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Figure 1: Study area and sample sites. 
Yellow is in-situ water level stations; red is 
the experimental sample sites; blue is the 

25 extended sample sites.   
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Conclusion and Outlook 

Remote Sensing Analytical Results

This research seeks to answer the soil-vegetati-
on relationships from two aspects: temporal/-
seasonal and spatial. Dates for wet and dry sea-
sons are selected based on the in-situ water 
level records. 5 sites are first selected to experi-
ment with the workflow; 25 sites are then se-
lected to increase spatial coverage. 2 sites are 
excluded due to high seasonal inland water 
extent. Land cover conditions in the sites are ex-
amined to identify the dominant vegetation type 
for each site. Vegetation indices (VIs), are calcu-
lated from the Sentinel-2 optical data in SNAP. 
Characteristic statistics (mean, standard deviati-

Methodology

Despite its small volume, soil moisture is a critical 
component of the hydrological cycle. It is defined 
as the amount of water contained in the root zone 
that can be utilized by plants [1], thus, it strongly 
links to vegetation conditions. Understanding soil 
moisture could provide farmers, scientists, and 
policymakers a better chance to make wiser land 
management decisions and prevent disasters, 
such as flooding. However, measuring soil moi-
sture has been a challenging topic. On the one 
hand, soil moisture measurements with microwave 
remote sensing technology excelled field measure-
ments in obtaining more continuous and frequent 
monitoring; well-known missions include the Soil 
Moisture Active Passive (SMAP), Soil Moisture 
Ocean Salinity (SMOS) and Advanced Scatterome-
ter-Soil Water Index (ASCAT-SWI) [1][6]. On the 
other hand, coarse spatial resolution and complex 
interactions of microwave radiation with surface 
roughness and vegetation structure [2] present li-
mitations within these products to monitor soil 
moisture variations on landscapes with a high pre-
cision that is relevant to land management. This 
thesis seeks to understand the relationships bet-
ween vegetation traits [4] and soil moisture condi-
tions in wetland environment as observed from 
satellite data, and to visualize the relationships 
from the remote sensing analysis with modern 
cartographic techniques to make the results acces-
sible and understandable to a broader audience. 

Background and Research Goals Cartographic Visualiation Results

Figure 2: Research workflow.
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on, coefficient of variation) and second-orde tex-
ture information (Grey Level Coccurence Ma-
trix-Entropy & Homogeneity) are calculated from 
the VIs using RStudio. VI statistics are correlated 
to SWI to analyze the correlation direction and 
strength, and multiple regression is used to 
model the relationship between the selected VI 
statistics and SWI in RStudio.The interactive car-
tographic visualization is implemented with  
Leaflet JavaScript library, HTML/CSS and D3.js.

Correlations and regression methods demons-
trated the possibility of using VIs to estimate soil 
water conditions in the wetland environment. The 
analysis indicates that optical data can uncover in-
formation about soil moisture in a finer spatial re-
solution. Seasonal differences in using vegetation 
proxies for soil moisture are obvious—in the wet 
season, vegetation information has a strong linka-
ge to soil moisture while very scattered results 
are observed in the dry season. Differences in 
using remote sensing VIs to understand soil moi-
sture also exist for areas with different dominant 
vegetation but not drastic—in sites with shrubs 
as dominant vegetation, vegetation proxies perfor-
med generally well in estimating soil moisture; 
in sites with Deciduous Broadleaf Open Forest 
(DBOF), a moderately strong correlation can also 

The user groups for the project are targeted at 
students in remote sensing classrooms and decisi-
on-makers who need insights for building in-situ 
sensor networks. This visualization can be intro-
duced to remote sensing students as a case study 
and can demonstrate a workflow of remote sen-
sing analysis as well as the multidimensional 
nature of remote sensing data and natural phe-
nomena. People who develop in-situ sensor net-
works for water or soil can use this platform to 
get an overview of the patterns in the soil and ve-
getation and identify interesting locations for 
further investigation. In the visualization product 
development, several key interactive strategies 
for visualizing multidimensional spatial-temporal 
data are adopted allowing the targeted users to 
explore the data used in this research and to deve-
lop visual thinking about the research workflow. 
Simple User Interfaces (UIs) like the slider bars 
can add important information about the temporal 
dimension of the data and will provide additional 
initiatives for users to perceive the complexities 
of the topic through visual thinking [5]. Using 
Leaflet to provide the main UI has the advantages 
of easy implementation and simple interaction 
for exploring various thematic datasets. Additional-
ly, this product demonstrates the value-adding 
role of cartographic visualization in remote sensing 
analysis by allowing users to interact with the da-
ta/results and generate their own insights (scan 
the QR code in the left corner to access the map). 

Figure 3: Scatterplots display the correla-
tion strength and significance between the 
mean and standard deviation of FAPAR to 
SWI grouped by seasons. Grey lines dis-

play a confidence interval of 0.95.  

Figure 4: Scatterplots show correlation 
strength and significance between FAPAR 
mean and SD to SWI grouped by dominant 
vegetation type in the sample site. Grey 
lines display a confidence interval of 0.95.   

be found.In the subset 
regression, the mean 
FAPAR explained the 
most variance observed 
in SWI (around 45%), 
indicating the vegetati-
on’s average evapotran-
spiration and photosyn-
thetic primary producti-
on capacity are well 
linked to soil moisture. 
In the regression model 
for wet season observa-
tion, LAI alone explained 
48% of the variance. Ve-
getation’s vitality and 
greenness conveyed th-
rough the NDVI also 
help to explain the vari-
ance in SWI but  NDWI 
measuring the liquid 
water content in vegeta-
tion does not contribute 
greatly in understanding 
soil moisture variance.    

This project aligns with ongoing scientific efforts 
to explore the relationships between remote 
sensing vegetation traits and soil moisture and 
seeks to use vegetation as sensors for soil 
monitoring. The implementation of the interactive 
web map demonstrates cartographic visualization's 
potential in adding values to remote sensing 
analysis and appeal to a border audience.
Limitations exist in this research and indicate the 
need for further scientific efforts. The vegetation 
indicator method can reflect soil moisture 
conditions as VI changes [3], but VI cannot 
immediately reflect when the vegetation is 
stressed. Time lagged analysis is not implemented 
because of the limitation in Sentinel-2 data due 
to cloud coverage and general temporal resolution. 
Therefore, long term and high temporal resolution 
series providing information on the vegetation 
traits should be developed and analyzed to better 
uncover the time-lag between vegetation 
dynamics and soil water content. Improvement 
of the visualization product could be to add more 
case studies in the other focal areas, to implement 
advanced computation capacities with spatial data 
accessed from other data hubs via WMS, and to 
conduct user tests for feedback on usability. 

Figure 5: One view of the SoilWater³ product.


