULC) equally play crucial roles in vegetation 

dynamics. Land-use and land-cover (LULC) change is a multifaceted socio-economic and 

ecological issue that requires a vivid understanding of the relationship and interaction between 

the environment and human-induced activities (Spalding, 2017; Handavu, Chirwa, & 

Syampungani, 2019; Xiang, Song, & Li, 2019). Recently, land-use change has intensified 

biodiversity, climate change and ecosystem service losses in the global spectrum since the 

growing population has put an enviable pressure on natural resources which has also altered 

hydrological conditions with its corresponding biophysical effects (Meyfroidt, P., van 

Noordwijk, M., Minang, P., Dewi, S., Lambin, 2011). According to Beygi Heidarlou, Banj 

Shafiei, Erfanian, Tayyebi, & Alijanpour (2019); T. Xu, Gao, & Li (2019), the information or 

data on reliable land extents, spatial and temporal distribution, and rate of land use and land 

dynamics constitute the indispensable pre-requisite components for implementing natural 

resource management, planning and strategies in developing a thorough understanding, 

monitoring changes in the environment and to predict future driving forces and pathways of 

land-use changes.  

       H. Chen, Liu, Ding, & Huang (2018), conducted a research in “Western Songnen plain 

using phenology-based residual trend analysis of NDVI time series”. The results based on inter-

annual variability of SOS and EOS indicate an erratic and significant fluctuation of SOS, 

particularly between 2002 and 2004. In a separate study on human-induced vegetation change 
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along the Mekong River Basin, Na-U-Dom, Mo, & Garcίa (2017), used Mann–Whitney U test 

for a paired test for arriving at mixed results. Along the Mekong Delta in Vietnam as well as 

north-east Thailand, high anthropogenic infractions on croplands were recorded, but it rather 

improved cropland greenness. However, the spatial extents of the basin in Laos and Myanmar 

showed low human activities but with significant land degradation on the forest ecosystems. 

In another instance, while vegetation has depicted a strong decreasing NDVI trend over 10 

years in high human activities areas except for cropland, the evergreen forest was found to be 

highly-sensitive to even the least degree of human activities.  
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3. Data and Case Study   
3.1. Study Area  

       To obtain empirical results of vegetation changes based on the remote sensing time series, 

there is the need to situate the study within a geographical boundary. In this case, the Republic 

of Sudan is the overall study area because the country is undergoing rapid vegetation loss, yet 

research in that domain is effectively lacking.  However, the high availability and quality of 

remote sensing datasets, in particular MODIS dataset, make the study on vegetation dynamics 

possible. Due to the large extent of the country, test sites, or representative case studies have 

been delineated based on climate classification as distinguished by Koeppen-Geiger. Figure 2 

shows the climate classification of Sudan with the various representative case studies. 
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Figure 2: Climate Map of Sudan and Case Studies 

3.1.1. Hot desert climate (BWh) 
       The hot desert climate covers more than two-thirds of the country’s total land area. The 

different climate variables used to characterise this climate zone are the amount of precipitation 

(rainfall) received and average temperature throughout the year. With regard to this climate 

zone, some areas such as Khartoum, Omdurman, Nyala and Kassala are prominent. 
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Khartoum, for instance records nearly “no rainfall” throughout the year. The mean yearly 

temperature is 29.6°C while the annual rainfall is 135 mm. There is a variation of 62 mm 

precipitation between the driest month of January and the wettest months, of which 

precipitation reaches its highest in August. Similarly, the difference in yearly temperature is 

about 10.8 °C with the warmest month of May recording an average temperature of 34.1°C 

(Climate-Data.org, 2020). Similar to Khartoum is Kassala which records almost the same 

mean yearly temperature of about 29.2°C. Although rainfall here is scarce throughout the year, 

the annual precipitation is around 264mm of which most is concentrated in August, averaging 

91 mm. On average, the highest temperature of about 33.4 °C is recorded in May (Climate-

Data.org, 2020a). 

       As evidenced by the two main climate variables: temperature and precipitation, vegetation 

dynamics in this climate zone will be highly seasonal. To get empirical results, three test sites, 

or representative case studies have been delineated. However, due to the severity of 

temperature and scarcity of rainfall, which inhibits the thriving of natural vegetation, areas 

delineated in this zone are within irrigated schemes. These representative case studies are 

named BWhI, BWhII and BWhIII, respectively, which are situated across the climate zone 

with different area coverages. BWhI covers an area of about 561.33km², BWhII 191.99km² 

and BWhIII 214.95km², respectively.  Figure 2 gives an overview of the representative case 

studies. 

3.1.2. Hot semi-arid climate (BSh) 
       The hot semi-arid climate zone shares similar characteristics with the hot desert climate 

(BWh). In terms of area, this zone covers the second-largest area and extends southwards from 

the boundary of the hot desert climate zone. Precipitation in this zone is relatively high and 

lasts longer compared to the largest climate zone.  Among some of the areas covered by the 

hot semi-arid climate zone are Al-Qadarif, Sennar, Geneina and the Nuba Mountains of South 

Kordafon surrounded by settlements such as Kitrah, Dalami, Abu Kershola and Umm Hitan. 
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Taking Al-Qadarif, for example, the amount of precipitation recorded annually is about 576 

mm although slight showers are experienced throughout the year partly due to the effect of the 

local steppe climate. 

       In this climate zone, the rainy season spans 6 months, starting from May until October, 

with the torrential rains occurring between June and September. The average temperature in 

Al-Qadarif is 28.6°C (Climate-Data.org, 2020b). Sennar, on the other hand, has comparable 

climatic conditions as Al-Qadarif. Whereas the yearly precipitation is 432 mm, both 

precipitation and temperature vary by 150 mm and 7.6 °C, respectively (Climate-Data.org, 

2019). In an attempt to represent vegetation dynamics as a characteristic of the climatic 

conditions, three main test sites have been delineated across the climate zone. These 

representative case studies have been carefully digitized to cover only plant species as depicted 

by satellite imagery. Of these three sites, one area is on the Nuba mountains, and the other is 

near Al- Qadarif, and the remaining test site is situated between the two digitized sites. Within 

this study, the test sites will be called BShI (Nuba mountains), BShII (Al-Qadarif) and 

BShIII   respectively.  The area covered by BShI (Nuba mountains) is 58.77km², BShII (Al-

Qadarif) is 110.70km² and BShIII is 2.58km². 

 

3.1.3. Tropical savannah climate (Aw) 
       The tropical savannah climate of Sudan is more or less like “dotted patches” of grass across 

a rainforest. In occupies the least area with reference to the total land area of the country. This 

climate zone can be clearly distinguished in the south-west and east corners of the country as 

a boundary between Sudan and South Sudan. Regardless of the total area covered, three test 

sites have been digitized for the purposes of obtaining empirical results regarding vegetation 

dynamics. These representative case studies are named AwI covering about 41.74km², AwII 

52.81km² and AwIII 91.54km² accordingly. Climatic conditions in the tropical savannah 

climate section are vividly distinguished by the amount of precipitation received throughout 
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the year. Al Kurumuk, for instance, receives approximately 933 mm of rainfall each year with 

an average temperature of 27.5 °C.  Precipitation in this climate zone spans 6 months, from 

May to October although April and November also receive some amount of rainfall. While 

precipitation throughout the year varies by 210 mm, temperature varies by 6.4°C accordingly 

(Cliamte-Data.org, 2018). The representative case studies for this climate zone are in figure 2. 

 

3.2. Datasets  

3.2.1. MODIS NDVI (Terra or Aqua Image Collections) 
       As a proxy for vegetation index, NDVI is used in this master’s thesis.  Remote sensing 

datasets, as the name implies, are obtained from the Earth’s surface based on observations from 

sensors on-board satellites. The actual NDVI dataset for this research is provided by Moderate 

Resolution Imaging Spectroradiometer (MODIS) on the Terra Instrument (satellite). Although 

MODIS is best for observing large-scale changes in the biosphere due to its far-reaching 2,330-

km wide viewing swath recorded in 36 discrete spectral bands, it is an optical sensor.  Due to 

its optical nature, when the sensor is monitoring changes on the land surface, the results 

obtained are mostly interfered with by weather conditions, in this case clouds. It is, therefore, 

necessary to do atmospheric correction (cloud masking) or pre-processing on the dataset 

(NDVI) before using it for further analysis in order to obtain cloud-free results. Figure 3 shows 

an image of a cloudy MODIS collection.        
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Figure 3: An Example of Cloudy MODIS Image 

Source: (NASA, 2005) 

        “The Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation 

indices (MODIS/006/MOD13Q1) Version 6 data are generated every 16 days at 250 meters 

(m) spatial resolution as a Level 3 product. The MOD13Q1product provides two primary 

vegetation layers. The first is the Normalized Difference Vegetation Index (NDVI), which is 

referred to as the continuity index to the existing National Oceanic and Atmospheric 

Administration-Advanced Very High-Resolution Radiometer (NOAA-AVHRR) derived 

NDVI” (Didan, 2015). The second vegetation layer is the Enhanced Vegetation Index (EVI), 

which has high sensitivity over dense vegetation. The algorithm chooses the best available 

pixel value from all the acquisitions within the 16 days period.  Low clouds, low view angle, 

and the highest vegetation index value (NDVI/ EVI) is the criteria used.  In addition to the 

vegetation and the two quality layers, the HDF file have MODIS reflectance bands 1 (red), 2 

(near-infrared), 3 (blue), and 7 (mid-infrared), as well as four observation layers (Didan, 2015). 
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Resolution Acquisition 

period 

Units Valid range Scale 

factor 

Description 

250m 16 days NDVI -2000to 10000 0.0001 NDVI 

250m 16 days EVI -2000 to 1000 0.0001 EVI 

250m 16 days Bit field 0 to 65534 N/A VI quality indicators 

250m 16 days N/A 0 to 10000 0.0001 Surface reflectance band 1 

250m 16 days N/A 0 to 10000 0.0001 Surface reflectance band 2 

250m 16 days N/A 0 to 10000 0.0001 Surface reflectance band 3 

250m 16 days N/A 0 to 10000 0.0001 Surface reflectance band 7 

250m 16 days Degree 0 to 18000 0.01 View zenith angle 

of VI pixel 

250m 16 days Degree 0 to 18000 0.01 Sun zenith angle of VI pixel 

250m 16 days Degree -18000 to 18000 0.01 Relative azimuth angle of VI 

pixel 

250m 16 days Julian day 1 to 366 N/A Day of year VI pixel 

250m 16 days  Rank  0 to 3 N/A Quality reliability of VI 

pixel 

Table 1: Layers of MODIS Vegetation Index 

Source: (USGS.gov, 2020) 

3.2.2. Evapotranspiration 
       “The MOD16A2 version 6 evapotranspiration is an 8-day composite dataset produced at 

500meter (m) pixel resolution based on the Sinusoidal Coordinate System. The algorithm used 

for the MOD16 data product collection is based on the logic of the Penman-Monteith equation, 

which includes inputs of daily meteorological reanalysis data”. The two pixel values for the 

evapotranspiration layers: ET and PET are the sum of all eight days within the composite 

period.  Also, the pixel values for the two Latent Heat layers (LE and PLE) are the average of 

all eight days within the composite period (Running, S., Mu, Q., Zhao, 2017). 
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Resolution Acquisition 

period 

Units Valid range Scale factor Description 

500m 8 days kg/m²/8day -32767 to 32700 0.1 Total evapotranspiration 

500m 8 days J/m²/day -32767 to 32700 10000 Average latent heat flux 

500m 8 days kg/m²/8day -32767 to 32700 0.1 Total potential evapotranspiration 

500m 8 days J/m²/day -32767 to 32700 10000 Average potential latent heat flux 

500m 8 days Bit field 0 to 254 N/A Evapotranspiration quality control 

flags 

Table 2: Layers MODIS Evapotranspiration 

Source: (USGS, 2020) 

3.2.3. Soil Moisture  
For the soil moisture dataset, two categories are used: root zone soil moisture for the entire 

duration of the study, and subsurface soil moisture for the temporal (seasonal) computations or 

analysis. 

(i) 

The root zone soil moisture is derived from a larger set called Global Land Data Assimilation 

System (GLDAS), which combines satellite and ground-based observation products. “It uses 

advance land surface modelling and data assimilation techniques to generate optimal fields of 

land surface states and fluxes”. Table 3 shows a short version of the soil moisture dataset 

captured in the larger collection. 

Name  Units  Range Description  

RootMoist_inst kg/m^2 2 to 949.6* Root zone soil moisture 

SoilMoi0-10cm_inst kg/m^2 1.99 to 47.59* Soil moisture 

SoilMoi10-40cm_inst kg/m^2 5.99 to142.8* Soil moisture 

SoilMoi40-100cm_inst kg/m^2 11.99 to 285.6* Soil moisture 

SoilMoi1100-

200cm_inst 

kg/m^2 20 to 476* Soil moisture 

     Table 3: Layers of Root zone soil moisture ( *estimated)          

Source: (NASA, 2020) 
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 (ii)  

The NASA-USDA Global soil moisture provides soil moisture dataset at a spatial resolution 

of 0.25°x0.25° across the globe. These datasets include surface and subsurface soil moisture 

(mm), soil moisture profile (%), and surface and subsurface soil moisture anomalies” (NASA, 

2020). It covers the period from 2010 until present. The final product of this soil moisture 

dataset is obtained by combining observations from the Soil Moisture Ocean Salinity (SMOS) 

into a modified layer. To assimilate the datasets for the final product, 1-D ensemble Kalman 

Filter approach have been applied (NASA, 2020).  The layers of this soil moisture are provided 

in  table 4. 

Name   Description  Units   Value range   

Ssm  Surface soil 

moisture 

mm 0 to25.39* 

Susm Subsurface soil 

moisture 

mm 0 to 274.6* 

Smp Soil moisture 

profile 

fraction 0-1* 

Ssma Subsurface soil 

moisture 

    - -4 to 4* 

Ssma   Surface soil 

moisture anomaly 

      - -4 to 4* 

Table 4: Layers of NASA-USDA soil moisture  (*estimated) 

Source: (NASA, 2020) 

 

 

ftp://gimms.gsfc.nasa.gov/SMOS/SMAP/Surface_Soil_Moisture_SMAP.pdf
ftp://gimms.gsfc.nasa.gov/SMOS/SMAP/Sub_SurfaceSoil_Moisture_SMAP.pdf
ftp://gimms.gsfc.nasa.gov/SMOS/SMAP/SoilMoisture_Profile_SMAP.pdf
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4. Methodology  
4.1. Data Acquisition 

       MacEachren (1995), asserted that how good and efficient spatial dynamics are extracted 

and empirically depicted essentially rests on several factors. Some of these factors are elements 

related to data acquisition, such as the duration considered, the temporal resolution contained 

by that duration, and the spatial extent and resolution since detecting meaningful patterns, 

trends and cycles are keenly influenced by these aspects. For the purpose of this thesis, 

remotely sensed time-series datasets have been used. 

       The primary and necessary remote sensing datasets are hosted in Google’s Cloud 

Computing platform known as the Google Earth Engine. The mentioned datasets are available 

at GEE platform and can be searched through the data catalogue by using tags like weather, 

climate and land cover. The GEE provides a user-friendly environment. Besides, each dataset 

has a ready-to-use code samples attached to it. All that is needed is to click on the “Open in 

Code Editor” button that is located below the code snippets, and the code will subsequently 

open in Earth Engine Code Editor and with a click on “Run”, the dataset can be explored. With 

the in-built capabilities, algorithms and the available datasets, the Google Earth Engine offers 

a well-organized framework for researching vegetation dynamics by relying on Remote 

Sensing data supplemented by cloud computing. Below is a schematic depiction of data 

acquisition in the Google Earth Engine environment (GEE), as shown figure 4. 
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Figure 4: Schematic depiction of data acquisition in GEE 

4.2. Pre- processing 
        Although the producers regularly pre-process satellite datasets before they are made 

public to different users, quality issues still remain a challenge. A chunk of optical remote 

sensing datasets, LANDSAT, AVHRR, SPOT and MODIS are influenced by unfavourable 

conditions that need to be corrected. The necessity of pre-processing remote sensing 

(vegetation indices) datasets has been demonstrated in various studies. For example, Dong, Id, 

Qin, & Wan (2019), used MODIS NDVI quality control flags (QC) to remove clouds and snow 

pixels from the spectral vegetation reflectance as well as model correction to adjust angle 

constraints; Choudhary, Shi, Singh, & Corgne (2019), in a related study, conducted radiometric 

and geometric corrections,  and re-projected the datasets into a single world geodetic system. 

It was followed by filtering to remove noise, then data vectorization, interpolation, image 

enhancement and subsequent accurate band combination; Fatikhunnada, Solahudin, Buono, 

Kato, & Boro (2020), during pre-processing, used linear interpolation to reconstruct and 

standardize vegetation index time series. FFT and Wavelet transform were used for noise 

Google Earth 

Engine 

Remote sensing 

datasets 
MODIS (Terra) 

NDVI 

  
MODIS 

Evapotranspiration 

Soil moisture 

Catalogue 
Subsurface soil 

moisture 

Root zone soil 

moisture 



 

41 
 

filtering in order to retain seasonal cropping signals; Bin et al., (2019), equally used RPC 

coefficient for geometric correction in the ENVI software and radiometric calibration 

respectively. 

       From the above studies, pre-processing or smoothing techniques can be outlined as: (i) 

atmospheric correction (noise reduction)-cloud and snow masking (ii) geometric-corrections; 

(iii) mosaicking images (iv) computing and reconstructing NDVI time series,  and (v) layer 

stacking. Noise reduction or smoothing, therefore, is a fundamental and important procedure 

before further implementation. However, the pre-processing steps that will be used in the 

context of this study are cloud masking (noise reduction) to remove cloudy pixels, and linear 

interpolation for gap-filling or to account for missing pixel values as proven in other studies 

such as (Fensholt, Rasmussen, Theis, & Mbow, 2009; Maneta et al., 2018 and  R. Wang et al., 

2020).  

Linear trending and de-trending 

       Linear trending of vegetation time series is essential in undertaking significant analysis 

related to changes over time. Easdale, Bruzzone, Mapfumo, & Tittonell (2018), used simple 

linear regression to estimate the linear trend in inter-annual NDVI over time by aggregating 16 

day NDVI composite into annual NDVI integrals. Results from the regression analysis show a 

decreasing trend characterized by significant negative slope, an increasing trend identified by 

significant positive slope, and no trend. In a related study, Pang, Wang, & Yang (2017), applied 

the frequently used least squares linear trend to calculate the trends in precipitation, 

temperature, and NDVI over time.  Other studies emphasized the significance of using linear 

regression in detecting seasonal or temporal changes in a time series analysis (de Jong, 

Verbesselt, Schaepman, & de Bruin, 2012; Fensholt & Proud, 2012), while Schucknecht, 

Erasmi, Niemeyer, & Matschullat (2013), used the ordinary least square regression  to calculate 

a linear trend.  
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       De-trending, on the other hand, is necessary for time series analysis. Its effectiveness has 

been demonstrated in vegetation studies; for example, X. Guo, Zhang, Yuan, Zhao, & Xue 

(2015), used de-trended fluctuation analysis to decouple the temporal behaviour of vegetation 

time series from a long term (range) time series. The analysis from the de-trending technique 

unveiled insights of temporal vegetation dynamics distinguished from long term trends. The 

significance of de-trending has been corroborated by L. Zhao, Dai, & Dong (2018), where 

multiple regression with NDVI was linearly de-trended to get rid of trends and to compute the 

impact of each climatic factor on vegetation changes.  From the above examples, it is implicitly 

clear that linear trending and de-trending are important in analysing vegetation time series. 

 

 

 

 

 

 

 

 

  

Figure 5: Schematic depiction of pre-processing 
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Figure 6: Linear trending of NDVI 

 

Figure 7: Detrended NDVI time series 
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4.3. Data modelling and implementation  
       There exist different data modelling approaches applicable to vegetation time series 

modelling. For instance, Cai, Jönsson, Jin, & Eklundh (2017), compared the performance of 

five data modelling (smoothing) methods; “Savitzky-Golay fitting (SG), locally weighted 

regression scatterplot smoothing (LO), spline smoothing (SP), asymmetric Gaussian function 

fitting (AG), and double logistic function fitting (DL)”(pp 20-22) in reconstructing NDVI time 

series and simulating vegetation phenology. Zhai, Zhang, Zhang, & Li (2018), asserted that 

cloud and cloud shadows normally characterize optical remote sensing images. This by 

extension, hinders the capacity of earth observation by optical sensors to be entirely cloud-free. 

As a result of the obstacles mentioned above, using remote sensing datasets for applications 

including vegetation monitoring (Lu, Coops, & Hermosilla, 2017), change detection (Zhu, 

2017) and particularly for quantitative analysis (Zhai et al., 2018) can result in severe problems. 

Therefore, data modelling preceding implementation is necessary since the datasets are 

obtained in a continuum; “time series” with fluctuations and frequent changes which are non-

negligible.  

       In most cases, the type of noise presented in an NDVI data set strongly influences the 

approach to reducing noise, particularly when focussing on seasonality and spatio-temporal 

data representation (Hird and McDermid, 2009; Julien and Sobrino, 2010). Most of the 

interval-fixed composite of LANDSAT-NDVI, AVHRR-NDVI or MODIS-VI products are 

standardized for the users with their complete processing and production system. However, 

majority of the local filtering (smoothing) or modelling methods require representation of a 

time-series that is continuous and evenly spaced (Bradley et al., 2007; Eklundh and Jönsson, 

2011; Zhu et al., 2012). 

Examples of modelling techniques used in vegetation studies are; statistical model for 

estimating mid-day NDVI (Wheeler & Dietze, 2019); flexible fourier transform (FFT) model 

in forecasting soya bean yield (C. Xu & Katchova, 2019); time-delay neural network(TDNN) 
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for predicting NDVI in arid and semi-arid regions (T. Wu, Fu, Feng, & Bai, 2019); using 

historical data for predicting NDVI based on crop growth model (Berger, Ettlin, Quincke, & 

Rodríguez-bocca, 2018), and harmonic regression of Landsat time series (Wilson, Knight, & 

McRoberts, 2018). However, for the purposes of this study, harmonic modelling will be 

adopted since it works best for time series data (Padhee & Dutta, 2019), and has the capability 

of capturing actual temporal dynamics “trends” ( Yang, Luo, Huang, Wu & Sun, 2019). A linear 

trending and de-trending, preceding the  harmonic modelling of MODIS NDVI will be 

undertaken in order to estimate the general trend of NDVI over time prior to computing the 

harmonics. 

   

Harmonic modelling 

       The effectiveness of Harmonic modelling in vegetation time series analysis has been well 

demonstrated (Wilson, Knight, & McRoberts, 2018; Landmann, Eidmann, Cornish, Franke, & 

Siebert, 2019; Roy & Yan, 2020). Not only is the harmonic modelling applicable to vegetation 

indices derived from specific satellites such as LADNSAT, AVHRR or SPOT NDVI,  but its 

application to MODIS NDVI time series is also a common approach in academia. For example, 

the performance of harmonic analysis in reconstructing global MODIS NDVI time series 

(Zhou, Jia, & Menenti, 2015), estimation of dynamic parameters of MODIS NDVI time series 

(Chakraborty, Banerjee, Gupta, Papandreou-suppappola, & Christensen, 2017), spatio-

temporal reconstruction of MODIS NDVI based on time series harmonic analysis (Padhee & 

Dutta, 2019), and land-cover monitoring based on time series satellite images (Jung & Lee, 

2019) 

       Harmonic modelling (analysis) has proved to be one of the best performing techniques in 

monitoring vegetation dynamics (Kostadinov et al., 2017).  It is computed as the sum of cosine 

waves and an additive component. Alternatively, it can be expressed in terms of time series as 
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the sum of sinusoids at different frequencies (Shumway and Stoffer, 2017). Every single wave 

is known as a harmonic term and is identified by its amplitude (height of the maximum), 

frequency (number of cycles), and phase (delay from time zero). An important aspect of the 

harmonic model is its inherent capability to estimate seasonality devoid of noise which usually 

characterizes time series data, and to predict the phenological behaviour (trends and patterns) 

of NDVI over time. Below is figure 8 showing the harmonic modelling of actual NDVI and 

fitted values. 

 

Figure 8: Harmonic model showing actual and fitted NDVI values 

Case introduction for seasonality 

       As indicated earlier, sub-setting and analysing vegetation dynamics on seasonal 

parameters is crucial for differentiating intra-annual and inter-annual vegetation change. This 

importance of seasonal dependent analysis has been indicated by Zhang, Brandt, Tong, Tian, 

& Fensholt, (2017), where a distinction between start of season (SOS) and end of season (EOS), 
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heavy rainfall events and days of rainfall were made. A strong correlation between rainfall and 

vegetation was found during the growing season. Similarly, the spline cubic function was used 

to investigate the seasonal pattern in vegetation changes (Sharma, Ueranantasun, 

Tongkumchum, Campus, & Rd, 2018). Situating the study in the context of Sudan, two rainy 

seasons can be distinguished. A shorter period of about three months( July-September), which 

occurs in the Hot desert climate (BWh) and a longer period of six months( May- October) 

which that takes place in the Hot semi-arid climate (BSh) and Tropical savannah climate (Aw) 

respectively. The seasonal analysis, therefore, will be modelled based on this trajectory. 

Sdn = 𝑆𝑛1 + 𝑆𝑛2,  

where 𝑆𝑛1 is the first rainy season from May to October,    

𝑆𝑛2 the second rainy season from July to September. 

Implementation 

       Calculating the statistical or quantitative changes in vegetation, in fulfilment of the first 

objective of this thesis is based on the methodologies described above. NDVI mean have been 

calculated in three folds; monthly mean NDVI throughout a given year (seasonal), the mean 

annual NDVI calculated for three break points of five years: 2005-2009, 2010-2014, and 2015-

2019 as well as that of the entire study period of 15 years (2005-2019). Secondly, the standard 

deviation of NDVI for the entire period, breakpoints, and on seasonal basis have been 

computed. A third quantitative indicator that closely intertwines with the third objective is 

linear regression, which is to estimate the linear trend of NDVI over time. The linear regression 

as depicted by the regression line has been fitted for the entire duration of the study.  

       Determining the relationship between two variables; an independent and dependent 

variable is also necessary in this thesis. For determining the relationship, Pearson correlation 
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is the most preferred because is less sensitive to noise and is resistant to outliers, therefore, can 

handle the fluctuations in time series data by providing the strength and directions of linear 

relationship between two variables. Computing the Pearson correlation between NDVI and 

other controlling factors; soil moisture and evapotranspiration will be done for the long term, 

break points and on seasonal basis. Similarly, a cross correlation between NDVI and soil 

moisture, as well as between NDVI and evapotranspiration, have been calculated. This is to 

determine the lag (delay) in the response of NDVI to soil moisture and evapotranspiration. 

       Furthermore, mapping vegetation dynamics in this context has to do with the 

representation of changes over time, where NDVI is used as a proxy for vegetation. The 

specific case introduction will be a focus on the spatio-temporal extent, although the changes 

as observed over the entire time span will be taken into consideration. The spatio-temporal 

extent in this context will take into account the seasonality (temporal dimension) based on the 

rainy seasons of the various climate zones; the representative case studies as the spatial 

dimensions. Since this objective follows closely from the quantitative changes, the mapping 

will take into account yearly representations, and for the seasonality: monthly maps will be 

produced spanning the rainy seasons as described in the preceding paragraph. The seasonality 

will focus on two years, 2015 and 2017 where severe droughts were reported in Sudan. In 

figure 9, the schematic depiction of the implementation has been provided. 
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Figure 9: Schematic depiction of the implementation process 
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5. Visualization vegetation dynamics 
       The concept of visualization has been extensively discussed across several disciplines, e.g. 

geoscience (Graser, Schmidt, Roth, & Brändle, 2019), medicine (Yang & Chen, 2019), 

cognitive science (Y. S. Kim, Walls, Krafft, & Hullman, 2019), and business analytics (Jia, 

Wang, Lei, Zhao, & Guan, 2014). Data visualization techniques integrate digital technologies, 

algorithms and cognitive aspects to make data comprehensible. The spatial data visualization 

approaches, along with traditional methods of data representation (e.g., tables, diagrams, 

charts), can support discovery and allow users to undertake both qualitative and quantitative 

data analysis. 

As explained by MacEachren and Kraak (2001), geovisualization incorporates methodologies 

from scientific visualization, cartography, image examination, information visualization, 

exploratory data analysis and geographic information systems to provide theory, techniques, 

and tools for the visual exploration, analysis, fusion and presentation of geospatial data. 

Multiple representations in displaying geospatial datasets in different ways within the 

geovisualization environment place maps on a higher level to stimulate visual reasoning around 

geospatial patterns, connections, and trends.  
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5.1. Visualizing space and time      
       Time is an essential component in visualizing or mapping changes in spatial-temporal data. 

In general, two temporal primitives: time point or time interval are the most common to display 

time visually (Aigner, Miksch, Müller, Schumann, & Tominski, 2007). Time intervals are 

mostly used to investigate how events occur in time or how a series of events are overlapped 

at a given location, whether changes are gradual or abrupt. Regardless of the primitive selected 

for time visualization, the core aim of it is to compare and contrast data at diverse points in 

time, observe and detect changes, trends, and patterns in the dataset that has been visualized. 

Spatio-temporal information can be visualized using various techniques. For instance, 

animated flow visualization (Van Wijk, 2002), which are created from streamline images based 

on data abstraction and iconic representations; Time wheel (Tominski, Abello, & Schumann, 

2004),  an axes-based visualization of multivariate data with a focus on temporal dependencies 

and helix glyphs on maps (Tominski, Schulze-Wollgast, & Schumann, 2005), which 

emphasizes cyclic patterns in spatio-temporal dimensions 

 

5.2.  Visualizing change in space and time 
        Change is ubiquitous and inherent in a dynamic world. Within the context of 

geovisualization, changes can be identified in both spatial and temporal domains. Spatial 

dynamics and spatial changes over time are significant inquiries among geospatial data 

visualization practitioners, academics, and researchers. Within geovisualization, representing 

spatial dynamics is of key interest since it enables the user to trace, analyse, and visualize the 

variations in a spatial phenomenon. Change in the context of geovisualization explains the 

differences in the spatial and/ or thematic appearances of geographical phenomena over a given 

timeframe. For this discussion, the change will be distinguished and explained in the spatial 

and temporal domains. 
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Within the spatial domain, various attributes can characterize or represent changes. For 

instance, C. A. Blok (2005), proposed concepts of appearance (disappearance), mutation 

and movement.   

Appearance or disappearance describes the real changes with regards to the occurrence of an 

original phenomenon or the dying of a current phenomenon, e.g. tornado, flood and bushfire. 

Changes in the state of a prevailing phenomenon, for instance, land cover changes (e.g., from 

forest to a cultivated area), can be described by mutation. Therefore, Mutation describes the 

alteration, which affects the thematic feature constituents of a prevailing phenomenon. To 

provide enough details, C. A. Blok (2005), distinguished two sub-categories; Mutation at the 

nominal level of measurement and Mutation at higher than nominal level of measurement. 

Movement explains variations in the spatial location and/or the geometry of a phenomenon.  

Within the context of geovisualization, two sub-divisions of movement has been 

distinguished as movement along trajectory and boundary shift (C. A. Blok, 2005). 

• Movement along a trajectory describes a movement through which the entire 

phenomenon changes its location. This type of movement usually follows a certain 

path; it can, therefore, be presumed that movement does not happen instantaneously but 

rather over a period of time where some continuation is involved. Alongside the route, 

the geometric features of the phenomenon may change. 

• Boundary shift, on the other hand, refers to movement, where at least part of the 

phenomenon retains its position yet expands to cover other areas occupied by a 

prevailing phenomenon, such as a desert encroachment to areas with vegetation cover, 

or an area with a high vegetation index. These types of movement may take place at a 

particular time or gradually occurs over an extended timeframe. 
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In the temporal domain, characterizing the dynamic nature of geospatial phenomena revolves 

around unique concepts that help to describe the inherent changes over time. These 

characteristics according to C. A. Blok (2005), include;   

• Moment time, which explains the date or the position in a time of a change in the spatial 

domain. 

• Sequence similarly describes the order of periods in a sequence of changes in the spatial 

environment. 

• Duration, on the other hand, refers to the length of time involved in a change and/or the 

time between changes in the spatial domain. This could be stated in absolute or 

comparative terms such as total number of time units or views such as short or lengthy 

respectively 

• Pace talks about to the degree of change over a given time frame and can be stated in 

terms such as slow or quick; or at increasing or diminishing or persistent frequency of 

change (Maceachren, 1995). 

• Frequency refers to the total number of times that a specific phase recurs in a sequence 

of changes in the spatial domain. 

 

       Detecting change within the spatial and temporal domains have been explained in the 

preceding paragraphs with their unique characteristic concepts. However, merging the two 

concepts is crucial to this study in order to describe changes in dynamic geospatial data vividly.  

Aside from supporting the effective detection and analysis of changes in dynamic geospatial 

data, variations over comparatively long periods entail the integration of distinct changes into 

a generally spatio-temporal domain to clearly see patterns of change. In this regard, two 

separate perspectives, namely circle, and trend, described below incorporate changes in spatio-

temporal patterns over longer series. 
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• The cycle describes the periodical re-appearance to an earlier state or condition 

(Muehrcke & Muehrcke, 1992). Cycles are rather common in the physical environment; 

for instance, daily or seasonal cycles in atmospheric developments and seasonal, bi-

annual cycles in vegetation dynamics are relatively common. But additional 

phenomena, such as locust invasion, erosion could display cyclic patterns.   

• The trend, on the other hand, explains the arranged but non-cyclical pattern (Muehrcke 

& Muehrcke, 1992). It is the overall direction or propensity of development over a 

period of time. A couple of distinguished examples are rate of recurrence of cyclones.  
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Static and animated maps for visualizing change in geospatial context 

       Over the years, there have been a large number of studies concerning the visualisation of 

spatio-temporal data (Andrienko, Andrienko, & Gatalsky, 2000; Ott and Swiaczny, 2001; D. 

Guo, Chen, MacEachren, & Liao, 2006; Roth, 2011; Ramakrishna, Chang, & Maheswaran, 

2013; Sun, Liu, Wu, Liang, & Qu, 2014; David & J M Tauro, 2015; Wang et al., 2016; Kim et 

al., 2018). O’Sullivan & Unwin (2010), asserted that aside from the visualization of geospatial 

data to enhance research findings, the field of geovisualization has changed the traditional role 

of cartography by integrating spatial data into the analysis. Several techniques for mapping 

spatio-temporal data have been documented due to the dynamics of a natural phenomenon for 

patterns and relationships (Alan, 2001), and to expedite thinking, understanding, and 

knowledge creation around geospatial data (Lorensen, 2004).  

      While experimenting with alternative methodologies for the representation and exploration 

of spatio-temporal data, Andrienko, Andrienko, & Gatalsky (2003), proposed two concepts to 

illustrate visualizations, while the first concept depicts identification tasks with a focus on 

spatial objects or locations at a given instant, the other deals with determining the time 

moment(s) when definite features of objects or locations occur. Static map and animation were 

used in solving tasks related to the first concept, while a time-series graph was used in the 

second concept. It was found that time-series graph easily enables one to conclude at what time 

moments the characteristic value for a given entity was the highest or the lowest and similarly 

when the highest or the lowest value among all entities was reached. Putting this study into 

perspective, one of the objectives is to map spatio-temporal data with regards to vegetation 

dynamics from a remotely sensed time series.  

        Mapping and visualizing geospatial dynamics is exceedingly process-oriented hence 

dominated by various techniques and state-of-the-art technologies with unique functionalities 

depending on the purpose and context. Although there is more to geovisualization than the 
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progress of cartographic knowledge in various aspects, Johnston (1981) & De Koninck (2012), 

emphatically stated that within geovisualization, patterns in a map are vital although most 

concepts with regards to geospatial data mostly deal with spatial patterns. The pattern, 

according to  C. Blok, Köbben, Cheng, & Kuterema (1999), refers to a collection of perceptual 

elements such as symbols and pixels in space and/or in time, which form an object. The role of 

patterns in exploring geo-data are varied. Among the various interests normally pursued are 

the existence of patterns in the data, the characteristics of the patterns, interactions, and 

dissimilarities or correspondences in patterns. 

       Static maps mostly offer the opportunity to present results of interpretations of data usually 

in change maps, anomaly maps or multi-temporal colour composites. This approach enhances 

spatial reasoning, and it can be combined with further functionality, such as interaction with 

pixels or objects and values retrieval over time. Although static maps by their nature are 

restricted in the extent of data that can be presented, and the variety of time units that can be 

shown, Adrienko & Andrienko (2011); Kessler (2011),  ensuing from Monmonier’s typologies 

for cartographic representation mentioned single static maps and series of static maps among 

others as a way of representing spatio-temporal data.  

        Single static maps exist in a variety of ways, such as change maps, anomaly maps, and 

density maps (Scheepens et al., 2011). Still, they are not suitable when handling complex data 

that spans multiple time periods. With regard to this limitation and owing to the sheer nature 

of the study, and in particular, fulfilling the objective of mapping changes in vegetation 

dynamics over longer time periods, multiple static maps will be the most efficient. Multiple 

static maps are preferred over single static maps due to possibility for several depictions of the 

same information, or multiple parts of the same area through which changes can be represented 

in a cleaner and effective manner. Juxtaposing of different time slices over the same area, for 

instance, can further elucidate temporal patterns that have been represented. Similarly, multiple 

static maps are efficient when handling seasonal data since small multiple representations can 
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help to identify differences between the seasons and allow users to scan between the seasonal 

depictions. With these advantages of multiple static maps, it is deemed efficient for 

representing spatio-temporal data compared to dynamic visualization (animation), which is 

usually concerned with displaying sequential information about micro-steps of changes. 

Hence, this study will focus on using multiple static maps for mapping vegetation 

dynamics. The thesis adopts the workflow presented in figure 10. 

 

 

 

 

     

 

 

 

 

Figure 10: A schematic depiction of the proposed state of the art visualization 
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Summary 

       How well spatial dynamics are rendered depends, among other things, on factors related 

to data acquisition, such as “the period considered and the temporal resolution within that 

period, spatial extent and resolution since seeing patterns, trends, cycles and other spatio-

temporal aspects of geospatial data” (Maceachren, 1995). This chapter, therefore, provided an 

overview of concepts related to visualization, various visualization techniques, and 

characteristics of change in the spatial and temporal domain. An in-depth discussion on two 

“front runners” regarding visualization; animation and static maps. As stated earlier, this study 

will focus on small multiples (static maps) for the visualization of vegetation dynamics. 

5.3.  Prototypes for visualizing vegetation dynamics  
       Techniques for data visualization are endless. A study conducted by Gulati & Sharma 

(2020), depicts data visualization techniques based on models and taxonomy. This work 

highlighted simple techniques such as scatter plots and stacked bar graph to more advanced 

means of visualization including box and whisker plots, heat Map, gantt chart and tree map. In 

a related study focusing on generating insights through data visualization and analysis, other 

means of data visualization were introduced such pacman visualization and clustered 

projections (Nestorov, Jukić, Jukić, Sharma, & Rossi, 2019).  The studies above clearly show 

that the field of visualization is continuously evolving and been revamped by new visualization 

techniques. It is against this background that this sub-section provides a protoype of other 

visualization techniques aside static maps that can be used to visualize vegetation dynamics 

over time. However, in the context of this thesis, the prototype of visualization techniques have 

been segregated to address specific aspects of mapping vegetation dynamics. These are 

visualizing trends, change and dynamics. 
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5.3.1. Trend 
       Exploring trends in time series datasets is key in understanding dynamics. Trends in 

datasets reveal whether there is an increase (upward trend), decrease (downward trend) or no 

trend which implies stationarity in the dataset. These trends sometimes can be used to predict 

the future occurrences in the dataset. While specific techniques exist for the visualization of 

trends, no single technique has an overall advantage. Ultimately, this prototype is centred on 

two techniques for the purposes of visualizing trends in vegetation dynamics; line and area 

charts. Line charts are simple to use in representing the trajectory in a dataset. Yunhai, Wang, 

Han, Zhu, Deussen, & Chen (2018), stated that line graphs are the most preferred options for 

the visualization of a time series data. This is due to the fact that the slopes; up and down  in 

line graphs help to perceive  trends and patterns effectively  compared to scatter plots. Area 

charts, on the other hand, are effective in visualizing trend. Inherently, they are perfect when 

depicting an overall trend where time-series relationship is shown. Likewise, area charts can 

intrinsically show volume of trend over time. Yunhai Wang et al., (2018), indicated the 

importance of using charts, and by extension area charts in visualizing and analysing complex 

data, and presenting quantitative information to reinforce understanding. Figure 11 and 12 

depict line and area charts respectively. 
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Line chart 

 

Figure 11: Line chart showing NDVI values 

 

            Area chart  

 

Figure 12: Area chart for visualizing trend 
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5.3.2. Change 
      Isopleth map is a visualization technique that aptly suits the visualization of change. It is 

mostly suited for a data with a continuous distribution. As a result, visualizing change in 

vegetation can be depicted by an isopleth map. Below is an example isopleth map shown by 

figure 13. 

 

Figure 13: An example of Isopleth map for visualizing change in vegetation 

Source: (Bing.com, 2020) 

5.3.3. Dynamics 
        Animation is a visualization technique in representing dynamics that can efficiently serve 

as an alternative for “small multiple” static maps. Kan & Kan (2017), stated that although 

animating vegetation dynamics is laborious and tedious work because of its complicated 

geometry, 2D harmonic based simulation of vegetation dynamics is crucial. This is because it 

reveals the sequential processes of natural-looking vegetation changes over time. Ultimately, 

animation shows the details of changes and enables the user to interact with the process of 



 

62 
 

animation in order to get details. Yunzhe Wang, Baciu, & Li (2019), indicated that using 

animation to visualize dynamics is an important technique to show comprehensible 

transformations by which snapshots depict various segments of a change over time. From the 

advantages of using animation to visualize dynamics, it can therefore help to interact with 

various layers of a spatio-temporal data accurately and at the same time being a user-friendly. 

Figure 14 below is a screenshot of animation of a vegetation change over time. 

 

(Engine, 2020) 

Figure 14: Screenshot of animation for depicting vegetation dynamics 
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6. Results and Discussion   
6.1.  Hot desert climate (BWh) 

6.1.1. BWhI 

Quantitative changes in vegetation  

       As shown in figure 15, the mean inter-annual NDVI from 2005 to 2019 follows an erratic 

trend. From figure 15, no monotonic trend can be found. Rather, from one mean annual NDVI 

to the other, a “hump curve” is formed in most cases.  From figure 15, these trends can be 

observed; decreasing- increasing, gentle increase and a gradual decreasing trends. For the long 

term, the standard deviation of the dataset is 0.01 which implies that all the NDVI values within 

the stipulated period are clustered around the mean such that there is not enough difference 

between the values recorded. The highest NDVI value recorded was 0.4 in 2014 while the 

lowest was 0. 3 recorded in 2009. The standard deviation in the NDVI dataset for the long term 

is the same for the various breakpoints as indicated in table 5. Although the standard deviation 

for 2012 season is 0.05, it is not high compared to all the values recorded.  Interestingly, the 

linear regression line across the NDVI values depicts an overall increasing trend because the 

NDVI values are not entirely different from each other except for an outlier recorded in the 

year 2009. 

Correlation  

       Assessing the relationship between NDVI and other controlling factors especially soil 

moisture and evapotranspiration is vital in monitoring and mapping vegetation dynamics. In 

the context of this thesis, the correlation was determined based on the Pearson correlation 

coefficients. For the long term, there was a weak positive correlation of 0.24 between NDVI 

and soil moisture. This correlation coefficient, although it is positive, it is also insignificant. 

However, for the break points, an uphill positive correlation was recorded for two periods; r= 

0.69 and 0.55 for 2005-2009 and 2010-2014, respectively. However, there is a significant 

negative correlation of r = -0.64 for the period from 2015-2019.  
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       This negative correlation gives a different twist for the relationship between NDVI and 

soil moisture during the period. This can be attributed to the fact that for 2015 and 2017, there 

was severe drought in the republic of Sudan, which subsequently have ripple effect on the other 

years hence a negative correlation. Consequently, temperature in the hot climate zone is 

excessively high and will be exacerbated by drought resulting in the negative correlation. On 

seasonal basis, the correlation between NDVI and soil moisture is positively significant. Out 

of the three seasons sampled, only 2012 season has a correlation coefficient of 0.65, while the 

remaining two seasons of 2015 and 2017 recorded significant positive correlation of 0.93 and 

0.88, respectively. 

       The relationship between NDVI and evapotranspiration, as estimated by Pearson 

correlation coefficient (PCC) depicts positive correlation for the long term, break points as well 

as for the seasons. From table 5, there is a strong positive correlation of 0.69 between NDVI 

and evapotranspiration for the long term. While all the break points recorded positive 

correlation, the period from 2005-2009 and 2015-2019 depicted significantly strong positive 

correlations of 0.91 and 0.82 while the period from 2010-2014 has correlation of  0.68 identical 

to that of the long term. For the seasonal trajectories, there was a perfect or strong significant 

positive correlation between NDVI and evapotranspiration. For the three seasons, the range of 

correlation is between 0.90 and 0.96. This range of correlation coefficient depicts a strong 

positive relationship between the two variables, NDVI and evapotranspiration.   
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Figure 15: Mean annual NDVI values and linear regression line at BWhI 

 

 Long term Break Points Seasonal 

 2005 - 2019 2005-2009 2010 -2014 2015-2019 2012 2015 2017 

Standard 
deviation(NDVI) 

0.01 0.01 0.00 0.01 0.05 0.03 0.02 

Pearson Correlation 
(NDVI $ Soil Moisture) 

0.24 0.69 0.55 -0.64 0.65 0.93 0.88 

Pearson 
Correlation(NDVI $ 
Evapotranspiration) 

0.69 0.91 0.68 0.82 0.96 0.92 0.90 
 

Table 5: Statistical values for BWhI 
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Cross correlation and lag 

 

Figure 16: Cross correlation between monthly mean NDVI and Soil moisture 
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Figure 17: Cross correlation between monthly mean NDVI and evapotranspiration 
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Map of vegetation dynamics 

       In this representative case study, cartographic representation of vegetation has been done 

on yearly basis. Generally, the small multiple static maps here depict high NDVI values 

corresponding to dense vegetation. However, some years depict an anomaly compared to 

others. As observed from figure 18, the yearly maps of 2015, 2018 and 2019 have majority of 

their pixels between -0.1 and 0.2. 

 

Figure 18: Yearly static maps of vegetation dynamics in BWhI 
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6.1.2. BWhII 

 

Quantitative changes in vegetation dynamics 

       From figure 19, the mean inter-annual NDVI from 2005 to 2019 follows a cascading trend. 

As exhibited by the times series line graph shown by figure 19, no monotonic trend can be 

found. Rather, from one mean annual NDVI to the other, there is a rise and fall in values.  From 

figure 19, these trends can be observed; increasing-decreasing, gentle increase and gradual 

decreasing trends. For the long term, the standard deviation of the dataset is 0.01 which implies 

that all the NDVI values within the stipulated period are clustered around the mean such that 

there is not enough difference between the values recorded. The highest NDVI value recorded 

was 0.46 in 2018 while the lowest was 0.40 recorded in 2015. The standard deviation in the 

NDVI dataset for the long term is similar for the various breakpoints as indicated in table 6. A 

standard deviation of 0.00, 0.00 and 0.01 corresponding to 2005-2009, 2010-2014 and 2015-

2019 respectively were recorded. On seasonal basis, standard deviations of 0.07, 0.02 and 0.05 

were for 2012, 2015 and 2017 were recorded.  Interestingly, the linear regression line across 

the NDVI values depicts an overall increasing trend because the NDVI values are not entirely 

different from each other except for an outlier recorded in the year 2015. 

Correlation 

       The relationship between NDVI and other controlling factors especially soil moisture and 

evapotranspiration is important in vegetation studies. In the context of this thesis, the 

correlation was determined based on the Pearson correlation coefficients. For the long term, 

there was a weak negative correlation of -0.47 between NDVI and soil moisture. However, for 

the break points, a weak positive correlation was recorded for 2005-2009; r= 0.12 while for 

2010-2014, a strong negative correlation; r= - 0.73 as well as a weak negative correlation; r= -

0.46 for 2015-2019 were recorded respectively. This negative correlations give a different twist 

for the relationship between NDVI and soil moisture during the two consecutive break points 

which succinctly suggests that increase or  decrease in NDVI values during these breakpoints 
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are independent of soil moisture. On seasonal basis, the correlation between NDVI and soil 

moisture is positive. Out of the three seasons sampled, only 2012 season has a correlation 

coefficient of 0.61 while the remaining two seasons of 2015 and 2017 recorded weak positive 

correlation of 0.42 and 0.35 respectively. 

       The relationship between NDVI and evapotranspiration as estimated by Pearson 

correlation coefficient (PCC) depicts positive correlation for the long term, break points as well 

as for the seasons. From table 6, there is a strong positive correlation of 0.66 between NDVI 

and evapotranspiration for the long term. For the break points, there was a weak negative 

correlation of -0.03 for 2010-2014 while 2005-2009 and 2015-2019 depicted significantly 

strong positive correlations of 0.60 and 0.94. For the seasonal trajectories, there was a perfect 

or strong significant positive correlation between NDVI and evapotranspiration.  For the three 

seasons, the correlation coefficients are 0.99, 0.70 and 0.99 for 2012, 2015 and 2017 

respectively. These range of correlation coefficients depicts a strong positive relationship 

between the two variables, NDVI and evapotranspiration.   
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Figure 19: Mean annual NDVI values and linear regression line at BWhII 

 Long 
term 

Break Points Seasonal 

 2005 - 2019 2005-2009 2010 -2014 2015-2019 2012 2015 2017 

Standard 
deviation(NDVI) 

0.01 0.00 0.00 0.01 0.07 0.02 0.05 

Pearson Correlation 
(NDVI $ Soil Moisture) 

-0.47 0.12 -0.73 -0.46 0.61 0.42 0.35 

Pearson 
Correlation(NDVI $ 
Evapotranspiration) 

0.66 0.60 -0.03 0.94 0.99 0.70 0.99 

Table 6: Statistical values at BWhII 
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Cross-correlation and lag 

 

Figure 20: Cross correlation between monthly mean NDVI and soil moisture at BWhII 
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Figure 21: Cross correlation between monthly mean NDVI and evapotranspiration at BWhII 
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Map of vegetation dynamics 

       Vegetation dynamics in the context of this representative case study is cartographically 

represented based on the rainy season. The climate zone within which this area falls has a rainy 

season from July to September, hence, the monthly vegetation maps from July to September. 

From figure 22, the monthly vegetation maps of 2015 season are comparatively the same 

compared to that of 2017. Similarly, in 2017, August recorded high NDVI values compared to 

July and September.   

 

Figure 22: Monthly static maps of vegetation dynamics at BWhII 
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6.1.3. BWhIII 

Quantitative changes in vegetation  

       In figure 23, the mean inter-annual NDVI from 2005 to 2019 were presented. From figure 

23, the trend follows an upward and downward trend. From one mean annual NDVI to the 

other, a “cascading trend” can be seen. For the long term, the standard deviation of the dataset 

is 0.01 which implies that all the NDVI values within the stipulated period are clustered around 

the mean such that there is not enough difference between the values recorded. The standard 

deviation in the NDVI dataset is the same for the various breakpoints as indicated in table 7. A 

standard deviation of 0.01 has been recorded for all the breakpoints. On Seasonal basis, 

standard deviations of 0.06, 0.04 and 0.03 were recorded in 2012, 2015 and 2017 respectively.  

Interestingly, the linear regression line across the NDVI values as shown in figure 23, points 

out a general decreasing trend. 

Correlation 

           In the context of this thesis, the correlation between NDVI and soil moisture was 

computed based on the Pearson correlation coefficients. For the long term, there was a weak 

positive correlation of 0.34 between NDVI and soil moisture. This correlation coefficient, 

although it is positive but it is insignificant. However, for the break points, an uphill positive 

correlation of 0.90 was recorded for the 2005-2009 period while the succeeding periods; 2010-

2014 and 2015-2019 NDVI were negatively correlated with soil moisture with coefficients; -

0.77 and -0.80 respectively. On seasonal basis, the correlation between NDVI and soil moisture 

were positively correlated. All the three seasons sampled have a correlation coefficient of 0.81, 

0.99 and 0.82 respectively. 
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       The relationship between NDVI and evapotranspiration as estimated by Pearson 

correlation coefficient (PCC) depicts positive correlation for the long term, break points as well 

as for the seasons. From table 7, there is a strong positive correlation of 0.82 between NDVI 

and evapotranspiration for the long term. Similarly, all the break points recorded strong positive 

correlations of 0.97, 0.84 and 0.98 respectively. For the seasonal trajectories, there were perfect 

or strong significant positive correlation between NDVI and evapotranspiration. The 

correlation coefficients of these three seasons are 0.90, 0.98 and 0.99 for 2012, 2015 and 2017 

respectively.  These correlation coefficients aptly show a strong positive relationship between 

the two variables, NDVI and evapotranspiration during the seasons.  

 

Figure 23: Mean annual NDVI and linear regression at BWhIII 
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 Long term Break Points Seasonal 

 2005 - 2019 2005-2009 2010 -2014 2015-2019 2012 2015 2017 

Standard 
deviation(NDVI) 

0.01 0.01 0.01 
 

0.01 0.06 0.043 0.03 

Pearson Correlation 
(NDVI $ Soil Moisture) 

0.34 0.90 -0.77 -0.80 0.81 0.99 0.82 

Pearson 
Correlation(NDVI $ 
Evapotranspiration) 

0.82 0.97 
 

0.84 
 

0.98 
 

0.90 0.98 0.99 

Table 7: Statistical values at BWhIII 

  

Cross correlation and lag 

 

Figure 24: Cross correlation between mean monthly NDVI and soil moisture at BWhIII 
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                                Figure 25: Cross correlation between monthly mean NDVI and evapotranspiration at BWhIII 
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Map of vegetation dynamics 

       In figure 26 below, the yearly vegetation maps have been depicted as small multiples. As 

observed from the maps, there are no significant variations in vegetation for the years covered. 

As shown in the maps, only minor variations can be seen. For example, in the years 2006, 2007, 

2011 and 2012 few pixels of the area covered depicts low NDVI representing vegetation minor 

decline. 

 

Figure 26: Yearly static maps of vegetation dynamics in BWhIII 
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6.2. Hot semi-arid climate (BSh)   

6.2.1. BShI 

Quantitative changes in vegetation 

        As shown in figure 27 below, the mean inter-annual NDVI from 2005 to 2019 follows a 

continuously changing trend. Significantly, no monotonic trend can be found. Rather, from one 

mean annual NDVI to the other, “decreasing-increasing” were recognized in most cases.  From 

table 8, the standard deviation for the long term is 0.02 which implies that all the NDVI values 

within the stipulated period are clustered around the mean such that there is not enough 

difference between the values recorded. A standard deviation of 0.01, 0.01 and 0.04 

corresponding to 2005-2009, 2010-2014 and 2015-2019 were recorded. On Seasonal basis, the 

low standard deviations of 0.1, 0.15 and 0.12 were recorded in 2012, 2015 and 2017 seasons.  

Generally, the linear regression line across the NDVI values as shown in figure 27 depicts an 

overall increasing trend. 

Correlation 

       Assessing the relationship between NDVI and other controlling factors especially soil 

moisture and evapotranspiration plays a key role in mapping vegetation dynamics and 

analysing the results. In the context of this thesis, the correlation was calculated based on the 

Pearson correlation coefficients. For the long term, there was a weak positive correlation of 

0.31 between NDVI and soil moisture. This correlation coefficient, although positive, shows a 

weak relationship between NDVI and evapotranspiration. However, for the break points, an 

uphill positive correlation was recorded for two periods; r= 0.77 and 0.96 for 2005-2009 and 

2015-2019 respectively. However, for 2010-2014, a weak positive correlation of r = 0.48 was 

recorded. On seasonal basis, positive correlations were recorded as presented in table 8. 

       The relationship between NDVI and evapotranspiration as estimated by Pearson 

correlation coefficient (PCC) depicts positive correlation for the long term, break points as well 

as for the seasons. From table 8, there is a strong positive correlation of 0.89 between NDVI 
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and evapotranspiration for the long term. While all the break points recorded positive 

correlation, the period from 2005-2009 depicted a weak positive correlation, while the 

relationship between NDVI and evapotranspiration for 2010-2014 and 2015-2019 showed 

significantly strong positive correlations of 0.91 and 0.98. For the seasonal trajectories, there 

was a perfect or strong significant positive correlation between NDVI and evapotranspiration 

from 0.94 to 0.96.   

 

Figure 27: Mean annual NDVI and linear regression at BShI 

 Long 
term 

Break Points Seasonal 

 2005 - 2019 2005-2009 2010 -2014 2015-2019 2012 2015 2017 

Standard 
deviation(NDVI) 

0.02 0.01 0.01 0.04 0.13 0.15 0.12 

Pearson Correlation 
(NDVI $ Soil Moisture) 

0.31 0.77 0.48 0.96 0.90 0.95 0.88 

Pearson 
Correlation(NDVI $ 
Evapotranspiration) 

0.89 0.44 0.91 

 
0.98 0.94 0.94 0.96 

Table 8: Statistical values at BShI 
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Cross correlation and lag 

 

Figure 28: Cross correlation between monthly mean NDVI and soil moisture at BShI 

 

Figure 29: Cross correlation between monthly mean NDVI and evapotranspiration at BShI 
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Map of vegetation dynamics 

       To understand and visualize the dynamics of seasonal vegetation change, the case study 

delineated on the Nuba mountains take into account the seasonal trajectory of two years; 2015 

and 2017. This seasonal trajectory has been disaggregated into months that make up the rainy 

season. In figure 30 and 31, the monthly vegetation maps for the 2015 and 2017 rainy seasons 

were depicted. Generally, the maps show moderate to dense vegetation from May to October.  

However, from figure 31 it can be observed that both June and July have more pixels with 

NDVI values between 0.2 and 0.4. It is worth noting that although 2015 and 2017 are years 

where drought was reported in Sudan, the monthly vegetation as shown in the maps were 

proportionally high.  
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Figure 30: Monthly vegetation dynamics at BShI, 2015 (May - October) 
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Figure 31: Monthly vegetation dynamics at BShI, 2017 (May - October) 

 

6.2.2. BShII 

 

Quantitative changes in vegetation  

      As shown in figure 32 below, the mean inter-annual NDVI from 2005 to 2019 follows an 

erratic trend similar to the other representative case studies. From figure 32, no monotonic 

trend can be found. Rather, from one mean annual NDVI to the other, there are sharp increases 

and decreases.  The mean NDVI values are generally low in this representative case study such 

that the highest value recorded in 2018 is below 0.3. For the long term, the standard deviation 

of the dataset is 0.02. On seasonal basis, the concentration of NDVI values around the mean 
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remains fairly the same as shown by the standard deviations of 0.16, 0.10 and 0.09 for 2012, 

2015 and 2017 seasons.  Although the NDVI values in this representative case study are 

generally low, the linear regression line across the NDVI values depicts an overall increasing 

trend as can be seen in figure 32.  

Correlation 

       In this climate zone, the relationship between NDVI and other controlling factors especially 

soil moisture and evapotranspiration is vital for assessing how vegetation changes over time. 

In the context of this thesis, the relationship was calculated using the Pearson correlation. For 

the long term, there was a weak negative correlation of -0.40 between NDVI and soil moisture. 

However, for the break points, positive correlation was recorded for 2005-2009 and 2010-2014 

respectively. However, there is negative correlation of r = -0.46 for the period from 2015-2019. 

On seasonal basis, the correlation between NDVI and soil moisture were positive for 2015 and 

2017 but negative for the year 2012.  

       The relationship between NDVI and evapotranspiration as estimated by Pearson 

correlation coefficient (PCC) depicts a positive correlation for the long term, break points as 

well as for the seasons. From table 9, there is a strong positive correlation of 0.88 between 

NDVI and evapotranspiration for the long term. Similarly, all the break points recorded positive 

correlation of 0.95, 0.94 and 0.93. For the seasonal trajectories, there were positive correlations 

recorded as well as shown in table 9.  
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Figure 32: Mean annual NDVI and linear regression at BShII 

 

 Long term Break Points Seasonal 

 2005 - 2019 2005-2009 2010 -2014 2015-2019 2012 2015 2017 

Standard 
deviation(NDVI) 

0.02 0.01 0.02 0.02 0.16 0.10 0.09 

Pearson Correlation 
(NDVI $ Soil 
Moisture) 

-0.40 0.65 0.49 -0.46 0.48 0.61 0.50 

Pearson 
Correlation(NDVI $ 
Evapotranspiration) 

0.88 

 
0.95 0.94 0.93 0.81 0.86 0.74 

Table 9: Statistical values at BShII 
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Cross correlation and lag 

 

Figure 33: Cross correlation between monthly mean NDVI and soil moisture in BShII 

 

Figure 34: Cross correlation between mean monthly NDVI and evapotranspiration 
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Map of vegetation dynamics 

       Figure 35 below shows the yearly vegetation maps of BShII, a popular rain-fed farming 

site in Al- Qadarif. From the maps, vegetation across this case study is generally low.  The 

maps depict NDVI values within a range of -0.1 to 0.2. Besides the NDVI range generally 

shown in the maps, a greater part of the area disproportionately show vegetation decline over 

the years. This arguably is as a result of continuous farming taking place in the site which is 

mostly dependent on rainfall. Also, the farm area is continuously cleared of natural vegetation 

“weeds” and the fields prepared for farming. Hence, this area is generally expected to show 

low NDVI values. 
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Figure 35: Yearly static maps of vegetation dynamics in BShII 
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6.2.3. BShIII 

Quantitative changes in vegetation dynamics 

      In figure 36, the mean inter-annual NDVI from 2005 to 2019 has been graphically depicted. 

From figure 36, no monotonic trend can be found. Rather, from one mean annual NDVI to the 

other, “changing trends” have been observed. For the long term, the standard deviation of the 

dataset is 0.03. A standard deviation of 0.03, 0.03 and 0.02 corresponding to 2005-2009, 2010-

2014 and 2015-2019 respectively were obtained.  Generally, the linear regression line across 

the NDVI values shows an overall increasing trend. 

Correlation 

        In the context of this thesis, the correlation between NDVI and other controlling factors 

have been calculated based on Pearson correlation coefficients. For the long term, there was a 

weak negative correlation of -0.18 between NDVI and soil moisture. In the case of the break 

points, moderate positive correlations were recorded. On seasonal basis, the correlation 

between NDVI and soil moisture were positively significant as well. Out of the three seasons 

sampled, 2012 and 2015 seasons had strong positive coefficient while 2017 season had a 

moderate positive correlation.  

        The relationship between NDVI and evapotranspiration as estimated by Pearson 

correlation coefficient (PCC) did not deviate from the earlier results obtained in other 

representative case studies. From table 10, positive correlations were recorded between NDVI 

and evapotranspiration for the long term, break points and the sampled seasons. However, for 

the 2010-2014 and 2015-2019 breakpoints, the correlations were very weak.   
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Figure 36: Mean Annual NDVI and linear regression at BShII 

 Long term Break Points Seasonal 

 2005 - 2019 2005-2009 2010 -2014 2015-2019 2012 2015 2017 

Standard 
deviation(NDVI) 

0.03 0.03 0.03 0.02 0.18 0.21 0.24 

Pearson Correlation 
(NDVI $ Soil Moisture) 

-0.18 0.50 0.65 0.69 0.96 0.79 0.67 

Pearson 
Correlation(NDVI $ 
Evapotranspiration) 

0.59 0.71 0.33 0.20 0.95 0.87 0.97 

Table 10: Statistical values at BShIII 
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Cross correlation and lag 

 

Figure 37: Cross correlation between mean monthly NDVI and soil moisture at BShIII 

 

Figure 38: Cross correlation between mean monthly NDVI and evapotranspiration at BShIII 
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Map of vegetation dynamics 

     Monthly vegetation maps covering the rainy season are presented to depict vegetation 

change in this representative case study. Figure 39 and 40 show the maps for 2015 and 2017 

seasons respectively. In figure 39, “greener” pixels representing dense vegetation are dominant 

in the months of August, September and October. However, a clearer visual exploration shows 

that vegetation is dense in the month of August and October in figure 39, while in figure 40, 

vegetation is dense in the month of August only. Juxtaposing the two rainy seasons representing 

2015 and 2017, the months of May, June and July generally recorded low NDVI values as 

depicted by the maps in figure 39 and 40 accordingly. 

 

Figure 39: Monthly vegetation dynamics at BShIII, 2015 (May-October) 
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Figure 40: Monthly vegetation dynamics at BShIII, 2017 (May-October) 

 

 

 

 

 



 

96 
 

6.3. Tropical savannah climate (Aw) 

6.3.1. AwI 

Quantitative changes in vegetation dynamics 

      In figure 41, the mean inter-annual NDVI values from 2005 to 2019 depicts a cascading 

trend. The trajectory of the time series begins with a fairly low NDVI value then increases to a 

higher value and then drops to a lower value for two consecutive years before depicting a 

cascading pattern. The distribution of the mean NDVI is characterized by a low standard 

deviation of 0.02 to the long term similar to that of the breakpoints. Interestingly, the highest 

NDVI value recorded during the entire period is a little above 0.5 in the year 2019. On Seasonal 

basis, standard deviations of 0.19, 0.19 and 0.15 were obtained.  To the long term, the linear 

regression line across the NDVI values as seen in figure 41 shows an overall increasing trend. 

Correlation 

      Soil moisture and NDVI have weak correlation to the long term as revealed by the 

correlation coefficient of 0.04 in table 11. The weak correlation has been recorded for the two 

break points as well although there were all positive. However, the period from 2015 to 2019 

recorded a moderate positive correlation were obtained as seen in table 11. The seasonal 

trajectories however, revealed strong positive correlations with coefficients of 0.97, 0.95 and 

0.88 respectively as shown in table 11. 

     To the long term, a moderate positive correlation was observed between NDVI and 

evapotranspiration. In terms of the segregated periods; a weak negative correlation of -0.14 

was obtained for the period from 2010-2014 while the remaining two depicted moderate to 

strong positive correlation. On seasonal trajectories, an uphill of strong positive correlation was 

recorded for the three seasons sampled.   
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Figure 41: Mean annual NDVI and linear regression at AwI 

 Long term Break points Seasonal 

 2005 - 2019 2005-2009 2010 -2014 2015-2019 2012 2015 2017 

Standard deviation(NDVI) 0.02 0.01 0.01 0.02 0.19 0.19 0.15 

Pearson Correlation (NDVI 
$ Soil Moisture) 

0.04 0.47 -0.30 0.62 0.97 0.95 0.88 

Pearson Correlation(NDVI 
$ Evapotranspiration) 

0.66 0.69 -0.14 0.93 0.94 0.88 0.90 

Table 11: Statistical values at AwI 
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Cross correlation and lag 

 

Figure 42: Cross correlation between mean monthly NDVI and soil moisture at AwI 

 

Figure 43: Cross correlation between mean monthly NDVI and evapotranspiration at AwI 
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Map of vegetation dynamics 

       In figure 44, yearly static maps showing vegetation change for a period of 15 years have 

been presented. From figure 44, it can be observed that most of the maps depict low NDVI 

values representing low or less dense vegetation. While 12 years recorded NDVI values 

between -0.1 to 0.3, three years: 2006, 2007 and 2011 recorded moderate to high NDVI values 

of 0.4 to 0.6 compared to the other years. 

 

Figure 44: Yearly static maps of vegetation dynamics in AwI 
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6.3.2. AwII 

Quantitative changes in vegetation dynamics 

       As observed in other case studies, the mean inter-annual NDVI from 2005 to 2019 follows 

a non-predictable trend as can be seen in figure 45. The series started with a low NDVI value 

then increases, it then decreases before becoming stable from 2011 to 2015. A downward trend 

was then recorded thereafter until the year 2017 where it reaches its lowest value for the entire 

period. For the long term, a standard deviation of 0.02 was obtained. Overall, the linear 

regression line across the NDVI values shows a decreasing trend. 

Correlation  

      The relationship between NDVI and soil moisture in moderately positive to the long term. 

For the entire duration of the study, correlation of 0.64 was obtained as indicated in table 12. 

However, for two of the segregated periods, weak positive correlations were recorded, while 

the other period recorded a strong positive correlation. On seasonal basis, NDVI is strongly 

correlated with soil moisture. Of the three seasons sampled, the least coefficient is 0.89 as 

indicated in table 12. 

     The relationship between NDVI and evapotranspiration as estimated by Pearson correlation 

coefficient (PCC) depicts positive correlation for the long term, break points as well as for the 

seasons. From table 12, a weak positive correlation of 0.43 between NDVI and 

evapotranspiration for the long term was obtained. Similarly, two of the break points recorded 

weak positive correlations. Significantly, strong positive correlations were obtained for all the 

three seasons sampled.  
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Figure 45: Mean annual NDVI and linear regression at AwII 

 

 Long term Break points Seasonal 

 2005 - 2019 2005-2009 2010 -2014 2015-2019 2012 2015 2017 

Standard deviation(NDVI) 0.02 0.01 0.00 0.03 0.17 0.16 0.16 

Pearson Correlation (NDVI 
$ Soil Moisture) 

0.64 0.21 0.30 0.85 0.89 0.91 0.90 

Pearson Correlation(NDVI 
$ Evapotranspiration) 

0.43 0.06 0.46 0.99 0.93 0.91 0.94 

Table 12: Statistical values at AwII 
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Cross correlation and lag 

 

Figure 46: Cross correlation between mean monthly NDVI and soil moisture at AwII 

  

Figure 47: Cross correlation between mean monthly NDVI and evapotranspiration at AwII 



 

103 
 

Map of vegetation dynamics  

      Vegetation dynamics in this case study has been visualized on monthly basis spanning the 

rainy season as defined in the preceding paragraph.  The rainy season for two years; 2015 and 

2017 were taken into account. In figure 48 and 49, the monthly vegetation maps for 2015 and 

2017 were shown respectively. The maps clearly show healthy vegetation in the months of 

July, August and September. However, in May, June and October, the maps depict low NDVI 

values corresponding to less dense vegetation. 

 

Figure 48: Monthly vegetation dynamics at AwII, 2015 (May-October) 
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Figure 49: Monthly vegetation dynamics at AwII, 2017 (May-October) 

6.3.3. AwIII 

Quantitative changes in vegetation 

       As shown in figure 50 below, the mean inter-annual NDVI from 2005 to 2019 follows an 

erratic trend.  From figure 50, these trends can be observed; increasing-decreasing, moderate 

increase and a gradual decreasing trends. For the long term, the standard deviation of the dataset 

is 0.02. The highest NDVI value was recorded in the year 2019. A standard deviation of 0.02, 

0.3 and 0.02 corresponding to 2005-2009, 2010-2014 and 2015-2019 were obtained. Taking 

the entire period into consideration, the linear regression line shows an overall trend as shown 

in figure 50.  
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Correlation 

       There exist a weak negative correlation between NDVI and soil moisture taking the whole 

study period into consideration. Similarly, two of the breakpoints recorded weak negative 

correlation as well.  However, on seasonal basis, all the three seasons recorded strong positive 

correlations. For the relationship between NDVI and evapotranspiration, a positive correlation 

of 0.75 was recorded, similarly the segregated periods also recorded strong positive 

correlations as well as the seasonal trajectories. These correlation coefficients are provided in 

table 13.   

 

 

Figure 50: Mean annual NDVI and linear regression at AwIII 
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 Long term Break points Seasonal 

 2005 - 2019 2005-2009 2010 -2014 2015-2019 2012 2015 2017 

Standard 
deviation(NDVI) 

0.02 0.02 0.03 0.02 0.16 0.13 0.15 

Pearson Correlation 
(NDVI $ Soil Moisture) 

-0.40 0.33 -0.43 -0.50 0.92 0.92 0.74 

Pearson 
Correlation(NDVI $ 
Evapotranspiration) 

0.75 0.70 0.92 0.93 0.94 0.94 0.96 

Table 13: Statistical values at AwIII 
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Cross correlation and lag 

 

Figure 51: Cross correlation between mean monthly NDVI and soil moisture at AwIII 
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Figure 52: Cross correlation between mean monthly NDVI and evapotranspiration at AwIII 
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Map of vegetation dynamics 

     Vegetation dynamics in the context of this thesis has been visualized based on small static 

maps.  Figure 53 below shows the yearly mean NDVI values as observed from remote sensing 

data across the delineated area.  As shown in figure 53, vegetation in this area is generally low.  

All the static maps depict vegetation corresponding to values between 0.0 and 0.3. 

 

 

 

 

 

Figure 53: Yearly static maps of vegetation dynamics in AwIII 
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7. Conclusion and Outlook    

       This thesis has investigated mapping vegetation dynamics from remote sensing time series. 

The vegetation dynamics over the study area(s) in the Republic of Sudan was assessed using 

quantitative methods such as the annual mean NDVI and estimates of standard deviation. The 

long term trend of vegetation change has been calculated based on linear regression, as shown 

by the “purple” trend lines in the NDVI graphs (see figures 15,19,23,27,32,36,41,45 and 

50).The estimates of standard deviation show minimal or insignificant variations in NDVI 

values for the long term, breakpoints, and on a seasonal basis. Vegetation change, whether 

abruptly or gradually, do not occur in a vacuum. Vegetation change studies usually characterize 

NDVI, the proxy for vegetation as a dependent variable, which is controlled by independent 

variables such as temperature, precipitation, evapotranspiration, and soil moisture. As a result, 

this thesis has explored the relationship between NDVI (vegetation) and a series of controlling 

factors: soil moisture and evapotranspiration for the long term, breakpoints, and in the seasonal 

context. This relationship has been estimated based on the Pearson correlation coefficient. A 

weaker positive correlation between NDVI and soil moisture was observed for the long term.  

However, on a seasonal basis, strong positive correlations were recorded in all representative 

case studies. The relationship between NDVI and evapotranspiration has been investigated as 

well, where moderate positive correlations were observed. Likewise, strong positive 

correlations characterized the seasonal trajectories. A cross-correlation between NDVI, soil 

moisture, and evapotranspiration determines the “delay” or lag in response between the 

dependent variable (NDVI) and independent variables. The results, as depicted by the cross-

correlation graphs in (figures 16-17,20-21, 24-25,28-29,33-34,37-38,42-43, 46-47 and 51-52), 

show no significant lags in response.  

Going beyond the quantitative assessment, this thesis explored visualization techniques that 

can be used for the representation of vegetation dynamics. One aspect of this thesis is to use 
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diagrams, charts, and tables to depict trends, changes, and dynamics of vegetation change. As 

observed from the results chapter, line charts and graphs dominated the graphical presentation 

of results. Similarly, cartographic representation of vegetation dynamics in this thesis have 

been carried out in the form of “small multiple” static maps. These small multiple static maps 

depict both the yearly and seasonal vegetation changes. These small static maps make it easier 

for the user to easily identify changes in vegetation within the spatio-temporal context. For 

example, figure 30 and 31 were a combination of small static maps used to depict the monthly 

vegetation maps for covering the rainy season. However, other techniques for visualizing 

various dimensions, trend, change, and dynamics of vegetation have been explored and 

presented as prototypes of visualization techniques, which can serve as alternatives for the line 

chart. 

Aside from the results obtained, this thesis has laid the foundation for other dimensions to be 

explored presented in the outlook below: 

 The relationship between NDVI, temperature, and precipitation needs to be examined 

for the long term, breakpoints, seasonal, and on a daily basis in order to compare and 

contrast the actual daily changes in vegetation. 

 The lag between dependent and independent variables need to be computed daily since 

the monthly cross-correlation shows no significant lags.  

 Although the traditional ways for vegetation dynamics visualization, such as line charts 

and graphs are powerful to convey information, alternative techniques can also be 

adapted and tested. Along with line charts for visualizing trends, area charts are also 

suitable to visualize trends. Another technique explored is isopleth maps for visualizing 

vegetation change. Not only are isopleth maps suitable for visualizing change, but they 

can also aptly support visual exploration and spatial analysis of the presented dataset. 

Besides, visualizing dynamics can be revealed through the chronological or sequential 
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changes using animation as a visualization technique. This approach shows the 

sequential changes in vegetation over time and also allows the user to interact with the 

process. Similarly, animation applied along with individual static maps can depict the 

sequential process of vegetation dynamics. 
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