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Abstract 

Crop Monitoring plays an important role in estimating the crop yield of an area resulting 

to the food security especially for less developed countries where domestic food sources plays 

a key role. Mapping and monitoring of crop growth is crucial for identifying the crop health 

and there potential yield. This thesis investigates a daily time series of data, analyses plot-based 

crop growth by processing vegetation signal from sowing to harvest and investigates the effect 

of soil moisture on crop growth by establishing a relationship between the soil moisture and 

NDVI. The main objective of this thesis is to harmonise and fuse two complementary sensor 

data to produce a plot-based time series of vegetation development and extrapolate vegetation 

signal as a function of soil moisture. The goals where achieved by, fusing MODIS and 

PROBA-V after smoothening based on a conditional criteria and the fused data is further 

statistically analysed to establish a relationship with soil moisture data obtained from SMAP. 

The results distinctively showed the crop growth for each plot with phenological information 

along with the lagged effect of soil moisture on the crop growth. 

Keywords: Crop Monitoring, Crop Growth, Crop Phenology, NDVI Anomaly, Time-

series, NDVI and Soil Moisture, MODIS, PROBA-V, SMAP 
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1. Introduction 

According to FAO. 2002. (The State of Food Insecurity in the World 2001. Rome ) “Food 

security is a situation that exists when all people, at all times, have physical, social and 

economic access to sufficient, safe and nutritious food that meets their dietary needs and food 

preferences for an active and healthy life”, but achieving an optimum Food Security has always 

been a challenge, especially for less developed countries with high dependency on domestic 

food sources. 

About 4.6 million people are food insecure in the Sudan. Above average harvests and good 

pastures by the end of 2014 helped to improve food security in most of the country, but got 

affected intensively in 2015 because of drought. Sudan continues to face steep rise in staple 

food prices, floods destroying field crops, pest infestations, continued blocking of internal and 

transboundary transhumance routes, localized disease outbreaks, as well as environmental 

factors such as desert encroachment and soil degradation. 1 

An estimated 80% of the country’s rural population relies on agriculture-based production 

for their food and income. In some areas, however, production is severely constrained by 

persistent insecurity, a lack of quality agricultural inputs, unpredictable rainfall, restricted 

livestock movement and over-stretched natural resources. Persistent insecurity and continued 

constraints on resources mean farmers are unable to fully recover and are always on the 

precipice of food insecurity.  

Remote sensing-based crop monitoring has proven to be one of the most efficient ways of 

estimating and forecasting crop yield over time, it assists in crop harvest prediction and 

monitoring crop growth based on a time lapse convenient and faster, aiding authorities to 

inform the farmers and formulate precautionary measures. 

 Crop monitoring helps in analysing and studying the current crop conditions, aiding the 

observation of crop growth, along with identifying problems negatively affecting the growth, 

and with the current volatile climatic conditions, it is of utter importance to have a sustainable, 

frequent, updated and accurate crop yield estimation and forecast for food security.  

                                                 
1 http://www.fao.org/emergencies/countries/detail/en/c/148725 
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1.1 Motivation 

This thesis is conducted as part of a joint project between TU Dresden and Gadarif 

University (Sudan) which aims to develop a stable recording and visualization tool of crop 

development in a rain-fed mechanized agricultural scheme (Gadambalia), for the study area 

Gadarif, and can be further used for predicting crop yields prior to harvest, and can contribute 

to a spatially fine-grained estimation of productivity, 

The study area has a very uncertain and erratic rainfall conditions which effects the crop 

growth leading to an indefinite crop yield and as the area produces about one third of the 

countries sorghum and half of sesame, monitoring the crop growth and changing patterns over 

years is highly significant, along with identifying the factors affecting the crop yield.  

Thus the thesis is going to investigate a daily time series of data, analysing the crop growth 

by processing vegetation signal received from two complementary sensor (MODIS and 

PROBA-V), and creating a homogenous and continuous database of the plant from sowing to 

harvest. Moreover the thesis will investigate the effect of certain climatic parameters on crop 

growth by establishing a relationship between the soil moisture (selected as a parameter) and 

vegetation index identifying the effect of soil moisture on crop growth.  

1.2 Research Significance: 

The approaches adapted in the thesis methodology for crop growth monitoring and 

establishment of a relationship between soil moisture and vegetation indices are consequential. 

The focus of the thesis is to create a dataset of daily vegetation indices for the analysis of 

the crop growth, by using complementary sensor data, from MODIS and PROBA-V. The 

approach is of adapting a daily dataset instead of composites, as the composite datasets are 

usually generated based on the MVC (Maximum value compositing) process, which minimizes 

the artefacts like cloud cover or BDRF effects but simultaneously introduces degradation of 

temporal accuracy, the maximum value of the composited period (ranging from 8 to 16 days) 

is assigned to a single image rather than the date when this value was captured. As concluded 

by (Zhao, Yang et al. 2012), a daily based study is better than composites, especially when 

dealing with plant growth. 

The observations are plot-based, since there are different crop types grown in different plots 

and requires a detailed plot and subplot based analysis, unlike most of the similar researches 

which focuses on a large homogenous field of similar crops. 
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The methodology of fusing two sensor data ( PROBA-V and MODIS) attempts to create, 

optimise and analyse the time series while at the same time preserving the reflectance values 

of both the sensors, negating the effect of resolution degradation. Also the fusion of these two 

sensors have not been adapted yet. 

The second adapted approach is to establish a relationship between soil moisture and plant 

growth by incorporating the MODIS and PROBA-V fused data with SMAP (Soil Moisture 

Active Passive) data. SMAP provides, highest resolution soil moisture information compared 

to the other available remote sensing based soil moisture systems, as availability of researches 

related to use of SMAP with MODIS and PROBA-V data to establish a relationship is limited, 

the observations can be fine-tuned for further research works. This research is processed based 

on free and open source software and programming language. 

1.3 Research Objectives: 

The primary focus of this project is: 

➢ Efficient harmonisation and fusion of NDVI from MODIS and PROBA-V in order to 

optimise spatial coverage, by a mutual signal transformation. Resulting to fused time 

series of growing seasons and increase accuracy of the output. 

➢ To produce a plot-based time series of vegetation development from complementary 

sensor data sources. 

➢ Analyse to what degree existing soil moisture recordings influence the vegetation signal 

at various crop development stages, mainly by using MODIS data with SMAP, through 

statistical correlation. 

➢ Extrapolate vegetation signal as a function of soil moisture at a specific development 

stage. 

➢ Discuss visualisation techniques synoptically displaying the source of information and 

the uncertainty (statistical errors) involved.  

The research questions answered, for achieving the above mentioned objectives are 

discussed in the later chapters. 

1.4 Thesis Outline: 

Chapter 2, will provide background information and literature review of existing research 

and methods along with an insight for the adapted methodologies and techniques. Chapter 3 

describes the data used, specifications of the satellite imagery used and the study area. 
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Chapter 4 outlines the methodologies used, providing a detailed description for the pre-

processing and post-processing of data. Chapter 5, will focus on the results achieved with 

discussion and analysis of the information generated. Chapter 6, provides a conceptual 

framework to the processing and visualisation tool that will provide a conclusion to the 

findings. Chapter 7, gives a final conclusion to the observations made in the thesis.  
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2. Background and Literature Review 

This chapter focuses on the researches and studies conducted in crop monitoring, and the 

different methodologies available. 

Crop monitoring using remote sensing: 

Monitoring and assessment of crop is critical in ensuring a good agricultural productivity. 

This continuous and intensive process requires remote sensing imageries. Crops generally do 

not grow evenly across the fields because of crop rotation, multiple cropping, or differences in 

soil nutrients, soil moisture or other factors, which effects crop yield from one plot to another 

within the same area. Remote sensing allows the farmer to identify areas within a field which 

are affected and adapt specific mitigating measures. 

Remote sensing based monitoring has many advantages above regular field observations, 

such as the presence of Very Near Infrared (VNIR) that can see beyond the visible wavelengths 

and is highly sensitive to crop growth and changes. It also gives a complete overview of the 

area unlike field survey methods, thus having a temporal advantage over in-situ methodologies. 

Regular images obtained throughout the season from sowing to harvest provides more detailed 

information to the farmer. 

2.1 Electromagnetic spectrum and vegetation: 

Remote sensing has stages of data acquisition and processing. As observed in (Figure 

2.1) solar radiation interacts with various objects depending on the type of object on which the 

light is incident the spectrum is reflected, refracted or absorbed. The reflected radiation is 

recorded by the satellite sensor, and further processed and sent to the ground station.  

 

Figure 2.1: Reflected solar radiation recorded by the sensor. 
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The physical characteristics of the material cause the electromagnetic energy to be 

reflected, refracted, or absorbed in a way that is unique to each material, and these interactions 

are measured in discrete section of the electromagnetic spectrum that provides the spectral 

reflectance of the specific object. (Figure 2.2). 

 

Figure 2.2: Spectral reflectance of Soil, Vegetation and Water. (Source: Lillesand & Kiefer) 

Vegetation has an unique interaction with solar radiation compared to other natural 

materials. The vegetation spectrum typically absorbs in the Red and Blue wavelengths, reflects 

in the Green wavelength, and strongly reflects in the Near Infrared (NIR) wavelength and 

shows strong absorption feature in wavelength where atmospheric water is present. Different 

plant materials, water content, pigment, carbon content, nitrogen content, and other properties 

cause further variation across the spectrum2. As seen (Figure 2.3) Vegetation that is stressed 

shows higher reflectivity in SWIR portion of the spectrum and healthy vegetation is detected 

in NIR. 

                                                 
2 https://www.harrisgeospatial.com/Learn/Whitepapers 
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Figure 2.3. Vegetation Spectral reflectance in detail. (Source: http://www.markelowitz.com) 

As seen in Figure 2.4 most visible light is absorbed, while almost half of the near infrared 

energy is reflected. This is because under the top surface of the leaf (epidermis) there are 

primarily two layers of cells the top one is the pallisade parenchyma and consists of elongated 

cells tightly arranged in a vertical manner in this layer resides most of the chlorophyll, a protein 

that is responsible for capturing the solar energy and power photosynthesis. The lower level is 

the spongy parenchyma, consisting of irregularly shaped cells with a lot of air spaces between 

them in order to allow the circulation of gases. In addition to chlorophyll, the pallisade 

parenchyma contains other pigments, such as carotenoids, anthocyanins and others, because of 

these pigments, most of the visible electromagnetic energy is absorbed, especially in the blue 

and red region.  

 

Figure 2.4. Cellular leaf structure and its interaction with electromagnetic energy. (Source: Jeff Carns, 

NASA Science). 
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Whereas, near infrared (NIR) energy is not affected by these pigments and almost 

completely penetrates the pallisade parenchyma when it reaches the spongy parenchyma the 

presence of air spaces causes the refraction of the NIR energy in various directions, this results 

in approximately half the energy exiting the leaf from the lower epidermis and the other half 

from the top epidermis, towards the sky.3 

2.2 Vegetation Indices: 

 Vegetation indices in remote sensing based crop monitoring forms the basis for scientific 

approach towards phenology detection, type classification or crop growth. As mentioned by 

(Zeng et al., 2016) monitoring crop phenology provides an essential information for crop 

management as well as for understanding regional to global scale vegetation dynamics, they 

developed a hybrid technique to detect the critical vegetative stages and reproductive stages 

from MODIS 250-m Wide Dynamic Range Vegetation Index (WDRVI) time-series data. But 

the usage of this methodology is more distinctive in case of moderate-dense vegetation with 

higher LAI, it has not yet proved to be much effective in case of plants with low biomass or 

LAI.  

Another widely used vegetation index is LAI (Leaf Area Index). It is used to predict 

photosynthetic primary production, evapotranspiration and as a reference tool for crop growth. 

It can be determined directly by taking a statistically significant sample of foliage from a plant 

canopy measuring the leaf area per sample plot and dividing it by the plot land surface area4. 

But this index is limited to be used for higher coverage areas, or regions with vegetation having 

broader and denser canopies or bigger leaf surface area. 

EVI (Enhanced Vegetation Index) is alos largely used as a vegetation index, according 

to (Sakamoto, Yokozawa et al. (2005) EVI is more practical than NDVI when humidity is high 

and thus is appropriate for crops that grows in high humidity and water content like rice. EVI 

can be linearly correlated with the leaf area index but has high sensitivity in conditions of 

higher biomass only. According to (Matsushita, Yang et al. 2007) there results indicated that 

the soil adjustment factor in EVI makes it more sensitive to topographic conditions than in 

NDVI. Based on there results, it is recommend that the topographic effect should be removed 

in the reflectance data before the EVI is calculated, but when these indices are used in the area 

                                                 
3 http://www.seos-project.eu/modules/agriculture/agriculture-c01-s01.html 

4 https://en.wikipedia.org/wiki/Leaf_area_index 



 22 

of rough terrain, where the topographic effect on the vegetation indices having only a band 

ratio format (e.g., the NDVI) it can usually be ignored 

The research by (Raghavendra and Aslam 2017), compared the ability of different 

vegetation indices to support Leaf Area Index (LAI) at different growing stages of rice crops, 

and cocluded that LAI indicates density of vegetation whereas other indices used like, 

Normalized Difference vegetation Index (NDVI), Difference Vegetation Index (DVI), 

Enhanced Vegetation Index 1 and 2 (EVI, EVI2), Soil Adjusted Vegetation Index (SAVI), 

Optimized Soil Adjusted Vegetation Index (OSAVI), Modified Soil Adjusted Vegetation Index 

2 (MASAVI2) and Stress related VegetationIndex (STVI) mainly concentrate on vegetation 

conditions, with DVI, NDVI and STVI showing more relation to the crop growth compared to 

the other parameters. It was observed by (Wardlow, Egbert et al. 2007), that between the EVI 

and NDVI profiles that were, the NDVI maintained higher values than the EVI specifically 

through the senescence and/or peak phase for all crops and especially for Sorghum.  

According to (Fensholt, Sandholt et al. 2004) when estimating the productivity of 

terrestrial ecosystems from satellite images, canopy spectral measures of vegetation intensity 

in relative units must be converted into quantitative biophysical variables. This conversion has 

been performed using models of varying complexity which have analysed that a Top-down 

statistical model provides an empirical relationship between variables like the NDVI and yield. 

Also the ongoing research has sought to establish more physically based relationships between 

vegetation development and NDVI through the use of parametric models. Based on satellite 

data the relationship between NDVI and FAPAR has been found to be linear or approximately 

linear for green vegetation. 

Along with the various stand-alone methodologies adapted for crop monitoring, there are 

also complimentary parameters like soil moisture, precipitation or temperature that are 

analysed to support the vegetation indices. Among most of the vegetation indices used NDVI 

seemed to be most sensitive to crop growth from growing to senescence and also sensitive to 

soil moisture fluctuations in relation to the growth. After weighing out the pros and cons of 

applicability for the study area NDVI is considered to be aptly suitable. 

2.2.1 NDVI (Normalised Difference Vegetation Index): 

Normalized Difference Vegetation Index (NDVI) quantifies vegetation by measuring the 

difference between Near Infrared (which the vegetation strongly reflects) and Red light (which 

the vegetation absorbs). NDVI always ranges from -1 to +1. But there is no distinct boundaries 
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for objects that the value represents, for example a cloud shadow is represented as more than -

1, water is represented as -1, 0 represents no vegetation but at the same time it can be an urban 

area or other feature without vegetation cover on it. However, no green leaves gives a value 

zero and +1, 0.8 to 0.9 indicates the highest possible density of green leaves, with shrubs and 

grasslands or senescing crops with NDVI values approximately 0.2 to 0.5. 

NDVI is one of the most dynamic and certain index to provide plant health and growth 

information. For healthy vegetation with high chlorophyll content it reflects more near-infrared 

(NIR) and Green light compared to other wavelengths and absorbs more Red and Blue light, 

whereas unhealthy vegetation will reflect less NIR. Similarly when the plant reaches Greenup 

peak it will have a higher reflectance of NIR than when it’s growing or is in the senescence 

stage providing distinct signal values to identify crop growth cycle. 

The formula used for measuring NDVI value is : NDVI= (NIR – R) / (NIR +R) 

Where, NIR is Near Infrared and R is Red light from the visible spectrum. 

 

Figure 2.5: NIR and R interaction and NDVI calculation.(Source: NASA) 

The NDVI has become a standard tool used by scientists to visualize vegetation cover, 

plant growth and biomass production from multispectral satellite data. Many NDVI products 

have been derived over the past years from different sensors and can be used for comparative 

studies or to support extensive time series analyses. 5 

                                                 
5 http://www.fe-lexikon.info/lexikon-n.htm#ndvi 
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2.2.2 Plant Phenology and NDVI: 

6Plotting time-series NDVI data produces a temporal curve that summarizes the various 

stages that green vegetation undergoes during a complete growing season. Such curves can be 

analysed to extract key phenological variables, or metrics, about a particular season, such as 

the start of the growing season (SOS), peak of the season (POS), and end of the season (EOS). 

These characteristics may not necessarily correspond directly to conventional, ground-based 

phenological events, but do provide indications of ecosystem dynamics. The phenological 

metrics that can be extracted are: 

Start of Season (SOS) - Beginning of measurable photosynthesis in the vegetation canopy. It 

is identified as the Day of a year from which a consistent upward trend in time-series NDVI is 

observed.  

 

Figure 2.6: Start of Season 

End of Season (EOS) – Identified as the Day of a year from which a consistent downward trend 

in time-series NDVI is observed. It is the end of measurable photosynthesis in the vegetation 

canopy. 

 

Figure 2.7: End of Season 

                                                 
6 https://phenology.cr.usgs.gov/methods_metrics.php 
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Time of Maximum (Peak) – The Day of a year corresponding to the maximum NDVI in an 

annual time-series, it is the time of maximum photosynthesis in the canopy. 

 

Figure 2.8: Time of maximum of NDVI peak. 

Duration – It is the length of photosynthetic activity in the crop i.e., the growing season, 

calculated as the number of days from the SOS and EOS. 

 

Figure 2.9: Growth Season / Duration. 

Amplitude – It is calculated as the difference between Peak and SOS, referring to the maximum 

increase in canopy photosynthetic activity above the baseline. 

 

Figure 2.10: Amplitude 
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Time Integrated NDVI ( NDVI Integral) – It is the daily (interpolated) integration of NDVI 

above the baseline for the entire duration of the growing season, referring to the Canopy 

photosynthetic activity across the entire growing season. 

 

Figure 2.11: NDVI Integral  

2.3 Sensor Fusion: 

Most of the crop monitroing researches uses a single sensor for detection but the artefacts 

in the image remains to be a challenge in single sensor based studies. Also due to existing cloud 

cover in many images the cloud removal creates image gaps, leading to use of composite 

images or statistical processing of the image which compromises the variances sometimes. As 

an alternative to statistical processing or compositing, multiple sensor fusion or combination 

can be adapted to minimise the image gaps with an attempt to have maximum coverage. 

As one of the aim is to create a daily time-series instead of using composites, MODIS 

and PROBA-V where selected as they have daily temporal coverage and also has close spatial 

resolutions. As pointed out by (Inglada, Hagolle et al. 2011) the resolution ratio between the 

images to be fused need to be not too far apart and that the spectral bands had to be very similar 

between images. Also the spatial resolution (250 m) and temporal (daily) coverage of MODIS 

data offers potential for retrieval of crop biophysical parameters and improved accuracy in crop 

yield assessment. Similarly PROBA-V was specifically launched to obtain vegetation 

information (Manakos, Gitas et al. 2012).  

Although Landsat TM data would be more suitable in areas where the field sizes are 

small, according to (Doraiswamy 2004) the temporal frequency and cloud cover limits the 

retrieval of crop parameters that are changing during the season.  
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The research conducted by (Meroni, Fasbender et al. 2016) with the aim to investigate 

the capacity of PROBA-V sensor in delivering more spatially detailed and accurate forest 

monitoring and detecting changes in the forest cover caused by sudden events, such as forest 

fires and storm damage. They supplemented the PROBA-V data with MODIS data for certain 

levels where simulated PROBA-V data could not be used and compared the SPOT data to that 

of PROBA-V and MODIS. The conclusion was that PROBA-v and MODIS have higher 

accuracy in classification. 

Also an extensive study was conducted by JRC (Commission) 2015) in order to evaluate 

the quality and usability for operational crop monitoring of the new PROBA-V satellite NDVI 

data and compared it to other moderate to low spatial resolution instruments like eMODIS. The 

analysis showed that in case of disagreement, PROBA-V indicates a positive anomaly than 

MODIS by a mean bias gain of 0.03. 

An alternative approach for crop monitoring is the use of SAR data. (Toan, Ribbes et al. 

1997) concluded that the approach of synthesising of ERS-1 with available onsite data with 

experimental results from fields at a tropical site and a temperate site has shown that the radar 

backscattering coefficients of flooded rice fields have a characteristic of increasing temporal 

behaviour. And the variations of the radar backscattering coefficients were expressed as a 

function of the crop biomass. The study concluded that a future incorporation of ERS and 

RADARSAT can be used for quantitative validation of the crop growth and condition. Also 

the technique of cross-validation of theoretical and actual values are easier when scattering is 

happening between 2 different mediums, like in this case the rice fields are flooded and thus 

have scattering from plant and water at the same time 

But as the growth of the plantation in our study area has to be identified without any prior 

field spectral information and the area is mostly dry with very limited rainfall along with low 

crop biomass, incorporation of SAR is not a suitable approach. 

The possibility of combining hyperspectral images with multispectral images were 

considered by (Adam, Mutanga et al. 2010), though the research objectives where oriented 

towards mapping the wetland vegetation, they concluded that the use of images with different 

spectral combinations has disadvantages in case of identifying different species as the 

biophysical and biochemical characteristics are highly correlated, and due to varying spectral 

responses it become difficult to be used over smaller area. 
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2.3.1 Fusion/Combining Methodologies: 

In order to combine or fuse multiple sensor images for NDVI time series, there are some 

commonly accepted and used techniques.(Inglada, Hagolle et al. 2011) 

Resampling, the simplest approach for fusion of time series by resampling the low 

resolution image onto the high resolution image, based on different resampling techniques like 

Nearest-neighbour interpolation, Bilinear and bicubic algorithms, or Lanczos resampling. 

Savitzsky-Golay interpolation, this is a particular kind of interpolation which is usually 

applied to NDVI time profile, as NDVI time profiles are affected by the presence of clouds and 

the result is an underestimation of the vegetation index. Savitzsky and Golay (1964) proposed 

a simplified least squares- fit convolution for smoothing and computing derivatives of a set of 

consecutive values (a spectrum). The convolution can be understood as a weighted moving 

average filter with weighting given as a polynomial of a certain degree. The weight coefficients  

when applied to a signal, perform a polynomial least-squares fit within the filter window. This 

polynomial is designed to preserve higher moments within the data and to reduce the bias 

introduced by the filter. This filter can be applied to any consecutive data when the points of 

the data are at a fixed and uniform interval (Chen, Jönsson et al. 2004). The filter is more 

appropriate for composite data as they are based on MVC these images have a temporal 

resolution of 8 or 16 days which doesn’t consider daily variations. The main disadvantage of 

this filter is that it requires an amount of experimentation to find the appropriate filter values 

required to best filter a specific signal. 

Whitaker Smoother, is a modification of Savitzsky-Golay. It assumes an unknown 

piecewise polynomial smooth curve and puts a penalty on the integral of the squared second 

derivative. A banded system of linear equations results which can be solved efficiently with 

software for sparse matrices (Eilers 2003). Thus it is automatic and doesn’t need training set, 

but similarly it is also more appropriate for composite images  and can’t efficiently handle 

missing data. 

Most of the algorithms need the panchromatic band to be consistent with the spectral 

range covered by the multispectral channels, the Bayesian Data Fusion (BDF) method 

developed by (Fasbender, Radoux et al. 2008) estimates the statistical link between the images 

in order to find the most probable value for a pixel that can be given to another. It can also be 

successfully incorporated in any combination of panchromatic bands and is not affected by 

missing values. 
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2.4 Soil Moisture and NDVI: 

While monitoring and analysing crop growth it is important to consider climatic factors, 

soil type etc, which effects the growth of the plant. As suggested by (Kang 2003) the 

phenological stages can be detected more precisely through a combination of climatic data. 

Thus in the thesis soil moisture is chosen as a parameter to understand and establish a 

relationship between soil moisture and plant growth.  

According to (Doraiswamy and Hodges 1979) severe water stress delays development of 

crop plants capable of suspending growth, and kills plants. For sorghum, a 10-day wilting 

period before floral initiation was reflected in a 10-day delay in flowering. Stress after floral 

initiation of 14, 21, and 28 days delayed flowering by 10, 24, and 30 days. Water stress of 

sorghum just before floral initiation reduced the number of leaves initiated, suggesting a time 

lag between floral induction and floral initiation. Excess water reduces soil temperature 

variability and also reduces soil oxygen supply and so may delay development or injure the 

plant. 

According to (Zhang and Zhou 2016) soil moisture is an important variable in land 

surface system research. It links the energy and water exchange between the atmosphere and 

land surface and indicates moisture conditions in soil surface. It is also used to indicate drought 

in vegetated environments thus helping in identifying the crop growth pattern because water 

content is an essential factor for vegetation growth. They concluded that the combination of 

optical and thermal and microwave remote sensing may have broad application prospects. As 

microwave remote sensing can obtain data all-time and all-weather it can provide great help 

for soil moisture products over long time series especially in humid tropical regions.  

(Chen, de Jeu et al. 2014) found strong positive relations particularly between soil 

moisture and NDVI. They observed that soil mosiure leads to certain behaviour of vegetation 

and confirmed the possibility to use satellite soil moisture data to predict vegetation dynamics 

which where checked based on anomalies. In the temporal domain this relation became 

stronger and both soil moisture and NDVI exhibit coherent trend changes during the whole 

study period along with a typical lag character between the soil moisture and NDVI. 

The NDVI and soil moisture relationship is sometimes considered to be subjected to 

hydrological phases of ‘recovery’ stage when the rainfall has been less over a time period and 

‘stable’ stage when the rainfall has been consistent over a time period. According to (Ahmed, 

Else et al. 2017) soil moisture is more tightly coupled with dynamics of plant photosynthesis 



 30 

and respiration than rainfall since a variable amount of precipitation will be lost through 

interception and runoff. Shedding light on changing lagged relationships between NDVI and 

soil moisture could potentially provide useful information for predicting future responses to 

climate change as well as for developing adaptation strategies. There research concluded that 

the patterns of change in NDVI and soil moisture are similar for the recovery and stable phase 

unlike rainfall which varies. 

(T. J. Farrar 1994) compared the effect of soil type on the relationship between NDVI 

and soil moisture. They concluded that soil moisture cannot account for variations among the 

soil types in rain use efficiency and the relationship between soil moisture and NDVI are 

dynamic to the soil type. But as our study area has the similar soil type througout rain use 

efficiency will not have an effect. 

According to (Wang, Xie et al. 2007) vegetation may develop quasi-equilibrium within 

a local climate condition leading to similar root-zone soil moisture in the climate gradient zone. 

The long-term mean root-zone soil moisture in such a system follows a general seasonality 

forced by long-term mean local climate and vegetation life cycles which is predictable. 

However, varying climatic conditions at various temporal scales result in temporal deviation 

of soil moisture from its long-term mean conditions. This soil moisture deviation from the 

mean condition affects vegetation and cause a change in vegetation characteristics from the 

mean condition. As well as in a short time frame (hours) the NDVI may decrease due to sudden 

soil moisture increase since increasing top-layer soil moisture would result in a larger decrease 

of near-infrared reflectance compared to the red reflectance of vegetation. However in a longer 

time frame it is expected that NDVI increases as soil moisture increases over the growing 

season. 

2.5 Image Processing: 

To get optimised information post-processing of images is important and as cloud cover 

is a persistent problem in satellite images, removal of the clouds in post processing plays a vital 

role data quality. The following section will discuss the cloud masking technology adapted by 

the two sensors used in this research.  

2.5.1 MODIS: 

Most of the MODIS composite data (8 and 16) at Level-3 are cloud free as they are 

composited of images from mainly cloud free days and is mostly clear, but in daily data a 
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systematic cloud removal is required. The existing MODIS State Quality Assurance SDS in 

the MOD09GA is used for identifying and removing the cloud cover more details about the 

SDS can be found in Table 8. 

The MODIS cloud mask is a science data product that is produced regularly as an Earth 

Observing System (EOS) standard product. It’s main purpose is to identify scenes where land, 

ocean and atmosphere products should be retrieved based upon the amount of obstruction of 

the surface due to clouds and thick aerosol. Like all official EOS data products the MODIS 

cloud mask is created in Hierarchical Data Format (HDF) format and consists of nine Scientific 

Data Set (SDS) objects.7 

As the SDS layer consists of both the QA reflectance and QA state layer an important 

distinction exists between them that requires clarification. The reflectance band QA provides 

information that qualifies the quality of atmospheric correction at the pixel level, in contrast 

the data state QA provides information about each pixel’s state, i.e., those characteristics that 

are band or resolution independent. The State QA SDSs is tapped for cloud-specific 

information because the reflectance band quality SDSs in the M0D09GQ products carry a 

parameter called Cloud State that is not populated since the V3 MODIS collection and therefore 

is not a reliable source of information.  

The MODIS SDS quality product is assured by two methodologies of processing them. 

Firstly product quality on a field-of-view basis in this approach the Quality Assurance SDS 

contains information about the quality of the MODIS cloud mask based upon the number of 

individual spectral tests that are actually executed for the given field-of-view. The logic being 

that more tests will yield a better result, this implies that processing paths such as polar night 

and desert which have less tests associated with them will potentially be of lesser quality than 

other processing paths such as ocean day or land day paths. Secondly, product quality on a 

granule basis in which information on the quality of the MODIS cloud mask is provided on a 

per granule basis through EOS Core System (ECS) Inventory Metadata as values in the global 

attribute Core Metadata. 

2.5.2 PROBA-V: 

Clouds obstruct land surface parameter retrieval in satellite observations therefore a 

proper cloud screening is pivotal in the pre-processing for the various value-added products. 

                                                 
7 http://cimss.ssec.wisc.edu/modis/CMUSERSGUIDE.PDF 
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In (section 3.1.4) the method of data acquisition by the PROBA-V satellite is discussed and the 

scan difference in the NIR band and SWIR band can be understood.  

 According to (Wolters 2018) the Collection 0 algorithm is based on the use of static 

thresholds applied to the BLUE and SWIR spectral bands, false cloud detection over bright 

surfaces such as deserts and salt lakes and flagging of thick ice clouds as ‘snow/ice’ were 

among the key problems of the operational cloud screening method. To overcome these 

limitations a new algorithm as a hybrid between the radiometric approach (Ackerman, Holz et 

al. 2008) and a geometric approach (Simpson, McIntire et al. 2000) was developed and 

implemented for the PROBA-V reprocessing. 

The geometric part of the cloud shadow detection algorithm has a cloud pixel located at 

position p, with the actual cloud being at height h from the tangential plane, i.e., the intersection 

of the sun beam and the line of sight from the satellite to the cloud pixel. The cloud shadow 

can then be found as the intersection of the sun beam and the tangential plane at the center. 

Solar zenith and azimuth angles are assumed to be equal in the cloud and cloud shadow 

pixels.(see Figure 2.12) 

 

Figure 2.12 : Geometric Approach. (Source: Wolters 2018) 

Cloud heights are estimated using the gradient in NIR reflectance along the projected 

path from a cloud to its shadow in the image. In case of a cloud shadow the NIR reflectance 

will decrease towards a minimum from cloud to shadow edge. If this change is above a 

threshold of 20% a shadow edge is detected. From the locations of the cloud and shadow edge 

the cloud height can subsequently be calculated. 

The radiometric approach involves, using the BLUE and SWIR band reflectance. Two 

separate cloud masks are created 3 × 3-pixel search mask is applied to determine the matching 
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SWIR pixel for the BLUE band cloud mask, and the matching BLUE pixel for the SWIR band 

cloud mask, the final cloud mask is a merge of these two masking results. For the cloud 

detection based on the BLUE band reflectance, it is checked whether the observed value 

exceeds the BLUE band reflectance threshold of 0.2465. In addition it is checked whether the 

maximum SWIR reflectance value in a 3×3 pixel box above the BLUE pixel in the image 

exceeds the SWIR band threshold, if both conditions are satisfied, the BLUE pixel is classified 

as cloudy, this is only applied on the 300 m cloud mask.(see Figure 2.13) 

 

Figure 2.13: Radiometric Approach for cloud mask creation in Proba-V. (Source: Wolters 2018) 

For creating the final State Map (Fensholt, Sandholt et al.) layer each PROBA-V pixel is 

assigned to a land cover class based on monthly images generated by ESA’s Land Cover 

Climate Change Initiative-1 (CCI) of which the classes ‘land’, ‘water’, ‘snow/ice’, and 

‘unknown’ are used for further processing. Subsequently, for each land cover class background 

surface reflectance for the BLUE spectral band are generated. Based on a monthly clear-sky 

climatology obtained from Medium Resolution Imaging Spectrometer (MERIS) 0.413 and 

0.443 μm observations over the period 2002 – 2012. In case of missing data (e.g. over areas in 

the winter season) coarse-resolution (5 km) broad-band (0.3 – 0.7 μm) ESA’s GlobAlbedo8 

surface reflectance data are used. In the final step, a set of decision rules are defined, consisting 

of threshold tests (on band reflectance’s, reflectance ratios or amplitude differences) and 

similarity checks. The similarity checks are performed using the Spectral Angular Difference 

(SAD) which measures the cosine of the angle between two vectors. 

                                                 
8 European Space Agency (ESA), GlobAlbedo Project, http://www.globalbedo.org   
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2.6 Interactive Visualisation /Analytical Tools: 

9As one of the objectives is to create an interactive tool for processing and visualisation 

for analysis based on Free and Open Source, an overview about the currently existing 

software’s and tools are given below . 

2.6.1 TIMESAT: 

TIMESAT is a software package for time-series processing and assessment of vegetation 

dynamics, The package consists of routines developed in MATLAB and Fortran for Windows 

and tested also under Linux. The objective behind the package is to represent the data of 

seasonal vegetation signal in a meaningful way, and to identify the underlying vegetation. A 

number of processing steps are taken to transform the noisy signals into smooth seasonal 

curves, including fitting asymmetric Gaussian or double logistic functions, or smoothing the 

data using a modified Savitzky-Golay filter. The methods incorporate qualitative information 

on cloud contamination from ancillary datasets. The resulting smooth curves are used for 

extracting seasonal parameters related to the growing seasons. It has been used in a large 

number of applied studies for phenology parameter extraction, data smoothing, and general 

data quality improvement. 

2.6.2 TimeStats: 

Time-Stats is a free tool for the analysis of multi-temporal equidistant georeferenced 

remote sensing data archives, such as MODIS, AVHRR, MERIS and SPOT-Vegetation. Key 

features include parametric and nonparametric methods for trend detection, generalized-least 

square regression, distributed lag models, cross spectra analysis, windowed trend and 

frequency analysis, continuous wavelet transform, empirical mode decomposition and 

extraction of phenological indexes (peaking times and magnitudes). Time-Stats is programmed 

in the Interactive Data Language (IDL) and freely distributed with the IDL virtual machine. 

Generated raster output files are saved in the standard ENVI format with appropriate header 

files and are portable to common geospatial satellite imaging processing software packages. 

2.6.3 PhenoSat: 

PhenoSat is a software tool that allows to extract satellite VI metrics related to vegetation 

phenology in a simple and easy way. As input it takes the yearly vegetation index images to 

                                                 
9 http://unigis.sbg.ac.at/files/Mastertheses/Full/102723.pdf 
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process, and outputs the data processing steps and the phenological information. It is developed 

based on MATLAB, and uses 6 smoothing methods to fit the data: Savitzky-Golay (SG), 

Piecewise Logistic (PL), Fourier Series (FS), Gaussian Model (GM), Polynomial Curve Fitting 

(PCF) and Cubic Smoothing Splines (CSS). The PhenoSat outputs are two excel files with data 

and phenological information. In case of using the images as input, three phenological maps 

(start of season, maximum vegetation development and end of season) are also created. 

2.6.4 SPIRITS: 

The Software for the Processing and Interpretation of Remotely sensed Image Time 

Series (SPIRITS) is an integrated and flexible free software environment for analysing satellite 

derived image time series in crop and vegetation monitoring developed by JRC Europe. The 

software was originally developed as a toolbox for crop monitoring with remote sensing, but 

has evolved into an independent tool for the processing and analysis of time series of raster 

data. It can be used to perform and to automatize many spatial and temporal processing steps 

on time series and to extract spatially aggregated statistics. Vegetation indices and their 

anomalies can be rapidly mapped and statistics can be plotted and interpreted in seasonal 

graphs to be shared with analysts and decision makers. It has been developed to answer the 

specific needs of the agriculture monitoring community, with the objective to support the whole 

chain of image time series processing steps and the production of synoptic visual analysis 

outputs in a user-friendly and flexible manner. Since its first release in 2012 the software has 

evolved into an advanced and comprehensive time series processing tool. SPIRITS is written 

in java programming language. 

As discussed above most of the existing softwares are well designed and integrates many 

features, especially SPIRITS the newer version of the software plans to incorporate 

PostgreSQL as a connection for database. But none of the softwares incorporates the feature of 

fusioning data neither it consider the incorporation of additional parameter likes precipitation, 

soil moisture temperature to compliment the vegetation indices calculations. 
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3. Data and Study Area  

This chapter will discuss the data, it’s acquisition and availability, along with an 

overview of the study area with the climatic and agricultural patterns. 

3.1 Datasets: 

3.1.1 MODIS Terra/ MODIS Aqua (collection 6): 

Moderate Resolution Imaging Spectroradiometer (MODIS) provides high radiometric 

sensitivity (12 bit) in 36 bands of the electromagnetic spectrum of wavelengths ranging from 

0.4 µm to 14.4 µm. Two bands (NIR and IR) are imaged at a resolution of 250 m at nadir with 

five bands at 500 m and the remaining 29 bands at 1 km. A ±55 scanning pattern at the EOS 

orbit of 705 km achieves a 2,330-km swath and provides global coverage every one to two 

days10. The Scan Mirror Assembly (Whisk-broom) uses a continuously rotating double-sided 

scan mirror to scan 55 and is driven by a motor encoder built to operate at 100 percent duty 

cycle throughout the 6-year instrument design life.  

MODIS is a key instrument aboard the Terra satellite (EOS AM-1) launched in 1999 

and Aqua satellite (EOS PM-1) launched in 2002. It was built by Santa Barbara Remote 

Sensing to NASA specifications11 and was designed with the ability of monitoring 

atmospheric, land, and ocean imaging in a single instrument. The sensor is ideal for monitoring 

large-scale changes in the biosphere it measures the photosynthetic activity of land and marine 

plants to yield better estimates in plant productivity, and helps in gauging the plants health. 

Specifications: 

Orbit 705 Km, sun - synchronous, near – polar, circular. 

10:30 a.m. descending node for Terra. (Figure 3.1) 

1:30 p.m. ascending node for Aqua.(Figure 3.2) 

Temporal 

Resolution 

Daily. 

                                                 
10 https://modis.gsfc.nasa.gov/about/design.php 

11 https://modis.gsfc.nasa.gov/about/components.php 
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Spatial Resolution 250 m (bands 1-2), 500 m (bands 3-7), 1000 m (bands 8-36). 

(see: Table 7) 

Scan Rate 20.3 rpm, cross-track (Whisk-broom). 

Swath Dimension 2330 km (cross track) by 10 km (along track at nadir). 

Telescope 17.78 cm diameter off-axis, a-focal (collimated), with 

intermediate field stop. 

Size 1.0 x 1.6 x 1.0 m 

Weight 228.7 kg 

Power 162.5 W (single orbit average) 

Data Rate 10.6 Mbps (peak daytime); 6.1 Mbps (orbital average) 

 

 

Figure 3.1: Global Land Surface Reflectance in true colour (MODIS-Terra) acquired on 02.09.2018.. 
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Figure 3.2: Global Land Surface Reflectance in true colour (MODIS-Aqua) acquired on 02.09.2018. 

3.1.2 MODIS Processing:12 

 MODIS has five distinct levels of processing. Level 0 data is raw satellite feeds. Level 

1 data is radiometrically calibrated. Level 2 data is level 1 data that is atmospherically corrected 

to yield a surface reflectance product. Level 3 data is level 2 data that has been gridded into a 

map projection and has been temporally composited or averaged. Level 4 data are products that 

have been put through additional processing. All data up to and including level 2 are delivered 

in an un-gridded orbital swath format with each swath typically cut into small segments. Data 

at level 3 and higher are geolocated into a specific map projection typically with the geolocated 

products in a set of non-overlapping tiles.  

The level 2 MOD09 output includes all corrected bands and band quality data, as well as 

aerosol retrieval data and data for assessing the quality of the aerosol retrieval algorithm. It 

consists of 1km State QA SDS (Quality Assurance Scientific Data Sets) with band quality 

SDSs containing information about the quality of the atmospheric correction of each pixel. and 

the 500m State QA SDS containing information about the pixel's state.(see Table 8) 

The data is run for each tile in the MODIS sinusoidal grid for each data (see Figure 3.3). 

The number of observations at each pixel is determined not only by the number of orbits at that 

location but also by the spread of observational coverage of off-nadir pixels. 

                                                 
12 MODIS Surface Reflectance User’s Guide, collection 6, http://modis-sr.ltdri.org. 
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Figure 3.3: The MODIS sinusoidal grid consists of 460 non-overlapping tiles which measure 

approximately 10° x 10°.(Source:  Strabala) 

3.1.3 MODIS Land Surface Product Used (MOD09/ MYD09): 

MOD09GQ/ MYD09GQ: (Vermote 2015) 

MODIS Terra/Aqua Surface Reflectance Daily L2G Global 250. It provides an estimate 

of the surface spectral reflectance of Terra MODIS 250 m bands 1-2 corrected for atmospheric 

conditions like gasses, aerosols, and Rayleigh scattering. Along with the 250 m bands are the 

QC 250 m layer and five observation layers. The SDS layers in this dataset which were 

considered are: 

➢ sur_refl_b01_1: 250m Surface Reflectance Band 1 (620-670 nm), (see Figure 3.4). 

➢ sur_refl_b02_1:  250m Surface Reflectance Band 2 (841-876 nm). 

➢ QC_250m_1: 250m Reflectance Band Quality. (Instead state QA from 09GA is used). 

➢ obscov_1: Observation Coverage (percentage of the grid cell area covered by the 

observation). 

➢ num_observations: number of observations within a pixel. 

This product is intended to be used in conjunction with the quality and viewing geometry 

information of the 500 m product (MOD09GA/ MYD09GA), as the QC SDS within this layer 

is not updated from collection 3 onwards of MODIS data product. 
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Figure 3.4: MOD09GQ Band 2 (NIR) gray-scale surface reflectance product. The data was collected on 

June 2, 2017 over Sudan, Eritrea and Ethiopia.  

 

Figure 3.5:MOD09GQ Band (2,1,1) False colour surface reflectance product. The data was collected on 

June 2, 2017 over Sudan, Eritrea and Ethiopia.  

MOD09GA/ MYD09GA:(Vermote 2015) 

MODIS Terra/Aqua Surface Reflectance Daily L2G Global 500 m and 1 km. It provides 

an estimate of the surface spectral reflectance of Terra MODIS Bands 1 through 7 and these 
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are also similarly corrected as MOD09GQ/ MYD09GQ. Provided along with the 500 m 

reflectance and four observation bands are a set of nine 1 km observation bands. The SDS 

layers in this dataset which were considered are: 

➢ sur_refl_b01_1: 500m Surface Reflectance Band 1 (620-670 nm) 

➢ sur_refl_b02_1:  500m Surface Reflectance Band 2 (841-876 nm). 

➢ sur_refl_b03_1: 500m Surface Reflectance Band 3 (459-479 nm). 

➢ sur_refl_b04_1: 500m Surface Reflectance Band 4 (545-565 nm). 

➢ sur_refl_b05_1: 500m Surface Reflectance Band 5 (1230-1250 nm). 

➢ sur_refl_b06_1: 500m Surface Reflectance Band 6 (1628-1652 nm). 

➢ sur_refl_b07_1: 500m Surface Reflectance Band 7 (2105-2155 nm). 

➢ state_1km_1: Reflectance Data State, used as quality layer (see Table 8)). 

➢ obscov_500m_1: Observation coverage. 

➢ num_observations_500m: Number of observations within a pixel. 

The reflectance layers from the MOD09GA are used as the source data for many of the 

MODIS land products. The quality SDS (state_1km_1) in this dataset is Big-Endian bit coded, 

and supplements the pixel quality or state information in the image. 

 

Figure 3.6: MYD09GA RGB Band (1,4,3) True colour surface reflectance product. The data was 

collected on June 1, 2016 over Sudan, Eritrea and Ethiopia. 
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3.1.3.1 MODIS Naming Convention: 

MOD09GQ.A2017152.h21v07.006.2017154030207.hdf 

MYD09GA.A2014153.h21v07.006.2015287030226.hdf 

Product Name: MOD09GQ/ 

MYD09GA 

MOD- Terra MODIS 

MYD- Aqua MODIS 

09GQ / 09GA- Surface Reflectance product 

A2017152 Julian date of acquisition (A-YYYYDDD) 

h21v07 Tile identifier. h- horizontal axis(XX), v- vertical 

axis(YY) 

006 Collection Version 

2017154030207 Julian Date of production.(YYYYDDDHHMMSS) 

.hdf Data format. (HDF EOS) 

 

3.1.4 PROBA-V: (Wolters, 2018)  

The PROBA-V (Project for On-Board Autonomy–Vegetation), is the fourth satellite in 

the European Space Agency's PROBA series. It was launched on 6th May 2013 and has been 

developed and built by QinetiQ Space N.V and subcontractors for the Directorate of 

Technology (DTEC) of ESA. 

 

Figure 3.7: PROBA-V spacecraft in orbit.( Source: ESA) 
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PROBA-V was aimed to bridge the gap in space-borne vegetation measurements 

between SPOT-VGT and the Sentinel-3 satellite, with an objective to ensure continuity with 

the SPOT-VGT mission’s heritage. The PROBA-V mission had a designed life of 2.5 years, 

but the platform performance was well within requirements and in May 2015 it was decided to 

extend the mission with another 2.5 years until May 2018. Further extension through October 

2019 was decided on in May 2017 

It has a Field Of View of 102, with a swath width of 2285 km. The swath width ensures 

a daily global coverage of the land masses in the latitudes 35º and 75º North and in the latitudes 

between 35° and 56° South, with a 90% daily coverage of equatorial zones and 100% two-

daily imaging, during day time, of the land masses in the latitudes between 35º North and 35º 

South.13  

It is a multispectral across-track scanner (push-broom) spectrometer with 4 spectral 

bands; Blue (at 0.463 μm), Red( at 0.655 μm), NIR (at 0.837 μm), and SWIR( at 1.603 μm). 

The VNIR detector consists of three lines of 5200 pixels, and SWIR detector is a linear array 

composed of three staggered detectors of 1024 pixels (see Figure 3.8). The optical design 

consists of three cameras. Each camera has two focal planes, one for the short wave infrared 

(SWIR) and one for the visible and near-infrared (VNIR) bands. It has been designed such that 

the NIR band observes the Earth first, followed by the RED, BLUE, and SWIR bands. 

 

Figure 3.8: PROBA-V Instrument Layout.(Source: Wolters, 2018) 

Specifications:13 

Orbit 819 - 827 Km, sun - synchronous. 

LTDN (Local Time on 

Descending Node) 

10:30 hours with a drift limited between 10:30 and 11:30 AM 

during the mission lifetime, because the satellite has no 

                                                 
13 https://earth.esa.int/web/eoportal/satellite-missions/p/proba-v 
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onboard propellant and the overpass time will continue to 

decrease as a result of increasing atmospheric drag. 

Inclination 98.7 

Temporal Resolution Daily near-global coverage (90%). 

Spatial Resolution 330m, 100m and 1km. 

VNIR: 100 m at nadir, 360 m at edge of swath. 

SWIR : 200 m at nadir, 600 m at edge of swath. 

Spectral Bands B1: Blue- 0.415-0.500 µm 

B2: Red- 0.580-0.770 µm 

B3: NIR- 0.730-0.960 µm 

B4: SWIR- 1.480-1.760 µm 

Swath Dimension 2285 km. 

Telescope 3 identical TMA telescopes mounted on an optical bench 

together. 

Size 200 mm x 812 mm x 350 mm 

Weight 35 kg 

Power 30 W 

Data Rate 7.15 Mbit/s (after compression). 

IGFOV 96.9 m for VNIR and 193.8 m for SWIR 

3.1.5 PROBA-V Processing:13  

PROBA-V has data processing on 4 levels. Level 0, it ingests raw data and produces 

instrument packets, sorted by time, duplicated packets removed and wrong packets taken out. 

Level 1 data is used for geometric and radiometric processing. Level 1A produces files 

containing instrument data annotated with instrument and platform housekeeping as well as 

ancillary (position, velocity, pointing) information. Whereas Level 1B consists of associated 
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geometry and geometry derived information at pixel level. Level 1C consists of radiometrically 

corrected L1B at pixel level.  

The Level 1C data is used as an input for Level 2 data which performs mapping and 

SWIR mosaicking, snow/ ice detection, cloud and cloud shadow detection and atmospheric 

correction. The compositing into synthesis images is performed at Level 3, the aim is to 

optimally combine multiple observations into a single and cloud-free synthesis image 

producing the final user accessible data.(see Figure 3.9).  

 

Figure 3.9: PROBA-V processing chain flowchart (Source:Wolters 2018). 

The compositing rules for the 300 m and 100 m syntheses are: observations covered by 

all spectral bands are preferred over observations covered by only a few spectral bands. 

Observations with a good pixel quality indicator for all bands are preferred over observations 

of less quality. Cloud-free observations are preferred over ice/snow observations, which in turn 

are preferred over cloudy observations. The final PROBA-V data products are projected in a 

standard WGS-84 projection similar as for the SPOT-VGT products. 
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Figure 3.10: The brighter white areas indicate overlapping observations.(Source: Wolters 2018) 

 

Figure 3.11: PROBA-V Colour composite(1,2,3), Red(Band 1), BLUE (Band 2), NIR (Band 3) as seen on 

20/06/2017.  

3.1.6 PROBA-V Product Used : 

S1-TOC (Top of Canopy) 330m: 

This is Level 3 ground reflectance values at a spatial resolution of 330m, with best-

quality and cloud-free data selected for the daily composite time period. It has 12 SDS layer; 

Geometry layer: Sun Azimuth Angle (SZA), Viewing Azimuth Angle (VAA) SWIR, Viewing 

Azimuth Angle (VAA) VNIR, Solar Zenith Angle (SZA) SWIR, Solar Zenith Angle (SZA) 

VNIR, Viewing Zenith Angle (VZA) SWIR, Viewing Zenith Angle (VZA) VNIR. Radiometry 

Layer: Band 1 (Biro, Pradhan et al.), Band 2 (NIR), Band 3 (BLUE), Band 4 (SWIR). Quality 

Layer: Quality State Map. 
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Figure 3.12: S1 TOC 330m Band (1,2,3) Colour composite of surface reflectance product. The data 

collected on 27/08/2017 over Sudan. 

 

Figure 3.13: S1 TOC 330m Band (2,1,3) False Colour composite of surface reflectance product. The 

data collected on 27/08/2017 over Sudan. 
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Figure 3.14: S1 TOC 330m Band (1) Red Band surface reflectance product. The data collected on 

27/08/2017 over Sudan. 

3.1.6.1 PROBA-V Naming Convention: 

PROBAV_S1_TOC_20140601_333M_V101.HDF5 

PROBAV Sensor name 

S1_TOC Composite S1 level 3 at Top of Canopy. 

20140601 Date of acquisition (YYYYMMDD) 

333M Resolution 

V101 Collection Version 

.HDF5 Data format. (HDF EOS) 

3.1.7 SMAP: 

Soil Moisture Active Passive (SMAP) is a remote-sensing observatory with two 

instruments a synthetic aperture radar (SAR) and a radiometer that maps soil moisture and 

determine the freeze or thaw state of the area being mapped. The SMAP instrument 
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incorporates an L-band radar and an L-band radiometer that share a single feedhorn and 

parabolic mesh reflector at an offset from nadir and rotates about the nadir axis at 14.6 rpm 

(nominal), providing a conically scanning antenna beam with a surface incidence angle of 

approximately 40° (R. Reichle 2012).  

 

Figure 3.15: SMAP concept figure. (Source: NASA) 

Soil moisture initially was measured at scales ranging from point scale (in situ) to satellite 

footprint scales of about 40 km at various temporal resolutions. Measurement networks of in-

situ sensors such as USDA’s Soil Climate Analysis Network (SCAN) or NOAA’s Climate 

Reference Network (CRN) have potentially high soil moisture measurement accuracy but are 

spatially very sparse. Radar scatterometers have also been used to retrieve soil moisture like 

the European Remote Sensing Satellite (ERS) C-band scatterometer with resolution of 50 km 

has been used to retrieve surface soil moisture over sparsely vegetated regions with moderate 

accuracy.  

But all these measurement technologies do not have high spatial and temporal resolution 

and lacks wide spatial coverage, optimal sensing depth, and desired accuracy in retrieved soil 

moisture over moderate vegetation conditions. Thus, to meet these needs, NASA’s Soil 

Moisture Active Passive (SMAP) mission was launched which uses the L-band radar and L-

band radiometer for concurrent, coincident measurements integrated as a single observation 

system. This combination takes advantage of the relative strengths of both active (radar) and 

passive (radiometer) microwave remote sensing for soil moisture mapping.  
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SMAP, was launched on January 31, 2015. It is developed by NASA’s Jet Propulsion 

Laboratory, which build the spacecraft, the instrument (except for the radiometer), and the 

science processing system. NASA Goddard Space Flight Center provide the L-band radiometer 

and Level 4 science processing. The Canadian Space Agency (CSA) is also a mission partner 

to provide critical support to science and calibration/validation pre- and post-launch. 

Specifications:  

Orbit 685 Km, sun - synchronous, near – polar. 

Equator crossings 6 a.m. and 6 pm. local time. 

Inclination 98.1 

Temporal Resolution 2 Daily global coverage. 

Swath Dimension 1000 km (see Figure 3.16) 

Size 1.5 x .9 x .9 m 

Weight 944 kg 

Power 1450 Watts 

Radar: L-Band Frequency: 1.2 to 1.3 GHz. 

Polarizations: VV, HH, HV. 

Relative accuracy (3 km grid): 1 dB (HH and VV), 1.5 dB 

(HV). 

Data acquisition: High-resolution (SAR) data acquired over 

land, low-resolution data acquired globally. 

Radiometer: L-Band Frequency: 1.41 GHz. 

Polarizations: H, V, 3rd & 4th Stokes. 

Relative accuracy (30 km grid): 1.3 K. 

Data collection: High-rate (sub-band) data acquired over 

land, low-rate data acquired globally. 
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Antenna Shared, 6 m diameter. 

 

Figure 3.16: SMAP image swath of radar and radiometer.( Source: JPL/ NASA) 

 

Figure 3.17: Global map of SMAP radiometer. (Source: NASA/JPL-Caltech/GSFC) 



 52 

3.1.8  SMAP Processing:14 

SMAP has a 5 level processing like most of the other satellites. Level 0 is the 

reconstructed, unprocessed instrument data at original resolution with all communication 

artefacts removed and time ordered. Level 1 consisting of Level 1A which is level 0 data time 

referenced and annotated with ancillary information. Level 1B and 1C data products are 

calibrated and geolocated instrument measurements of surface radar backscatter cross-section 

and brightness temperatures. Level 2 products are geophysical retrievals of soil moisture on a 

fixed Earth grid based on Level 1 products and ancillary information. The Level 2 products are 

output on a half-orbit basis. Level 3 products are daily composites of Level 2 surface soil 

moisture and freeze/thaw state data. Level 4 products are model-derived value-added data 

products of surface and root zone soil moisture and carbon net ecosystem exchange that support 

key SMAP applications.  

In total, the SMAP mission generates 15 distributable data products representing four 

levels of data processing. Level 1 and Level 2 appear in granules that are based on half orbit 

granules of the SMAP satellite. Level 3 products are daily global composites of the Level 2 

geophysical retrievals for an entire UTC day. Level 4 products contain output from geophysical 

models utilizing SMAP data. The SMAP data are projected on EASE 2 grid equal area 

projection. 

 

Figure 3.18: SMAP Data processing and data flow. (Source: Entekabi 2014) 

                                                 
14 https://smap.jpl.nasa.gov/data/ 
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3.1.9  SMAP Data Used (R. Reichle 2012): 

L3_SM_AP (Enhanced):  

The SMAP L3_SM_AP (Level 3 Soil Moisture Active Passive) product is a daily global 

composite of the SMAP L2_SM_AP product. It represents gridded data of SMAP radiometer 

based soil moisture retrieval, ancillary data, and quality-assessment flags on the global Surface 

soil moisture (0-5 cm) in cm3/cm3 derived from brightness temperature and sigma nought 

measurements. The output is on a Earth-fixed, global, cylindrical 9 km Equal-Area Scalable 

Earth Grid version 2.0 (Das 2015). 

To generate the standard L3_SM_AP product the processing software ingests one day’s 

worth of L2_SM_AP granules and create individual global composites as two-dimensional 

arrays for each output parameter defined in the L2_SM_AP product. Wherever data overlap 

occurs (typically at high latitudes), data whose acquisition time is closest to the 6:00 am local 

solar time is chosen (Das 2015). 

The dataset consists of total 58 bands that includes the albedo, boresight incidence, EASE 

column index, ease row index, freeze thaw fraction, latitude, longitude, latitude centroid, 

longitude centroid, radar water body fraction, retrieval quality flag, roughness coefficient, soil 

moisture, soil moisture error etc., for both AM and PM dataset. 

 

Figure 3.19:Dataset of SMAP L3_SM_AP. 
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3.1.9.1  SMAP naming convention: 

SMAP_L3_SM_P_E_20161207_R14010_001_Soil_Moisture_Retrieval_Data_AM_soil_moi

sture.tiff 

SMAP Indicates Mission 

L3_SM_P Indicates Specific product: L4- Level 4, SM- Soil 

Moisture, P- Passive radiometer (Read note below). 

E Enhanced 

20161207 Date (YYYYMMDD) 

R14010 Composite release ID. R- Release, l- launch indicator 

(post-launch standard data), V(4)- 1 digit Major 

version Number, vvv(010)- 3 digit Minor version 

001 Number of times the file was generated under the 

same version for a particular date/time interval (001: 

1st time). 

Soil_Moisture_Retrieval_Data_AM File type in level 3, AM- time 

Soil_moisture Data type 

.tiff Data format. (geotiff, customized and downloaded) 

Note15: 

The SMAP dataset is using only passive radiometer data because NASA's SMAP 

observatory had determined that its radar, one of the satellite's two science instruments, can no 

longer return data. However, the mission continues to produce high-quality science 

measurements supporting SMAP's objectives with its  passive radiometer instrument. On July 

7, 2015, SMAP's radar stopped transmitting due to an anomaly involving the radar's high-

power amplifier (HPA).  

                                                 
15 https://www.jpl.nasa.gov/news/news.php?feature=4710 



 55 

Initially SMAP's active radar and passive radiometer instruments were designed to 

complement each other and mitigate the limitations of each measurement alone. The radar 

enabled high-resolution measurements of up to 3km, but with lower accuracy for sensing 

surface soil moisture. In contrast, the microwave radiometer is more accurate in its 

measurements, but has lower resolution of about 40km. By combining the active and passive 

measurements, SMAP was designed to estimate soil moisture at a resolution of about 9km. 

3.2 Data Availability: 

Availability of MODIS and PROBA-V data are affected by various factors like scan 

angle as shown in Figure 3.1 the satellite creates a gap due to the scan angle and doesn’t create 

tiles for certain days over specific regions. Also because of cloud cover most of the data were 

not available after post processing as the data considered is majorly covered by the monsoon 

season of the study area. The following charts shows the monthly availability of each sensor 

data:  

  

  

Figure 3.20 : Showing available scenes from 2014-2015 for MODIS (Aqua/Terra) and PROBA-V. 

As observed in Figure 3.20 the drop in availability is mainly in July and August because 

of increased cloud cover. The following charts Figure 3.21 and Figure 3.22 provides an overall 

information about the data availability from 2014-2017: 
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Figure 3.21: Total Image availability. 

 

Figure 3.22: Charts showing the yearly data availability, along with the total data available. 



 57 

3.3 Study Area: 

3.3.1 Location 

The study area Gadambalia is located in the state of Gadarif near the town of Al Qadarif  

in south-eastern Sudan and lies approximately between the latitude 13 15’N to 14 15’N and 

longitude 34 30’E to 35 20’E.It is located at an average altitude of 608 m with a gentle slope 

of 0-1% the total area covered is about 2970 km2. 

 

Figure 3.23: Study Area. Al Qadarif Sudan. (Base map: Google Hybrid) 
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Figure 3.24: Detailed Scheme Map (Source: Dr. Nikolas Prechtel, TUD) 
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3.3.2 Climate and Soil: 

The study area falls in the eco-climatic zone of the African Sahel (see Figure 3.25). The 

region lies between the Sahara in North and Savanna in south and the coast in west. It has semi-

arid climatic conditions, with aridity index ranging from 0.2 to 0.4 (Biro, Pradhan et al. 2013), 

the rainfall is limited to only few months ranging from June-September peaking at July-August. 

The temperature ranges from 22 C in winter to a mean maximum of 37 C in summer while 

it may reach about 40-42C in April or May (Biro, Pradhan et al. 2012).  

 

Figure 3.25: African Sahel extent. 

Rainfall in the Gadarif region varies from 400 mm to over 700 mm with an annual 

average of 591 mm. The average monthly rainfall in June at the beginning of the rainfall season 

is around 66 mm at Gadambalia. At the peak of the rainfall season in August, rainfall is about 

176 mm and ranges down to 72 mm in September towards the end of the rainy season. Although 

the total amount of rainfall during the rainy season seems sufficient the high temperatures of 

the rainy months substantially reduce the amount of effective rainfall (selwar 2014). 

Another typical characteristic of the rainfall in this region according to (Hermance and 

Sulieman 2018) is most of the cumulative rainfall in this region is intense but localized and 

have convective storm activity associated with the seasonal northward migration of the tropical 

rain belt into this region. As most downpour from these convective storm have a lateral scale 
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a storm system passing through a region may result in two contrasting types of local extremes: 

one area may experience flash flooding, while an adjacent area may experience dry conditions. 

As the rainfall plays a dominant role in the weather conditions of this region because of it 

temperature extremes, any form of rainfall anomaly has a major effect. 

The soil type in this region are heavy dark cracking clays. The clay content is very high, 

amounting 70 to 80%, (Biro, Pradhan et al. 2013), Montmorillonite is the common clay type 

in the area and its content varies between 47% and 75 %. The soil is moderately fertile, and 

has low content of organic matter and nitrogen (Biro, Pradhan et al. 2012) 

3.3.3 Agriculture: 

The study area is a section of the Mechanised farming corporation namely Gadambalia, 

the mechanised farming was first introduced in 1940’s in Gadarif by the British army and 

eventually became the largest rainfed mechanised farming area in Sudan. The main crops 

grown under this scheme are Sorghum and Sesame with some Millet, Cotton and Guar. It 

contributes to about one third of the national production of sorghum and about half of the 

sesame. According to FAOSTAT four countries, India, China, Myanmar, and Sudan, 

contribute >60% to the total world production of sesame seeds. Gadarif along with Kordofan 

region forms the back bone of the national economy as the Sesame and Sorghum are mostly 

exported16. 

3.3.3.1 Sesame: 

As the study area contributes to about half of the sesame production in the country it is 

important to know the growing conditions of this crop, so it can be related to the extremities of 

the weather conditions in the region. 17Sesame varieties have adapted to many soil types and 

thrives best on well-drained, fertile soils of medium texture and neutral pH, however these have 

low tolerance for soils with high salt and water-logged conditions. Sesame is drought-tolerant, 

in part due to its extensive root system. However, it requires adequate moisture for germination 

and early growth.  

While the crop survives drought as well as presence of excess water, the yields are 

significantly lower in either conditions. 18Planting sesame is the most critical phase of its 

                                                 
16 https://reliefweb.int/sites/reliefweb.int/files/resources/Sudan%20Profiles%20Final%20en.pdf 

17 https://en.wikipedia.org/wiki/Sesame#Processing 

18 https://www.extension.iastate.edu/alternativeag/cropproduction/pdf/sesame_crop_guide.pdf 
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management, successful establishment of sesame requires careful seedbed preparation and 

close attention to soil moisture. Sesame will not emerge from soils that are even slightly crusted 

and needs fairly warm soil temperatures of 21°C or more. 

Ideally Sesame is sown during June-July, grows in August-October, and harvested during 

November-December. 

3.3.3.2 Sorghum: 

19Sorghum is mainly cultivated in drier areas, especially on low potential, shallow soils 

with high clay content. It usually grows poorly on sandy soils, except where a heavy textured 

subsoil is present. Sorghum is more tolerant of alkaline salts than other grain crops and can 

therefore be successfully cultivated on soils with a pH (KCl) between 5.5 and 8.5. Sorghum 

can better tolerate short periods of waterlogging. Soils with a clay percentage of between 10 

and 30 % are optimal for sorghum production. The optimum growth requirements of sorghum 

plants, in order to exploit its inherit yield potential, are a deep well-drained fertile soil, a 

medium to good and fairly stable rainfall pattern during the growing season, temperate to warm 

weather (20–30°C) and a frost-free period.  

Sorghum is able to tolerate drought better than most other grain crops. This can be 

attributed to an exceptionally well-developed and finely branched root system, which is very 

efficient in the absorption of water. It has a small leaf area per plant, which limits transpiration. 

Similar to sesame it requires better soil moisture during its initial growth period (seedling 

generation) but also fluctuating rainfall conditions of approximately 400mm during it’s 

growing period. Sorghum is one of the best crops for producing a good yield in warm or hot, 

dry, non-irrigated conditions. It also grows well in hot humid conditions. Its chief disadvantage 

is that it depletes the soil nutrient supply, and the succeeding crop must be fairly heavily 

fertilized (Doraiswamy and Hodges 1979).  

Ideally sorghum is sown during June-July, grows in August-November, and is harvested 

during December. 

                                                 
19 http://www.nda.agric.za/docs/Infopaks/FieldCrops_Sorghum.pdf 
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Figure 3.26: Sorghum Production/Yield of Sorghum in Sudan between 014-2016. (Source: FAOSTAT). 
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4. Methodology 

This chapter focuses on the methods used and the workflow followed for execution of 

results. The workflow is mainly divided into three parts: 1) Data Acquisition 2) Data Post-

Processing and 3) Main workflow. 

4.1 Data Acquisition: 

 

Figure 4.1: Raster Image Preparation Flowchart. 

4.1.1 Image Download: 

Data products for MODIS Terra and MODIS Aqua are freely available on United States 

Geological Survey (USGS) Earth Explorer (https://earthexplorer.usgs.gov) registered users can 

select the place of interest by uploading shapefile (Figure 4.2) and further filter the dataset 

based on date and other required parameters, the data downloaded is in HDF format. 

 

Figure 4.2: Upload shapefile to select tile for download. 

PROBA-V data are freely available on Vision on Technology (VITO) product 

distribution portal (http://www.vito-eodata.be/PDF/portal) in collaboration with European 

Image 
Download

Data Format 
Conversion

Reprojection

ClippingResamplingImage Set
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Space Agency (ESA) registered users can select the area of interest by creating an online ROI 

and further filter the data based on acquisition date. It allows the user to place a customized 

order by selecting the required projection system, file format (GeoTIFF, ASCII, HDF) and 

bounding box for the area. 

   

Figure 4.3:Selecting and customising PROBA-V data.. 

Products for SMAP (Soil Moisture Active Passive) are available on National Aeronautics 

and Space Application (NASA) US free access hub (https://search.earthdata.nasa.gov) it allows 

the user to select data similar to that of Vito hub above, additionally allows the user to select 

or deselect bands or data within the dataset which are not required by the user, thus reducing 

download size and increasing the speed. 

   

Figure 4.4: Selecting and customising SMAP data. 

4.1.2 Data Format Conversion: 

For the MODIS data downloaded a python based batch processing conversion tool was 

developed to convert the data from HDF format to Tiff Format. For PROBA-V and SMAP 

customised orders in GeoTIFF format where placed for downloading. 
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4.1.3 Reprojection: 

The MODIS image downloaded was in sinusoidal projection, PROBA-V in Geographic 

Lat/Long and SMAP was in EASE-GRID projection. To have all the images in the same 

projection, they were all re-projected to WGS-84/UTM Zone 36N using batch processing in 

QGIS. 

4.1.4 Clipping: 

The images where clipped down to the required chosen area, as discussed in the previous 

chapter. The images have a larger footprint like MODIS is created at 5.5km grid area for each 

tile generated over a region, thus the MODIS data had to be reduced to the study area. For 

PROBA-V it was customised to a smaller area instead of the entire world tile by assigning a 

bounding box before downloading, but it had to be further clipped down to the study area. 

SMAP tiles are similar to PROBA-V, thus they were customised with a bounding box and 

further clipped after download. The cropping was executed by batch processing extraction tool 

in QGIS. 

    

Figure 4.5:MODIS actual tile at 5.5km (MODIS Terra- 03/06/2014) 
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Figure 4.6: Cropped down to study area. 

4.1.5 Resampling: 

The actual recorded resolution of MODIS is 231m and for PROBA-V at 350 m but 

disseminated at 250m and 300m respectively, thus to homogenise the spatial resolution of 

images it has been uniformly resampled to 250 m. 

4.1.6 Vector Data Preparation: 

 

Figure 4.7: Vector data creation flowchart. 

4.1.6.1 Image Download: 

High resolution images of Sentinel and Landsat where downloaded for 2014-2017 and 

for each month from June - December. 

4.1.6.2 Digitisation: 

Sub-plots where identified from the high resolution image (sentinel) and where manually 

digitised for all the four years. This was done to identify the changes in cropping pattern within 

the main plots. Also the permanent vegetation cover changed over the years, which were 

identified and digitised. 

Image 
Download

Digitisation
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Figure 4.8 : Main plot with parts of sub-plots digitised from yearly images. 

4.2 Data Post-Processing: 

 

Figure 4.9: Cloud Masking Flowchart. 

4.2.1 Cloud Masking:  

4.2.1.1 MODIS 

Masking tool was created for batch processing based on Python, to read the layer bit by 

bit. Depending on the requirement and the quality of the image being masked the bits where 
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chosen to be used. For instance some images had Bit-Number 13 off as there were no effect on 

neighbouring pixel, while the rest had it on. 

 

Figure 4.10: Method to read Bit-Code. 

Decoding from binary example:  

Bit value: 2197 16 bit binary value: 0| 0 | 0 | 0 | 1 | 0 | 00 | 10 | 010 | 1 | 01 

Interpretation based on Table 8: 

Bit No. Parameter 
Used as filter 

in code 

Bit word 

to be 

allowed 

(re table) 

Bit word 

observed 

Observed 

word 

interpretation 

0-1 Cloud State Yes 00/11 01 Cloudy 

2 Cloud Shadow Yes 0 1 Yes 

3-5 Land/Water Flag Yes 001 010 Land 

6-7 Aerosol Quantity Yes 01/00 10 Average 

8-9 Cirrus Detected Yes 00 00 None 

10 
Internal Cloud 

Algorithm Flag 
Yes 0 0 No cloud 

11 
Internal Fire 

Algorithm Flag 
Not applicable Not used 0 Not used 

12 
MOD35 

Snow/Ice Flag 
Not applicable Not used 0 Not used 

13 
Pixel is adjacent 

to cloud 
Yes 0 0 No 

14 Salt Pan Not Applicable - 0 No 

15 
Internal Snow 

Mask 
Not Applicable - 0 No 
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Figure 4.11: MODIS Terra image taken on 01/07/2014. (a) Actual image with cloud (b) Cloud masked 

image 

 

Figure 4.12: QA SDS which is used as Cloud mask for above image taken on 01/06/2014 

In the Figure 4.11(a), the actual MODIS Terra image is shown after downloading with 

cloud covers on it, it is a RED and NIR band image with band combination of (2,1,1). Figure 

4.11(b) shows the masked MODIS Terra image after it was processed following the bit 

parameters.  

The values in the cloud mask represent the bit combinations for the pixel state in the 

image as seen in Figure 4.12, the legend shows the different bit combinations. It can be 

interpreted as:  

133- 0 0 0 0 0 0 0 0 1 1 000 1 01 

2917- 0 0 0 0 1 0 0 0 1 0 010 1 01 

4261- 0 0 0 1 0 0 0 0 1 0 100 1 01 

6325- 0 0 0 1 1 0 0 0 1 0 110 1 01 

8390- 0 0 1 0 0 0 0 0 1 1 000 1 10 
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The masked image were evaluated based on correctly classified cloud pixel and shadow 

pixel with that of the actual image and have a kappa coefficient of 0.928, the agreement 

between the masked image and the quality image are strong with an overall accuracy of 93% .  

4.2.1.2 PROBA-V:(Wolters 2018) 

Same tool mentioned above was used for masking PROBA-V with combination as 

mentioned in (Table 6), but an additional parameter of dilation (Figure 4.13) had to be added. 

As the PROBA-V mask had some indigenous issues discussed above (section 3.1.4) because 

of the band spacing, the layer was dilated up to 2 pixels in certain cases.  

 

Figure 4.13: PROBA-V Cloud Mask for 01/07/2014. (a) The actual Cloud Mask provided in the data. (b) 

Cloud Mask dilated by 1 (c) Cloud mask dilated by 2. 

In some images the thin layers of clouds are not removed by the mask, those images had 

to be manually masked by thresholding radiance values in the Blue band as cloud reflectance 

is the highest in Blue band (Figure 4.14).  
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Figure 4.14: PROBA-V Multispectral bands splitted into 4 panchromatic band.  

The manual cloud masking workflow is shown in Figure 4.15, the actual mask is used to 

remove the clouds from the image using the above mentioned code, but few clouds are not 

removed by mask as seen in (c), and thus based on the radiometric thresholding as discussed 

in (section 2.5.2) new mask (d) is created from SWIR and BLUE band and used as a mask on 

the first masked output image (c) resulting in the final output masked image (e). 

 

Figure 4.15: Step-by- Step PROBA-V Cloud Masking image is from 10/06/2017. (a)Actual Cloud Mask 

(b)Actual image (c) First masked image from using actual mask (d)New mask created by radiometric 

thresholding. (e)Final masked output. 
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The kappa coefficient of the final output image from PROBA-V was 0.789 which was 

calculated based on the classified cloud pixel, shadow pixel, and thin cloud pixel. It can be 

concluded the new pixels has an accuracy of 78% after classifying and removing cloud pixels. 

4.3 Final Workflow: 

 

Figure 4.16: Final data fusion Flowchart. 

After post processing all the images, the next step was to fuse the MODIS and PROBA-

V but before the fusion few consistency checks had to be done based on certain parameters of 

the dataset to ascertain their eligibility to be fused. 

The data checks where conducted based on three parameters. Firstly the BRDF 

(Bidirectional Reflectance Errors), as they are already corrected in the MODIS level-3 and 

PROBA-V Level 3 data, BRDF will not cause considerable error. Secondly, cloud masking is 

already done in post-processing.  
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And lastly, the Viewing Zenith Angle (VZA) it is important as both the sensors have 

different scanning techniques and there is a difference in image registration. For example an 

object recorded at a certain angle by MODIS can be different from that recorded by PROBA-

V, and realignment of either image to the angle of the other image is required but this 

realignment is required if the position of the object being studied is out of the required 

thresholds. The image set of PROBA-V used is scanned at the nadir and distortion increases 

with distance from the center and for MODIS the distortion increases when the angle is over 

30 from center. The distortion for MODIS increases when VZA>30 (Duveiller, Lopez-Lozano 

et al. 2015) and for PROBA-V VZA>36, and also the VZA has low impact on smaller study 

areas. 

 

Figure 4.17: (a) Viewing Zenith Angle (VZA) of MODIS, (b) Viewing Zenith Angle (VZA) of PROBA-V. 

Figure 4.17(a) shows the scanning swath of MODIS (whisk-broom scanner), with the 

center marked at 1 and angle increases from the center towards the sides. Figure 4.17(b) shows 

the scanning swath of PROBA-V (push-broom scanner) with the center up to 30, and the 

distortion increases after that. Both the scan line swaths are obtained from the main tile time 

SDS. 

The Viewing Zenith Angle was checked and as the study area falls within the acceptable 

range of VZA ≤ 30 for MODIS (see Figure 4.17(a)) and VZA≤ 36 PROBA-V (see Figure 

4.17(b)) realignment was not required for the images.  
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After consistency check of the image the next step was to calculate the NDVI values for 

each image, a tool was developed based on python to batch process the NDVI calculation for 

MODIS and PROBA-V respectively. 

The NDVI images were pan sharpened based on Bayesian Fusion Method (section 2.3.1) 

with Weight-1 and S coefficient-2 in QGIS batch processing. A matching of the images where 

done between the two set of images so that the days missing doesn’t cause an error while fusing. 

Finally the two images where merged based on the condition: 

(MOD>=327676)*((PV-0.03)*(PV>=0 && 

PV<=1))+(MOD*(MOD!=327676)+(MOD>0 && MOD<1)) 

Where; MOD - Modis image, PV - PROBA-V image, 32767- Missing Data value. The 

condition specifies to replace MODIS null values with PROBA-V values ranging between 0 

and 1 and only to keep MODIS values which falls within the NDVI range of 0-1, as to remove 

extreme or error values from the final product. Before substituting the value, the PV value is 

subtracted by 0.03 to reduce the gain in PV as suggested by (Commission) 2015) as they 

observed that PROBA-V has a positive mean-bias of 0.03 to MODIS. Thus to adjust the gain 

in PV values it is reduced by 0.03. The same was cross validated between sample images 

through SNR, and difference proved to be by 0.03.  

The overall accuracy check on the final fused image had a R Square Error20 of 0.3. Also 

an anomaly check was done on randomly chosen images to compare if there is any existing 

anomaly between the final fused image and the actual data set of PROBA-V and MODIS, the 

results are attached in the Annexure  1 and Annexure  2 it shows there is no anomaly between 

datasets and have a uniform relationship with anomaly 0 in all the images. 

                                                 
20 R square or coefficient of determination shows percentage variation in y which is explained by 

all the x variables together. So, if R-square is 0.8, it means 80% of the variation in the output 

variable is explained by the input variables. So, lower the R squared, the less variation is explained 

by input variables. 
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1 Figure 4.18: Final Fused image creation. (a)PROBA-V image for 01/06/2014 (b) MODIS image for 

01/06/2014 (c)Final fused image. 
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5. Results And Observations 

5.1 Mean Monthly NDVI: 

The following images shows the mean monthly NDVI for the study area over the period 

2014-2017. According to FAO reports, there was less harvest in the year 2015 and 2017, as the 

country faced frequent droughts for these two years, and it can be observed from the maps as 

well that the NDVI values falls during the peak season of Aug-Oct in the year 2015 and 2017. 

 

Figure 5.1: Mean Monthly NDVI in 2014 

 

Figure 5.2: Mean Monthly NDVI in 2015. 
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Figure 5.3: Mean Monthly NDVI in 2016. 

 

Figure 5.4: Mean Monthly NDVI in 2017 

In Figure 5.1, the NDVI value for 2014 ranges from 0.4-0.6 in September and October 

which is the peak growth season for the crops. Whereas in Figure 5.2 (2015) the NDVI value 

barely crosses 0.4 except for few plots where the vegetation has a higher growth these sites 

which has a slightly higher green-up are the sites which has small moats or ponds in the field 

for harvesting rain water. Similarly in Figure 5.3, the NDVI values for 2016 are mostly around 

0.6 with few plots ranging up to 0.7, but in 2017 as seen in Figure 5.4, the crops barely reaches 

the green-up, mostly throughout their growing season the NDVI ranges between 0.2-0.4, with 

barely any plots reaching a higher NDVI, the country as a whole faced severe drought this year. 
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5.2 Daily NDVI: 

 

Figure 5.5: Daily NDVI value for the year 2014 from June - December. 

In Figure 5.5, shows the daily NDVI value for the study area with first day of every 

month marked with blue box. The image name are based on their Julian day, the white space 

in the image have no data available after post-processing, and also the missing days can easily 

be identified from the image. The daily based observation gives a distinctive visual 

understanding of the onset of green-up from day 246 (03/10/2014)  onwards, and the harvest 

starts from day 301 (28/11/2014). As there are two type of plantations of Sesame and Sorghum 

in the area the harvest and green-up is not same throughout the images, and thus a plot based 
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analysis is discussed later. In daily NDVI values for the year 2015 shown in Annexure  3 shows 

short season of growth ranging over few days, because of the drought this year the growth and 

productivity of the crops . For the year 2016 as observed in Annexure  4 the green-up started 

around Day 235 and the harvest started around Day 316 and the growth of crops where uniform 

over the area.  

2017 was also declared as a drought year and the NDVI values in Annexure  8 justifies 

the same, the growth of the crops are hardly visible and most of the year is marked with very 

low NDVI values, this was mainly because of a prolonged El-Nino effect that had a cumulative 

effect on the overall crop production in the country.21  

The productivity of the crop got largely affected by the rainfall and drought conditions, 

and thus soil moisture is considered as one of the parameters to study the plant growth later on 

this chapter. The El-Nino had a prolonged and large scale effect over 18 months throughout 

many countries in east Africa one of which was Sudan, the El-Nino effects started building-up 

on 2015 and the final effect was on 2017, at the same time 2016 showed NDVI values slightly 

improved indicating some crop growth which is presumably because of region specific rainfall. 

5.3 NDVI Anomaly: 

An NDVI anomaly is the difference between the average NDVI for a particular month of 

a given year and the average NDVI for the same month over a specified number of years. This 

approach can be used to characterize the health of vegetation for a particular month and year 

relative to another year, which is a good indicator of drought or declining vegetation health 

 To understand the difference in NDVI between the years anomaly maps are made which 

will represent the negative or positive relationship for NDVI values between different time 

series. The positive values represents positive anomaly i.e., the NDVI value was higher for that 

year compared to others, no change in values are 0 anomaly, and the negative values represents 

negative anomaly i.e., the NDVI for that year is less than the other years. From the anomaly 

map the crop growth behavior can be easily deduced. It is also important to maintain the 

reference to the types of crop grown in this region as discussed in (section 3.3.3) because the 

anomaly is different based on plots within the same time period due to varied crops. The 

anomaly can be classified as  <-0.15 = Large Decrease, -0.15:0 = Small Decrease, 0:0.1.5= No 

Change, 0.15:0.25= Small Increase, >0.25 = Large Increase. 

                                                 
21 http://www.irinnews.org/feature/2017/03/17/drought-africa-2017 
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Figure 5.6: NDVI Anomaly in 2014 referred to (a) 2015, (b) 2016, (c) 2017. 
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Figure 5.7: NDVI Anomaly in 2015 referred to (a) 2014, (b) 2016, (c) 2017 
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Figure 5.8: NDVI Anomaly in 2016 referred to (a) 2014, (b) 2015, (c) 2017 
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Figure 5.9: NDVI Anomaly in 2017 referred to (a) 2014, (b) 2015, (c) 2016 
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Figure 5.6 shows the anomaly of 2014 to the other 3 years of 2015, 2016, 2017 

respectively. As 2014 was a normal growth year with steady crop growth, it has a large increase 

positive anomaly compared to the drought years in 2015 (Figure 5.6 (a)) and 2017 (Figure 5.6 

(c)). With a stronger large increase and wide spread anomaly with 2017 as this was the worst 

drought affected year.  

Also it is observed that the anomaly is higher specifically in the green-up seasons in 

September to October, since the NDVI reaches it’s optimum peak during these seasons 

detection of the anomaly is easier. The observation between the two normal growth years of 

2014 and 2016 (Figure 5.6 (b)), large decrease anomaly is observed mainly in the month of 

August and September and specific to certain plots, this can be attributed to the fact that the 

area observes crop rotation thus the crop in 2014 is different from the crop in 2016 which had 

different growing onset and so the anomaly. 

Figure 5.7 shows the anomaly of 2015 to the years 2014, 2016 and 2017 respectively. As 

observed 2015 had a negative anomaly with the year 2014 (Figure 5.7 (a)) and 2016 (Figure 

5.7 (b)), with large decrease anomaly in 2016 ranging from August to December covering more 

plots as compared to that of 2014 where it’s observed predominantly between September to 

November. The anomaly between the two drought years of 2015 and 2017 shown in (Figure 

5.7 (c)) helps to understand the intensity of the drought, as this shows a small increase positive 

NDVI for 2015 specifically in the peak growth month of October, concluding that the impact 

of drought was higher in 2017 than in 2015. 

Figure 5.9 shows the anomaly of 2017 to the years 2014, 2015 and 2016 respectively. As 

2017 was worst affected by the El-Nino effect and had a severe drought, it has a large decrease 

negative anomaly to all the other years. But it has the maximum anomaly to 2014 (Figure 5.9 

(a)) whereas with 2016 (Figure 5.9 (c)) the effect is limited to the peak month of October and 

also the intensity seems to be less. 

From the anomaly study 2014 can be considered as a reference year for normal growth 

of crops and all the other years has a dominant negative anomaly trend with 2014. A reference 

year for anomaly detection is usually the year with most consistent crop growth with an 

optimum NDVI and without any major climatic effect or changes it can change depending on 

the years considered for monitoring.   
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Figure 5.10: Plot-75 yearly change comparison. 

Figure 5.10, shows the comparison of Plot-75 from 2014 – 2017, it can be seen from the 

NDVI curves that for the year 2015 and 2017 the values were lower compared to 2014 and 

2016. Also the maximum NDVI was in 2014 having an uniform and steady growth along with 

timely harvest. 

 

5.4 Interactive Visualisation: 

The following results gives an interactive analysis of the plot based NDVI. For the 

interaction either a single plot can be selected or a region can be selected, and the output graph 

can be interacted with and is saved as a webpage. 

The curve fitting technique used above is LOESS (LOcal polynomial regrESSion), which 

originated as generalisation of LOWESS (LOcally WEighted Scatter-plot Smoother). LOESS 

is a non-parametric method because the linearity assumptions of conventional regression 

methods have been relaxed, instead of estimating parameters like m and c in y = mx +c, a non-

parametric regression focuses on the fitted curve. The fitted points are estimated with respect 

to the whole curve rather than a particular estimate22, so the overall uncertainty is measured as 

how well the estimated curve fits the population curve. It is called local regression because the 

                                                 
22 https://www.statsdirect.com/help/nonparametric_methods/loess.htm 
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fitting at say point x is weighted toward the data nearest to x, and since it is a local regression 

it can handle missing values more confidently without running into errors unlike piecewise fit 

or polynomial fit where the trade-off between bias and variance gets affected by missing values. 

Also at USGS/EROS, temporal satellite data is smoothed using a weighted, least-squares 

linear regression approach that involves a moving temporal window to calculate a regression 

line. This family of lines is then averaged at each point, and interpolated between points, to 

provide a continuous, relatively smooth NDVI signal over time and the resulting relationship 

between raw and smoothed data is statistically based. A comparison of other curve fitting are 

added in the Annexure  9. 

The AUC (Area Under Curve) represents the area between the graph of y = f(x) and the 

x-axis is given by the definite integral below. This formula gives a positive result for a graph 

above the x-axis, and a negative result for a graph below the x-axis. Thus the median is 

calculated from the plot summary which is assigned as the baseline for calculating AUC for 

the curve giving the NDVI integral of the plot. 

 

Figure 5.11: Area Under Curve. 
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5.4.1 Plot Based NDVI:  

 

Figure 5.12: NDVI values plot basis for the year 2014. 

Figure 5.12 shows the result of querying a plot for NDVI values, by clicking on the plot 

it generates a scatterplot with NDVI values from June to December, it is fitted with a LOESS 

curve and calculates the AUC ( Area Under the Curve) to get the NDVI integral value (0-1). 

The sample NDVI graph for the plots in the year 2015, 2016, and 2017 are attached in 

the Annexure  6, Annexure  7, and Annexure  8 respectively.  
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5.4.2 Region Based NDVI:  

 

Figure 5.13: NDVI values region based for the year 2014. 

Figure 5.13 shows a region based analysis for the year 2014, the user selects a region on 

the map and generates a NDVI graph for the selected region along with a daily basis NDVI 

map of the region. 
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5.5 Plot Based Analysis: 

5.5.1 Multiplot Comparison- 

 

Figure 5.14: Multiplot NDVI-2014 

 

Figure 5.15: Multiplot NDVI-2015 
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Figure 5.16: Multiplot NDVI-2016 

 

Figure 5.17: Multiplot NDVI-2017 

Figure 5.14, Figure 5.15, Figure 5.16, and Figure 5.17 shows NDVI values of 12 

randomly selected plot over the four years from 2014-2017 respectively. It is observed that the 
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same plot e.g. Plot-266 has different NDVI peak dates over the years. Also within the same 

year, plots has green-up peak at different times. This is because of crop rotation between years 

and different crop types sown in different plots within the same year.  

The multiplot analysis for the plots would help to detect the changes of individual plot 

under same conditions and same crop type aiding the organisation to make more accurate yield 

predictions for a particular plot. Also this time series understanding of the plot would help to 

identify underperforming plots and also will give a better understanding of the crop type which 

is more sustainable to changing weather conditions. 

5.5.2 Comparative Change detection: 

 

Figure 5.18: Comparison of Plot-75 and Plot-146. 

 2014 2015 2016 2017 

Plot Number 75 146 75 146 75 146 75 146 

Peak NDVI Value 0.612 0.612 0.443 0.399 0.508 0.740 0.366 0.378 

Peak Date 30/09 22/10 17/10 01/10 11/10 28/09 07/10 07/10 

Table 1:Peak NDVI values with date. 
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The Table 1 above for Figure 5.18, gives the maximum NDVI value reached by each plot 

during the four years. It is observed from the graph that Plot-75 and Plot-146 had crop rotation 

from 2014 -2016 but in 2017 they reached their maximum NDVI peak on the same day 

confirming the same crop type. Also the crop type can be assumed from the NDVI peaks based 

on the date they reached their maximum, like in 2014 Plot-75 had Sesame growing and Plot-

146 has Sorghum .  

 

Figure 5.19: Comparison of Plot-266 and Plot-335. 

 2014 2015 2016 2017 

Plot Number 266 335 266 335 266 335 266 335 

Peak NDVI Value 0.577 0.644 0.448 0.455 0.591 0.771 0.616 0.454 

Peak Date 08/10 22/10 12/10 20/10 14/10 29/09 12/10 23/09 

Table 2:Peak NDVI values with date. 

Table 2 gives the maximum NDVI value reached by each plot in Figure 5.19 during 

2014-2017. The crop type in Plot-266 seems to be consistent without any rotation just variation 

in sowing time which resulted in different NDVI peak dates. But in Pot-335 the crop type 

changed between 2014-2015 and 2016-2017, which can be identified from the shift of NDVI 

peak dates in Table 2. 
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5.5.3 Growth Period: 

 
 

 

Figure 5.20: Growth season of a single plot. 

Figure 5.20, shows the growth period of Plot-75 and Plot-146 from SOS (Start Of 

Season) indicating growth start to EOS (End Of Season) indicating the senescence stage. The 

dates for season start and end can be obtained from the graph. For Plot-75 the season starts 

from 24/08/2014 and ends at 09/12/2014 with NDVI peak of 0.677 on 29/09/2014. Plot-146 

season starts from 30/08/2014 and ends at 07/12/2014 with NDVI peak of 0.678 on 24/10/2014. 
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5.6  Soil Moisture and NDVI: 

The relationship between soil moisture and NDVI is calculated based on Lag, the 

underlying reason been the current state of NDVI can be affected by the state of soil moisture 

few periods back. It is important to understand the lag relationship, to identify the actual phase 

of soil moisture that has affected the growth of the crop. The change of NDVI is plotted against 

6 Lag levels of soil moisture starting from 0 days up to 60 days with an increase of 10 days per 

lag so Lag0-0 days, Lag1-10 days, lag2-20 days, Lag3- 30 days, Lag4- 40 days, Lag-50 days, 

Lag6- 60 days.  

Also CCF (Cross-Correlation Function) is calculated between the soil moisture and 

NDVI to identify if whether soil moisture “causes” changes in NDVI. CCF is defined as the 

set of sample correlations between xt+h and yt for h = 0, ±1, ±2, ±3, and so on where: t-time and 

h-deviation from time. A negative value for h is a correlation between the x-variable at a time 

before t and the y-variable at time t. The CCF value would give the correlation between xt-h/t+h 

and yt as: 

➢ When one or more x t+h, with h as negative are predictors of yt, it is said that x leads 

y. 

➢ When one or more x t+h, with h as positive are predictors of yt, it is said that x lags y. 

The CCF is calculated based on Kendall Method, since it a non-parametric correlation 

coefficient that evaluates the degree of similarity between two sets non-related  monotonic 

variables . the values can range between +1 and -1. 

The soil moisture is recorded by SMAP in m3 (i.e., how much of a cubic metre is water 

out of the entire cubic metre of soil sample) For all the graphs showing the relationship between 

soil moisture lag and NDVI the Y-axis represents both soil moisture in m3 and NDVI values. 
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Figure 5.21: Soil Moisture Lags compared to NDVI value of Plot-75 for 2015. (a) CCF Graph, (b) Lag 

0-Lag 6 compared to NDVI, (c) Lag 0 in relation to NDVI, (d) Lag 4 in relation to NDVI. 

Lag0 Lag1 Lag2 Lag3 Lag4 Lag5 Lag6 

0.05452639 0.166704 0.2670183 0.3199787 0.412927 0.3778785 0.2185119 

Table 3: Kendall Correlation Values Plot-75 (2015)  

Figure 5.21, shows the relationship between soil moisture and NDVI for Plot-75 in the 

year 2015. Figure 5.21(a) represents the CCF, it can be seen that x has positive correlation to 

t-h and can be concluded that soil moisture leads NDVI. Figure 5.21(b) shows all the lags 

compared to NDVI. Figure 5.21(c) shows lag0 which represents the soil moisture value on the 

same days as the NDVI and it can be seen from the Table 3 that Lag0 and NDVI has the least 

correlation and the effect of soil moisture is maximum with Lag4.  
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Figure 5.22: Soil Moisture Lags compared to NDVI value of Plot-75 for 2016. (a) CCF Graph, (b) Lag 

0-Lag 6 compared to NDVI, (c) Lag 0 in relation to NDVI, (d) Lag 5 in relation to NDVI. 

Lag0 Lag1 Lag2 Lag3 Lag4 Lag5 Lag6 

0.006915708 0.01948238 0.1453802 0.1915342 0.3019469 0.3497944 0.3207433 

Table 4:Kendall Correlation Values Plot-75 (2016) 

Figure 5.22(a) shows the CCF between soil moisture and NDVI for the year 2016, but 

unlike 2015 the CCF value is negative until h=-20 and then starts showing a positive 

correlation, in this case also soil moisture lead NDVI but the relationship is not very strong. 

Also the difference in correlation between lag 3 and lag 4 (seen in Table 4) is higher than the 

changes observed in 2015. This can be attributed to the reason that the initial few months of 

the growing season received more rainfall and had higher soil moisture. 
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Figure 5.23: Soil Moisture Lags compared to NDVI value of Plot-75 for 2017. (a) CCF Graph, (b) Lag 

0-Lag 6 compared to NDVI, (c) Lag 0 in relation to NDVI, (d) Lag 6 in relation to NDVI. 

Lag0 Lag1 Lag2 Lag3 Lag4 Lag5 Lag6 

-0.02019238 0.05214019 0.1109853 0.1841812 0.1998171 0.2205363 0.2305681 

Table 5: Kendall Correlation Values Plot-75 (2017) 

Figure 5.23(b), shows a lower level of soil moisture through all the lags as 2017 was a 

drought year Table 5, shows that the maximum correlation between NDVI and soil moisture is 

in Lag6 (60 days) with negative relation to Lag0. It is possible to have a negative relation in a 

drought year since the soil moisture in the current time is lower than the initial soil moisture. 

Based on the table and Figure 5.23(a), it can be concluded that soil moisture lead NDVI but 

only in the initial phase and doesn’t have a strong relation throughout. 

2015 and 2017 were drought years, but the relationship between the lag days and NDVI 

didn’t get much affected for all the years (2015, 2016, 2017,) and a consistent lead of soil 

moisture to NDVI remained between Lag4-lag 6. It can be concluded that soil moisture is not 

much affected by rainfall as concluded by (Ahmed, Else et al. 2017) , and the NDVI is affected 
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by soil moisture up to a lag period of 60 days (2 months). Further plot based relationship 

between soil moisture and NDVI are in Annexure  10, Annexure  11Annexure  12. 

Following the Lag relationship between NDVI and soil moisture, it is important to 

identify the phenology phase at which the soil moisture has the maximum impact on NDVI. 

As seen from the above figures the soil moisture effects the overall NDVI at Lag4 - Lag6 with 

maximum correlation within this range but this necessarily doesn’t have the same relation for 

the phenology phases. 

Figure 5.24, shows the relationship between NDVI and soil moisture at time (t) without 

any Lag. The figure shows behaviour of 3 different plots Plot-75, Plot-146 and Plot-186 for the 

years 2015, 2016 and 2017. It can be seen that the crop growth starts after the soil moisture 

reaches it maximum for all the 3 plots in all the years with a distinct increase in NDVI values 

immediately after the soil moisture reaches maximum. Also drop in soil moisture affects the 

NDVI peak of the crop and the NDVI starts decreasing mostly after the soil moisture level falls 

below 120 m3 – 150m3. For the year 2017 the overall soil moisture levels were low, thus a 

gradual decline in the soil moisture along with existing climatic conditions restricted the 

maximum NDVI of the crops. It can be concluded that the maximum effect of the soil moisture 

is in the growth stage of the crop when it initiates the main development of the crop, and plays 

an important role in the crop health. 
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Figure 5.24: Effect of soil moisture at time (t) on crop growth. 
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5.7  Tools for processing: 

Purpose Tool Note 

Data Acquisition: 

Data Format Conversion Python Code Source: Dr. Nikolas Prechtel (TUD) 

Resampling Python Code Source: Dr. Nikolas Prechtel (TUD) 

Clipping Python Code Source: Dr. Nikolas Prechtel (TUD) 

Reprojection QGIS Batch processing tool 

Digitisation QGIS Manually done. 

Data Post-Processing: 

Cloud Masking Python Code Source: Dr. Nikolas Prechtel (TUD) 

Accuracy Check QGIS Between actual image and masked image 

Main Workflow: 

NDVI Calculation Python Code Source: Dr. Nikolas Prechtel (TUD) 

Bayesian Data Smoothening QGIS Orfeo plugin in QGIS for image processing 

Fusion QGIS Conditional merging using raster calculator 

Accuracy Check R Code for R Squared r 

Statistical Analysis R Code for CCF, Lag 

Interactive NDVI visualization R Discussed in Chapter.5 
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6. Conceptual Tool: 

This chapter will outline the conceptual design and workflow of the visualisation tool. It 

consists of a pipeline workflow along with a mock interface. As discussed in (section 2.6) the 

existing tools for visualisations are limited to a single sensor NDVI calculation and 

visualisation. The focus of this tool will be to create an uniform and continuous pipeline for 

calculating and viewing NDVI time series data, fuse sensors to increase coverage and NDVI 

generation. Furthermore, it is supposed to statistically establish and visualise relationship 

between NDVI and soil moisture (additional parameters can be incorporated later).  

The interface can be created by combining QGIS plugin, R and Python as these were the 

tools used or developed for processing the data in the thesis. The advantage of combining these 

are, QGIS already has certain pre-defined tools and plugins for processing the data like the 

ORFEO Toolbox which was used for smoothening of the data by BDF. Similarly R has a 

dynamic interface of incorporating statistical calculation and analysis faster and convenient, 

and Python as the binder language for both the interfaces. The visualisation and processing 

tools are split into 3 tabs, which are shown as mock visualisations in Figure 6.1, Figure 6.3, 

and Figure 6.5 respectively with their workflow explained in the flowcharts. 

6.1 Tab-1: Masking 

 

Figure 6.1: Mock Visualisation of Making tool (Tab-1). 
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Figure 6.2: Workflow of Tab-1. 

The boxes are coloured differently based on their priority. The ‘Optional’ are the inputs 

and processes that are voluntarily chosen by the user. The entire workflow can go ahead 

without these inputs as well. The ‘Mandatory’ are the inputs and processes that are required 

for a successful completion of the workflow. The ‘Conditional’, are the values and processes 

that are required to be provided depending on the type of input being used for the workflow. 

As observed in the flowchart in Figure 6.2, the user can upload input images either as 

folder or a single file (image). The second image is optional in case the user wants to calculate 

NDVI of a single image set. Format Conversion is ‘Conditional’, if the images are in HDF then 

the conversion to geotiff is required. As the CRS of different images are different e.g. it is 

sinusoidal in MODIS and EASE in PROBA- V causing compatibility issues between images. 

CRS Conversion is ‘Mandatory’. Resampling is conditional as it is needed to be used if 

multiple images are being used for harmonizing the resolution. Clip is ‘Conditional’ depending 

if the user needs to study a particular region or not but if clip is being used then an Area Mask 

is ‘Mandatory’. 

Cloud Masking is a ‘Mandatory’ part for the Image Processing whether single or multiple 

images are being used to get more accurate and complete values. The user has to upload the 

Quality layer as a mask layer –‘Mandatory’. The user has to select the bit flags to be used for 

masking data which is ‘Mandatory’ if the user has only one set of image then Bit Flag2 and 

QA flag2 are deactivated, but the dilation depends on the type of cloud mask, in certain cases 
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the mask are accurate unlike in others thus it’s ‘Conditional’ depending on the type of cloud 

mask being used. The final output will be consisting of the cloud masked images as shown in 

Figure 4.11, the accuracy check is ‘Mandatory’ before obtaining the final images. 

6.2 Tab-2: Processing 

 

Figure 6.3: Mock Visualisation of Processing tool (Tab-2). 

 

Figure 6.4: Workflow of Tab-2. 
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Tab-2 (see: Figure 6.3) is the main processing toolset for producing the final maps and 

calculating the NDVI for each plot. As seen in the workflow (Figure 6.4) the user can load the 

masked images either as folder or single image. The second image is optional in case the user 

wants to calculate NDVI of a single image set. The NDVI calculation from the images is done 

based on the band positioning which can be provided as input to the NDVI calculator. 

Smoothening of the image is ‘Mandatory’ to reduce if any noise remains. The Fusion is 

‘Conditional’ as this step is only required if two images are being used in the processing and 

in order to have a successful fusion the fusion condition is ‘Mandatory’. An accuracy check 

should be done to check the final fused NDVI image or single NDVI image. 

The final NDVI image generated is in an interactive window, where the user can select 

a plot (refer Figure 5.12) or choose a certain region (refer Figure 5.13) to generate the NDVI 

value of that region along with an NDVI map. The graph generated is interactive and provides 

information about the phenological phases and the NDVI integral value. 

6.3 Tab-3: Parameter 

 

Figure 6.5: Mock Visualisation of Parameter  tool (Tab-2) 
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Figure 6.6: Workflow of Tab-3 

Tab-3 (see: Figure 6.5) is created for using it with soil moisture. This tool can be developed 

more flexibly so other parameters like surface temperature or surface evaporation can be 

incorporated. The workflow requires the parameter data as a raster or .csv which is 

‘Mandatory’. The CRS conversion and format conversion are ‘Conditional’ as they are only 

required to be used if the dataset is a raster. The lag calculation is ‘Mandatory’ for establishing 

relation between NDVI and parameter, and the user has to provide the number of time lag in 

days, or it will consider the default. Combining the lag and NDVI data the relation graph can 

be created as output (refer Figure 5.21). The CCF ( Cross Correlation/Covariance coefficient) 

is ‘Mandatory’ as it provides the relationship between the variables used, additionally the user 

can select the method of calculation like Kendall, Spearman’s or Pearson’s. Combining the 

data will provide different outputs, which can be chosen from the R interface by the user. 
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7. Conclusion 

This thesis calculates the NDVI values for the study area by fusing MODIS and PROBA-

V data and establishes a relationship between soil moisture and NDVI using SMAP and the 

fused data. For data preparation it comprises of cloud masking, resampling, reprojection, 

smoothening and fusion. The data results and analysis comprises of mean monthly NDVI 

values of the study area, anomaly maps to identify the changes in NDVI values, creation of 

LOESS curve fitted NDVI Graphs for plots or regions with NDVI integral values, and 

calculation of lag based CCF based on Kendall method to establish a relationship between soil 

moisture and NDVI. 

This research was guided by 5 main objectives, which are concluded below: 

• Harmonisation and fusion of NDVI from MODIS and PROBA-V. 

The first objective of this research was to harmonise and fuse MODIS and PROBA-V, 

which was successfully done as discussed in section 4.3. The main aim behind harmonising 

these two datasets were to increase and expand the image data availability for the study area. 

As both the sensors have daily coverage the obstructions due to clouds were present in 

both the images. At the same time fusing of two sensors increased the spatial coverage for 

individual plots since the scan time for the sensors were different and consequently, the 

associated cloud covers too, which allowed an observation of different parts of the study area 

at different times on the same day. As a result an overall increase of 20-40% plot coverage was 

observed.  

Thus it can be concluded that the use of two sensors increased the spatial coverage of 

the study area, as due to the fusion plot-based pixel information improved. But it had limited 

impact on the temporal coverage, on an overall availability PROBA-V had more data available 

than MODIS combined, days with heavy cloud covers where masked out for both MODIS and 

PROBA-V and information was missing from both the sensors,  

• To produce a plot-based time series of vegetation development. 

A plot based time series of vegetation development is created and discussed in 5.4. It 

gives information about a particular plot, and can be compared with other plots. Also the plot 

based analysis gives information about the NDVI integral for an individual plot or a region 

aiding the user to compare the performance across different years. The plot based analysis also 
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suggests the crop type by recognising the time for onset of growth , the senescence date and 

the date on which the NDVI peak is reached. 

• Extrapolate vegetation signal as a function of soil moisture at a specific development stage. 

A lag- based relationship is established between the soil moisture and NDVI data. It is 

observed that the correlation between the soil moisture and NDVI had the strongest positive 

relationship between lag 4-lag 6 depending on the year and the crop type. Plots which were 

growing sesame crop had a relation stronger in Lag 4, whereas plots growing Sorghum had the 

relation stronger during lag 5-lag 6. Sesame requires higher soil moisture when it starts to grow, 

until it reaches the impetus, whereas sorghum in comparison requires longer period. The NDVI 

can be extrapolated based on the Lag phase of the soil moisture, but the soil moisture is also 

affected by surface temperature, surface evaporation etc, and thus incorporating these 

parameters in future researches would increase the precision of the relationship. 

• Analyse to what degree existing soil moisture recordings influence the vegetation signal at 

various crop development stages. 

The main effect of soil moisture on NDVI is observed at the onset of growth. It was 

clearly observed that as Lagged time had a higher correlation with the overall NDVI, the 

current time of soil moisture majorly impacted the crop growth. As shown in Figure 5.24, most 

of the plots had the onset of growth immediately after the soil moisture reached it’s peak. It 

was also observed that the amount of soil moisture affected the overall growth and health of 

the plant. In plots which had lower soil moisture during the onset of growth the NDVI values 

were lower compared to other plots with higher soil moisture within the same year. 

• Discuss visualisation techniques synoptically displaying the source of information and the 

uncertainty involved. 

In chapter 6, a conceptual model for the visualisation and processing of the images had 

been outlined. It aims to provide a plot-based time series NDVI visuals along with an anomaly 

map showing the changes and pipeline for processing and preparing dataset. 

This thesis can be further adapted and extended at various levels to extract and predict 

more information on crop monitoring. Currently the thesis covers the calculation of an overall 

NDVI integral based on each plot, but this can be improvised to derive the NDVI integral at 

various phenology stages which can be further considered for crop yield prediction. Also the 

NDVI integral can be further used in relation to the soil moisture at various phenological stages 
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to establish a more consolidated relationship between soil moisture and crop growth aiding the 

identification of phases that are mostly affected. As, soil moisture is also affected by other 

factors like vegetation water content, surface temperature and evapotranspiration, 

incorporating these as additional parameters in the Soil Moisture-NDVI relationship will 

increase the certainty of the values. Considering relationship between other climatic parameters 

like temperature, rainfall with NDVI will contribute to a fine-grained estimation of 

productivity. An implementation of such an integrated tool will definitely help to monitor and 

predict the crop yield in a more dynamic and accurate manner. 
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Table 

Table 6: PROBA-V Cloud Mask (State Map) 

Bit Number Parameter Bit Combination Interpretation 

0-2 Cloud/Ice or 

Snow/Shadow Flag  

000 Clear 

001 Shadow 

010 Undefined 

011 Cloud 

100 Ice 

3 Land/Sea 0 Sea 

1 Land 

4 Radiometric Quality 

SWIR Flag 

0 Bad 

1 Good 

5 Radiometric Quality 

NIR Flag 

0 Bad 

1 Good 

6 Radiometric Quality 

RED Flag 

0 Bad 

1 Good 

7 Radiometric Quality 

BLUE Flag 

0 Bad 

1 Good 

8 SWIR Coverage 0 No 

1 Yes 

9 NIR Coverage 0 No 

1 Yes 

10 RED Coverage 0 No 

1 Yes 

11 BLUE Coverage 0 No 

1 Yes 
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Table 7: MODIS (Aqua/Terra) Spectral Bands. 

Band Bandwidth* Primary  Use 

1 620 - 670 

Land/Cloud/Aerosols Boundaries 

2 841 - 876 

3 459 - 479 

Land/ Cloud/ Aerosols Properties 

4 545 - 565 

5 1230 - 1250 

6 1628 - 1652 

7 2105 - 2155 

8 405 - 420 

Ocean Colour/ Phytoplankton/ 

Biogeochemistry 

9 438 – 448 

10 483 – 493 

11 526 – 536 

12 546 – 556 

13 662 – 672 

14 673 – 683 

15 743 - 753 

16 862 - 877 

17 890 - 920 Atmospheric Water Vapour 
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18 931 - 941 

19 915 - 965 

20 3.660 - 3.840 

Surface/ Cloud Temperature 

21 3.929 - 3.989 

22 3.929 - 3.989 

23 4.020 - 4.080 

24 4.433 - 4.498 

Atmospheric Temperature 

25 4.482 - 4.549 

26 1.360 - 1.390 

Cirrus Clouds/ Water Vapour 27 6.535 - 6.895 

28 7.175 - 7.475 

29 8.400 - 8.700 Cloud Properties 

30 9.580 - 9.880 Ozone 

31 10.780 - 11.280 

Surface/ Cloud Temperature 

32 11.770 - 12.270 

33 13.185 - 13.485 

Cloud Top Altitude 

34 13.485 - 13.785 

35 13.785 - 14.085 

36 14.085 - 14.385 
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*Bands 1 to 19 are in nm; Bands 20 to 36 are in µm 

 

Table 8: MODIS Quality assessment parameters for the QA SDS Layer. 

Bit No. Parameter Name Bit Combination Interpretation 

0-1 Cloud State 

00 Clear 

01 Cloud 

10 Mixed 

11 Not set, assumed clear 

2 Cloud Shadow 
1 Yes 

0 No 

3-5 Land/Water Flag 

000 Shallow Ocean 

001 Land 

010 Ocean coastlines and lake shorelines 

011 Shallow inland water 

100 Ephemeral water 

101 Deep inland water 

110 Continental/moderate ocean 

111 Deep ocean 

6-7 Aerosol Quantity 

00 Climatology 

01 Low 

10 Average 

11 High 

8-9 Cirrus Detected 

00 None 

01 Small 

10 Average 

11 High 

10 
Internal cloud 

algorithm flag 

1 Cloud 

0 No cloud 

11 1 Fire 
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Internal fire algorithm 

flag 
0 No fire 

12 
MOD35 Snow/Ice 

Flag 

1 Yes 

0 No 

13 
Pixel is adjacent to 

cloud 

1 Yes 

0 No 

14 Salt pan 
1 Yes 

0 No 

15 Internal Snow Mask 
1 Snow 

0 No snow 
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Annexure 

 

Annexure  1: Anomaly between Final Fused Image and MODIS 

 

Annexure  2: Anomaly between Final Fused Image and PROBA-V 
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Annexure  3 : Daily NDVI Value- 2015 from June - December 
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Annexure  4: Daily NDVI Value- 2016 from June - December 
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Annexure  5: Daily NDVI Value- 2017 from June-December 
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Annexure  6: NDVI values plot basis for the year 2015 

 

Annexure  7: NDVI values plot basis for the year 2016. 
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Annexure  8: NDVI values plot basis for the year 2017 

 

Annexure  9: Different Curve Fitting Methods for NDVI 
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Annexure  10: Soil Moisture Lags compared to NDVI value of Plot-146 for 2015.(a) CCF 

Graph, (b) Lag0-Lag6 compared to NDVI, (c) Lag0 in relation to NDVI, (d) Lag4 in relation to 

NDVI 

 

Annexure  11: Soil Moisture Lags compared to NDVI value of Plot-146 for 2016. (a) CCF 

Graph, (b) Lag0-Lag6 compared to NDVI, (c) Lag0 in relation to NDVI, (d) Lag4 in relation to 

NDVI 
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Annexure  12: Soil Moisture Lags compared to NDVI value of Plot-146 for 2017. (a) CCF 

Graph, (b) Lag0-Lag6 compared to NDVI, (c) Lag0 in relation to NDVI, (d) Lag6 in relation to 

NDVI 
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