Procedural 3D modeling and visualization of geotypical Bavarian rural buildings in Esri CityEngine software

Master’s Thesis
Ieva Dobraja

Supervisors: Dr.-Ing. Mathias Jahnke (TUM)
Dr.-Ing. Özgür Ertac (Esri Deutschland GmbH)

29.01.2015
Contents

1. Introduction
2. Theoretical Background
3. Case Study Area
4. Data Processing
5. Results
6. Summary
1. Introduction

1. Motivation

Created 3D city models can be widely used in different areas

2. Purpose

Is the software CityEngine appropriate for creating the 3D content of rural areas?

3. Objectives

• Literature review
• Data collection and preparation
• 3D model creation
• Publication of the results
2. Theoretical Background

1. Related work
2. 3D modeling
3. Procedural 3D modeling
4. Esri CityEngine as a tool for procedural 3D modeling
2.1. Related work

• “Research and Development of 3D Modeling” by Luan et al. (2008)
 ✓ overview of the 3D modeling process
 ✓ application possibilities of a 3D modeling

• “Procedural Modeling of Cities” by Parish and Müller (2001)
 ✓ introduction of “CityEngine”
 ✓ Description of L-Systems

• “Procedural Modeling of Buildings” by Müller et al. (2006)
 ✓ description of CGA shape
 ✓ comparison between CGA and L-Systems

• “Procedural Urban Modeling in Practice” by Watson et al. (2008)
 ✓ Description of a typical workflow and applications of CityEngine
 ✓ Suggestions for creating a more realistic 3D urban content
2.2. 3D modeling

„The process of creating a 3D model in the computer“ (Govil-Pai 2004, p.83)

Consists of 3 main steps:
• 3D data acquisition
• Modeling
• Rendering
(Luan et al. 2008)

A wide range of applications: Architecture, Animation, Decision Making
2.3. Procedural 3D modeling

- A 3D model creation process using **rules** and **algorithms**
- Consists of a **base geometry** and **procedural rules**
- Saves **time** and **costs** when a lot 3D modeling iterations are needed

Principles of the procedural modeling
Source: Schubiger (2012)

Comparison of efficiency between manual and procedural modeling
Source: Schubiger (2012)
2.4. Esri CityEngine as a tool for procedural 3D modeling

• A stand-alone software which transforms 2D GIS data into smart 3D City models

• Combines procedural modeling methods with shape and split grammars

Creation steps of a 3D city model in the CityEngine software
Source: Esri (n.d.)
3. Case Study Area

Seefeld
• a municipality in the district of Starnberg
• located southwest of Munich
• lies on the northern coast of the Pilsen Lake

Location of Seefeld
Source: www.maps.google.de
3. Case Study Area

Why Seefeld Village?

• Scattered (nucleated) village
• Data availability
• Typical target buildings
3. Case Study Area

Typical building parameters:

• 1-6 floors (mainly 1 or 2 floors)
• gable and flat roofs
• building facades are light colored
• windows with shutters
• flowers in front of windows

Typical buildings in Seefeld
4. Data Processing

1. Data preparation
2. Data import
3. Procedural modeling using Esri CityEngine
4. Overview of modeling problems
4.1. Data preparation

Data preparation in the software Esri ArcGIS 10.2.2

• Selection of the **coordinate system**

 WGS 1984 Web Mercator

• Calculation of the **necessary building parameters**

• **Simplification** of building footprints

• Creation of locations for **vegetation objects**
4.2. Data import

Data import into the software
Esri CityEngine

Data Types:
- Shape files
- OSM data
- Object data
- Raster (TIFF, JPEG)
- KMZ

<table>
<thead>
<tr>
<th>Data</th>
<th>Type</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building footprints</td>
<td>SHP</td>
<td>Esri Deutschland GmbH</td>
</tr>
<tr>
<td>Street network</td>
<td>OSM</td>
<td>OpenStreetMap</td>
</tr>
<tr>
<td>Locations of vegetation</td>
<td>SHP</td>
<td>Assigned according to imagery base map (ArcGIS base map collection)</td>
</tr>
<tr>
<td>Vegetation elements</td>
<td>OBJ</td>
<td>Esri 3D Vegetation Library</td>
</tr>
<tr>
<td>Imagery base map</td>
<td>JPEG</td>
<td>ArcGIS base map collection</td>
</tr>
<tr>
<td>Height map</td>
<td>TIFF</td>
<td>Generated from the DTM25 provided by the Bavarian State Office for Survey and Geoinformation</td>
</tr>
<tr>
<td>3D model of the Bavarian Church</td>
<td>KMZ</td>
<td>3D Warehouse</td>
</tr>
<tr>
<td>3D model of a car</td>
<td>KMZ</td>
<td>3D Warehouse</td>
</tr>
<tr>
<td>3D models of people</td>
<td>KMZ</td>
<td>3D Warehouse</td>
</tr>
</tbody>
</table>

Overview of the data imported
4.2. Data import

Data imported and aligned to the terrain
4.3. Procedural modeling using Esri CityEngine

„A rule file – a collection of attributes, functions and rules“

(Esri 2014)

Representation of rule file

Standard CityEngine workflow
Source: Viinikka (2014)
4.4. Overview of modeling problems

Problems with doors

Building -->
comp(f) {bottom : X,
| 2: FrontFacade
| top : Roof
| all: SideFacade}
4.4. Overview of modeling problems

Mismatch of the layers

Move streets according to the base map and avoid crossing with the buildings
4.4. Overview of modeling problems

Building elements at intersections

Window -->
\texttt{case touches} () : Wall

Door -->
\texttt{case touches} () : Wall
4.4. Overview of modeling problems

Roof overhangs

\[
\text{attr } \text{Roof.Angle} = \\text{atan}(\text{Roof.Ht}/(0.5*\text{scope.sx})) \\
\text{t}(0,0.01,0.01)
\]
5. Results

1. Procedurally generated 3D model of Seefeld represents:
 - buildings, street network, vegetation, satellite image and DTM
 - typical Bavarian rural buildings in Seefeld

2. Dealing with modeling problems in rural area

3. The final results published as CityEngine WebScene
5. Results

3D model output samples from CityEngine

Final result of the 3D model of the case study area
5. Results

Additional 3D objects

A car model added to the final result

Models of people added to the final result
6. Summary

• **Procedural modeling** is one of the most appropriate solutions for creating **large size 3D city models**

• Created **rules** can be **re-used** for further projects

• The software **CityEngine** can be applied for modeling **rural areas**

• Procedurally created model of Seefeld can be used for **further analysis** and **planning purposes**

• In the future the model can be improved with different **LoD (Levels of Details)**

Thank you!

Questions?