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Abstract 

 

Crime perception is defined as the insight amount of criminal activity in a location or the risk of 

victimisation. Evidence exists that people’s perception about the crime is not often consistent 

with the actual incidents statistics, and thus there is a tendency of underestimating or 

overestimating the safety. The misperception of crime can have repercussion on people’s 

lifestyle, affect social behaviour and spatial and economic dynamics. Therefore, it is relevant for 

police agencies to develop strategies directed to reduce this perception gap. 

 

To come up with efficient action plans is relevant to explore the different social, demographic 

and environmental factors that sway perception. Likewise, analyse them as a whole within a 

framework and not as individual and independent elements to have an overall understanding of 

the context.  

 

Structured sketch maps are often used as a method to capture people’s crime perception by 

collecting data about the places that are perceived as safe or unsafe. This type of sketch maps 

enables to keep the consistency of the reference context and thus extract spatial attributes out 

of the sketched features. The exploration of these features using GIS, spatial analysis and 

statistics methods could enable the understanding of the factors that influence perception.  

Consequently, allow the comprehension of the spatial arrangement of perceived safe and unsafe 

places. 

 

This research aims to apply this approach in a case study. Some variables will be extracted from 

sketch maps and analysed to determine which of those variables are related to the perception 

of safe and unsafe areas. Moreover, a prototype of a GeoVisual Analytics environment is 

proposed. This type of interfaces enables the understanding of the complex relationships 

between multivariate and spatiotemporal datasets. In this case, a set of tools for the visualisation 

and analysis of perception data are integrated to support police agencies in the development of 

strategies to reduce misperception of crime. 
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Chapter 1 
 

Introduction 

 
 

 

 

In this first chapter, the research context of the thesis is exposed. Basic concepts and target 

statements are defined in order to give a general background to the problem to be 

addressed (section 1.1). 

Moreover, the general and specific objectives are listed, as well as the identified research 

questions (section 1.2) to be tackled along the research process. Each specific objective is 

addressed in a different chapter in which the methodology, results and preliminary 

conclusions are presented. Therefore, a general outline of the whole methodology (section 

1.3) is described here in order to give an overall view of the workflow that was followed. 

In the last section, the structure (section 1.4) of the thesis is presented with a brief 

description of the contents of each chapter. 
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1.1 Research context and problem statement 
 

Human perception has been studied mostly by Psychology, but since the second half of the twentieth 

century, it is also of the interest of spatial sciences, such as Geography. The interest lies in the 

understanding of space based on people’s insight. Cognitive mapping is the process of developing a 

mental map, based on the collection of information by sensorial perception. The geometry and 

attributes of each individual cognitive map are shaped by internal and external factors. The main 

tangible representation of a cognitive map is the sketch map. 

A sketch map is the main mapping method to graphically depict the spatial knowledge of individuals. 

Relative location, geometric attributes, as well as impressions and beliefs about places can be 

portrayed on these representations. Sketch mapping is a recurrent method for the collection of data 

about people’s perception. Researches have made use of this method in the study of diverse social 

geographical matters such as emergency management, hazard planning, land use planning and 

community safety (Sloan, Doran, Markham & Pammer, 2016).  

Crime studies is one of the research areas in which structured sketch maps are utilized with the aim 

of collecting data about fear of crime (Curtis, 2012; Kohm, 2009) and perception of crime (Spicer, Song 

& Brantingham, 2014; Fuhrmann, Huynh & Scholz, 2013; Lopez & Lukinbeal, 2010) and they are usually 

explored with the use of GIS. The consistent spatial reference of structured sketch maps enables their 

analysis with spatial tools, due to the fact that they are drawn over a printed or digital base map. 

However, the analysis is often limited to overlay, aggregation and illustration purposes, mainly 

resulting in a visual and descriptive analysis (Curtis, 2012). The exploration, data extraction and 

analysis of sketch maps for crime perception studies may be improved with the integration of GIS, 

statistical methods and spatial analysis.   

Although there are several theories that explain the factors that sway the perception of crime, the 

spatial component of it has not been explored in depth. Spatial characterization of those factors could 

result in a better understanding of the location of identified unsafe areas. The relevance of this lies in 

the fact that perception is not always similar to reality: perceptions of crime often mismatch the actual 

crime statistics. This disparity is known as the crime perception gap and it arises when a person has 

an inaccurate insight of safety. There are two types of crime perception inaccuracy: a person can 

perceive an area as unsafe, whereas it is safe or a person can conceive a place as safe but it is actually 

unsafe. 

In this research, the term “accuracy/inaccuracy of crime perception” is utilized as the state of 

consistency between what is perceived and the reality defined by objective measurements. As 

perception cannot be described as “right” or “wrong”, the concept of accuracy is employed to 

establish whether or not the perceived attribute matches with the actual value. Another term that 

must be defined is “level of crime perception accuracy/inaccuracy”. This is not used as a measure of 

how close a people’s perception is to reality, but it is defined as a means of comparison between the 

percentage of people who have an accurate or inaccurate perception among the total number of 

people who participate in a survey. 

This inaccuracy can have an impact on people’s daily life, social behaviour and spatial dynamics. The 

importance of narrowing this gap is the need for improving people’s quality of life. Some studies have 

evidenced that fear can alter mental health due to anxiety (Foster, Giles-Corti, & Knuiman, 2010). It 

can restrict the people’s daily activity area as a result of the desire to avoid unsafe areas by changing 
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daily routines. As a consequence, the reduction of people transiting would force the relocation of 

services offered due to a lack of clients. All this would result in a reorganization of the spatial structure 

at micro-scale. 

Thus, there is a need to increase perception accuracy with localized strategies that can narrow the 

gap. Although police agencies have developed actions to address this issue, they have mainly focused 

on reducing the fear of crime (Cordner, 2010; Grabosky, 1995; Bennett, 1991). They are particularly 

focussing on the inaccurate perception of high crime, in which people believe that the level of crime 

incidents is high, whereas in reality it is low. But then there is still the need to narrow the gap of an 

inaccurate perception of low crime in existing crime hotspots wherein the people are not aware of 

the risk of victimization. 

Therefore, the strategies to narrow the crime perception gap must consider social, environmental and 

spatial factors that sway people’s perception. These strategies must be implemented in the first place 

in priority areas characterized by the level of the people’s perception accuracy. Police agencies are 

the bureaus responsible for developing plans of action (Cordner, 2010). Hence, they must be provided 

with tools that allow them to explore and relate multivariate datasets in order to ease the decision-

making in the design of targeted strategies. 

 

1.2 Objectives and research questions 
 

The aim of the research is to present an integrated analysis of structured sketch maps in the study of 

crime perception, by performing a numerical and spatial analysis of the data extracted from the maps 

and by designing a geovisualization environment that supports their visual and analytical reasoning. 

 

Thus, the general objective of this research is:  

 

“To quantitatively examine structured sketch maps to analyse and map crime 

perception. Moreover, to design a geovisual analytics environment that eases the 

decision-making in the development of strategies to amend the perception of crime” 

 
 

In order to fulfil this, three specific objectives were defined: 

1. To analyse the location of perceived unsafe areas in relation to a) the distribution of crime 

incidents and b) people’s activity spaces. 
 

2. To determine and explore the accuracy of people’s crime perception and to map its spatial 

distribution. 
 

3. To conceptually design a GeoVisual Analytic environment for the exploration and reasoning 

of perceptions of crime. 

 

To tackle each specific objective five particular questions have to be answered along the research 

process: 

1.1 What is the relationship between the people’s daily activity spaces (neighbourhood and 

daily routes) and the location of the areas they perceive as unsafe?   
 
1.2 What is the relationship between the location of the crime incidents and the perceived 

unsafe areas?    
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2.1 How to measure the accuracy of people’s crime perception? 
 
2.2 How can the location of inaccurately perceived unsafe areas be explained by the spatial 

distribution of another explanatory variable? 

 

3.1 Which tools and representations could be integrated in a GeoVisual Analytic interface to 

explore and analyse crime perception? 
 

 

The specific objectives are addressed in separate chapters in which the used methodology, the results 

and conclusions of each one are presented. An overview of the entire framework is described in the 

next section. 

 

1.3 Methodology overview 
  

The applied methodology is divided into three phases that correspond with each specific objective. 

The first phase comprises performing an exploratory modelling of the data extracted from structured 

sketch maps; the second phase is a spatial arrangement outline which includes determining the spatial 

distribution of crime perception and its analysis; the last stage is the geovisualization development in 

which an interactive environment will be designed (but not constructed). A summary of each phase is 

given below: 

1) Exploratory modelling: consists of exploring the spatial relations between the location of the 

areas that people perceived as unsafe or safe and a) people’s neighbourhoods and daily 

routes and b) the location of crime incidents. For this, five related spatial variables will be 

extracted from the sketch maps by performing spatial queries. These variables will be treated 

as covariates for a bivariate logistic regression analysis, with the purpose of defining which 

variables explain higher percentages of the variability of the likelihood of perceiving an area 

as unsafe. The resultant significant factors can afterwards be explored in a spatial context to 

uncover the spatial relations between them for an integral understanding of the crime 

perception accuracy spatial arrangement. 
 

2) Spatial delineation of the perception accuracy: comprises the comparison between the 

perceived and a reference safety classifications. The ‘perceived classification’ will be derived 

from the structured sketch maps, through which participants basically classified the city into 

unsafe and safe areas by drawing polygons over a base-map. Meanwhile, a ‘reference 

classification’ will be based on the crime hotspots.  

Both classifications will be compared to define areas that are accurately or inaccurately 

classified. Then, the level of accuracy will be estimated with the percentage of ‘correctly’ 

perceived classifications. 

Last, a bivariate spatial correlation analysis will be performed to find out the possible relations 

between two variables that could explain the accuracy of people’s crime perception. 
 

3) Development of a GeoVisual Analytics environment: consists of designing the GeoVisual 

Analytics environment that encompasses: a) the description of the potential users, b) a 

statement of the problems that the tool is designed to solve, c) the questions that can be 

answered with it, d) and the list of functions and the design of the interface. 
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Figure 1.1 shows a diagram in which the connection between the three objectives is 

illustrated. The specific objectives follow three of the Principles of Geography that are the 

fundamental concepts for any geographical or spatial study (Hagget, 1979). The explanatory 

modelling will set the causality or origin of the problem, understood as the factors that sway 

crime perception; the spatial arrangement outline is focused on the location or distribution of 

the perception of crime and the geovisualization development is directed to exploring the 

relations between the factors and location.  

 

Therefore, the results of objective one define the variables that are relevant for understanding crime 

perception. The main output of objective two is the location of the perceived safe and unsafe places 

and whether this perception is accurate or not. In order to understand this location, we go back to the 

results of the first objective. The analytical tool developed in objective three is meant to enable the 

visual analysis of the spatial distribution of the significant explanatory variables and the perceived 

unsafe places. 

 

 
The three phases are intended to show the relevance of the extraction of data from sketch maps and 

its analysis in perception studies. Moreover, they aim to demonstrate how an integral analysis can 

contribute to the understanding of the spatial expression of people’s perception. In the case of crime 

perception, the aim is to bridge the gap with located actions based on the comprehension of the 

related social and spatial factors that influence the perception of crime. The inquiry of the spatial 

attributes that are associated with those factors, such as location, distances, neighbouring elements 

and topological relations might contribute to the design of targeted strategies to narrow the crime 

perception gap. 

 

 

Figure 1.1 Stages of the research process. 

 

 Objective 1 - Exploratory modelling 

 
1. Extraction of spatial attributes (covariates) from the sketch maps. 

2. Testing and selection of covariates with binomial logistic 
regression. 

3. Interpretation of the resultant coefficients. 

 

Objective 2 - Spatial arrangement outline 

1. Classification of blocks in safe/unsafe according to sketch maps.  

2. Comparison between perceived and actual classification.  

3. Determination of the level of accuracy/inaccuracy of perception.  

4. Performance of a bivariate analysis. 

 

Objective 3 - Geovisualization development 

1. Definition of the geovisual analytics environment. 

2. Conceptual design of the user interface. 

 

Causality 

Location 

Relation 
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This research makes use of a case study in which the presented methodology will be implemented. 

The data available correspond to an online survey conducted in Budapest, Hungary. It consisted of 

drawn structured sketch maps to depict the safe and unsafe areas in the city. The dataset was 

gathered in 2017. These sketch maps will be analysed in the exploratory modelling stage. For the 

second stage these sketch maps will be compared with the locations of the hotspots. The hotspots 

will be defined by the crime incidents that were reported in Budapest in 2017. In the last stage, a 

prototype of a geovisual analytics environment will be presented employing these data to exemplify 

the functionalities. 

 

1.4 Thesis structure 

 

This thesis is organized in seven chapters, including the presented introduction, in which a brief 

research context, the main and specific objectives, the identified research questions and a general 

outline of the implemented methodology were described. In the second chapter, a literature review 

is presented as the theoretical and conceptual framework that endorses this research project. The 

third chapter contains the description of the datasets, the preprocessing and geoprocessing 

procedures performed, as well as the list of software used. In the next three chapters, the 

methodology, results and conclusions of the exploratory modelling, spatial arrangement outline and 

the geovisualization environment development are presented. In the seventh chapter, the answers to 

the research questions will be summarized and general conclusions and recommendations for further 

research will be stated. 
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Chapter 2 
 

Maps and perception of crime 
 

 

 

 

 

This chapter is divided into four sections. In the first one (2.1) the distinction between the 

two main concepts perception and cognition will be addressed, as well as their connotation 

in spatial and cartographic terms. The difference between cognitive mapping as a process 

and a cognitive map as an internal cartographic product will be defined, to consequently 

continue with the introduction of sketch maps as the external representation of cognitive 

maps. The relevance of sketch maps as a data collection method for perception data will 

be discussed, especially in the perception of safeness, as well as the use of GIS for their 

analysis.   

The second section (2.2) will be centered on the concepts of risk, fear and, mainly, the 

perception of crime. The last concept is the most relevant in this research. Several theories 

that explain the factors that sway the perception of crime will be expounded on briefly, 

including the influence of heuristics as one of the main emotional factors that mold 

perception.    

Section 2.3 defines perception accuracy and a classification of it will be presented, 

differentiating between two types of accurate perception and two types of inaccurate 

perception. In crime studies, these latter are known as the crime perception gap. Some of 

the negative effects of the crime perception gap will be mentioned and, therefore, the need 

of narrowing the gap, as well as the importance of executing integral data analysis for the 

development of strategies that bridge the gap. The last section (2.4) is the conclusion of 

this chapter.   
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2.1 Perception, cognition and maps 

 

Mapping is part of human nature. Maps as simplified spatial images have been in force even before 

the writing was developed (Raisz, 1985). Mental maps can be considered as the very first maps. The 

conception of this mental images of our surrounding environment based on individual perceptions 

and spatial knowledge have been created due to the need of being aware of where we are standing 

and the need of knowing our nearby space. This mental process implies being conscious of the 

attributes and relative location of objects and places. 

Human perception refers to the process of acquiring information through the senses. The study of 

perception was initiated by psychologists, whose focus was the inquiry of the mental process of 

bringing together sensorial information, usually detached from the physical context. During the 

second part of the last century, this paradigm changed. Geographers pointed out the strong 

relationship between perception and geographic studies, because geographic space was considered 

as a mental conceptualization. Wood (1970) mentions that people’s perception of space has a 

noticeable effect on their behaviour. Following Wood’s theory, William Kirk proposed that Geography 

should be divided into two major areas: phenomenal environment and behavioural environment. For 

the latter, now known as Behavioural Geography, perception is defined as a selective gathering of 

images and ideas coming from the interaction with the environment and linked together with previous 

knowledge, memories and values (Wood, 1970).  

It is not a trivial task to define the difference between perception and cognition because both of them 

are conceptually strongly linked and is difficult to mutually exclude them. There have been some 

attempts to outline them in a clearer way. Downs and Stea (1973) expound on that both are related 

to the organization and interpretation of the information, however the difference is that perception 

is “the process that occurs because of the presence of an object, and that results in the immediate 

apprehension of that object by one or more of the senses”, while cognition is the process that happens 

in a second frame because is not linked with the immediate context. For Stea (as cited in Downs & 

Stea, 1973) the difference lies in the scale, as “cognition occurs in a spatial context when the spaces 

of interest are so extensive that they cannot be perceived of apprehended at once”, and he suggests 

that cognition is a more complex process than perception, as the last is only concerned about “briefer 

spatial perceptions”. 

In Cartography, cognition is explained under the concept of cognitive mapping that is a mental process 

that consists on “create and collect, organize, store, recall and manipulate information about the 

spatial environment” (Downs & Stea, 1977). Space perception is then understood as an encompassed 

subprocess within the cognitive mapping major process, which embraces the creation of mental 

images of a given space. The output of the cognitive mapping process is a cognitive map that includes, 

not only information about relative locations, relative distances, geometries and directions, but also 

about non-visible characteristics of features and places (Matei, Ball-Rokeach & Qiu, 2001; Golledge, 

1997; Downs & Stea, 1973).  

Kevin Lynch in his book ‘The Image of the City’ (1960) describes five basic elements of urban structure 

that constitute the base of an urban cognitive map: paths, boundaries, districts, nodes and landmarks. 

Therefore, a cognitive map of an urban environment is an inner image that comprehends the urban 

base, defined by the five basic structures, with a non-metrical arrangement but a relational one, plus 

the physical and non-physical attributes, all defined by the individual cognitive process. Downs and 



  
Chapter 2     Maps and perception of crime 

    
 

10 
 

Stea (1973) identify two types of attributes: descriptive which are “affectively neutral” and evaluative 

that are “affectively charged”. The selection and allocation of these attributes is conditioned by 

internal factors such as “beliefs, values, and attitudes” (Golledge, 1997) and external factors such as 

social responses, temporal, cultural and physical context. 

Cognitive maps are individual, not tangible spatial models; to refer to their physical depiction, the 

term cognitive representation or cognitive configuration is used. Sketch maps appear to be the most 

use of the cognitive representations, especially to collect information from individual perceptual 

knowledge and individual reliable spatial information (Blades, 1990). They have been used as an 

implement to capture people’s perception for different purposes, for instance, decision making, 

wayfinding, planning, risk management and marketing (Golledge, 1997). 

There are two different types of sketch mapping: “free recall” (Figure 2.1) and “structured sketch 

mapping” (Figure 2.2). In the first method, the map is drawn on a blank paper, in the second, the 

features are sketched over a consistent printed or digital base map (Sloan et al., 2016). 

 

 

 

Figure 2.1 Free recall sketch map that shows the way to a railway station (Blades, 1990). 

 

 

 

3Figure 2.2 Structured sketch map that depict perceived risk of flooding (O’Neill et al., 2015). 
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The analysis of structured sketch map is eased by the use of Geographic Information Systems (GIS) as 

they have a consistent special reference. Curtis, Shiau, Lowery, Sloane, Hennigan and Curtis (2014) 

present a review of twelve resent studies that integrate GIS and sketch maps, where spatial processes 

like data aggregation, patterns analysis, overlapping operations and raster analysis are performed. The 

usage of GIS for the analysis of sketch maps allows an integral study of perception (Curtis, 2012) as 

more spatial data can be incorporated in the analytical process. On the other side, the studies of the 

spatial features and phenomena which incorporates perception data can lead to a more complete 

characterization of the space and bring rounded conclusions.  

The use of sketch maps in spatial perception researches has been a common practice especially in 

crime perception studies (Curtis, 2012). In this case, sketch maps are used to capture the external 

form of people’s safeness cognitive map, which usually depicts the safe or unsafe areas based on the 

person’s insight. The most common method of data collection is to ask the survey respondents to 

identify, usually, in a printed base map (Curtis et al., 2014; Spicer, & Brantingham, 2014; Kohm, 2009; 

Matei et al., 2001), the places or areas where they think there is a higher risk of victimization. Often 

the sketch map goes with a questionnaire to characterize the drawn map or a think-aloud process is 

performed to add extra information (Lopez & Lukinbeal, 2010). Other method incorporates the use of 

digital media that allows an integral data collection as the data is recorded in situ, the volunteers are 

asked to carry a mobile device to record information while walking along an area where crime fear is 

triggered (Solymosi, Bowers and Fujiyama, 2015). In a similar way, Chataway, Hart, Coomber and Bond 

(2017) present an Ecological Momentary Assessments to collect context-dependent perception. 

The aim of gathering and analysing safeness cognitive maps is to create a spatial model of the 

“imaginable” safety qualities of the environment (Pocock, 1979). It is relevant to know the collective 

perception that the inhabitants have assented of public spaces, as having an inaccurate perception of 

safety can have an impact on people’s daily life, social behaviour and spatial dynamics. This is why 

crime perception has become an attention-grabbing area of study not only in Criminology but also in 

Geography and other Spatial Sciences.   

In the next section three major concepts in crime perception studies are explained: perception of 

crime risk, fear of crime and crime perception. The limits between them are hard to set as they are 

closely linked together. Nevertheless, there are key ideas that can help distinguish them in a clearer 

way. 

 

2.2 Crime: risk, fear and perception 

 

Crime is an aspect of social life that has been studied from different perspectives as it involves an 

assortment of social, psychological and geographical aspects. Diverse sciences have taken part in the 

identification and understanding of the factors that are involved in a criminal event. Beyond from the 

events itself, different studies have tackled their social impact. One of the main social concerns is the 

risk of becoming a victim. The feeling of insecurity is mostly triggered by the fear of crime as an 

emotional response and the crime perception as a cognitive assessment (Foster, Knuiman, Wood & 

Giles-Corti, 2013).  

Perception of crime risk and fear of crime are both related to worry and uncertainty, the difference 

between them lies on the temporality of the response. Fear of crime is an emotion shown as an 

immediate reaction in the face of a proximate threat, while the perception of crime risk is generated 
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by “distant potential harm” (Jackson & Gouseti, 2014). The perception of risk is the result of a cognitive 

process that can combine two directions of thoughts, one based on objective information and the 

other one influenced by emotions. Loewenstein, Weber, Hsee and Welch (2001) defined these two 

directions, risk as a feeling, which is a perception bias by an intuitive and emotional way completely 

disregarding the real probability of victimization, and risk as analysis, which is defined by logical and 

impartial information.  

Crime perception researches study crime risk as a feeling, the perception of risk is based then in the 

subjective probability of becoming a victim (Jackson & Gouseti, 2014) and commonly the risk has a 

negative connotation related to dangerous situations (Kemshall, 1997). Perception of crime risk is 

modelled by the envisioned vulnerability of becoming a victim of a criminal offense; it is an enduring, 

but not permanent, conception in time. 

The perception of crime risk can be altered by an internal and external stimulus in a given situation, 

triggering an immediate emotional response of fear of crime. The fear of crime is defined by 

Brantingham and Brantingham (1995) as a “condition created by a certain spatial and temporal context 

in which a person feels vulnerable to become a victim of criminal attack”. This context is not necessarily 

defined by a high crime environment, and various researches have concluded that the perceived crime 

risk and people’s fear are not related with an actual high probability of victimization (Lewis & Maxfield, 

1980), which means there are other factors that sway this type of people’s responses.  

Dorand and Burgess (2011) present a review of different theories that explain the causes that trigger 

fear of crime and having a high crime risk. The theories are grouped according to the factors that may 

explain the trigger of these emotional responses (Figure 2.3).  

 

 

 

 
 

4Figure 2.3 Theories that explain fear of crime and perception of crime risk (based on 
Dorand and Burgess, 2011). 
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The demographic theories associate previous experiences of victimization and some demographic 

characteristics with a higher crime fear, for instance, women and elder people tend to feel more 

vulnerable. The social theories relate fear and risk with the social disintegration and lack of 

organization in a community. Meanwhile, the environmental theories expound on the social and 

physical characteristics of the landscape as a factor of crime fear and perception of a higher risk of 

victimization. This categorization does not mean that the theories are mutually exclusive and although 

there are researches that support these theories, there are others that contrast them. A brief 

description of the hypothesis is presented below (see Dorand and Burgess, 2011):  

 

 

Demographic theories 

 Victimization hypothesis: people with previous experience of direct victimization tend to feel 

more vulnerable and perceive a higher level of risk (Crank et al., 2003; Mesch, 2000; Skogan & 

Maxfield, 1981). 
 

 Indirect victimization hypothesis: non-victims sense the same fear as a direct victims when they 

know about someone’s crime encounters usually through the media and interpersonal 

communication (Clark, 2003; Hanson, Smith, Kilpatrick & Freedy, 2000) 

The Media: media aggravates perceptions of risk of victimization, through different 

approaches: cultivation, substitution, resonance, social comparison and interpersonal-

diffusion (Lane and Meeker, 2003). 
 

Interpersonal communication: victims’ experience of victimization spreads through 

communication networks, non-victims increases their fear of crime and the perceived risk of 

victimization (Mawby, Brut & Hambly, 2000; Taylor and Hale, 1986). 
 

 Vulnerabilities hypothesis: the level of fear of crime varies for every sociodemographic group; 

each one believes is more vulnerable to criminal victimization, for example, women and elderly 

(Warr, 2000; Liska, Sanchirico & Reed, 1988). 

 

 

Social theories 

 Risk society hypothesis: people tend to feel in danger and threatened from unknown situations 

as result of anxiety condition; their fear is extended to other (Lianos & Douglas, 2000; Beck, 

1992). 
 

 Social disorganization hypothesis: segregation of social organization breaks communication 

channels preventing the maintenance of public order, which derives into crime and delinquency 

(Sun, Triplett & Gainey, 2004; Cochran, Bromley & Branch, 2000; Taylor & Covington, 1993).   

Subcultural diversity hypothesis: fear of crime is developed when people live close to 

someone from different culture (racial diversity), due to, their “unknown” behavior (Lane & 

Meeker, 2003). 

Social integration hypotheses: the lack of social integration, communication and support 

within a community increases the fear of crime (Crank et al., 2003; Markowitz, Bellair, Liska 

& Liu, 2001).                                                             
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Community concern hypothesis: when a community declines socially and physically, 

inhabitants and external people develop a state of caution and fear of crime (Lane & Meeker, 

2003; Covington & Taylor, 1991).   

Social change hypothesis: fear of crime results from people resents the process of social 

changes, for instance, diversification of races, declination of economy and increase of 

unemployment. Fear develops because of the changes in space (Clark, 2003; Furstenberg, 

1971). 

 

Environmental theories 

 The disorder/incivilities hypothesis: the social -drug users, gangs, beggars- and physical -

abandoned cars, damaged buildings, graffiti- characteristics of an environment have an influence 

over people’s fear of crime. Disorder and incivilities generate an image related to criminal activity 

and vandalism (Millie & Herrington, 2005; Crank et al., 2003; Tulloch, 2000; Nasar, Fisher & 

Grannis, 1993). 
 

 Threatening and safe environments theories: areas with certain characteristics, not necessarily 

disorder or incivilities, are considered apt for criminal victimization; for instance, a street with 

poor lighting, overgrown vegetation and alleyways (Cozens, 2002; Kuo & Sullivan, 2001). 
 

 Signal crimes perspectives: crime and disorder affect the people in a different way and with a 

dissimilar intensity; also each person interprets them with different connotations (Innes, Fielding 

& Langan, 2002). 

 

Perception of crime risk and fear of crime play an important role in the cognitive mapping process. As 

mentioned before, this process is about designing a mental image of the geometry and characteristics 

of the space. The perception of risk and the fear of crime define the descriptive and evaluative 

attributes (Golledge, 1997) related to safeness in our cognitive map.  

This attribution is based on the subjective probability of victimization that is associated with the 

perceived amount of criminal activity, this is known as crime perception. While, spatial crime 

perception defines the characteristics of a location in term of safeness, commonly categorized as safe 

or unsafe. Hence, perception and fear set attributes to objects and places shaping the space in a 

cognitive map as an arrangement of perceived and real spatial characteristics. 

 Brantingham and Brantingham (1981) identify four theories that explain the criminal activity based 

on environmental criminology, which theorizes about the influence of the environment on 

victimization and criminality. Spicer, Song and Brantingham (2014) took these theories and diverted 

them to explain the crime perception from a spatial point of view: 

 

Routine activity theory: it considers three elements: the victim, the offender and the location. 

During the daily activities, there are scenarios with “non-capable guardians” where the 

perceived offender can find an opportunity to victimize an individual. These scenarios are 

produced in certain routes and time of the day, which can trigger a fear feeling as a response 

to the perceived situation. 
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Rational choice theory: it lies over the supposition that people’s actions are based on a previous 

decision-making process. Under this theory, the perceived risk of victimization influence 

people’s actions; decisions are taken considering potential risk and possible consequences, but 

not always risky situations or spaces can be avoided.  

Geometry of crime: people build-up an activity space in which their daily routines and routes 

happen, as far as possible, it will correspond with an awareness space where situations and 

places of perceived high risk of victimization can be avoided.    

Crime Pattern theory: people define ‘safety templates’ to avoid victimization creating a 

cognitive map.   

 

These schemes place the perception of crime in a spatial context, they expound on how perception is 

related to decision-making, awareness space and activity spaces. This means there is an intrinsic 

relationship between perception and space. The foundations of the environmental theories explain 

how the physical context of public spaces is relevant for shaping perception of safety. Researches that 

support environmental theories have identified the level of incivility as one of the principal features 

that underpin the relation perception-space (Kohm, 2009; Lewis & Maxfield, 1980). 

Millie and Herrington (2005) recognize two aspects of incivility: disorderly physical surroundings -such 

as graffiti, abandoned buildings, litter- and disruptive social behavior –beggars, gangs, street drinkers 

and drug addicts-. This kind of physical conditions and social conducts prompts concern and fear as 

they reflect apt scenarios for criminal offenses to occur, and that the image is that people perceived, 

creating a sense of danger and thus, setting an unsafety attribute.  

Although physical attributes plays an important role in crime perception, there are also social factors 

that have an impact on it. Lora (2016) points out that safety perception is "strongly influenced by the 

affect and availability heuristics". Heuristics are mental shortcuts for decision-making based on the 

promptly available information. 

The affect heuristics are “due to proximal cues and due to feelings of trust” (Lora, 2016), they describe 

how the assignation based on emotions or attachment feelings can affect the judgment of risk. In this 

direction, Carvalho and Lewis (2003) explain that the crime perception is also shaped by how distant 

or linked people are related to security issues, although it is an aspect of social and daily life, some 

people consider them as a more salient problem than others. These problems then overshadow 

people’s daily life, generating a higher unsafe feeling. Contrary to people who feel more distant or 

detached to these problems, their reactions tend to be neutral or more objective. 

Meanwhile, the availability heuristics (Tversky and Kahneman, 1974, as cited in Jackson & Gouseti, 

2014) "predicts that the probability of an event tends to be judged by the ease with which instances of 

it can be retrieved from memory" (Jackson & Gouseti, 2014). These memories mainly referred to direct 

and indirect victimization (Figure 2.3 and the information available in the media (Lora, 2016) which 

produce a constant image of risk. Consequently, the probability of victimization tends to be perceived 

as high in such a way that increase the identification of fear spots, which are the places where people 

feel more vulnerable to criminal attacks but there is a low crime rate (Fisher & Nasar, 1995). 

It is more common then, that people tend to overestimate the crime rate or to misidentify the unsafe 

areas. However, there is also the case when people underestimate this rate and are not aware of the 

high risk of victimization. Both misconceptions can have negative outcomes as people can develop 
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cognitive maps that are far away from reality, indicating a gap between the perceived attributes and 

the actual ones. This is known as perception gap. When these attributes are related to safeness and 

crime incidents it is called the crime perception gap.      

 

2.3 The accuracy of crime perception  

 

Both social and physical environmental factors have an impact on people’s crime perception. The 

safety cognitive map is an individual spatial model in which each person attributes an area subjective 

characteristics in term of safeness. Usually, this attribution does not coincide with the actual one. It is 

frequently the case where there is a misconception of the current crime rate. This is known as crime 

perception gap and is defined as the difference between the level of insecurity that is conceived by a 

person and the actual level of insecurity based on actual crime incidents (Mohan, Twigg & Taylor, 

2011). 

The gap can be present in two ways: it is believed that the crime rate is higher than the actual rate or, 

inversely, it is thought that the crime rate is lower than the actual rate. Instead of in terms of an ordinal 

scale, the crime perception gap can also be referred to on a nominal one, by misclassifying the safe 

areas as unsafe and the unsafe areas as safe. Usually, these terms are more current in use as in this 

case, perception is a qualitative assessment rather than a quantitative one. Figure 2.4 shows this 

binary classification. 

 

 

Research of crime perception performed in different countries like the United Kingdom, Australia, 

South Africa, Colombia and the United States have identified the existence of gaps in people’s 

perceptions (Mohan et al., 2011). It is more common to find people who believe that crime rate, either 

stays more or less constant or keeps rising, even though the statistics can prove these ideas wrong  

(Millie & Herrington, 2005), than people thinking that there has been a reduction of criminal events. 

This overestimation is not only related with the number of incidents but also depend on the type of 

crime; Pfeiffer, Windzio and Kleimann (2005) found that people think that the type of crime that they 

are more vulnerable at, is the one which has increased the most. 

In spatial crime perception studies, this gap is usually distinguished by comparing safety sketch maps 

where people identify unsafe areas and maps that depict the location of crime hotspots. When 

 

5Figure 2.4 Types of crime perception accuracy based on safety attributions. 

 

Figure 2.4.  Types of crime perception accuracy based on safety attributions. 
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overlapping both, the identified areas frequently do not correspond with the hotspots. Which means, 

people tag low crime rate areas as unsafe ones, or also may happen that participants categorize unsafe 

areas as safe.  

As explained before, IU is usually related to heuristics or incivilities, some people make this type of 

misclassification in areas where they are less familiar with or where they are not related. While the IS 

happens usually in people's own neighbourhood, that can be explained by the “endowment effect” 

that consist in assigning a higher or better value to the objects we possess, than to the same objects 

that we do not own (Kahneman et al. 1990 as cited in Lora, 2016). In crime perception, this can be 

applied when people tend to characterize their neighbourhood as safe, under the assumption that 

where people belong to, exist better conditions than the surroundings. People tend to have a 

perceptual bias due to a feeling of attachment toward the own community or neighbourhood (Duffy, 

Wake, Burrows & Bremer, 2008).  

These social misperceptions can have an impact on different aspects. For the case of an IS, people are 

not aware of the high risk of victimization, thus appropriate precautions are not being taken and the 

probability of an attack increases. For the IU the impact can be on a bigger scale and its effects can 

last for a longer time, as it has repercussions on people’s lifestyle (Ardanaz, Corbacho, Ibarraran & 

Ruiz-Vega, 2013), health due to anxiety (Foster, Giles-Corti, & Knuiman, 2010), social behaviour and 

the spatial and economic dynamics (Doran & Burgess, 2012). A high crime perception can restrict the 

individual daily activity area of a person due to the avoidance of unsafe areas or streets at certain 

hours, thus people might have to change their daily routes. On those identified areas, fewer people 

would transit there, eventually forcing the relocation of shops, restaurants, or any business that could 

be affected, which will lead to a reorganization of the spatial activities.   

Narrowing the perception gap also relevant as reducing the crime rate. Some researchers have 

determined that publishing data about crime statistics can have significant effects on people’s 

perceptions (Lore, 2016). Ardanaz et al. (2013) conclude that people improve the perception of safety 

by being more positive about police effectiveness and by reducing the perceived risk of victimization, 

due to people who feel well informed tend to be more confident about their safeness (Ardanaz et al., 

2013), improving, in this sense, their quality of life.    

The aim of mapping the crime is to communicate spatial crime data in the most objective way without 

increasing, the fear of crime to the readers. The first attempts to map the crime events  were back in 

the nineteen century in France by Adriano Balbi and Andre-Michel Guerry: they mapped the incidents 

recorded from 1825 to 1827 (Weisburd & McEwen, 1998) (Figure 2.5) . While this kind of data, for 

many decades, was on the governmental domain, nowadays the philosophy of open-data have 

released it to the public. 

The communication strategies must present meaningful information with a “greater narrative-based” 

(Duffy, Wake, Burrows & Bremer, 2008) other than plain statistical data. The way it is presented can 

have a different impact on the reader; it can be used as a fear-reduction strategy, but also can have 

an inverse effect, as people can become anxious about the high crime areas shown in the map.  
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6Figure 2.5.  One of the first crime maps, by Adriano Balbi and Andre-Michel Guerry in 1829: “Statistique 
comparée de l’état de l’instruction et du nombre des crimes” (Comparative statistics of the state of 

education and the number of crimes) (Friendly, 2007). 

 
Maps are one of the most common representations to visualize crime data, but still, there is still a lack 

of studies about the impact of maps on citizen perceptions. The most representative research in this 

domain was conducted by Groff et al. (2005). Based on the experiments, where they compare the 

impact of different representation methods –tables, graduated symbol maps and density maps-, they 

conclude that “graduated symbol maps as the overall preferred method of crime information 

transmission to citizens without significantly increasing fear of crime”.  

Mapping the perception gap can also have an impact on people’s perception, but it could be more apt 

for decision making as the competent authorities would be able to identify the places where the gap 

perception is, and then develop an action plan to narrow it by informing the citizens about the current 

situation. The actions should be towards recovering the confidence of the inhabitants, not only by 

reducing the crime rate but also by increasing the feeling of safeness. 

Police agencies have always been responsible for designing strategies for the reduction of fear of 

crime (Cordner, 2010; Grabosky, 1995; Bennett, 1991). Cordner (2010) identified 12 “fear-reduction 

hypotheses” which are strategies that could work as possible solutions. These include reduction and 
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prevention of crime, policing located actions, police-citizen contact and reducing disorder. In order to 

turn these strategies into action plans, it is necessary to have a general perspective of the location of 

the crime perception gap and the factors that sway perception. The integration of spatial information 

could ease the design of strategies with defined target actions and extension. 

Therefore, understanding and mapping crime perception and its origins is the primarily needed for 

developing target strategies to narrow down the crime perception gap.  

 

2.4 Conclusion 

 

A cognitive map is an inner image that combines subjective information based on the way a person 

perceives and mentally structures the surrounding environment. The physical representation of a 

cognitive map is the sketch map. In spatial crime studies structured sketch maps are the main source 

of data collection to capture people’s insights of safety.  

People’s perception of crime can be swayed by numerous factors that have been studied and gathered 

in demographic, social and environmental theories. Some of them consider the spatial attributes as 

explanatory variables. The importance of analysing these factors is to better understand how crime 

perception works as it is not always consistent with reality. Having an inaccurate perception of crime, 

that is a disparity between perception and reality, could retract from the quality of life, change social 

behaviour and spatial dynamics. 

Therefore, it is needed to implement actions focused on increasing the accuracy of perception and 

consequently narrow the gap. Police agencies are the competent authority to develop strategies 

directed to reduce and prevent crime, but also to implement actions to reassure or make people 

aware of the current state of safety, depending of the case. 

To develop effective strategies first is needed to recognize the overall spatial context where the 

problem is. This approach is followed to expound on the case-study presented in this research. In this 

case, two components will characterize the spatial context: the factors that sway people perception 

of crime in Budapest and the spatial arrangement of the crime perception accuracy. In Chapter 4, the 

first component is addressed by exploring structured sketch maps. The second component is 

discussed in Chapter 5 by comparing the location where people identified unsafe/safe places and the 

actual unsafe/safe places. 

The methodology used in Chapters 4 and 5 is different and will be treated separately, but as the data 

used in the case-study is the same, the dataset, as well as the software used in the analysis will be 

discussed first in the next chapter. 
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Chapter 3 
 

Data description and software  

 

 

 

 
 

In this chapter, the datasets that are used in the case-study will be described, as well as the 

preprocessing and geoprocessing (section 3.1) transformations which were required to 

perform the analysis later on. These include selection, classification, aggregation, data 

correction and geocoding. Some processes are described in detail as they are relevant for 

the selected methodology. 

Additionally, the software and web application (section 3.2) that were used in this thesis are 

briefly described, including the stages in which they were executed. 
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3.1 Data: description, pre-processing and geo-processing 
 

 

The data used in this study is derived from an ongoing participatory online survey 

(http://bunmegelozes.amk.uni-obuda.hu/) conduct at a national level in Hungary by the Institute of 

Geoinformatics from the Óbuda University. The initial participants were students from the University, 

afterwards, the survey spread out by a snowball effect. The data used in this research was collected in 

2017 and is constrained to the city of Budapest. 

 

The survey consisted to draw a digital structured sketch map over a web-based map, in which the 

participant indicated the areas that he or she perceives as unsafe or safe, similarly, they marked with 

lines their daily routes. Furthermore, they were asked to give some identifying information such as their 

age, sex, postal code where they live (Figure 3.1) and the main mean of transportation they use. 
 

 
 

Table 3.1 is a summary of the structured sketch maps of the 113 participants. From the resultant digital 

sketch maps, three vector files were extracted: perceived safe areas (97 polygons) (Figure 3.2 A), daily 

routes (214 lines) (Figure 3.2 B), and perceived unsafe areas (231 polygons). The data sets were filtered 

by attributes and location. For the first type of filter, if the participants did not provide personal 

information (age and sex), their sketch maps were not considered as a quality control measure. For the 

second filter, if the polygons or lines exceeded the boundaries of Budapest, they were clipped to limit 

the analysis within the city. In total, there were 113 participants, 39 women and 74 men, between 18 

and 76 years old who drew their daily route(s) and at least one polygon.      

 

 

 

7Figure 3.1 Number of participants per district in Budapest (total number of participants = 113). 

 

Figure 3.1. Number of participants per district in Budapest (total number of participants = 113). 

 

 

Gender 
Total 

participants 
Daily    

routes 
Polygons 

Safe Unsafe 

Women 39 69 31 84 

Men 74 128 66 147 

 
1Table 3.1 Summary of the structured sketch maps by gender and sketched element. 

Gender 
Total 

participants 
Daily    

routes 
Polygons 

Safe Unsafe 

Women 39 69 31 84 

Men 74 128 66 147 
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8Figure 3.2 Examples of the structured sketch maps from the online survey. A) Perceived safe area 
sketched with a polygon. B) Daily route sketched with a line (black dotted line). 

 
Moreover, the Óbuda University provided a CSV file with 60,784 addresses of the recorded crime 

incidents in Budapest during 2017. The addresses were geocoded in QGIS using the plugin MMQGIS 

with the web service Nominatim, a search engine for OpenStreetMap data. Part of the pre-processing 

of the data was the replacement of two Hungarian characters, ő and ű, because they could not be 

recognized by the UTF-8 encoding required by Nominatim. The characters were replaced with “o” and 

“u” respectively, subsequently, five addresses that contained these characters were searched in the 

website of OpenStreetMap in order to compare the output location of the addresses that included the 

original characters and the same addresses but with the mentioned change. The result was that both 

addresses were geocoded in the same location. So the changed of characters did not affect the 

geocoding. 

 

From the data cleaning process, 1,218 records (2%) were deleted due to the lack of an address. The 

process was run with a set of 59,566 records, from which 58,379 addresses were geocoded, that equals 

to a hit rate of 98%. According to Ratcliffe (2004), a minimum geocoding hit rate (percentage of record 

successfully recorded) of 85% is needed to produce an accurate map which reflects the actual 

distribution of the criminal events. In total, there were 1,187 (2%) addresses that could not be 

geocoded, some of the reason were due to misspellings mistakes, the use of non-recognized 

abbreviations, mistaken street types or because the record was not an address but a location or the 

name of a place instead. 

 

The original dataset contained crime incidents of spatial or non-spatially-explicit nature such as fraud, 

crimes against computer system and data, health related, misuse of documents and blackmail. Thus, 

the crime data passed through another filtered process as the research is directed to the analysis of 

street crimes, which are the criminal offenses that happen in public places. The data was reduced to 

42,805 reports of 41 types of crime, which were grouped in 9 street crimes classes listed in Table 3.2. 
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Type of crime Count 

Theft 19,352 

Disturbance and vandalism 11,747 

Distribution and drug consumption 4,356 

Larceny 2,670 

Assault 2,454 

Harassment 2,074 

Rape 102 

Homicide 47 

Kidnapping 3 

 

2Table 3.2 Number of incidents per street crime type. 

 

 

The geocoded points were spatially joined to the city blocks. The blocks vector layer was extracted from 

OpenStreetMap. The streets were manually digitalized in order to assure that all the streets were 

connected, so that afterwards the line features could be transformed into polygons. The process was 

done manually due to the fact that the line vector file from OpenStreetMap contains a large variety of 

types of lines which makes the selection process difficult as one street can combine different types of 

lines. If one type is excluded, a segment of the street would be missing and consequently the shape of 

the polygon would change.     

 

The point aggregation in blocks was done due to the quality of the geocoding results. For some 

addresses the points were located in the centroid of a block, mainly when the address corresponded 

to a specific public place such as a mall, park, airport or train station. The difficulty with these points is 

that this type of places tends to be the scenario of multiple incidents. So, in the same pair of coordinates 

there could be more than one hundred points. Thus, grouping the points by block allows a 

characterization of the block in which the place is contained and not of a single point location.  

 

Addressing research objectives one and two implied some analysis processes and the datasets of the 

sketch polygons were transformed as the type of analysis required. The exploratory modelling stage 

(Objective 1) consists of the extraction of data from the structured sketch maps and their analysis. 

Meanwhile, the spatial delineation of the perception accuracy: (Objective 2) comprises the 

identification of the spatial distribution of the accuracy of perception of crime.  

 

The first objective, the exploratory modelling, involved the extraction of attributes from the sketch 

polygons in order to understand the factors that could be involved in the selection of the areas which 

the participants identified as a safe or an unsafe area. As the sizes and shapes of the polygons were 

diverse, the aim was to characterize the polygon not as a whole entity with generalized attributes but 

to capture the different attributes within the area that the polygon covered. 

 

Therefore, the drawn polygons were segmented into small analysis units. Working with the polygons 

as single samples would result in a non-precise analysis because a large area could be influenced by the 
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attributes of that sample. Thus, polygons were split into cells with a rectangular grid in which the 

centroid of each cell was obtained (Figure 3.3. A), so that each centroid could represent one data 

sample. The cells length is 45x45m, the size was selected based on the smallest drawn polygon. So 

instead of analysing 328 polygons, 68,032 cells’ centroids that were within the polygons (Figure 3.3. B) 

were explored. The centroids’ data set includes an identification number, the participant’s and 

polygon’s ID, and the type of polygon to which that centroid belongs to, either a safe or unsafe 

identified area.  

 

 
 

By dividing the polygons into smaller units, it was possible to capture the heterogeneity of the spatial 

attributes within the area limited by the sketch polygon. To assure that this method was more 

appropriate for the aim of this research, the analysis was performed considering the whole polygons 

and the segmentation of them. The results were not satisfactory for working with the whole polygon.    

 

The approach of the polygon segmentation is suitable for the analysis of sketch maps in the context of 

perception. As a sketch map is the external representation of an individual cognitive map, it has to be 

considered that each mental map has a different scale. From the sketched polygons, it can be assumed 

that the participants were working at different scales, due to, some of them visualized the problem in 

a big scale as they traced their polygons following the city blocks of the base maps, meanwhile, other 

participants saw the problem in a smaller scale, as their polygons do not have a structured shape and 

they did not followed the geometry of the city having a comparably bigger size. To dispel this 

differentiation and elude generalizations it was convenient to work with the smallest possible analysis 

unit. The purpose of segmenting the polygons was to characterize as precise as possible the sketch 

maps, due to, the polygons drawn are mainly irregular figures that cannot simply be generalized.  

 

For the second objective, the spatial delineation of the perception accuracy, the aim is to identify the 

spatial distribution of the crime perception accuracy. This will be done by comparing two datasets the 

“reference classification” and the “perceived classification” of safe and unsafe areas in Budapest. To 

perform the comparison both datasets have to be in the same spatial unit. As the reference 

classification is defined by the actual number of crime events and these were aggregated by blocks, the 

perceived classification, defined by the sketch polygons, have to be transformed also in blocks.  

 

The transformation of safe and unsafe sketch polygons into blocks was done with an intersection 

operation. The first step was to count the number of safe and unsafe polygons that intersect each block. 

        
 

9Figure 3.3 A) Segmentation of the sketch polygons with a rectangular grid and its centroid. B) 
Selection of the centroids within the polygons. 
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The second step was to label each block as safe or unsafe according to the highest percentage of 

intercepted polygons by type. Thus, the unit of both datasets, the perceived classification and reference 

classification, was set in blocks and this allow the comparison between them. 

 

3.2 Software and web application 

 

The software and web application used for the respective analyses performed in the exploratory 

modelling and the spatial delineation of the perception accuracy stage is presented below: 

 

 PostgreSQL (with PostGIS extension in QGIS) 
 

The vector files were treated as spatial data tables with the aim of performing spatial queries for 

the data extraction of the vector files. Working with SQL eases the data analysis as it enables 

relating more than two vector datasets and allows the integration of different geometries in the 

same table, which facilitates the manipulation of the data. The queries were performed with the 

open-source relational database management system, PostgreSQL with the PostGIS extension. To 

visualize the results, this database management system was attached to QGIS.  

 

 ArcMap 
 

Although working with PostGIS has many advantages, there are spatial operations that have less 

computational cost if they are performed in a GIS, due to, in a GIS a vector file contains the 

topology information which allows to perform the spatial queries in a more efficient way. ArcMap 

is the GIS used in this research. Also the maps were designed in this software, whereby, in some 

cases, some elements were modified or added using Adobe Illustrator. 

 

 GeoDA    
 

This free and open-source software was developed by the Spatial Analysis Laboratory, University 

of Illinois, and lately its development continued in the University of Chicago 

(https://geodacenter.github.io/). It was used to perform a spatial autocorrelation analysis to 

define the crime hotspots that determined the unsafe areas. This software was also used to meet 

the second objective while performing a bivariate local Moran’s I analysis.         

 

 Jupyter notebook with Python 
 

The binary logistic regression was executed in Python with the Scikit-learn machine learning library 

(https://scikit-learn.org) and the module for statistical models, StatsModels. The script was coded 

in the open-source web application Jupyter Notebook (https://jupyter.org). 

 
 

3.2 Conclusions 

 

In this chapter, the datasets were described as well as the pre-processing and geo-processing 

performed. Each stage of the analysis requires a different data transformation process according to the 

set objectives. 
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For the exploratory modelling, it is required to work with a small analysis unit that enables to capture 

the spatial heterogeneity of the perceived unsafe and safe areas. As each sketched polygons vary in 

shape and size, a single data sample for each polygon would not allow performing a detailed extraction 

of attributes. 

 

In the case of the spatial delineation of the perception accuracy, the used datasets must be in the same 

spatial analysis unit as is a comparative analysis. Thus there has to be a data consistency between the 

layers of information. Working with city blocks is a common practice in crime studies. For the aim of 

objective two, the data aggregation of the crime events in blocks is more significant than working with 

single points. Besides, the nature of the chosen type of analysis is based on the adjacency between 

spatial units. Therefore it is not possible to consider the crime events as independent observations. 

 

I am aware of the pitfalls of data aggregation and data segmentation in spatial analysis. That is why 

some data testing was done to assure the quality of the transformations performed.  The selection of 

the data transformation methods were picked after comparing the results of the analysis performed 

with different datasets. The chosen methods were more efficient or accurate for the aim of each 

objective. 

 

The described data will be the input for the analysis performed in this research. In the three 

forthcoming Chapters, the three specific objectives will be addressed. The following Chapter explains 

the exploratory modelling in which different variables are extracted from the structured sketch maps 

and explore by a regression method. 
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Chapter 4 
 

Crime perception: 
Exploratory modelling  

 
 
 
 
 
 

In this chapter the first specific objective:  

 

To analyse the location of perceived unsafe areas in relation to a) the distribution 

of crime incidents and b) people’s activity spaces. 

 

This chapter will address the first specific research objective. It is organized in three main 

sections. The first one is the methodology followed (4.1), in which the binary logistic 

regression is explained (subsection 4.1.1) as the selected method to explore the factors 

(covariates) that have an impact on the perception of crime. As in any regression method 

the covariates or independent variables have to be defined.  Four covariates were chosen 

and their values were extracted from the sketch maps. The methods used for the data 

extraction are described afterwards (subsection 4.1.2). 

The second section (4.2) covers the Exploratory Data Analysis (EDA) (subsection 4.2.1) 

performed with the values of the covariates. Based on the EDA, four hypotheses linked to 

each covariate were defined and tested with the results of the regression. The analysis is 

supported with tables, graphs and maps which ease the explanation of the variables.  The 

exploration of the output of the model and its interpretation are presented in the second 

subsection (4.2.2) of this section.  

The conclusions with respect to research objective one are addressed in the third section 

(4.3).   
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4.1 Methodology 

 

The first research objective covers the explanatory modelling stage. Its aim is to examine the impact 

that people’s activities areas (daily routes and neighbourhood) and the crime hotspots have on crime 

perception. Even though some studies have concluded that perception of safeness is not related to the 

criminal incidents, one of the specific objectives of this research is to explore these variables from a 

spatial focus. Therefore, four related variables (the distance from the sketched polygon to a) people’s 

neighbourhood, b) daily activities routes, c) high crime intensity areas and d) crime hot spots) were 

examined to find out their possible relation with the location of the areas that people perceived as 

unsafe or safe. 

The goal is to explore the impact of these four variables on the classification of the space into perceived 

safe/unsafe areas. One of the possible approaches to address it is by using a supervised classification 

machine learning method. 

Machine learning is a discipline related to Computer Science, which focuses on developing systems that 

can learn from the data and subsequently use this knowledge for future related tasks. The machine 

learning methods are divided into two major types of learning: supervised and unsupervised. In 

supervised learning, the input (𝑋) and output (𝑌) is known, the aim is to define a function 𝑓(𝑋) = 𝑌 

that relates both. The process of defining this function is done with a set of training labelled data, which 

means, that the output (𝑌 ) is known. The resultant model is used to calculate 𝑌  for forthcoming 

unlabelled data where only the input is known. Supervised learning methods are divided into two 

groups: classification and regression. The classification methods group objects or features into 

categorical classes, based on their characteristics (independent variables); meanwhile, the regression 

methods predict a numerical continuous variable.  

The unsupervised learning is used when the classes are not defined, the output (𝑌) is unknown but the 

input (𝑋) is known, so the aim is to group the sample data according to its characteristics, thus there is 

no training data needed. Which means, the learning process is done with the given data. Unsupervised 

learning methods are classified into two types: clustering and association. The clustering methods 

group objects by similarity in attributes or location and the association are rule-based methods. 

The aim of this research is to find the relation between the location of the a) people’s activities and b) 

the crime hotspots, and the location of the perceived unsafe and safe areas. Because the input and 

output are known, a supervised method was selected. The target (𝑌) variable is the centroid of the cell 

with the binary class label of “safe” or “unsafe”; thus, it is a classification problem.  The input data (𝑋) 

are calculations derived from spatial analysis between the target and the four variables mentioned 

earlier. 

There are different classification algorithms in machine learning, such as logistic regression, nearest 

neighbour, support vector machines, decision trees, random forest, and neural networks. The logistic 

regression method differentiates from the rest, as the output is not only the resultant class but also an 

expression of the relationship between the independent variable(s) and the output class. This method 

performs a classification based on a regression. It defines a classification function 𝑓 that sorts an object 

into one of the two given classes 𝑌, 𝑓(𝑋) = 𝑌 (Mello & Ponti, 2018), as 𝑌 has to be a dichotomous 

class. The process consists of evaluating the impact of a set of characteristics of the objects or events 

𝑋𝑛 on the probability of classifying them into one or other defined class. 
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Hence this method is suitable to tackle the first objective of the research, as the problem deals with 

binary classification (safe and unsafe) and the coefficients of the regression indicate the relationship of 

the explanatory variables and the dependent variable.    

Like in any regression method, there must be a set of independent variables (characteristics) to be 

evaluated and a dependent variable, in this case, a binary one. In the next sections, I explain the chosen 

method (see 4.1.1) and the selection and extraction of the independent variables and their values (see 

4.1.2). 

 

4.1.1 Binary Logistic Regression 

 

The binary logistic regression is used when the number of output classes is reduced to two. This method 

defines the relationship between a dichotomous nominal variable and one or more independent 

variables, which can be nominal, ordinal or interval. It has become one of the most frequently used 

inference methods in crime research (Weisburd & Britt, 2007), especially to identify and compare the 

effects of the extensive number of factors that influence criminal activity (Weisburd & Piquero, 2008). 

This method was chosen to define the impact that some spatial variables have in perceiving an area as 

unsafe or safe.  

Contrary to the linear regression in which 𝑌 must be a continuous value, in logistic regression instead 

of predicting 𝑌 , the predicted value is “the natural logarithm (ln) of the odds of getting 1 on the 

dependent variable” (Weisburd & Britt, 2007). Getting 1 on the dependent variable means classifying a 

feature or object in one of the two defined classes.  

An odd is the relative rate between the probability of an event to occur (success, 𝑌 = 1), related to the 

probability of not occurring (not success, 𝑌 = 0). The range of the odd value goes from 0 to +∞ as 

probability 𝑃 varies in values closer to 0 and 1. As shown in Figure 4.1, working with odds would mean 

finding a relation between variables using a non-linear function, which makes it more complex. Thus, 

the odds must be transformed into values between -∞ to +∞, similarly to the linear regression where 

the 𝑌 axis can have any number. In order to get this result, it is necessary to get the natural logarithm 

of the odd; this is called the Logit of Y or the Logit function [1].  

 

  

 

Now the values of the dependent variable 𝑌  go from -∞ to +∞, and it establishes an equality between 

the Logit function and the linear equation.  
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In order to transform these continuous values into a probability between 0 and 1, it is needed to 

calculate the cumulative logistic probability function [2]: 

 

 

The dependent variable is defined as the probability of classifying an object into a target class (𝑌 = 1), 

thus, this method constraints the dependent variable to be in the range from 0 to 1, as it is a 

probabilistic value.  

While for the linear methods the adjustment of the regression line is done by least squares, for the 

logistic regression the Maximum Likelihood Estimation (MLE) is performed to obtain the 

coefficients 𝑏𝑛. This method evaluates a group of coefficients and selects the parameters that have the 

highest probability of being the ones that could have generated the observed data. The probability of 

the coefficients or the model to have generated an observed data is known as the likelihood (𝐿). The 

probabilities goes from 0 to 1, but the likelihood values are so small that they are calculated by a natural 

logarithms. However, because the logarithm of a number smaller than 1 is negative, the likelihood is 

then calculated by  −2𝐿𝑛(𝐿) . The likelihood of the model is obtained by the ratio between the 

likelihood of the saturated model (the model with all the variables) and the base model, which only 

considers the constant 𝑏0.  

The coefficients are interpreted by their exponent 𝑒𝑏.  Contrary to linear regression the effect of 𝑏𝑛 is 

not a constant. 

 

4.1.2. Covariates 
 

As in any other regression, binary logistic regression requires to be defined the dependent and the 

explanatory variables aka covariates. For the aim of this research, the dependent variable of analysis is 

whether the areas are perceived as unsafe or safe; meanwhile, the explanatory variables are different 

measurements extracted from the participatory data by spatial queries. The selected covariates were 

chosen based on the available datasets and the theories that try to explain fear of crime and crime 

perception. 

 

10Figure 4.1 Graphic representation of the regression functions. 
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The data sets consist of four vector files: a) the sketched polygons of the perceived safe areas, b) the 

sketched polygons of the perceived unsafe areas, c) the participants’ daily routes and d) the crime 

incidents. The sketch polygons were divided into small cells to work with the minimal spatial unit. Each 

cell centroid represents a data sample, from which four distance-based measurements were calculated 

from the centroid of each cell to: a) the participant's neighbourhood (postal code area), b) his daily 

route, c) a crime hotspot and d) high crime intensity areas. These four measurements are the chosen 

independent variables, which are described hereunder:  

 

 

A. Neighbourhood 
 

The purpose of this variable is to explore whether the people tend to perceive their own 

neighbourhood and the surrounding area as safe or unsafe. The participants’ neighbourhood was 

defined by the area of the postal code that each of them reported in the online survey. The postal code 

areas were download from OpenStreetMap.  

To explore this relation, it was measured the distance between the centroid of the cells within the 

sketched polygon and the nearest point of the respective participant’s postal code area. Thus, if the 

distance is zero, this would mean that the target centroid is located inside the participant’s 

neighbourhood. 

 

B. Daily route 
 

This variable describes if people follow “safe routes” traced in their cognitive maps to avoid high crime 

perceived areas. Based on the “Geometry of crime” and “Crime Pattern theory”, diverted by Spicer, 

Song and Brantingham (2014), people would design daily routes through which they can stay off 

situations and places where they perceive as unsafe. 

Each cell’s centroid within a sketch polygon was linked with the route or routes drawn by the same 

participant who draw that polygon. The minimum distance between the cell and the lines(s) was 

measured. From all the relations, the shortest distance was selected.  

Table 4.1 shows an example of the query result: the cell with the id 71,410 belongs to the polygon 

4,258, sketched by the participant 230. This participant draw four daily routes (87, 88, 89 and 90). The 

minimum distance between the centroid of the cell and the four lines was calculated and then the 

closest line was selected. In this example, the closest line was number 90 with a distance of 317.83 

meters.  

Figure 4.2 shows the graphic representation of this example; the grey points are all the cells’ centroids 

within the polygon 4,258, the big black point is the centroid of cell 72,410. The coloured lines are the 

routes participant 230 traced while the dotted black lines are the distances measured to the closest 

point of each line, which are shown with the black crosses.     

The corresponding shortest distance between the centroid and the daily route line was the second 

independent variable. 
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C. Hotspots,  

 

The aim of this covariate is to explore how the location of crime hotspots is related to the location of 

the areas people perceive as unsafe. Some researchers have concluded that the actual level of crime is 

slightly connected to safeness perception, as there are other factors that could have more impact on 

this kind of perception. One of the objectives of this research is to explore the spatial relations of the 

location of actual hotspots and perceived unsafe/safe areas by measuring the distance between these 

two places. 

A hotspot should not only be defined by a high amount of events happening in a location but also when 

the “local structure is sufficiently unusual” (Ord & Getis, 1995). The local spatial autocorrelation 

statistics indicate where unexpected values are located in comparison with a random distribution. 

There are three main local measures of spatial autocorrelation: local Moran’s I, local Geary, Getis-Ord 

statistics (Table 4.2). 

Cell ID User ID Type Polygon ID Line ID Distance 

72 410 230 unsafe 4 258 87 422.81 
72 410 230 unsafe 4 258 88 439.88 
72 410 230 unsafe 4 258 89 654.12 
72 410 230 unsafe 4 258 90 317.83 

 

72 410 230 unsafe 4 258 90 317.83 

 
3Table 4.1 Extract of a spatial query result to select the closest daily route from the centroid 

of each grid cell. 
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11Figure 4.2 Distances measured (dotted lines) from the centroid of the cell 72,410 (black point) 
to the nearest point of the correspondent sketched daily routes (solid lines). 
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The local Moran’s Index is a correlation measurement estimated for each data observation. The 

advantage of using Moran’s I is that it estimates the four types of local association: two spatial clusters 

and two spatial outliers. The clusters are identified when the attribute value of the observed feature is 

significantly similar (positive autocorrelation), high or low from the mean (high-high, low-low), as its 

neighbours. The spatial outliers are those features which attribute values is significantly different 

(negative autocorrelation) from the mean than its neighbours (high-low, low-high).  The high-high, low-

low, high-low, low-high indicate the kind of cluster of outlier, the first attribute refers to the target 

feature, and the second attribute to the value of the neighbouring features. For instance, the high-low 

class means that the target feature have a higher value than the expected mean, while its neighbours 

have a lover value than the expected mean.  

The Geary’s statistic measures the square difference in relation to the mean between the value of the 

target feature and the one of its neighbours, it is a distance in attribute space. If the result is a large 

square difference indicates negative spatial autocorrelation or dissimilarity, meanwhile small square 

differences means positive spatial autocorrelation or similarity. The Geary’s statistic only shows if the 

association is positive or negative but it does not indicate whether the relation is high-high or low-low 

in the case of similarity, or high-low or low-high for dissimilarity as is a square difference and the sign 

is lost.  

The Getis-Ord statistic is based on a point pattern logic. This statistic counts the features’ value within 

an area and compares it, as in a ratio, with the addition of all the features in the dataset. If this ratio is 

higher than it would be on the randomness, it is identified as a cluster of high values, if it is lower is a 

cluster of low values. The advantage is that the interpretation is really simple as the hotspots and 

coldspots are given by positive and negative G-statistic. The disadvantage is that this method does not 

detect spatial outliers. 

In crime studies, the detection of hotspots must consider both clusters and spatial outliers, as both 

show the location of unusual values in comparison with the ones that a random distribution would 

have. Thus, the local Moran’s I was selected to perform the hotspot analysis. This was executed in the 

Geoda software as the outputs of the analysis are a Moran’s I scatter plot, a significance map and a 

cluster map that is the combination of the Moran’s I scatter plot and the significance map. The cluster 

map show the four types of local association. 

Figure 4.3  and 4.4 depict the results of the local spatial autocorrelation analysis performed with the 

Univariate Local Moran’s I method with the total count of crimes per block (Figure 4.3) and with the 

crime density value per block (Figure 4.4). 
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12Figure 4.3 Local spatial autocorrelation analysis (Moran’s I) performed in GeoDA with the total 
count of crime incidents per block.  A) Significant local statistics per block. B) Spatial association 

per block (clusters and outliers). 
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13Figure 4.4 Local spatial autocorrelation analysis (Moran’s I) performed in GeoDA with the 
density value of crime incidents per 100 m2 per block.  A) Significant local statistics per 

block. B) Spatial association per block (clusters and outliers). 
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The Moran’s I statistic was obtained with 999 permutations and a queen contiguity neighborhood 

relation, which means that the blocks evaluated were the target block in relation with the surrounding 

blocks with common sides and vertices. The blocks without surrounding blocks are labeled as 

“neighborless”. 

The output significance map (Figures 4.3. A and 4.4 A) shows the significance values per block given 

by the pseudo p-values. The maps show the blocks wich values that are not significant and those which 

are. The latter are divided into classes according to the the significance pseudo p-values which are 

related to how extreme the observed value was in comparison with the referenced values (conditional 

permutation). The lower the p-value, the more extreme the observation is and thus the most 

significant. That is why in the maps (Figures 4.3. A and 4.4 A) the smaller p-values are shown in a darker 

tint as they are more significant. 

The cluster map (Figures 4.3. B and 4.4 B) shows the location of the clusters (hotspots and coldspots) 

and the outliers.  

In order to define the third covariate for the binary logistic regression that is the distance between 

the cells’ centroid within each sketch polygon and the closest hotspot, there were considered as 

hotspots the “high-high” clusters and the “high-low” outliers. The selected features with a pseudo p-

value equal or smaller than 0.05 were selected, as the features with p-value=0.001 mostly correspond 

with the core block of each cluster, meanwhile, those with 0.05 and 0.01 p-value approximately 

correspond with the neighbours of the cores.   

 

D. High crime intensity area 

 

For the fourth covariate the distance between each cells’ centroids and the closest high crime intensity 

area was measured. The high crime intensity areas were identified by the total count of crime per 

block. In order to select the range of values that would define the most intense areas. The four blocks 

with the highest total count of incidents that are within the range of 304 to 614. This covariate will 

allowed us to explore whether the people is aware of this most significant hotspots or their crime 

perception is more focused on the other hotspots, perhaps those which are located closer to their 

neighbourhood or daily routes. 

 

4.2 Results 

 

The analysis was performed with the data obtained from a participatory online survey where the 

participants identified the areas that they perceive as unsafe and safe in Budapest. The resultant 

polygons were segmented into cells of 45x45 meters, each cell’s centroid was considered a data 

sample. Four Euclidean distances where measured from each centroid: a) to the participant’s 

neighbourhood, b) to the participant’s daily route, c) to the closest crime hotspot and d) to the closest 

high crime intensity area. These values were analysed as covariates with a binary logistic regression 

to get the impact of each distance on the location of the areas that the participants perceive as safe 

and unsafe.  

In the next two sections the results of the performed analysis are described. The first subsection 

(4.2.1) comprises the result of a brief Exploratory Data Analysis (EDA) performed with the results of 
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the four explored covariates in order to better understand the resultant regression model. The 

interpretation of the output coefficients will be presented in subsection 4.2.2. 

 

4.2.1. Exploratory data analysis (EDA) 

 

The first tested variable was the distance between the perceived unsafe/safe area and the 

participants’ neighbourhood, in order to explore how the people tend to perceive their own 

neighbourhood and its surrounding area. Figure 4.5 shows two cumulative relative frequency plots 

with the distance between each sketched polygon (centroids) and the respective participant’s 

neighborhood (nearest point). The light blue line depicts the distances to safe areas, and the dark blue 

line to unsafe areas. The points were grouped in classes of every 200 meters.  

From the 231 unsafe sketched polygons, 41 (17.7%) have at least 50% of their area within the 

respective participant’s neighborhood, meanwhile, from the 97 safe areas, 13 (13.4%) presented this 

characteristic. Thus, some participants defined some areas of their own neighborhood as not safe and 

others as safe. 

 

 
 

Without considering the points that were within the neighborhood area (zero kilometers), the 

minimum distance between a participant’s neighborhood and a perceived unsafe area, was less than 

one meter and the maximum 9.3 km. Meanwhile, the shortest distance to a perceived safe area was 

5 m and the longest 8.7 km. 

50% of the centroids within an identified unsafe areas are less than 1 km away from the participants’ 

neighborhood, meanwhile, half of the centroids of the safe areas are less than 400 m away. In general, 

the participants identified safe areas closer to their neighborhood.  

 

                                                  To perceived unsafe areas                          To perceived safe areas  
 

 

14Figure 4.5 Cumulative relative frequencies of the measured distances (km) from each cell’s centroid 
within a participant’s sketch polygon and the nearest point to the participant’s neighbourhood. 

 

 

                                                  To perceived unsafe areas                          To perceived safe areas  
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The second chosen variable was the minimum distance between the perceived unsafe/safe area and 

the participants’ daily route, the aim of it is to identify the impact that the crime perception has on 

the daily navigation of people. The Geometry of Crime and Crime Pattern theories explain how people 

create a “safety spatial templates” in their cognitive maps to locate awareness space where the crime 

rate is perceived as high, therefore people would try to avoid it (Spicer et al., 2014).  

Figure 4.6 shows a cumulative relative frequency graph with the distances from participants’ daily 

routes to the location of their sketched polygons. It can be observed that around 38% of centroids 

within sketched safe area and around 13% centroids within unsafe areas were located less than 200 

m away of the corresponding daily route. The graph shows that more participants identified unsafe 

areas further away from their daily routes.  

The minimum distances to safe areas goes from less than one meter to 4.4 km, while to unsafe areas 

the longest minimum distance was 7.4 km. Participants identifies unsafe areas further away from their 

daily routes, which could be related to the ‘safety spatial templates’ theory. 50% of the participants 

sketched safe areas in a distance no longer than 200 m, meanwhile, the unsafe areas were identified 

in a distance up to 1.2 km by 50% of the participants.  

 

 

The third variable that was explored is the distance from a crime hotspot to a perceived safe/unsafe 

area. The hotspots were identified based on the Local Moran’s Index of each block, the blocks 

classified as cluster or outliers with a pseudo p-value equal or smaller than 0.5 were considered. The 

distance was measured between each cell’s centroid and the nearest point of the closest block labeled 

as a hotspot.  

The types of hotspots were analyzed, the first one based on the density values (number of crimes per 

100m2) and the second considering the total count of incidents per block. 

 

                                                  To perceived unsafe areas                          To perceived safe areas  

 
 

15Figure 4.6 Cumulative relative frequencies of the measured distances (km) from each cell’s centroid 
within a participant’s sketch polygon and the nearest point to the participant’s daily route(s). 

 

                                                  To perceived unsafe areas                          To perceived safe areas  

 
Figure 4.6. Cumulative relative frequencies of the measured distances (km) from each cell’s centroid 

within a participant’s sketch polygon and the nearest point to the participant’s daily route(s). 
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Figure 4.7 shows the cumulative relative frequencies of the distances measured in kilometers from 

each cell’s centroid within a safe and unsafe sketch polygon and the closest block identified as 

hotspots defined by the total count of incidents. The minimum distance from the identified safe areas 

ranges from less than 0.02 m up to 998 m, meanwhile, from the unsafe areas, they range from less 

than 0.02 m to 2.73 km.  

For 122 (52.8%) of the sketched unsafe areas at least 50% of their area is within a crime hotspot, and 

for 40 (17.3%) out of them, the entire polygon is contained by a hotspot block. For 62 (63.9%) of the 

sketched safe areas, at least 50% of their area overlaps with crime hotspots and 10 (10.3%) are 

completely within a hotspot. This finding is a first indication of the crime perception gap that is further 

modelled and quantified in the next sections. 

 

 

Figure 4.7 is comparable to Figure 4.8, but Figure 4.8 shows the distance to closes hotspot defined by 

the crime density per block, it shows that the values of minimum distances measured to a perceived 

safe area range from 0.05 m to 2.13 km, and for unsafe areas from 0.14 m to almost 2.82 km.  

For 77 (33.3%) of the total perceived unsafe areas more than 50% of the area is located inside a 

hotspot, and for 44 (19%) the area is completely contained by a hotspot. From the sketched safe areas, 

68 (70%) of them have at least 50% of their surface laying inside a hotspot and 18 (18.5%) are 

completely within one.  

The variation of distance could be explained by the difference of the spatial distribution of the two 

types of hotspots identified. This can be seen by comparing the maps shown in Figure 4.3 B and 4.4 B: 

the hotspots by total count are more scattered than the hotspots by crime density, which are gathered 

in the center of the city. Thus, the distances are shorter to the nearest hotspots by total count as they 

are located in distributed parts of the city. 

 

 

                                                  To perceived unsafe areas                          To perceived safe areas  

  
16Figure 4.7 Cumulative relative frequencies of the distances measured from each cell’s centroid within a 

sketch polygon and the closest block identified as a hotspots defined by the total count of incidents. 

 

                                                  To perceived unsafe areas                          To perceived safe areas  

 
Figure 4.7.  Cumulative relative frequencies of the distances measured from each cell’s centroid within a 

sketch polygon and the closest block identified as a hotspots defined by the total count of incidents. 
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The fourth tested variable was the distance from the cell’s centroid within the sketched polygons and 

the nearest high crime intensity areas (HCIAs), defined by the four blocks with the highest number of 

incidents, that are located either in the city centre or in an adjacent urban residential area. Figure 4.9 

shows the distance from the centroids within an unsafe and safe perceived area to the closest HCIA. 

 

 
The distances from perceived safe areas were in a range of 0.28 m and the maximum of 13.7 km. 

Meanwhile from perceived unsafe areas the distances went from 3.2 m to 13.6 km. Figure 4.9 show 

that a higher percentage of the centroids within safe polygons were located closer to a HCIA than 

centroids within unsafe perceived areas. For instance, 30% of the centroids from safe polygons were 

 

                                                  To perceived unsafe areas                          To perceived safe areas  

 
17Figure 4.8 Cumulative relative frequencies of the distances measured from each cell’s centroid within a 

sketch polygon and the closest block identified as a hotspots defined by the density values per block. 

                                                   

 
Figure 4.8. Cumulative relative frequencies of the distances measured from each cell’s centroid within a 

sketch polygon and the closest block identified as a hotspots defined by the density values per block. 

 

 

                                                  To perceived unsafe areas                          To perceived safe areas  

 
Figure 4.8. Cumulative relative frequencies of the distances measured from each cell’s centroid within a 

sketch polygon and the closest block identified as a hotspots defined by the density values per block. 

 

 

 

                                                  To perceived unsafe areas                          To perceived safe areas  

 
18Figure 4.9 Cumulative relative frequencies of the distances measured from each cell’s centroid within a 

sketch polygon and the closest block identified as a high crime intensity area (HCIA). 

                                                   

 
Figure 4.9. Cumulative relative frequencies of the distances measured from each cell’s centroid 

within a sketch polygon and the closest block identified as a high crime intensity area (HCIA) 
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located less than one kilometre away from the closest HCIA, and only 9% of the centroids from unsafe 

polygons.   

This means that people perceived a higher percentage of safe areas around the HCIAs. The could be 

explain by the high percentage of participants that live in the surrounding areas where the HCIAs are 

located, and according to Figure 4.5 participants In general identified safe areas closer to their 

neighbourhood. 

 

The preliminary conclusions, based on the EDA of each covariate, are: 

 The participants identified safe areas near to their neighbourhood. 

 The participants identified unsafe areas further away from their daily routes. 

 Participants perceived safe areas near to the hotspots. 

 More participants identified safe areas closer to the HCIAs than unsafe areas.  

Based on these results, there is evidence of an inaccurate perception of crime among the participants 

that led in the formulation of two hypotheses.   

Hypothesis 1: the likelihood of people perceiving an area as unsafe increases when the target area 

is far away from their neighbourhood and their daily routes. 

This hypothesis is tested in subsection 4.2.2 

Hypothesis 2: People’s misconception of crime reality involves both the overestimation of safe 

areas (inaccurate perception of safe areas- IU) and the underestimation of unsafe areas 

(inaccurate perception of safe areas -IS).  

This hypothesis is tested in Chapter 5.  

 

  

4.2.2. Modelling 
 

The preliminary conclusions presented above are based on the visual data exploration of the chosen 

covariates. The next step was to perform a binary regression analysis to define the quantitative impact 

of the four covariates on people’s safeness perception. The 68,032 samples (cells’ centroids within 

the sketched polygons) of the dataset were divided 80% for training data and 20% for testing. 

The personal data provided by the participants (age, sex and main mean of transportation) was 

explored in the binary regression analysis, but none of these three variables have a significant impact 

on crime perception. The participants’ mean of transportation had a p-value higher than 0.05 which 

means they were not significant, meanwhile, the age and the sex only explained around 2% of the 

variability in likelihood of perceiving an area as unsafe. As these covariates did not explain much of 

the differences of the likelihood and as the aim is to explore the spatial variables, age and sex were 

not considered for the final model. 

While performing the analysis and choosing the most suitable covariates for the model, the results 

attest that measuring the distance between the sketched polygons to the block classified as a cluster 

hotspot and to those classified as an outlier hotspot increased the R2 of the regression than grouping 

both clusters and outliers as hotspots and measure the distance to the closest one. To consider two 

different covariates rather than one, explained a higher percentage of the variability in 𝑌, which at the 

same time increased the accuracy values of the final model. Thus, the five covariates were evaluated, 

Table 4.3 shows the results of the logistic regression. 



      
Chapter 4     Crime perception: exploratory modelling 

   
 

42 
 

 

The resultant regression model is represented in equation 3. 

 

The interpretation of the coefficients differs from a linear regression method, in multivariate binary 

logistic regression the coefficients represent the “estimated change in the logarithm of the odds of 

𝑌 = 1 occurring when all other independent variables are held as constant” (Weisburd & Britt, 2007). 

For this model  𝑌 = 1 means classifying an area as unsafe, therefore the coefficients are interpreted 

over this variable.  

The p-values indicate that the five variables are related to the classification of unsafe areas. The 

resulting coefficients are explained in terms of their odds ration which is usually expressed by the 

exponent of 𝑏, 𝑒𝑏 (Table 4.4), “the odds ratio represents the impact of a one-unit change in 𝑋 on the 

ratio of the probability of an event occurring to the probability of the event not occurring” (Weisburd 

& Britt, 2007). When the odds ratio is greater than 1 it means that the odds of getting 𝑌 = 1 increases 

when the 𝑋 increases, with values less than 1 the odds of getting 𝑌 = 1 decreases when 𝑋 decreases. 

 

  

Covariate Coefficients 
Standard 

error 
z P>|z| [0.025   0.975] 

Distance to:      

Neighbourhood 0.0002 8.28 e-05 29.284 0.000 0.0002 0.0003 

Daily route 0.0010 1.93 e-05 53.569 0.000 0.001 0.0011 

Cluster hotspot 0.0007 1.93 e-05 35.643 0.000 0.0006 0.0007 

Outlier hotspot 0.0009  1.79e-05 52.384 0.000 0.0009 0.0010 

High crime 
intensity areas 

0.0001 6.55 e-06 12.625 0.000 0.0001 0.0001 

Constant  -3.1573        Pseudo R2   0.312          Log-Likelihood  -25,792          Log-Null  -37,466 
 

5Table 4.3 Result of the binary logistic regression. 
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            𝑋𝑏 =  −3.1573 + 0.0002𝑋1 + 0.001𝑋2 + 0.0007𝑋3 + 0.0009𝑋4 + 0.0002𝑋5               [3]                              
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Explanatory variable Coefficient 𝑒𝑏 

Distance to:   

Neighbourhood 0.0002 1.0002 

Daily route 0.0010 1.0010 

Cluster hotspot 0.0007 1.0007 

Outlier hotspot 0.0009 1.0009 

High crime intensity areas (HCIA) 0.0001 1.0001 

 

6Table 4.4 Exponents eb of the resulting coefficients. 
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Due to the fact that the odds ratio is not a linear function of the coefficients, it is necessary to estimate 

the coefficients with the specific number of units 𝑋 and then get the exponential of the coefficient. In 

this case, the covariates 𝑋  were estimated in meters (distances measured) and, therefore, the 

likelihood is given in reference to one meter distance. 

In order to make the interpretation of the resultant coefficients more significant, the independent 

variable (i.e. the distance in meters) would be transformed into the number of blocks. Thus, the 

likelihood of perceiving an unsafe area would be given according to the number of blocks that we 

move far away from the target locations (in this case, the participant’s neighbourhood and daily route, 

a crime hotspot and the HCIA.)    

Considering the average block size in Budapest (Atlas of Urban Expansion, 2016) of 5.3 ha or 0.053 

km2. it can be estimated that the average length of a block is 230 meters. Figure 4.10 shows how the 

likelihood of perceiving an area as unsafe changes while moving away from the people’s 

neighbourhood, daily route, a crime hot spot and high crime intensity areas. 

 

 

 

The results of the interpretation of the coefficients show that the likelihood of perceiving an unsafe 

area increases when moving away from the five selected referenced locations. As shown in Figure 

4.10, the increment of the likelihood value is not linear. For the covariates daily route, cluster hotspot 

and outlier hotspot the gradient changes faster than for neighbourhood and high crime intensity 

areas.    

The likelihood of perceiving an unsafe area highly increases while moving away from the people’s daily 

route. This result can be linked to Figure 4.6 in which it is visible how people defined unsafe areas at 

longer distances than safe areas. Also the likelihood increases with increasing distances to peoples’ 

 
 

19Figure 4.10 Exponents of the coefficients eb  obtained for different ranges of distances or 
number of blocks from the target locations. 
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neighbourhoods. This result concurs with Figure 4.5 in which it is visible how participants defined safe 

areas closer to their neighbourhoods. This confirms hypothesis 1, the likelihood of people perceiving 

an area as unsafe increases when the target area is far away from their neighbourhood and their daily 

routes. 

In the case of the high crime intensity areas the variation of the likelihood over distance presents a 

smooth increase. The increment of the likelihood is consistent with the fact that people identified 

unsafe areas 14 km away from this zone of crime rates. 

For both types of hotspots the likelihood increases more or less in the same proportion considering 

them as two separate variables explained a greater percentage of the variation of the likelihood than 

defining the model with a single hostpot variable combining both types. This result is consistent with 

the EDA. Based on the minimum distance between perceived unsafe and safe areas and a hotspot it 

indicated that the people perceived unsafe areas further away from a hotspot than from safe areas, 

Figure 4.7 shows the wide differences in distances from a safe and unsafe perceived area: this means 

people perceived safe areas closest to a hotspot.    

The results from the regression model are consistent with the preliminary conclusion presented from 

the EDA. The results of the covariates neighbourhood and daily routes can be explained by the     

“geometry of crime” and “crime pattern” theories (see subsection 2.2). Meanwhile, the results of the 

covariates hotspots and high crime intensity areas are conclusive for inaccurate crime perception.   

 

4.3 Conclusions 

 

In this chapter, the methodology and results of dealing with the first specific objective which consisted 

in analysing the location of perceived unsafe areas in relation to a) the distribution of crime incidents 

and b) people’s activity spaces were presented. The methodology was divided into two parts. The first 

one consisted of extracting spatial variables from the sketch maps and the second one involved the 

exploration of those variables with a binary logistic regression. The aim was to explore whether those 

variables are related to the perception of crime.   

Subsection 4.2.1 focused on the EDA of the extracted variables, the conclusions for the four variables 

are: 

 The participants identified safe areas closer to their neighbourhood. This can be explained by 

the “endowment effect” as described by Kahneman et al. (as cited in Lora, 2016). In the bases 

of the study of crime perception it can be applied as people tend to characterize their 

neighbourhood as safe, under the assumption that where people belong to, better conditions 

exist than in the surroundings. People tend to have a perceptual bias due to a feeling of 

attachment towards their own community or neighbourhood.   
 

 A higher percentage of participants identified unsafe areas further away from their daily 

routes. This result endorses the “geometry of crime” and “crime pattern” theories which refer 

to awareness space and safety templates that people tend to trace in their cognitive maps in 

order to avoid situations and places that are perceived as having a high risk of victimization. 
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 Participants identified more safe areas than unsafe ones closer to the blocks categorised as 

hotspots (by total count of crime incidents per block and crime density per block). This 

confirms that the participants, in general, have an inaccurate perception of crime. 
 

 People perceived a higher percentage of safe areas around the HCIAs. An explanation can be 

that people identified also unsafe areas around the places they are familiar with. 

 

Based on this conclusions, two hypothesis were formulated. The outputs from the developed model 

in section 4.2.2 confirmed the first of these two hypothesis: the likelihood of people perceiving an area 

as unsafe increases when the target area is far away from their neighbourhood and their daily routes.   

The quantitative exploration of the structured sketch maps makes their analysis with statistical and 

special methods possible. The data extraction and exploration enabled to conclude that the location 

of the neighbourhoods and the people’s daily routes play a role in the spatial perception of crime. 

And, therefore, in order to narrow the crime perception gap, it is needed to consider these two factors 

in the design of strategies. 

Once the factors that sway crime perception are identified and so the presence of perception gaps, 

the next step is to locate the places where people have an inaccurate perception of safety. For the 

aim of this research, an area is classified as safe or unsafe only based on the number of crime incidents 

reported in that area, due to the limited information available. 

In the next chapter the methodology, results and conclusions of objective two (determining the level 

of accuracy of people’s crime perception and its spatial distribution) will be presented. 
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Chapter 5 
 
 

Crime perception accuracy: 
Spatial delineation  

  

 

 

 

 

 

 

In this chapter the second specific research objective will be addressed:  

 

To determine and explore the accuracy of people’s crime perception 

and to map its spatial distribution. 

 

The methodology, results and conclusions of dealing with this second objective will be 

presented, each of them will be discussed in a separate sections. The methodology (section 

5.1) is divided into two parts. In the first one, the spatial distribution of the accurately and 

inaccurately perceived safe and unsafe areas will be determined, as well as the level of 

accuracy in each area. In the second part, the Bivariate Local Moran’s I statistic will be 

explained in order to perform a spatial bivariate analysis of which the output could explain 

the locations of perception gaps. 

In the second section 5.2, the results of the analysis performed will be presented. The 

outputs of the spatial distribution of the perception’s accuracy and the bivariate analysis 

are presented in a series of maps which are described and interpreted.  

The third part of this chapter (section 5.3) contains the conclusions related to the second 

objective. 
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5.1 Methodology 

 

The aim is to perform a quantitative analysis of the sketched maps in order to define the spatial 

distribution of the perception gap and determine the accuracy level. The data description presented 

in the explanatory model showed evidence of a misperception of the crime rate. Figure 4.7 shows that 

some participants identified safe areas within a crime hotspot and some others marked unsafe areas 

more than one kilometre away from a hotspot, which indicates that there is an inaccuracy in the 

perception of low crime or high crime. 

The methodology to address the second research objective is divided into two parts. The first one 

consists of defining the spatial distribution of the level of crime perception accuracy by comparing the 

class (safe/unsafe) to which each block belongs according to the perceived classification and the 

reference classification based on actual crime data. The perceived classification is defined by counting 

the sketch maps by type (safe/unsafe) that overlap within one block. Meanwhile, the reference 

classification of the blocks was defined by crime hotspots based on total count of incidents. Thus, if a 

block was labelled as a hotspot then it belongs to the unsafe class, and if it was not, then it was 

categorized as safe. 

   

In the second part a bivariate spatial autocorrelation analysis is proposed as a method to explore the 

spatial relationship between two variables. In this case the inaccurate perception and the number of 

crime incidents. 

 

5.1.1 Types and level of crime perception accuracy  

 

City blocks are the spatial analysis unit that has been employed in this stage of the research. In order 

to determine the spatial distribution of the crime perception accuracy two variables will have to be 

compared: the “perceived” and the “reference” safe/unsafe areas. So, the blocks were classified as 

safe or unsafe based on the perception of people and based on the actual number of crimes per block. 

These two classifications were compared in order to check whether the block was correctly classified 

or not. 

The “reference classification” of the blocks was done according to the crime hotspots. In the previous 

chapter, one of the explored covariates was the distance between a sketch polygon and the closest 

hotspot. According to the regression analysis that was executed, the hotspots as defined by the count 

of incidents per block explained a higher percentage of the likelihood of perceiving an area as unsafe, 

than the hotspots that were defined by the crime density per block. Therefore, in this stage of the 

research the hotspots identified by count of incidents formed the basis of the “reference 

classification”. If a block is a hotspot then it belongs to the “reference unsafe class”, if the block is not 

a hotspot, then it belongs to the “reference safe class”.  

The “perceived classification” of the blocks was based on the structured sketch maps. The first step 

was to count per type (safe/unsafe) the number of participants who sketched a polygon that has at 

least one cell’s centroid within a block. Then, the percentage of participants who classified the block 

as unsafe from the total number of participants who sketched on that block was calculated. Obviously, 

the result ranged from 0 to 100, where 100 indicates that all participants agreed on classifying the 

block as unsafe and zero indicates that everybody agreed on categorizing the block as safe. 50 
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Indicates that the same number of persons identified the block as safe or as unsafe. Thus, when the 

percentage was higher than 50 the block was labelled as “perceived unsafe”, when it was smaller than 

50 it was labelled as “perceived safe”, and when the percentage was 50 the block was “undefined”.  

Table 5.1 is an extraction of the blocks’ attribute table to exemplify the way the blocks were classified 

based on the participants’ perception: 

 

 

Figure 5.1 shows a scatter plot of the percentage of participants per block who identified it as unsafe 

and its corresponding number of crime incidents; each point represents a block. This plot shows the 

presence of a crime perception gap in the study area; as three of the four blocks with the highest 

amount of crime incidents were identified as safe areas by the majority of participants who sketched 

over those blocks. Contrary, some blocks were classified as unsafe where there were no reported 

incidents. On the other hand, there are also blocks that people are aware of the high and low crime 

rate. 

 

 

Thus, the blocks vector file contains, among other attributes, the values of the perceived and the 

reference classification. Both values were compared and the blocks were classified into one of the 

four types of crime perception accuracy: accurate perception of safe (AS) or unsafe areas (AU) and 

inaccurate perception of safe (IS) or unsafe areas (IU) (Figure 2.4).  

Block 
ID 

Hotspot 

Participants who classified 
the block by type Total % Unsafe 

Perceived 
Class 

Safe Unsafe 

1 no 13 6 19 31.5 safe 

2 yes 15 36 51 70.6 unsafe 

3 yes 3 3 6 50 undefined 

 
7Table 5.1 Example of the block dataset including the “perceived classification”. 

 

 

Block 
ID 

Hotspot 

Participants who classified 
the block by type Total % Unsafe 

Perceived 
Class 

Safe Unsafe 

1 no 13 6 19 31.5 safe 

2 yes 15 36 51 70.6 unsafe 

3 yes 3 3 6 50 undefined 

 
Table 5.1. Example of the block dataset including the “perceived classification”. 

  

 

 

Block 
ID 

Hotspot 

Participants who classified 
the block by type Total % Unsafe 

Perceived 
Class 

Safe Unsafe 

1 no 13 6 19 31.5 safe 

2 yes 15 36 51 70.6 unsafe 

3 yes 3 3 6 50 undefined 

 
Table 5.1. Example of the block dataset including the “perceived classification”. 

  

 

 

Block 
ID 

Hotspot 

Participants who classified 
the block by type Total % Unsafe 

Perceived 
Class 

Safe Unsafe 

1 no 13 6 19 31.5 safe 

2 yes 15 36 51 70.6 unsafe 

3 yes 3 3 6 50 undefined 

 

 
 

20Figure 5.1 Crime incidents per block and percentage of participants who identified the 
block as unsafe. 
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The next step consisted of defining the level of accuracy or inaccuracy of people’s perception. If the 

block was accurately classified (reference classification = perceived classification), the level of accuracy 

was defined by the percentage of participants who correctly classified the block by the total number 

of participants who classified the block. If the block was inaccurately classified (reference classification 

<> perceived classification), the accuracy level was defined by the percentage of participants who 

incorrectly classified the block by the total number of participants who classified the block. 

Based on the percentage values, an ordinal classification was defined to determine three levels of 

accuracy: low (>50% - 65%), medium (>65% - 85%) and high (>85% - 100%). For the two accurate 

classes (AS and AU) this scale represents the proportion of participants who are aware of the safety 

situation, in this case the blocks that were labelled as low accuracy means that the proportion 

between the people who were accurate is slightly higher than those who were not.  

For the case of the two inaccurate classes (IS and IU) the scale represents the proportion of people 

who are not aware of the crime situation. In this case the blocks that were classified as high require 

more attention than those that were labelled as low. There are two main possible answers that could 

explain the low accuracy: either people started to feel unsafe because of a recent event or start to 

feel safe as a response to some police activity. For both cases the question could be answered by a 

spatiotemporal analysis where it could be compared to the speed of the change and also the criminal 

activity. 

Table 5.2 shows an example of the accuracy type classification and the level of accuracy. 

 

Block 

ID 

Participants who 

classified the 

block by type Total 

% of participants 

who classified the 

block by type 

Classification of the block Accuracy 

type 

Level of 

accuracy 

Safe Unsafe Safe Unsafe Reference Perceived 

1 4 7 11 36.4 63.6 unsafe unsafe AU Low 

2 7 1 8 87.5 12.5 safe safe AS High 

3 13 4 17 76.5 23.5 unsafe safe IS Medium 

4 3 19 7 13.6 86.4 safe unsafe IU High 
 

8Table 5.2 Example of an accuracy type and level classification of 4 blocks. 

 
 

A matter that must be considered as well is the number of people who classified each block, as the 

level of accuracy is based on the total amount of participants who classified a block but not on the 

overall total amount of participants. This could be solved by a threshold selection that indicates the 

minimum number of the total participants who classified the block, for instance, “show only the blocks 

that were classified by more than 10 participants”. 

According to the final classification of blocks, the crime perception gap is identified where the blocks 

were classified as “inaccurate perception of safe areas” and “inaccurate perception of unsafe areas”, 

as in these blocks the perception does not correspond with reality. The relevance of distinguishing 

between these types of inaccuracy lays in the fact that the strategies needed to narrow the perception 

gap are different for each type of inaccuracy: whereas in the IS people need to be aware of the risk of 

victimization, in the IU the strategies must be focused on reassuring the people. In order to develop 
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plans of action it is required to explore the possible causes that explain the inaccuracy in those specific 

locations. 

Therefore, once the spatial distribution of the perception gap is identified, the next step is to explore 

the possible causes. As this research has the aim to explore the spatial attributes of the factors that 

sway perception, the proposed analysis has the purpose of defining the spatial relation between the 

location of the perception gap and the spatial distribution of the values of a second variable.  For 

instance the block where an IU exists and the location of hotspots. So the aim is to explore how the 

perception of safeness in one block could be related to the number of crime events in the 

neighbouring blocks.  

The Bivariate Local Moran’s I method is a bivariate spatial autocorrelation statistic which analyses two 

variables in different locations, thus is apt for this type of analysis. In the next section this method will 

be explained.  

   

5.1.2 Bivariate Local Moran’s I 

 

The bivariate local Moran’s I is a spatial autocorrelation measurement which relates the value of one 

variable in a given location and the average value of the neighbouring features of a second variable, 

which means the two variables are not analysed in the same location. The value of the first variable in 

one location is compared with the average value of a conditional permutation performed with the 

neighbouring features.  

The outputs of the bivariate Local Moran’s I analysis in GeoDA is a cluster map which classified the 

significant spatial units into high-high, low-low, high-low and low-high, where the first attribute 

corresponds to the value of the first variable and the second the value of the second variable in the 

neighbouring areas.  

As the input file must contain numerical values, the two tested variables were the percentage of 

participant that defined the area as unsafe from the total participants who classified that block 

(<50%=safe area and >50%=unsafe area) and the number of events occurred per block. The aim is to 

define if there is a relation between the locations of IS and the surrounding high crime rate areas or 

IU and the surrounding low crime rate. The analysis is not meant to explain the inaccuracy of 

perception but it will show the spatial relations between the two input variables. 

 

5.2 Results 

 

In total there are 9,655 blocks in Budapest; from which 1,706 lie within the sketched polygons, and 

thus they were classified by the participants as unsafe or safe. Only these blocks were examined in the 

crime perception gap analysis. From these classified blocks, 302 are actual crime hotspots and they 

were classified as “reference” unsafe areas. The rest (1,404), for the purpose of this research, were 

considered as “reference” safe areas as they are no hotspots.  

 

Below the results of the identification of the perception gap and the bivariate spatial autocorrelation 

analysis are described. 
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5.2.1 Spatial arrangement of crime perception  

 

The classification of the blocks was done based on the four types of accuracy of crime perception 

(Figure 2.4). The result of the analysis is two maps, one that shows the blocks that were accurately 

classified and another one that depicts the inaccurately classified blocks. The maps are centered in 

the part of the city where the participants sketched the polygons. 

Figure 5.2 shows the blocks that were accurately perceived. 37.7% (114) of the blocks identified as 

hotspots were accurately perceived as unsafe, meanwhile, 37.3% (524) of the non-hotspots were 

accurately perceived as safe.  

 

 
 

The map shows some visible clusters of safe and unsafe areas where people are aware of the crime 

rate. The lightest green areas are those blocks where prevention actions must be taken, as in 

comparison with the total number of participants who sketched over those blocks, the percentage of 

those who are aware that the area is a crime hotspot is low, which means the ratio between the 

people who perceive it as safe is slightly higher than those who perceived it as unsafe.  

Figure 5.3 depicts the blocks that were inaccurately classified, thus this map show the actual crime 

perception gap. 54% (163) of the hotspots blocks were inaccurately perceived as safe, and 58.5% (822) 

of the safe blocks were inaccurately perceived as unsafe block. In the centre of the city, people tend 

to have an IS, meanwhile the IU happens in the south and southeast part of the city. 

 
 

21Figure 5.2 Level of accurate perception of unsafe (AU) and safe (AS) areas per block. 
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The map also shows those hotspot blocks that were not classified by the participants, these are 

considered as another block type due to the fact that they are conceptually part of the perception 

gap. But as they do not have a value in the “perceived classification” attribute and the level of 

inaccuracy cannot be measured, they are not considered to belong to the “inaccurate perception” 

class because they were not classified by the participants. They are shown in the map because they 

should be considered in the design of strategies to narrow the perception gap.    

The accuracy of the participants’ perception is presented in Table 5.3 which is a confusion matrix 

showing the blocks that were correctly and incorrectly classified, as well as the commission and 

omission errors. 

 Out of the 1,706 classified blocks, 83 were ‘not defined’ due to half of the participants classified those 

blocks as safe and the other half as unsafe; thus, only 1,623 blocks were labelled as safe or unsafe. 

From the labelled blocks, 61% of the safe blocks were identified as unsafe and 59% of the unsafe 

blocks were identified as safe. The overall accuracy of the classification is 39%, which is the percentage 

of accurately classified blocks.  

 

 

 

 

 
 
 

 

22Figure 5.3 Level of inaccurate perception of safe (IS) and unsafe (IU) areas per block. 
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One thing that must be considered is the percentage of participants who classified each block (Figure 

5.4). Although the level of accuracy was categorized as high in Figures 5.2 and 5.3 that does not 

necessarily mean that a meaningful number of participants classified the block concerned. Therefore, 

it is import to take into account the number of participants who sketched over each block to decide 

whether or not the level of accuracy is significant: the bigger the amount of participants the more 

meaningful the classification would be. For instance, whereas Figure 5.3 shows all blocks that were 

incorrectly classified, Figure 5.5 shows only the blocks that were classified by more than 10 

participants. 

 

 

 

  R e f e r e n c e  Error of 
commission   Safe Unsafe Total 

P
er
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p
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o
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Safe 524 163 687 0.24 

Unsafe 822 114 936 0.88 

Total 1,346 277 638  

Error of 
omission 

0.61 0.59  0.39 

 
9Table 5.3 Confusion matrix of the crime perception classification. 
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23Figure 5.4 Percentage of the total number of participants who classified a block. 
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In figure 5.4 can be observed that most of the participants focus on the centre of the city. A reason 

could be that most of them indicated to live in this area (Figure 3.1), in contrast with the south / south-

east of Budapest where less than five participants sketched over these areas. If Figure 5.3 and 5.4 are 

overlaid, it can be observed that the large clusters of IU blocks were classified by less than five persons, 

whereas the blocks in the centre were classified by up to 41 participants. Although the level of 

accuracy does not evidence these differences, it is meaningful in terms of depicting the ratio of people 

perceiving an area as safe to those who perceived it as unsafe. A visual comparison of both maps (in 

Figures 5.3 and 5.4) shows that the priority area is the city centre, next to the river, as a high amount 

of people is not aware of the high crime rate there.   

 

5.2.2 Local spatial autocorrelation analysis  

 

Although crime perception depends on several intrinsic and extrinsic factors, location plays an 

important role in terms of the spatial association that people could make among contiguous places. 

The way attributes of a location can be easily transferred to nearby sites could explain the 

misperception of safeness. 

The bivariate spatial autocorrelation analysis aims to explore the relationship between the perception 

of safeness in one place and the criminal activity in the surrounding areas. This relation could provide 

some explanation of the location of the perception gap.  

 
 
 

 

24Figure 5.5 Level of inaccurate perception of safe (IS) and unsafe (IU) areas per block 
classified by more than 10 participants. 
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The method used to perform the analysis was the bivariate local Moran’s I, with queen contiguity of 

first order and 999 permutations. The two input variables were the perceived classification given by 

the percentage of participants who identified a block as unsafe (>50% = unsafe area and <50% = safe 

area) and the number of events in the surrounding blocks. The output map is shown in Figure 5.6. 
 

 

 

The turquoise colour represents the perceived safe blocks, the dark ones are surrounded by blocks 

with low crime incidences, and the light ones are bounded by blocks with high crime incidences. 

Meanwhile, the brown blocks are perceived unsafe areas and contrary to the turquoise blocks, the 

neighbouring blocks of the dark browns have high crime incidences and the light browns low crime 

incidences. Additionally, the hotspot blocks are shown for a better reference of the relationship 

between both variables. The light grey blocks are areas that are not significant, that means, those are 

blocks which neighbours’ values are not significantly different from the value resultant from a random 

permutation. The dark grey areas are those blocks that were not classified by the participants. 

The following step was to select, from the significant identified blocks in the bivariate spatial 

autocorrelation analysis (turquoise and brown blocks in Figure 5.6), those which were previously 

labelled as “inaccurately perceived” (Figure 5.3). Figure 5.7 shows the result of the selection. 

 

 
 
 

25Figure 5.6 Cluster map result from a Bivariate Local Moran’s I analysis in GeoDa, performed with the 
perceived classification in the target block and the number of crime incidents in the neighbouring blocks. 
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This map depicts in green those blocks that were inaccurately perceived as unsafe and of which 

neighboring blocks have high crime incidences. This relation could explain the inaccurate perception 

of safe areas, as the surroundings of the blocks perceived as unsafe could have had an impact on 

people’s perception. They could believe, by spatial association that those selected blocks were actually 

unsafe areas due to the characteristics of the enclosing blocks. If this is this case, then the perception 

gap in those inaccurately classified block could be narrowed down by reducing the criminal activity in 

the surrounding areas. 

The red block was inaccurately perceived as a safe area, whereas it is safe in reality. Similarly to the 

previous case, this could be explained by the fact that the surrounding areas have low crime incidents 

and that due to the closest distance to low crime areas, the block is perceived as safe. 

This type of analysis are usually performed for spatiotemporal studies, in which the same variable is 

compared in two different time moments (Anselin, 2019). This type of analysis could also be perform 

for analyzing perception, to explore how perception change along time according to past events. 

Unfortunately, the perception dataset (sketch maps) that was available for the case-study did not 

contain temporal information. 

 

 5.3 Conclusions 

 

This chapter presented the analysis to address the second objective. In the first part of the analysis 

the perceived and reference classification of safety were compared to define the type of crime 

 
 

26Figure 5.7 Inaccurately perceived blocks and actual crime rate of their neighboring blocks. 

 

 
 

Figure 5.7 Inaccurately perceived blocks and actual crime rate of their neighboring blocks. 
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perception accuracy in each block. Then, based on the number of participants who classified them 

“correct” or “incorrect”, depending on the type of accuracy, the level of accuracy was specified. This 

classification allows determining the blocks that could be priority areas for strategies directed to 

narrow the perception gap. It also must be considered the total number of participants who classified 

the block, for it, a selection per attribute can be done over the classified blocks and only select, for 

instance, those that were classified by more than 10 participants; the higher the number of 

participants the more meaningful the classification is. 

For the whole analysis only the classified blocks by the participants were considered. The location of 

these block coincides with the districts where they live, which can explain why they focused on those 

areas of the city. 

The total accuracy of the participants’ classification (perceived classification) was 0.39, which means 

39% of the blocks were accurately classified. Besides from those unsafe areas (hotspots) that were 

inaccurately classified, there are those that were not considered by the participants and therefore 

also not in the analysis, nevertheless, they must be taken into account for the design of strategies as 

people are not aware of them.   

Whit this result the second established hypothesis (People’s misconception of crime reality involves 

both the overestimation of safe areas (inaccurate perception of safe areas- IU) and the 

underestimation of unsafe areas (inaccurate perception of safe areas -IS)) is accepted. 

These findings imply that the people are not well informed of the safety situation in their city and/or 

that there are other factors affecting of the inaccuracy of perception that should be detected in order 

to narrow the gap. From a criminology theory perspective we should be concerned (and further 

explore) if and how such a situation (i.e. a crime perception spatial gap) affects the current crime 

prevalence of an area. 

The second part of the analysis consisted in calculating the bivariate local Moran’s I statistic to identify 

the relation between the location of the perception gap (blocks inaccurately classified) and the 

number of crimes reported in the surrounding areas. This was done in order to explore the impact 

that the crime events have on the perception of safety in adjacent areas. The output map shows only 

a few blocks where this relation is statistically significant mainly located near to the city centre.  

This type of analysis is suitable to explore the spatial association that people tend to do by transferring 

attributes from one location to adjacent areas. This could be performed eventually with a different 

pair of variables to explore their spatial relations. 

The maps presented here could be used as analysis layers for further exploration, they can be filtered, 

overlap, compared or perform the bivariate analysis with a different selection of layer. The number of 

possible combinations of attributes and conditions is already large and if the variable “time” was to 

be included, then space turns into a complex scenario of multiple relations between features and 

spatial and non-spatial attributes. These relations can be tough to discern and therefore require 

suitable methods and analytical tools. 

In the next chapter, a prototype proposal of a GeoVisual Analytics environment is presented that is 

intended to ease the analysis of crime perception data.     
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 Chapter 6 
Development of a GeoVisual 

Analytics environment 
  

 

 

 

 

 

In this chapter, the third specific objective will be addressed: 

 

To conceptually design a geovisual analytic environment for the 

exploration and reasoning of perception of crime. 

 

In this chapter a brief theoretical background in Visual Analytics and GeoVisual Analytics 

(GVA) is presented as a frame for data integration, exploration and understanding of 

complex spatial data relations. These foundations are considered to present a proposal of 

a GVA interface prototype that supports the visualization and analysis of spatiotemporal 

data related to the perception of crime.  

This chapter is divided into five sections. The first two comprise a brief description of GVA 

(section 6.1) and the user-centred design (section 6.2) approach. In the third section a 

requirement analysis (section 6.3) is presented that includes the potential users of the 

interface and the main objective of it. 

The fourth section contains a low-fidelity prototype (section 6.4) of the proposed interface, 

including the description of the tools, as well as some examples of the outputs. 

The conclusions of this chapters are summarized in the fifth section (6.5).
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6.1 Geovisual Analytics Environment 

 

 

In the two previous chapters, the aim of analysing the crime perception was presented through 

exploratory modelling (Chapter 4) and the spatial arrangement outline (Chapter 5) of the data 

extracted from the structured sketch maps. These two stages defined the causality and location of the 

perceived safe and unsafe places in Budapest, which additionally resulted in the estimation of people’s 

perception accuracy.  

Knowing the aspects that sway peoples’ crime perception is not sufficient for its understanding, and 

conceptualizing them as isolated factors could result in a rather focused study. On the other hand, 

identifying the location of the accurately and inaccurately perceived safe and unsafe areas is not 

enough to develop strategies to reduce the fear of crime or to make people aware. Causality and 

location must be studied by their relations, in this case their spatial relations, to capture a holistic 

overview of the context of perception. 

Therefore, in order to understand the spatial behaviour of a phenomenon, it must be addressed from 

a system approach in which its parts are interrelated. The three components of a system are elements, 

states and the relations between these two. The elements are the collection of physical objects and 

their states or properties are the attributes (Huggett, 1980) that they are given or they possess. In 

geographic and spatial studies the relationships are determined by the location of the elements and 

states, employing maps as the main tool, among other data representations, with the purpose of 

solving two central questions: where and why.  

The “way” from element and status to relations is usually not straightforward and additional 

exploration data methods and tools are required to analyse the complexity of those associations 

thoroughly. An interactive interface that integrates multivariate datasets can enable the user to 

explore and understand the complex relationships within the data (Kveladze, Kraak & van Elzakker, 

2017).   

Visual Analytics (VA) has emerged as an integrating science that combines ‘automated analysis 

techniques with interactive visualizations for an effective understanding and reasoning of multiple 

datasets’ (Keim, Andrienko, Fekete, Görg, Kohlhammer & Melançon, 2008). It integrates data mining, 

data fusion, graphic representations and statistics, among others, in which visualization is ‘the medium 

of semi-automated analytical processes’ (Kohlhammer, May & Hoffmann, 2009), as ‘the analyst 

observes and interacts with the current data representation, interprets and makes sense of what he or 

she sees’ (Cook & Thomas, 2005). 

In terms of spatial data, the concept GeoVisual Analytics follows the same principals as Visual Analytics 

but specifically for the analysis of georeferenced data that may have temporal attributes too. Kveladze 

et al. (2017, p. 207) define it as: 

“A GeoVisual Analytics (GVA) environment is based on highly interactive and dynamic 

visualization techniques intending to reveal knowledge in complex and multivariate 

geodatasets. By depicting information, these techniques amplify human capabilities and 

facilitate the performance of cognitive tasks for pattern recognition, decision-making or 

analytical reasoning.” 
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The main foundations of this science are visualization and analytical reasoning; the latter is defined by 

Cook and Thomas (2005) as the method in which ‘users obtain deep insights that directly support 

situation assessment, planning and decision making’. The user is involved as an active component 

within the environment, as the core of GVA enhances the synergy of computational approaches and 

human reasoning to answer questions directed to solve spatial problems. 

The extracted answers from the visual and analytical reasoning would be in the direction of a better 

understanding of the target problem, which will consequently lead to solutions that are more efficient 

for the decision-makers. Therefore, the interface requires to be designed for target users with 

particular needs and characteristics. The user-centred design approach, which places the users as the 

reference point in the development process, must be the model to follow in the GVA design process. 

 
 

6.2 User-centred design 

 

The aim of a user-centred design approach is to achieve an interface success in terms of the user, 

utility and usability, following an iterative process. Utility refers to how useful the interface is for 

solving a specific task and usability describes how easy it is to complete a target task using the 

interface. And the users are the main focus of this approach as the design, evaluation and revision 

processes of the interface are based on the users’ profile and needs assessments (Roth, Ross & 

MacEachren, 2015). Roth, Ross, Finch, Luo and MacEachren (2010) modified the user-centred design 

approach presented by Robinson et al. (2005 as cited in Roth et al., 2010) into a six iterative stages 

process in which the users’ feedback plays the main role (Figure 6.1). They applied this approach in 

the development of GeoVISTA CrimeViz ‘an interactive and web-based mapping application supporting 

visual analytics of criminal activity in space and time’ (Roth et al., 2015).   

The modified process starts with a prototyping 

stage, followed by interaction and usability 

studies performed on the prototype. After this, 

a work domain analysis is done to capture 

impressions and ideas from the target users; 

the work domain comes after the prototype as 

it is common that in a project the initial 

prototyping is usually performed by designers 

and developers and later on it has to be tried 

with the actual user group. This feedback is 

integrated to the initial prototype to 

implement the interface. The process requires 

constant modifications which make this 

process an iterative one, as the users are 

involved by giving feedback and remarks after 

the prototyping stage in order to assure the 

functionality and design by effective means of 

interaction.  

To address the third objective of this research, the design of the GVA interface will only cover the first 

stage of the process as a proposal for future studies. For the design of the prototype a requirement 

analysis to know the users’ profiles and needs is necessary and is explained further in the next sections.  
 

 
 

 

 

 

 

27Figure 6.1 Modified user-centred design approach by 
Roth et al. (2010). 
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6.3 Requirement analysis 

 

The design of a prototype is the first stage in the user-centred design approach. There are two classes 

of prototyping: low-fidelity and high-fidelity. The former refers to an exploration product that is simple 

and quick to produce, mainly paper-based, as it has to be flexible for alternative design and ideas that 

may modify it.  The latter is a product that looks similar to the final one and it usually allows user 

interaction (Preece, Sharp & Rogers, 2002).  

In the prototyping stage, the target users are not directly involved, instead, the developers make a 

user requirement analysis that is a four steps process (Figure 6.2) in order to have a context on which 

to base their interface wireframe. 

 

In the information-gathering stage, the developer builds up a background of the target users and the 

problem to address. Then the needs of the users are listed and with these elements, a prototype can 

now be designed. The third stage consists of revising the prototype, which can result in the redesign 

of it. In the final stage, all the requirements are documented. 

 

Due to the limits of this thesis research, only the two first stages of the process will be performed. The 

aim is to present a general context where the interface can be base on. Hereunder the problem to be 

addressed will be stated, the target user group and the questions that are intended to be answered 

with the use of the interface will be described. 

 
 

 Problem 
 

Exploring crime perception data means dealing with multivariate spatiotemporal datasets. This 

requires an environment that integrates different tools, data representations and views that ease 

the understanding of the complex relationships between the spatial and non-spatial attributes of 

the analysed features.  

Therefore, the aim is to develop a GeoVisual Analytics interface that supports spatiotemporal 

crime perception and related data, in order to explore and analyse the spatial arrangement of the 

crime perception accuracy within a contextual scenario. The interface is envisioned to ease the 

identification of spatial patterns, structures, changes and relations in a multiscale environment 

that will assist the users in the formulation of strategies and action plans directed towards 

increasing the accuracy of perception and thus, narrowing the crime perception gap. 

 

 

 
 
 

28Figure 6.2 General process for user requirements analysis (Maguire & Bevan, 2002). 

 

 

 
 
 

Figure 6.2 General process for user requirements analysis (Maguire & Bevan, 2002). 

 

 

 

 
 
 

Figure 6.2 General process for user requirements analysis (Maguire & Bevan, 2002). 
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 Users 

Police agencies have been identified as the bureaus in charge of creating strategies to reduce fear 

of crime (Cordner, 2010; Grabosky, 1995; Bennett, 1991). Usually, their action plans are focused 

on increasing the confidence towards the police department and reducing fear and they are mainly 

directed towards reducing the inaccurate perception of unsafe areas. As mentioned before, 

attention is also required in the areas where the people have an inaccurate perception of safe 

areas and a low percentage of accurate perception.  

The proposed interface is intended to support police agencies in the decision-making process of 

designing strategies to narrow the crime perception gap. The organization of each police agency is 

usually divided in units, departments and divisions that have different responsibilities in developing 

action plans and policies to enhance public safety. To identify specific target users is necessary to 

get in touch with the respective police agencies because the organizational chart of each police 

department differs. This was not possible to do in this research but it is strongly recommended for 

further iterative prototype development.      

 

 Questions 

The questions listed here are some of those that the interface is intended to assist in answering. 

Some of them are mainly exploratory but others arose while interpreting the outputs of the 

analysis performed in objective one and two. The answers may enrich the understanding of 

perception when the output maps are not sufficient.  

 

 Where do people have an accurate and inaccurate perception of crime? 

 Is crime perception limiting people’s daily activities routes? 

 Do people have an inaccurate crime perception of the own neighbourhood? 

 How does perception change over time?  

 Is perception change related to the increase or decrease of crime incidents? 

 Is inaccurate perception of a place related to the level of crime incidents in surrounding areas? 

 

Based on these general ideas a heuristic prototype will be presented. The proposed functionality and 

tools are based on visualization methods that could solve the questions that were identified and may 

lead to a better understanding of the spatial dynamics of the perception of crime. In the next section, 

the conceptual design of the interface will be presented with a low-fidelity prototype that depicts its 

structure and organization. Additionally, a more detailed prototype will be presented to clarify the 

navigation scheme. 

 
 

6.4 GVA prototype 
 

 

The aim of a conceptual design is to show the overall organization of an interface and the relations 

between the different functionalities; prototypes are the main products that illustrate the design. This 

proposal follows a heuristic approach. The organization of the interface is similar to a GIS in which the 

map panel is the main one. Some tools are based on GIS functions and others are inspired by the 

different steps performed in the process of data extraction from the sketch maps (spatial queries ran 
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when dealing with research objective one, see section 4.2.1) and the data analysis (spatial operations 

performed when dealing with research objective two, see sections 5.1.1 and 5.1.2).    

Figure 6.3 is the low-fidelity prototype that depicts the organization of the proposed GVA interface, 

including three toolbars and four panels. Figure 6.4 shows a more detailed representation. 

 

 

 

Each component of the interface is described below: 

 

 File toolbar  

This toolbar is placed in the top left corner. Like in most interfaces, it holds three buttons: one to 

create a new project, one to open an existing project and one to save the current project. 

 Visualization toolbar 

This toolbar contains visualization options and “selection” tools. The aim of these tools is to focus 

attention on a specific attribute or location; the outputs of the selection can be turned into a map 

layer for further analysis. 

1. Information (button): retrieve attribute information when clicking on a feature within the map 

view panel.  
 

2. Area of study (button): centres the map panel in the area of study (in this case: Budapest). 
 

3. Charts (window): create a plot of the selected attributes. Unlike the statistical summary panel, 

this tool allows complex charts to be created. The created graph will be shown in a separate 

window.  

 
 

 

29Figure 6.3 Low-fidelity prototype of the proposed GVA interface for crime perception data 
that shows the organization of the toolbars and panels. 

 

 
 

Figure 6.3 Low-fidelity prototype of the proposed GVA interface for crime 

perception data that shows the organization of the toolbars and panels. 
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30Figure 6.4 Detailed low-fidelity prototype of the proposed GVA interface for crime perception data.
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4. Draw (dropdown button): allows sketching on the selected layer. The traced element is shown 

as an image over the layer, so no new features are added to the layer. The dropdown list 

contains four shapes of drawing: a square, a circle, a polygon or freehand style. This tool is 

useful to highlight elements of interest for faster identification. The sketches will be done in 

the selected layer (the selected layer is indicated in a blue colour in the displayed layer panel).   
 

5. Layer comparison (window): compare two or three map layers. In the window options, two 

methods of comparison can be selected: combined view and swipe view. The combined view 

option divides the map view panel into two or three linked views in which the selected map 

layers are displayed. In the swipe view, two panels are overlaid: one stays static and the second 

one can be dragged to make visible the one that is underneath. 
 

6. Selection on the map (button): enables the selection of more than one feature from the same 

layer and shows a descriptive statistics summary of the selected feature(s). 
 

7. Selection by intersection (window): selection of features from two layers that spatially 

intersect. In the pop-up window, first the target area is chosen, either by selecting it by attribute 

or directly in the map view panel. Then the layer that contains the features of interest is 

selected. The output is the features from the second layer that intersect the target area, also a 

summary of the output features is shown in the statistical panel. Figure 6.5 shows an example 

of the tool where all the assault events are is shown that were reported in the Erzsebetvaros 

district. 

 
 

 

 
 

 

8. Selection by attribute (window): the user can build standard SQL queries by selecting the layers 

of information and the operators to easily build the query statement.  
 

9. Linked mix selection (window): selection of features from two layers that share at least one 

attribute column. First, a target area is selected by attribute or directly on the map (the layer 

must be added first, for instance the district layer), then a second layer is selected. Finally, one 

common attribute that appeared in both layers is selected. Figure 6.6 shows an example of the 

output of the tool, in it, the Erzsebetvaros district was selected as the target feature, the second 

layer contained the sketch maps/polygons (all perceived areas) and the common attribute 

     
 

31Figure 6.5 Modal window and map view example of the “selection by intersection” tool. The map 
shows the assaults reported in Erzsebetvaros district (Budapest). 

 

     
 

Figure 6.5 Modal window and map view example of the “selection by intersection” 

tool. The map shows the assaults reported in Erzsebetvaros district (Budapest).  
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between both layers was the ID of the participant. Thus the map shows the polygons (purple 

areas) traced by the participants who live in Erzsebetvaros (purple line). 
 

 

 
 

The tool can be useful to explore whether the people classified areas in other districts different 

from the one where they live. This can also be done with the neighbourhoods and the daily 

routes, for instance.  

 

10.  Search by address or place (text field): search an address or the name of a place and the map 

will be centred in that location.  

 

 Map composer toolbar 

With these tools, the user can select the unit of analysis: either block, postal code zone or districts. 

The maps layer created will be added to the displayed layers panel where the legend will also be 

shown.   

 

1. Univariate map (window): creates a univariate choropleth layer map by selecting the unit of 

analysis and one attribute from a map layer. The values in the map are given in percentages.  

Figure 6.7 shows an example of the modal window and the resultant map. In this example, the 

percentage of incidents reported per district is shown. In the window, only one filter can be 

selected. In case another filter has to be applied, this can be done directly in the displayed 

layers panel (Figure 6.4). 

 

     
 

32Figure 6.6 Modal window and map view example of the “linked mix selection” tool. The map 
shows the sketch maps (purple area) traced by the participants who live in Erzsebetvaros. 

 

     
 

Figure 6.6 Modal window and map view example of the “linked mix selection” 

tool. The map shows the sketch maps (purple area) traced by the participants 

who live in Erzsebetvaros. 
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2. Index map (window): Creates a choropleth layer map with the values of a constructed index. 

In the displayed modal window, the user selects the layers and their attributes that are needed 

to develop the index, as well as the math operators. For instance, a choropleth map of the 

crime rate (number of incidents per number of inhabitants) per district. 

 

3. Bivariate-adjacency map (map): Creates a Bivariate Local Moran’s statistic map. The first step 

is to select the unit of analysis. Thereafter, the first variable is selected (for the target area unit) 

and then the second one (for the surrounding area units). The queen contiguity type is selected 

by default but the user must select the order of contiguity. The output map would be similar to 

the one of Figure 5.6, in which the unit of analysis is blocks. The first variable is the perceived 

classification, and the second the crime incidents. 
 

This type of maps is useful to explore the relation of perception and spatial association between 

two variables. A bivariate-adjacency map layer can also be displayed in the timeline panel by 

aggregating the information per time frame in order to explore how the changes in one variable 

can have a spatial impact on the values of a second variable. 
 

 Map view panel 

This the central panel of the interface. The rest of the panels are linked to what is displayed and 

selected on the map. The map layers are displayed here for their spatial exploration and visual 

analysis.  

The map supports zooming and panning to change the current scene of the map. These actions 

can easily be done with the scroll wheel mouse, which facilitates the navigation. But, still, the 

zoom in and out icons are within the map view panel.  

 Displayed layers panel 

This panel is divided into two subpanels. The first one shows a list of available preselected layers 

to display in the map like the sketched unsafe/safe polygons, crime incidents, daily routes, districts 

and postal code areas. Once one layer is selected, it is added to the second panel which contains 

the list of displayed layers. The created map layers from the map composer toolbar are added 

directly in the second subpanel. 

     
 

33Figure 6.7 Modal window and map view example of the “univariate map” tool. The map shows the 
percentage of incidents reported per district. 

 

     
 

Figure 6.7 Modal window and map view example of the “univariate map” tool. The 

map shows the percentage of incidents reported per district. 

 

 

     
 

Figure 6.7 Modal window and map view example of the “univariate map” tool. The 

map shows the percentage of incidents reported per district. 
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All the layers listed in the panel can be switched on/off and used as information layer for other 

analysis. They can also be filtered and the transparency percentage can be set (see Figure 6.4). 

 Statistical summary panel 

Displayed here are either graphs or a written summary of the selected features. Basic descriptive 

statistical information, such as the minimum and maximum values, average values and total counts 

of the selected features are displayed in the panel. It is also possible to display a plot like a 

histogram or pie chart. 

 Timeline panel 

In this panel, the user can filter the map layers by their temporal attributes and depict it in a static 

map or in a sequence animation. The static view pane showed in Figure 6.8 is divided into two 

parts. In the left part, there are three selected variables with dropdown-list menus. The first two 

selections are the map layer of interest and the variable to be displayed. The dropdown-list only 

contains the map layers that are added in the displayed layers panel. In this example, the “crime 

incidents (points)” were chosen, and the ID is the selected variable that means that all the events 

will be shown.  

The third element to be selected is the time frame. Three filters can be chosen by selecting the 

temporality from three dropdown-lists. The first step is to select the first filter; in the example 

shown in Figure 6.8 “year” was chosen. Once the filter is selected, the horizontal axis in the 

histogram will be changed to years. Then, by moving the slider the user can choose the range of 

years he/she is interested in, and then press the “set” button. Once set, the second dropdown-list 

is activated and the same steps have to be done again. In this example, “months” were chosen and 

the slider was set to the period from April to May.  

The next option is to view only the selected point or all the records. In this case “All” was selected. 

Therefore, in the map the events that happened in 2017 from April to May are shown in red and 

the grey points show the rest of the incidents that happened in 2017.  

Figure 6.9 shows the sequence animation option panel. The left options work the same as in the 

static view option. What is different is the right part in which a media control panel is shown 

instead of the histogram. In this case, a sequence of static maps depicting the disturbance and 

vandalism incidents that happened from April to August 2017 and 2018 are selected (this is an 

example of what it could be done, the original dataset did not contain this attributes). As the 

animation plays, the month that is currently shown is coloured in turquoise in the slider. In this 

case, a third filter, for instance, the hour, could be added as the month was “set” from April to 

August. 

Additionally, in both options, static view and sequence animation, it is possible to display one or 

two map layers in the same view. For this, the checkbox “Add another layer” has to be checked 

and the dropdown-lists will be “cleaned” so the user can make a new selection. This makes possible 

the comparison in time of the variability of two datasets 

The conceptual design presented here shows some examples of the potential tools that could be 

included in a GVA directed to explore crime perception data. The next step would be to implement 

the prototype, make changes if needed, and pass to the second phase, which are the interaction and 

usability studies. 
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34Figure 6.8 Example of the “static view” option in the timeline panel. In the map, the red points are the crime incidents that 
happened in 2017 between April and June. The grey points are the other events recorded in 2017. 

 

 
 

35Figure 6.9 Sequence animation option from the timeline panel. 
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6.5 Conclusions 

 

A Geovisual Analytics (GVA) environment is an interactive system that holds elements and states in 

the shape of spatial datasets and their attributes. Its functionalities are intended to support the user 

in the exploration, analysis and understanding of the complex spatial relationships between 

components. The design of a GVA interface using a user-centered approach starts with the 

presentation of a low-fidelity prototype that shows the structure and functionalities of the interface. 

The step preceding the actual prototype design is to perform a requirement analysis to define the 

profile of the users’ group and their needs.  

The presented prototype has the aim to support police agencies to develop efficient strategies to 

narrow the crime perception gap by getting to know the spatial context of the problem. Due to the 

limits of this research, the requirement analysis performed only describes the aim and users of the 

interface.  

The main goal of this proposal was to show potential tools and functionalities that a GVA for crime 

perception data could include. There are no similar interfaces developed; the existing GVAs are 

focused on the visualization and analysis of crime incidents, such as GeoVISTA CrimeViz (Roth et al., 

2015) and VIS-STAMP (Guo & Wu, 2013). 

The tools are intended to answer the identified questions (see section 6.3) that during the analysis 

process and interpretation of the results arose. They were designed based on existing spatial analysis 

methods and tools. The visualization and map composer tools enable the user to create map layers 

by selecting the attributes he/she is interested in to explore. The design of the functions is simple, as 

the users are non-technical experts in the use of spatial data. 

The next step of a subsequent study would be to define precisely the users of the interface and involve 

a small user group to evaluate the prototype, make the respective changes and develop a high–fidelity 

prototype to perform the interaction and usability studies. 
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Chapter 7 
 

 

Conclusions and final remarks  

 
 

 

 

 

 

 

 

 

 

 

 

This chapter is divided into five sections. In the first one (section 7.1), a summary of the 

three stages of the research process is presented. In section 7.2, the five research 

questions presented in Chapter 1 will be answered in summary. Section 7.3 comprises the 

general conclusion of this research. In the following section (7.4) additional observations 

are discussed, and to conclude with final recommendations (section 7.5) for future 

researches are described.   
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7.1 Summary 
 

Sketch mapping is a method frequently used in crime studies to gather perceptual information. An 

analysis and an integral interpretation of sketch maps can be done by incorporating the use of GIS, 

spatial analysis, and statistics. In the case-study, a methodology that enabled a quantitative 

exploration of structured sketch maps to analyse the perception of crime was implemented. This 

methodology consisted of three stages, an exploratory modelling, a spatial arrangement outline of the 

perception accuracy, and the development of a GeoVisual Analytics (GVA) environment directed to 

support the exploration and understanding of crime perception. A summary of the three stages is 

presented below. 

 

 Exploratory modelling 

In crime perception studies, the use of structured sketch maps is frequently directed to define the 

location of the perceived safe and unsafe places. In this research, the analysis was not only focused 

on the distribution of the spatial geometry of the sketched polygons but also on data extraction and 

its analysis. 

The data extraction process consisted of segmenting the sketched polygons into small cells to capture 

the spatial heterogeneity of the covered area. Each cell was treated as a data sample from which a set 

of variables were measured. These variables were analysed using Exploratory Data Analysis (EDA), and 

its results were confirmed by the outputs of a Machine Learning model using binary logistic regression.  

The regression approach was chosen to explore the variables that influence the perception of unsafe 

areas. During the modelling process, different variants of data extraction methods and different 

covariates were tested to select those that better explain the perception of crime. The final model 

was built with the most significant covariates, according to the p-values and the R2 value. The 

interpretation of the resultant coefficients (see subchapter 4.3) indicated that the likelihood of a 

person perceiving an area as unsafe increases as he/she moves away from his/her neighbourhood and 

daily route, or move away from a crime hotspot or a high crime intensity area.  

Moreover, the results from the EDA and the regression pointed out the existence of a crime 

perception gap. However, as this type of analysis did not indicate the location of the gap, the following 

stage consisted of determining the spatial distribution of the perception accuracy. 

 

 Spatial arrangement outline 

This stage comprised the identification of the spatial arrangement per block of the crime perception 

accuracy. The first step was to label the blocks as safe or unsafe according to the overlapping sketched 

polygons (perceived classification) and according to the number of incidents per block that defined 

the crime hotspots (reference classification). Both values were compared to define whether the 

perception of the participants was accurate or inaccurate. 

The analysis of the comparison showed that out of 1,706 blocks that overlapped with the sketched 

polygons, 39% were accurately classified (perceived classification=reference classification); 24% of the 

perceived safe areas are actually unsafe. Meanwhile, 88% of the perceived unsafe areas are actually 

safe (see Table 5.3).  
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A typology and a scale of accuracy were proposed to characterize people’s perception. Four classes of 

perception accuracy were defined by the comparison of both classifications (perceived vs. reference) 

(see Figure 2.4). The scale of accuracy was defined by three levels of “agreement” (low, medium and 

high) based on the number of participants who accurately or inaccurately classified the block (see 

Table 5.2).  

This stage also consisted of estimating the Bivariate Local Moran’s I statistic. This is a local spatial 

autocorrelation method that compares the values from two variables in adjacent locations. In the 

case-study, the blocks that were inaccurately perceived due to the high or low criminal activity in 

neighbouring areas were identified (see Figure 5.7).  

The resulting maps as presented in Chapter 5 are some of the possible layers of information that can 

be further explored to uncover the complex relations between elements to ease the analytical 

reasoning about the perception of crime. Based on this assumption, a GVA interface that integrates 

these types of information layers, additional context data and analytical tools has been proposed. It is 

intended to be directed to police agencies which are the ones in charge of developing strategies to 

reduce the fear of crime and reassure people about the safety state. 

 

 Geovisualization development 

The purpose of the proposed GVA environment is to gather the previous information and make it 

available to police agencies in an easily manageable interface that enables its visualization and 

analysis. 

The tools included in the GVA interface prototype as proposed in section 6.3 are intended to support 

the police agencies in the detection and understanding of spatial relations, patterns, or changes of 

perception of crime. A holistic knowledge with a system approach would result in the development of 

efficient and effective strategies to narrow down the crime perception gap. 

The overall functionality of the proposed prototype is founded on GIS interfaces. The tools, such as 

map comparison, selection by attribute and location, or more complex types of selection tools such 

as based on intersection or linked selection, were designed based on the spatial analysis method and 

data extraction performed in the exploratory modelling and the spatial arrangement outline stage.  

The principle of the presented prototype is that the user can create map layers for further, analysis. 

The creation of the map layers is straightforward and it only requires the selection of the variables(s) 

to be shown. The design of the tools avoids technical vocabulary for easy use.  

Performing an exploratory modelling and a quantitative analysis set the contextual background that 

allowed the design of a GVA prototype that potentially could support the analytical reasoning process 

or crime perception.  

By knowing beforehand which variables are relevant in a given problem, the analysis process will be 

speeded up by reducing the complexity as only the correlated variables will be explored. 

The methodology presented addressed the three specific objectives set to reach the general objective 

of this thesis. Along the research process five questions were answered related to each objective; the 

answers to them are given in the next section. 
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7.2 Answers to the research questions 
 

 

The answers to the five research questions are presented below: 

 

1.1 What is the relationship between the people’s daily activity spaces (neighbourhood and daily 

routes) and the location of the areas they perceive as unsafe?   

Based on the EDA, it was concluded that, in general, the participants identified safe areas closer 

to their neighbourhoods. Meanwhile, the daily routes’ analysis generated that the participants 

identified unsafe areas further away from their daily trajectory. The interpretation of the 

resulting covariates from the regression model confirmed the EDA findings. The regression 

model's output interpretation indicated that the likelihood of a person perceiving an area as 

unsafe increases while moving away from his or her neighbourhood or daily routes. 

 
 

1.2 What is the relationship between the location of the crime incidents and the perceived unsafe 

areas?    

The crime incidents were analysed with two variables, the hotspots and the high crime intensity 

areas (HCIAs). 
 

Two variants of hotpots were analysed, one defined by the number of incidents per block (Figure 

4.3) and the other by the density of crimes per block (Figure 4.4). The output maps show a 

different spatial arrangement between both types. The hotspot locations by total number of 

incidents are scattered in comparison with the hotspots by density, which are mainly clustered 

in the city centre. This distinction in the spatial distribution can explain the results of the EDA. 

According to the EDA the distances between perceived unsafe areas and a hotspot by total count 

were shorter than by density. 
  

Moreover, the EDA showed that, for both types of hotspots, for more than 50% of the sketched 

safe polygons, half of their area was within a hotspot. This means that people demonstrated an 

inaccurate perception of safe areas.  
  

For the HCIAs, based on the EDA, it was determined that people perceived a higher percentage 

of safe areas around the HCIAs.  
  

In the regression modelling process, both types of hotspots were explored; both of them were 

significant to explain the perception of unsafe areas. Nevertheless, the distance measured to the 

hotspot by the total count of incidents per block explained a higher percentage of the likelihood 

variability of perceiving an area as unsafe. Therefore, this type of hotspot was selected over the 

other one. Additionally, it was tested whether exploring the clusters and outliers hotspots as two 

separate variables was more significant that grouping both and exploring them as a single 

variable. Based on the R2 value, two covariates were more significant than one. 
  

The interpretation of the output coefficients shows that the likelihood of perceiving an area as 

unsafe increases while moving away from the crime hotspots and the HCIAs, which suggests that 

participants had an inaccurate perception of unsafe areas. Thus there is a crime perception gap. 
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2.1 How to measure the accuracy of people’s crime perception? 

A perception typology has been proposed to determine the type of accuracy: it consists of two 

classes of accurate perception and two classes of inaccurate perception of safe and unsafe areas 

each. The classification method used in this research comprises three steps. First, select the 

analysis unit and aggregate or transform the perception data and the crime data into the chosen 

spatial unit. Then the conditions to label a unit as perceived safe/unsafe and reference 

safe/unsafe must be set. Each unit will then have two additional attributes: the perceived and 

the reference status of safety. Both values are compared to define whether the perception was 

accurate or inaccurate. If both values concord as “safe” then the unit is labelled as AS (i.e accurate 

perception of safe areas), but if they are “unsafe” then they are tagged as AU (i.e. accurate 

perception of unsafe areas). The units for which the values differ will be labelled as IS (i.e. 

inaccurate perception of safe areas, if the perceived class is “safe” whereas the reference one is 

“unsafe”), or if the perceived class is “unsafe” but the reference class is “safe” the unit will be 

tagged as IU (i.e. inaccurate perception of unsafe areas) (see Figure 2.4). 

For the case-study, the city blocks were the unit of analysis. The “perceived classification” was 

defined by the number of participants who sketched a polygon (safe/unsafe) over each block; 

the type with the highest percentage was set as the perceived class. In the case of the “reference 

classification,” the condition was that if the block was distinguished as a crime hotspot (by the 

count of crime incidents) it was labelled as unsafe, otherwise as safe. 

The level of accuracy was defined by the number of participants who classified a block, i.e., who 

sketched a polygon over a block. If the block was accurately classified (reference classification = 

perceived classification), the level of accuracy was defined by the percentage of participants who 

classified the block correctly by the total number of participants who classified the block. If the 

block was inaccurately classified (reference classification <> perceived classification), the 

accuracy level was defined by the percentage of participants who classified the block incorrectly 

by the total number of participants who classified the block. 

Based on the percentage values, an ordinal classification was proposed to determine three levels 

of accuracy: low (>50% - 65%), medium (>65% - 85%) and high (>85% - 100%) (Table 5.2). As this 

scale is based on the number of people who sketched over a block, although the level is 100% it 

does not necessarily mean a high value because it can be the case that over that block only one 

person sketched, then whether accurate or not the level will be 100. Therefore, the blocks could 

be filtered by setting a minimum value of a number of participants who sketched on a block, so 

that the level of accuracy can be more meaningful. 

 
 

2.2 How can the location of inaccurately perceived unsafe areas be explained by the spatial distribution 

of another explanatory variable? 

People tend to characterize a feature or place by association with the attributes of nearby 

elements. The relation between the locations of two related variables can explain the location of 

the first one. 

The bivariate local Moran’s I is a local spatial autocorrelation measurement which relates the 

value of a first variable in a target place and the average value of a second variable in the 
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neighbouring areas compared with the average value of a conditional permutation. The aim is to 

define which places have a higher or lower average value in the surrounding location compared 

with the expected value result from the conditional permutation. 

In the case-study, the bivariate local Moran’s index was measured to detect where people have 

an inaccurate perception of safeness as response to spatial association. For instance, the places 

that are labelled as IU and which are surrounded by actual unsafe place, could be explained by 

the adjacency with unsafe places. The spatial arrangement of crime perception can be explained 

by individual social, demographic and environmental factors, but also by the spatial relationship 

between them. This type of analysis shows how the distribution of one feature can explain the 

distribution of a second one, which confirms the importance of spatial studies with a system 

approach.     

 

3.1 Which tools and representations could be integrated in a GeoVisual Analytics interface to explore 

and analyse crime perception? 

The heuristic selection of the presented tools was based on the methods used in the data 

extraction and analysis performed in the exploratory modelling and spatial arrangement outline 

(see Chapter 4 & 5).  

Exploring and analysing spatiotemporal perception data requires an interface that enables the 

visualization of multivariate datasets. To work with data that include different attributes and 

spatiotemporal information increases the complexity of understanding the relationships among 

the datasets. Therefore, it is required that the tool enables the selection and filtering of the data 

of interest. 

The idea of the tools presented is that the user can create map layers by quickly selecting the 

variables and applying special and temporal filtering. After the user has created the map layer, 

the analysis tools can be executed.    

Three maps layers can be created: univariate maps, index maps (in which a variable is constructed 

by the combination of different attributes) and a bivariate-adjacency map (bivariate local 

Moran’s statistic map). Temporal attributes and locations can filter these map layers. Some visual 

analysis can be performed by maps comparison to detect changes and selecting features within 

a polygon. Also by linked selection that enables the user to select features from two different 

map layers that have an attribute in common to explore the spatial relation between features. 

Additionally, a timeline panel was included for visualizing static or sequential animation views for 

change and pattern detection. 

 

7.3 General conclusion 

 

The main conclusion of this research is the relevance of an integral analysis of sketch maps in the study 

of perception. The methodology performed showed some approaches of data extracting, exploration 

and quantitative analysis that enabled an understanding of the perception of crime. The segmentation 

into cells of the sketched polygons gave good results for the analysis of the maps. Working with 

multiple data samples instead of one allowed capturing the diversity of the features and spatial 
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characteristics covered by the polygons. By this segmentation, the polygons were analysed in the same 

way regardless of their size or geometry. 

A statistical analysis of the data extracted from the cells enabled an objective exploration of the 

structured sketch maps. The binary logistic regression is a useful method for the analysis of perception 

where there are only two possible answers; “good or bad”, “true or false”, “safe or unsafe”. Narrowing 

the answers to binary options can reduce the level of ambiguity that perception has per se.  

This research gave a general idea of how incorporating quantitative and spatial analysis methods for 

the study of spatial perception from structured sketch maps can result in a more complete and 

objective interpretation. 

 

7.4 Discussion 
 

 

The analysis performed in the first two stages of the research required different data aggregation and 

transformation processes, which can bring a certain level of uncertainty into the results.  

In this research, the crime events were not treated as independent points because it was not 

meaningful for the type of analysis performed; therefore, they were aggregated within blocks.  Two 

main concerns come with this type of generalization. The first one is how to deal with a point located 

on the boundary shared by two polygons. When performing a spatial join operation in a GIS between 

a point and polygon vector layer this problem would be solved by counting the point twice, one for 

each polygon.  

The second issue is the effect of the Modifiable Areal Unit Problem (MAUP) that deals with the shape 

and size of the units of aggregation. This pitfall affects the analysis results due to the size differences 

of the blocks, especially for the hotspots analysis as the number of events per block defined them. 

Additionally, the aggregation of points depends on the block digitalization process, on which the 

geometry of the blocks depends.  

Another point of discussion is the quality of the geocoding process. One issue found was the accuracy 

of the geocoding results, as for some records the points were located in the same pair of coordinates 

for similar addresses. Table 7.1 shows six addresses, 2 of them without an address number and 4 with 

it. In spite of this difference, the six points were placed in the same location (Figure 7.1). The difficulty 

about this problem is that it is a problem related to the geocoding tool, because although four 

addresses are complete they were not located accurately.  

 

Address Number of records 

Szent Imre tér 314 

Szent imre tér 17 

Szent Imre tér 3 6 

Szent Imre tér 6 4 

Szent Imre tér 10 3 

Szent Imre tér 2 1 
 

10Table 7.1 Data example of addresses that were geocoded at the same location. 

 

Address Number of records 

Szent Imre tér 314 

Szent imre tér 17 
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7.5 Recommendations 
 

This thesis intended to contribute to the spatial studies of perception by the data extraction and 

analysis of sketch maps. During the research process some difficulties arose that lead to the following 

recommendations for future research: 

 

 The perception data collection by sketch maps must include a questionnaire or a think-aloud 

process that can provide more information to the interpretation of the map. Although, the 

analysis of the data extracted can reveal valuable information, having an additional context 

of the participants' cognitive map can add more variables to explore that would lead to a 

better characterization of the people's perception. 
 

 The logistic regression model can be improved by exploring additional contextual variables, 

for instance the land use or the average income. Although there are theories that explain the 

factors that sway the perception of crime, each city has different social dynamics where those 

factors may not have the same impact. Therefore, it is necessary to explore them to get a 

more precise overview of the context. 
 

 Due to the time limits of this thesis research, the requirement analysis presented for 

developing the GVA prototype was based on a literature review only. The requirement 

analysis should be improved to enhance the GVA prototype presented, which could be used 

as a reference to develop a high-fidelity prototype that can go through interaction and 

usability studies. It should then be tested whether the proposed interface could be 

implemented as a tool in a decision-support system for developing strategies directed 

towards narrowing down the crime perception gap.      

 

 

 

 

 

 
 

36Figure 7.1 Geocoded location (red point) of the data example shown in Table 7.1. 
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