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Abstract 
 

A landslide susceptibility analysis is performed utilising an artificial neural network (ANN), 

in order to model the nonlinear relationships between landslide occurrence and a set of newly 

developed parameters. The main research aim was to create and test new morphometric 

parameters datasets in an ANN to determine whether higher accuracies in landslide 

susceptibility predictions can be obtained. The ANN was applied to a test area near the city of 

Zwickau in the south west of Saxony, Germany. Seven new parameters were developed in 

ArcGIS model builder, and used as input for a new higher resolution models. The new 

parameters included were, stream power index, topographic wetness index, dissection index, 

vector ruggedness measure, topographic ruggedness measure, hypsometric integral, and 

knickpoints generated from a relative extension index (RDE). Other new datasets were also 

tested such as geological lineaments and soil. All datasets were modelled alongside traditional 

parameters such as slope, flow accumulation, curvature and lithology.  The data were pre-

processed, normalised and and imported from ArcGIS into the ANN. Final evaluation of both 

the training phase and application phase results showed that when the newly developed 

parameters were included in the modelling process, notable improvements were made in the 

prediction classification accuracy.  

Keywords: Landslide susceptibility, ANN, GIS, morphometric parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

1. Introduction 

1.1 Purpose and Scope: 

The evolving geomorphology of our earth's surface, has led to the creation of a diverse 

patchwork of complex landforms. Variations in landscape occur due to ongoing erosional and 

deformational processes, however as we continue to expand into new areas while dealing with 

the consequences of climate change, there is a need for improved modelling practices to deal 

with arising issues. Infrastructure construction and intensive land use practices lead to 

increased pressure on land resources and modification of the natural surface process of the 

earth. By studying surface morphology, we can gain a wealth of knowledge about the landscape 

around us, which could potentially help mitigate negative impacts to our way of life. 

One such example of this is landslide susceptibility mapping which uses morphological 

geological and environmental factors to predict potential locations susceptible to landslides. 

This can be utilized for the prevention of infrastructure damage and impacts to livelihood. 

Studies over the last two decades have identified the impact of human interaction with our 

environment through both construction and environmental means which can lead to the 

initiation or re-initiation of landslides (Bruschi VM, 2013; Meusburger K, 2008; Van Den 

Eeckhaut M, 2009; Vanacker V, 2003). The German government has identified geohazards 

such as landslides as a potential future threat to the countries road and rail network, under the 

changing climate conditions (Klose, Auerbach, Herrmann, Kumerics, & Gratzki, 2017). 

Landslides by nature occur as local phenomena but are a widespread issue for road safety and 

operations, especially when coupled with storm events with excessive rainfall and extreme 

conditions (Krauter, Kumerics, Feuerbach, & Lauterbach, 2012). The creation of higher 

accuracy models can facilitate the identification of vulnerable areas, which, while currently 

stable, may be liable to fail in the future under changing climate conditions.   

Traditionally morphological parameters were obtained from aerial photographic and 

topographic map interpretations. Technological improvements in remote sensing, Lidar, plus 

DEM technologies have opened a pathway for new types of analysis methods. The area of 

Digital Terrain Analysis (DTA) has seen a flurry of activity in the recent decades due to these 

advancements. Notably, the higher resolution DEM's currently available, are frequently being 

used to calculate parameters for direct use in the DTA process (Jordan, 2004).  
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A number of toolboxes and programs have been developed to automatically extract 

morphological parameters from DEM’s for terrain analysis. Examples of these include 

TecDEM, TecLines, SAGA, Topotoolbox and various others (Pérez-Peña, Azañón, & Azor, 

2009; Schwanghart & Scherler, 2014; Shahzad & Gloaguen, 2011a, 2011b). To model these 

parameters for the purposes of landslide susceptibility prediction many different methods have 

been used including weight of evidence, logistic regression, frequency ratio, and Artificial 

Neural Networks. 

In the past computational solutions for analysing multiple complex datasets for the purpose of 

landslide modelling were quite restricted. Recently we can profit from the creation of  

sophisticated statistical systems such as Artificial Neural Networks (ANN) which, with the 

addition of training data, can act as a powerful method of identifying landslide susceptibility 

zones (Paraskevas Tsangaratos & Benardos, 2014).  

This aim of this study is thus, to explore the inclusion of new morphological datasets in the 

landslide susceptibility modelling process, to evaluate their performance in an artificial neural 

network and to assess whether the overall prediction accuracy for the test area can be improved 

compared to previous lower resolution models. Morphological parameters will be reviewed 

from previous tectonic and soil studies to determine their applicability within the study. From 

these suitable parameters will be selected and the methodologies adapted to GIS. The original 

modelling methodology put in place by Beak Consultants Gmbh, will be used as the foundation 

upon which the new models shall be built. The work will be conducted using their Advangeo® 

modelling software and the research will be undertaken using higher DEM resolution of 10m, 

compared to the previously used 20m resolution.  
  

1.2 Objectives 

The main objective of this research is to explore whether the addition of new DEM-derived 

morphological parameters can enhance landslide susceptibility prediction. These parameters 

will be tested in a GIS-based Artificial Neural Network. 

Any gain in the accuracy to a landslide susceptibility prediction can be utilised to further 

prevent damage to property and life and for future infrastructure planning decisions.   

 

For this study the following objectives were formulated: 
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Ø Review and selection of suitable morphological parameters, with a specific focus on 

tectonic morphological parameters, for the use in Landslide susceptibility modelling. 

Ø Investigate the relationship between tectonic morphology and landslide prediction and 

occurrence.  

Ø Assessment of the available morphological analysis toolboxes for DEM’s, i.e. 

TecLines, TecDEM, SAGA, Topotoolbox.  

Ø Adaption of techniques and datasets derived from selected toolboxes, to a GIS-based 

artificial neural network (ANN). 

Ø Collection of training data for the ANN, through site-based fieldwork. 

Ø Determine the effect of the chosen datasets when incorporated into the ANN modelling 

process. 

Ø Asses various model validation methods to determine if the newly introduced 

parameters increase the accuracy of the model results. 

Ø Evaluation and selection of the best methods for visualising the results of the study.  

 

1.3 Research questions: 

Ø What are the tectonic morphological parameters that can be derived from a DEM? 

Ø Of these, which are the greatest importance according to previous literature? 

Ø Many toolboxes for morphological analysis exist, can their methodology and produced 

datasets be adapted for the purposes of the project, and what is the best approach to 

take? 

Ø Does functionality already exist in ArcGIS which can be implemented in Advangeo®?  

Ø What methods can be used on the model output for validation and assessment?  

Ø Which dataset can be said to add the most benefit to the prediction model?  

Ø Can an overall improvement in the susceptibility prediction be obtained? 

 

1.4 Thesis Structure 

This thesis consists of seven chapters. Chapters one through four describe the background and 

theory behind the project, and set up the foundation upon which the study is based. They 

include an introduction to the thesis, followed by an extensive review of previous literature in 

Chapters three and four, and in Chapter 4 the study area is discussed.  Chapters five through 
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seven, then detail the body of the work of the project, describing the methodology used, and 

finally presenting the results, conclusions and further recommendations.  
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2.  Background 

2.1 Landslides  

A landslide is a complex process defined as the downslope movement of rock, debris and soil 

material most commonly under the force of gravity. The complexity of this process has led to 

many definitions in the research community (L. M. Highland & Bobrowsky, 2008). Landslide 

has become the widely used term for mass movement but in essence, this is not correct, as mass 

movement does not necessarily involve sliding. Rock falls, for example, have no sliding 

mechanism hence they would not classify under the title of Landslide. Despite this, the wider 

academic community has come to commonly use the term landslide and are aware of its 

overarching meaning (Varnes, 1978). 

Many attempts have been made to classify mass movement, however, Varnes (1978) 

classification (Table 2.1) is considered the standard landslide schema. He classifies by two 

elements, the material, and the movement mechanism. A category is also assigned for complex 

movement which incorporates a combination of types. 

 

 
 

Table 2.1 Adapted from Varne's classification of mass movement (Varnes, 1978) 

 
The term “slide” in the stricter sense, applies to mass movements which move along distinctive 

zones of weakness, this plane of weakness separates the material which makes up the slide 

from the stable ground beneath. The two most prominent forms are rotational and translational 

(Figure 2.1). These vary in the type of plane along which a rupture occurs. Translational 

landslides occur along planar planes and are associated with slopes ranging from 20 to 40 

degrees.  Rotational on the other hand occur along curved planes, are generally shallower than 

translational slides and can range from very small to large regional failures. Translational slides 

are one of the most common types of landslides and occur worldwide.   

Predominantly	Coarse Predominantly	fine
Rock	fall Debris	fall Earth	fall

Rock	topple Debris	topple Earth	topple

Rotational	 Few	Units Rock	Slump Debris	slump Earth	slump

Translational Many	Units Rock	block	slide/	
Rock	Slide

Debris	block	slide/								
Debris	slide

Earth	block	/													
Earth	slide

Rock	Spread Debris	spread Earth	spread

Debris	flow Earth	flow

Combination	of	two	or	more	principal	types	of	movement
Soil	creep

Flows	 Rock	Flow	(deep	
creep)

Complex

Lateral	spreads

Slides

Falls
Topples

TYPE	OF	MATERIAL

ENGINEERING	SOILS
Bedrock

TYPE	OF	MOVEMENT
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Figure 2.1 Rotational and translational landslides (adapted from USGS ).  

 

Falls and topples can be interpreted as a detachment of the material from the source area with 

little to no shearing influence involved, falling downwards under gravity (Figure 2.2). Falls 

and topples are considered as a more abrupt displacement, and the material general breaks on 

impact forming scree or rubble piles below the rupture site. 

Flows are a rapid form of mass movement commonly seen worldwide after intense rainfall or 

snowmelt events. They are defined by a mixing of the material as it moves downslope. Flows 

are most often associated with a large water content however, this is not always the case, as 

rock and sand flows most often contain low amounts of moisture (L. Highland, 2004). 

 

 
Figure 2.2 Rockfall and Topple failures (adapted from USGS) 

 

As stated previously gravity is not necessarily always a factor in the mass movement of 

material. Despite the association of landslides with higher elevation areas, they can also occur 

in areas of lower elevation. The collapse of mining dumps and in particular coal mining dumps 

are a common occurrence in un-managed dumps. Quarry's and open pit mining create artificial 
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areas of higher slopes with the potential to fail. Spreading is a form of displacement which 

occurs on relatively low angle slopes or flat areas. Spreading occurs in the process of 

liquefaction. During this process waterlogged, loose and non-binding sediments namely of 

sand and silt change from a solid state to a liquefied state. When a stable material layer such 

as bedrock or soil, sits on top of a layer of liquefiable material, an event such as oversaturation, 

earthquakes, weight-loading etc. can cause fracturing and extension in the top layer, which may 

be followed by subsidence, rotation or flow (L. M. Highland & Bobrowsky, 2008).  

Overall a mass movement from any of the categories can be regarded as a movement of 

material from its source point to more stable conditions.  Mass movements are a natural process 

with the aim of reaching an equilibrium between contributing forces. Landslides are 

characterised by internal and external conditioning factors and triggering factors. Triggers can 

change previously stable conditions resulting in destabilisation, many factors exist (Figure 2.3) 

however, the three main ones to be considered are water (in the form of intense precipitation, 

runoff erosion, over-saturation, and flooding), seismic activity and volcanic activity (L. 

Highland, 2004). Triggers can also be anthropogenic in nature, land use practices lead to soil 

erosion and greater runoff, deforestation plays a big role in this in some countries. (Crozier, 

1984).  

 

 
 

Figure 2.3 Categorised triggering factors in mass movement (adapted from USGS). 

 
In contrast to triggers, internal and external conditions are generally pre-existing but can 

change over time, these include internal conditions such as geological lithology, structures, and 

extent of near-surface weathering. External conditions include relief, soil coverage, and 

morphology. The morphology of the landscape greatly affects slope stability, hence parameters 

derived from the morphology such as slope, aspect, curvature, and roughness, can subsequently 

Geological Causes Morphological Causes Human Causes

Weak or sensitive material Tectonic or volcanic uplift Slope or toe excavation

Weathered materials Glacial rebound Slope or cret loading

Sheared, jointed or fissured materials Subterranean erosion Drawdown (reservoirs) 

Contrast in permeability and/or 
stiffness of materials

Slope or crest loaded with 
deposition

Deforestation

Adversely orientated discontinuity 
(bedding,  faults, unconformity, 
contact)

Vegetation removal 
(natural causes)

Irrigation

Thawing of frozen ground mining

Freeze-thaw weathering Artificial Vibration 

Shrink-swell weathering Water leakage from 
utilities

Fluvial, wave or glacial 
erosion of slope toe or 
lateral margins.
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be used as indicators to highlight (predict) susceptible areas (R. J. Pike, Evans, & Hengl, 2009). 

This is done on the premise that landslides of similar scale and environmental background will 

occur under a similar set of conditions as past landslides. Morphological parameters will be 

discussed further in Chapter three. Another element that deserves mentioning is the scale of 

the landslide. Landslides can range from small-scale shallow landslides, where the material 

movement is more superficial than catastrophic, to regional scale landslides. Small landslides 

are common and widespread throughout the world, whereas large failures occur less commonly 

and generally in areas with certain predisposing conditions (Glade & Crozier, 2005).  

 

2.2 Landslide susceptibility mapping 

Landslide susceptibility mapping is the use of the past to predict the future. Conditions where 

LS's previously occurred are said to exhibit conditions which can be used to predict areas 

vulnerable to future failures (Fausto Guzzetti, Carrara, Carrara, Cardinali, & Reichenbach, 

1999). LS assessment is based on the conditioning factors discussed previously, it allows for 

the depiction of the spatial distribution of the susceptibility, without the necessity to determine 

magnitude or temporal aspects of the phenomena. In simpler terms, it estimates where a 

landslide is most likely to occur as a result of geo-environmental conditions, this does not take 

into account triggering events. Varnes (1978), describes susceptibility as “the probability that 

a landslide of a given type may occur in a given area “. Landslides due to their complexity are 

regarded as more difficult to model and assess than other phenomena such as flooding and 

earthquakes. The reason for this is down to the wide range of process which must be assessed 

(Glade & Crozier, 2005). Landslides susceptibility can be on various scales from, small 

(<1:100,000), medium (1:100,000 to 1:25,000) to large (1:25,000 to 1:5,000) (Fausto Guzzetti 

et al., 1999). 

In previous literature, much confusion occurs between the terms “susceptibility” and “hazard” 

(Reichenbach, Rossi, Malamud, Mihir, & Guzzetti, 2018). Landslide “Hazard” mapping 

factors the probability of a landslide of a certain magnitude occurring within a specified time 

period. Landslide “susceptibility”, solely deals with presenting spatially the relationship 

between mass movements and conditioning factors, while assuming that future events will 

occur under the same conditions (Fausto Guzzetti et al., 1999).  
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2.3 Methods of Susceptibility Mapping 

Many techniques have developed over time for the production of LS maps. These techniques 

can be broadly grouped into quantitative and qualitative methodologies (Figure 2.4). Early 

methodologies focused mainly on qualitative methods, however better processing capabilities 

have meant that larger more detailed datasets can now be produced as part of quantitative 

predictions (S.  Ali, P.  Biermanns, R.  Haider, & K.  Reicherter, 2018).  

Despite which methodology is used to derive the landslide susceptibility, a set of assumptions 

exists, these have been touched upon in this chapter but can be summarised in the following 

points according to Fausto Guzzetti et al. (1999). Firstly, landslides display recognisable 

imprints and/or indicators on the landscape which can be identified and mapped using aerial 

and satellite imagery, and direct mapping in the field (Alessandro Mondini, 2008; Varnes, 

1978). Secondly, both natural and man-made conditions control landslide occurrence, these 

can be assessed using qualitative or quantitative methodologies. Factors related to slope failure 

can be gathered and utilized for prediction models (Costanzo, Rotigliano, Irigaray, Jiménez-

Perálvarez, & Chacón, 2012; Dou et al., 2015). Thirdly, as stated previously, past landslide 

conditions are key to predicting future failures, by assuming the conditions of past and future 

landslides will the same (Varnes, 1978). 

Qualitative or knowledge-driven heuristic methods rely on expert user input to determine 

susceptibility categories and as a result are inherently subjective. These categories tend to be 

described in terms of "very low" to "very-high" susceptibility (Dragićevića, Laia, & Balram, 

2015). The main disadvantage to this method is that the prediction accuracy depends on the 

level of experience of the user. On the other hand, quantitative methods create predictions by 

assessing the relationship between landslide events and causative factors by statistical or 

deterministic analysis. This is an objective approach which reduces bias when weighting 

causative factors (Reichenbach et al., 2018). Deterministic methodologies assess failures by 

factor of safety (FOS) (Gorsevski, Gessler, Boll, Elliot, & Foltz, 2006). Statistical predictions 

are more popular in recent times. Statistical classification methods include, bivariate and 

multivariate, logistic regression (LR), weight of evidence (WoE), frequency response (FR), 

support vector machines (SVM) and Artificial Neural Networks (ANN) (S. Ali, P. Biermanns, 

R. Haider, & K Reicherter, 2018; Reichenbach et al., 2018). Statistical approaches employ 

indirect methodologies to objectively determine the relationships between dependent and 

independent factors or parameters by feeding the system training data and are subsequently 

verified using validation data. All possible parameters are entered and then compared with 
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training and validation sets derived from the inventory data.  to determine their effect  (F.  

Guzzetti, 2006; Fausto Guzzetti, Reichenbach, Ardizzone, Cardinali, & Galli, 2006). GIS can 

be integrated into the pre-processing phase to help manage and analyse the heavy datasets. One 

disadvantage of quantitative methods is that they require high accuracy data spread out over 

the study area, this can be a problem in areas with little or no inventory and poor satellite data 

(Demoulin & Chung, 2007). Despite the numerous papers available comparing methodologies, 

the overall best approach is still a matter of debate (Carrara & Pike, 2008). 

 
Figure 2.4 Landslide methodology classification from Carrara & Pike, 2008. 

 

S. Lee and Talib (2005) noted that the selection of optimised factors for landslide susceptibility 

modelling can improve the prediction accuracy. They described how this can reduce 

discrepancies in the model. Pradhan and Lee (2010) also adopted this approach and removed 

parameters with smaller weight values, reducing the overall amount of final input parameters. 

Reichenbach et al. (2018) discusses the numbers of parameters used based on an extensive 

literature review. According to his research, he determined that the parameters used ranged 

from two to twenty-two for a single model, with the average being nine.   
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2.3.1 Landslide inventory 

A landslide inventory, in theory, is a comprehensive record of all failures which have occurred 

in an area both past and present. An up to date and accurately recorded landslide inventory is 

necessary for landslide susceptibility, however, these rarely exist (Reichenbach et al., 2018). It 

is difficult to conduct studies with poor data quality, statistical predictions, in particular, require 

greater amounts of accurate data for modelling susceptible areas. A number of methods exist 

for the collection of this data including the direct collection of data in the field, historical record 

keeping of events, and identification through aerial and satellite imagery. Linking triggering 

events to landslide occurrence requires accurate recording of the factors surrounding the failure 

(extreme weather events, seismic events etc.), the type and scale of the event and its location 

(Fausto Guzzetti et al., 2012; Van Westen, Castellanos, & Kuriakose, 2008). The problem in 

this is that the conditions that existed to initiate the landslide in the first place often change 

dramatically. This can mean that a slope is now more susceptible to other another type of 

failure, as is the case with a landslide to debris flow scenarios, or the slope no longer exhibits 

the conditions which caused the event to begin with. Hence, great care and consideration is 

needed whilst capturing data.  

The standardisation of landslide event records has yet to be agreed upon and the literature 

discusses the problems that this poses when conducting susceptibility predictions (Fausto 

Guzzetti et al., 1999).  

The thesis research has been conducted using an Artificial Neural Network (ANN) called 

Advangeo©, developed by Beak Consultants. Hence, this methodology will be the focus of 

further discussion in this chapter.  

 

2.4 Artificial Neural Networks in Landslide susceptibility 

Artificial Neural Networks (ANN) in geosciences are used for multivariate, statistical based 

predictions of spatial phenomena. ANN’s are “generic non-linear function approximators that 

were developed for pattern recognition and classification” (McCulloch & Pitts, 1943). “An 

ANN classifier defines a potentially complicated decision boundary in feature space” (Woods & 

Bowyer, 1994). They are capable of handling large quantities of data and learning complex 

model functions by “training” the system, similar to how our brains function. The brain consists 

of billions of interconnected neurons that form a neural network, we learn/process based on 

complex connections between these neurons (Ermini, Catani, & Casagli, 2005). ANN’s strive 
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to replicate this type of learning architecture by a combination of artificial intelligence and 

statistical analysis. It is an indirect or quantitative technique, which combines input parameters 

with training sets of the phenomena locations, and the system then "learns" the relationships 

from the data it is fed (Van Weston, Rengers, & Soeters, 2003). Traditional statistical 

modelling, on the other hand, requires previous knowledge of data relationships (Farrokhzada, 

Bararib, Choobbastia, & Ibsenb, 2011). In comparison to other methods, with ANNs the user 

selects the input parameters and criteria, and the system determines the susceptibility, hence it 

is inherently objective. ANN’s are considered “black box models” because of the level of 

difficulty that exists in interpreting and manipulating the inner workings of the system (Saro 

Lee, Ryu, Min, & Won, 2003). 

Various ANN architectures exist, one of the more common approaches is using a Multi-

Layered Perceptron (MLP) with a back propagation learning algorithm (BPN), and a sigmoid 

activation function (Bishop, 1995). MLP’s are a multi-layered feed-forward architecture, 

where the information is fed forward through multiple layers. The basic set up consists of three 

layers, an input layer with neurons for the selected input parameters, a hidden layer of neurons 

through which the information propagates and an output layer with generally one to two 

neurons (in the case of landslide susceptibility). Numerous hidden layers can be used, however 

previous studies noted that it was difficult to assess how many layers provide the most benefit 

as each layer added increases the complexity of the model and it's processing time and power, 

in the end, most studies opted for one hidden layer (Pradhan & Lee, 2010). The decision 

boundary in the feature space of the hidden layer is formed by a non-linear combination of a 

set of hyperplanes. Each node of the hidden layer is defined by a hyperplane (Woods & 

Bowyer, 1994).  

There are two phases to the ANN modelling, the training and application phases. During the 

training phase weights of influence of each parameter, input are determined by comparing the 

relationship between the parameters and known occurrence and converted into spatial 

probabilities. The hidden and output layers multiply each input by a corresponding weight, 

summing the product of this, before processing the total using a non-linear transfer function 

(sigmoid) (Pradhan & Lee, 2010). The network "learns" by use of the back-propagation 

algorithm (BP), which adjusts the weights between the nodes (“neurons”) in the input layer 

and the hidden layer and the hidden layer and the output layer, in response to errors between 

the initial actual output values and target output values (Figure 2.5) (Saro Lee et al., 2003; P. 

Tsangaratos & Bernardos, 2013). It does this over an assigned set of “epochs” or cycles of the 
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system (Zhou, 1999). As the training phase progresses the error naturally drops (Ermini et al., 

2005). At the end of the training phase, the ANN provides a model which can predict a target 

value from a given input value (Pradhan & Lee, 2010).Due to the use of a training data set to 

develop the relationships, ANN is considered a supervised classification method (Atkinson & 

Tatnall, 1997). The second phase is the application phase where the derived weights are used 

to apply the neural net on the rest of the area.  

ANN’s have many advantages, they are good at detecting patterns that are not always apparent 

to our human perception and interpretation. New complex and non-linear relationships 

(weights) can be analysed as they are independent of the statistical distribution of the datasets 

(Farrokhzada et al., 2011). Of significant importance is the ability of ANN’s to view problems 

differently which cannot be solved by statistical methods due to theoretical relationships. ANN 

models are considered adaptive and capable of generalisation. They can also handle imperfect 

or incomplete data (Saro Lee et al., 2003). 

 

 
Figure 2.5 Flow chart for weight determination using an ANN model (After Pradhan, 2010) 

 

 

There are some disadvantages associated with ANN's, for example, the BP algorithm can 

involve long execution times with a heavy computing load (Pradhan & Lee, 2010). Another 

issue with the BP is the local minima problem. This occurs during gradient descent following 

the slope of the RMS error value down along with changes in all weight values. The weights 

are continuously adjusted until the error value is no longer decreasing. This final position 
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should be on the global minimum however, due to the complex nature of the RMS error value 

with many parameter weights, the network may instead converge into a local minimum 

Ultimately this means that more complex models require multiple re-runs, to asses the models 

and determine the best model produced. 

2.5 Validation 

Few authors have truly discussed methodologies in detail for the evaluation of model prediction 

performances (Reichenbach et al., 2018). That is not to say that studies have not conducted 

using validation methods, but that the purpose has mostly been for model comparison to assess 

which produced model is the best (Kalantar, Pradhan, Naghibi, Motevalli, & Mansor, 2018; 

Reichenbach et al., 2018). Prediction result values for LSS can be assessed by analysing the 

network error, the statistic distribution of the prediction results, cross-validation and field work 

(Kalantar et al., 2018). Other popular methods include receiver operator curve (ROC), area 

under the curve (AUC) and frequency ratio (Woods & Bowyer, 1994).  

Reichenbach et al. (2018) strongly emphasises that while methodologies such as receiver 

operator curve (ROC), area under the curve (AUC) and success/prediction rates measure the 

overall performance, they cannot capture local conditions of an area or relevant 

geomorphological conditions. Models with high AUC values display a better statistical 

performance than lower values. However, the lower AUC value model may be more reliable 

and useful from a geomorphological standpoint.  

ROC is a common method of evaluating classification performance and has been used in many 

studies (Choi, Oh, Won, & Lee, 2009; Dou et al., 2015; Fabbri, 2003; Pradhan & Lee, 2010; 

Shahabi & Hashim, 2015; P. Tsangaratos & Bernardos, 2013; Woods & Bowyer, 1994). ROC 

involves the calculation and plotting of true positives against false positives at multiple 

threshold setting. The further the line inflects towards the upper left of the plot, the better the 

model is interpreted as. The AUC determines the model accuracy figure of the model 

prediction. The values range from 0.5 to 1; 1 indicating perfect performance and 0.5 is achieved 

in the case of weak models (P. Tsangaratos & Bernardos, 2013). In chapter six, the results of a 

ROC, AUC validation alongside other evaluation techniques will be presented.  
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3. Geomorphometry and morphometric parameters 

3.1 Introduction 

“Geomorphometry is the science of quantitative land-surface analysis” (R. J. Pike et al., 2009). 

The primary objective of Geomorphometry is to characterise discrete surface features or 

landforms through the analysis of the earth’s geomorphology (Ivan Marchesini1  & Mondini1 

2014). Classical morphometry as a domain previously focused on the areas of surface form, 

calculating averages for elevation and slope, relative relief, contour maps, and drainage density. 

Modern Geomorphometry on the other hand now encompasses GIS data extraction and 

analysis of detailed continuous surfaces and the study of distinctive landforms such as 

watersheds (R. J. Pike et al., 2009). Landscapes are molded by tectonics, lithology, and rivers. 

Complex process interact between, tectonics, erosion, and sedimentation to create water gaps, 

knick points and meanders, as well as other tectonic and geomorphic features (Pirasteh, 

Pradhan, & Rizvi, 2009). Morphometric parameters are powerful indicators of these processes 

which shape our landscape.  

Geo-hazard susceptibility mapping relies greatly on these parameters to make accurate 

assessments. Traditionally landslide susceptibility studies were limited by the ability to process 

large amounts of data and were based on qualitative classifications and interpretation. In recent 

times, however, this has changed thanks to the onset of advanced techniques in GIS analysis, 

data extraction and improved processing power using more sophisticated statistical modelling 

methodologies (R. J. Pike et al., 2009). An advantage to morphometric parameters is that they 

tend to be less specific than geo-environmental variables such as geology, climatology, soil, 

and land-use. Despite dependency on the kernel size and the DEM resolution used to derive 

these parameters, they are still more simplified than the geo-environmental variables which 

can be detailed and area specific, hence morphometric parameters can be applied to different 

areas with less difficulty (Reichenbach et al., 2018).   

Morphometric parameters which have been used in the study of tectonics include isobase, 

drainage dissection & incision, surface roughness, hypsometric integral, bifurcation ratio, 

mountain front sinuosity, stream length index, knick-points and basin asymmetry (Gloaguen 

& Mahmood, 2011; Keller & Pinter, 2002; Kirby & Whipple, 2001; Kirby & Whipple, 2012; 

Mahmood & Gloaguen, 2012; Strahler, 1957). In soil and hydrological studies another set of 
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parameters are traditionally used, some of which include stream power index, topographic 

wetness index, stream order, stream length, elongation ratio, and drainage density. 

According to R. J. Pike et al. (2009), there are five steps to geomorphometric analysis, first the 

sampling or generation of a surface such as a DEM, the correction of the surface model, the 

calculation of surface parameters or objects and the application of the results to the research 

problem. The basis behind surface parameters is the DEM, a representation of the surface of 

the earth. Layers derived from the DEM carry specific information that can be interpreted as 

features (R. J. Pike et al., 2009). Geomorphometric data can be classed into three types of data; 

basic, hydrological and climatological. Hengl and MacMillan (2009) reported that more than 

100 basic and complex surface parameters exist for characterising a landscape.  

Complex analysis such as landslide susceptibility incorporates a basic set of these parameters, 

such as slope, aspect, curvature, and flow accumulation, together with predisposing factors like 

geology, soil and land-use (Fausto Guzzetti et al., 1999; Reichenbach et al., 2018). Newly 

developed free software and packages such as TecDEM1, SAGA2, ILWIS3, GRASS4, Landserf5,  

MicroDEM6 and TauDEM7, have been developed to take advantage of the increased quality and 

availability of modern DEM’s. These toolboxes were not developed with landslide 

susceptibility, but rather for tectonic interpretation, soil analysis and general geomorphometry 

in mind. Some of these parameters are applicable to landslide studies and can be used cross-

domain and incorporated into the modelling process. Detailed below are selected parameters 

which have been reviewed for this study.  

 

3.2 Core parameters in LSS 

Nowadays, while many new Landslide prediction techniques exist, the core assessment 

parameters used in these predictions have remained for the most part constant. Studies have 

focused on what are regarded as the core indicative parameters such as slope, aspect, geology, 

                                                
 
1 https://tecdem.soft112.com/ 
2 https://saga-gis.org 
3 https://www.ilwis.org/open_source_gis_ilwis_download.htm 
4 https://grass.itc.it 
5 https://landserf.org 
6 https://www.usna.edu/Users/oceano/pguth/webiste/microdem/microdemdown.htm 
7 http://hydrology.usu.edu/taudem/taudem5/index.html 



 17 

elevation, curvature, land-use, soil, drainage density and distance to faults (Dou et al., 2015; 

R. J. Pike et al., 2009). 

 

3.2.1 Slope 

It is known that slope is one of the most influential parameters on landslide occurrence and is 

one of the most commonly used parameters in the past and modern landslide susceptibility 

predictions (Costanzo et al., 2012; Kalantar et al., 2018; Reichenbach et al., 2018). Slope refers 

to the rate of change in height over the distance between two points. Low slope values represent 

flatter terrain while higher values represent steeper near vertical terrain. The slope is the 

foundation for two other important parameters which describe the slope, aspect, and shape 

(curvature) (Fausto Guzzetti et al., 1999) 

 

3.2.2 Aspect 

Aspect describes the orientation of a slope or the direction to which it faces, this parameter has 

been used worldwide for LS studies at different scales (Costanzo et al., 2012; Qiqing, Wenping, 

Wei, & Hanying, 2015; Roşca et al., 2015). Values can be represented with the cardinal 

directions, North, South, East, West, or 0-360°. A slope can be subjected to different 

climatological conditions depending on the direction to which it is orientated. This can create 

stress on natural processeses related to soil erosion and weathering of the underlying lithology 

and lineaments, and affect the overall moisture retention (Yalcin & Bulut, 2007). Slope aspect 

is also regarded as having an impact on vegetation cover, affecting landslide occurrence 

(Othman, Gloaguen, Andreani, & Rahnama, 2018) 

 

3.2.3 Elevation 

Elevation as anan indicator has also been linked to landslide susceptibility, with the most 

landslides occurring at intermediate elevations, as these elevations are normally characterised 

by steep slopes since they lie in the higher to lower elevation transition zone, hence these slopes 

tend to be covered by thin layers of colluvium which is prone to failure. Landslides commonly 

occur at very high elevations differences in shear strength. Lower elevations, on the other hand, 

are not commonly considered landslide-prone areas unless there are flooding or general water 
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table changes (Dragićevića et al., 2015). Changes in local climate conditions at different 

elevations also affect slope stability leading to failures (Othman et al., 2018) 

 

3.2.4 Curvature 

The natural shape of a landscape can be described by the change of slope angles or curvature; 

this is a second derivative of elevation (or the slope of the slope). Curvature plays an important 

role on the erosional and run-off processes which influence the land surface (R. J. Pike et al., 

2009). Overall curvature can be divided into, plan or profile and negative and then sub-divided 

into negative and positive (Figure 3.1). 

 
Source: http://www.et-st.com/et_surface/userguide/Raster/ETG_RasterCurvature.htm 

 

 
Figure 3.1 General (a),  profile (b) and plan (c) slope curvature, with positive and negative areas highlighted. 

(Source: http://www.et-st.com/et_surface/userguide/Raster/ETG_RasterCurvature.htm) 

 

3.2.5 Drainage Density  

Drainage systems have an adverse effect on slope instability in the form of surface water runoff 

and it’s density and intensity (Yalcin & Bulut, 2007). Runoff patterns affect the undercutting 

and general erosion of slopes and areas with poor runoff lead to over-saturation. Dou et al. 

(2015) noted that in “increasing density of the drainage network causes increasing occurrences 

of landslide frequencies”. 

A 

B C 
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Drainage Density (DD) can be defined as the “total stream length per unit area”(Horton, 1932). 

First used by Horton (1932), it has since been used in many hydrological studies. The pattern 

and configuration of stream channels denote the efficiency of the drainage system. The 

drainage density itself is the result of interacting factors controlling surface runoff, however, 

on the other hand, it to influences the runoff and sediment/water output from a system (Gregory 

& Walling, 1968). DD has been known to be influenced by climate, vegetation, soil and rock 

types and relief (Moglen, Eltahir, & Bras, 1998).  

 

3.2.6 Distance to faults 

Distance to faults (DTF) is a commonly used variable in susceptibility mapping (Costanzo et 

al., 2012; Fausto Guzzetti et al., 1999). This zone around the fault refers to the area of influence 

of the fault, surrounding which there can be altered rock mechanics and hydrological 

properties. Reichenbach et al. (2018) discusses how these zones are more conditioned for 

landslide occurrence and how the distance of influence of each fault zone is variable. These 

fractured zones tend to be more susceptible to failure when triggered by earthquakes, however, 

the response is completely variable between different zones. Water runoff and permeation can 

also be affected greatly by fractured ground.   

 

3.3 New Parameters in LSS 

As technology advances, the processing power of the systems behind predictive models opens 

up new possibilities in the realm of DEM-derived parameters for landslide modelling. 

Potential exists for ANN to explore and define new relationships in a non-linear way by 

including parameters which could possibly have an effect on the modelling process. Outlined 

below are selected parameters which have been determined as most applicable for the study 

out of a variety of available parameters. 

 

3.3.1 Stream power index  

Stream power index (SPI) is a compound topographic attribute which has been previously used 

for landslide studies (Costanzo et al., 2012; Dou et al., 2015; Kalantar et al., 2018; Roşca et al., 

2015; Yilmaz, 2009). The index describes the erosive power of surface flowing water and has 

been traditionally used for the study of erosion, sediment transport, and geomorphology. It is 
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based on the assumption that surface runoff is proportional to the upslope contributing area 

(Moore, Grayson, & Ladson, 1991). It predicts net erosion in profile and convexity or high 

flow acceleration, convergence zones, and net deposition in profile concavity areas which 

display decreasing velocity (Pourghasemi, Pradhan, Gokceoglu, & Moezzi, 2013).  

 

3.3.2 Topographic Wetness Index  

Also known as the compound topographic index (CTI), the topographic wetness index (TWI) 

is used widely in conjunction with SPI in the study of surface runoff and the development of 

ephemeral gullies. TWI was developed by Beven and Kirkby (1979) to study special scale 

effects on hydrological processes. The index represents the tendency of water to accumulate at 

any point of the catchment, and the natural process of gravity moving water downslope 

(Poudyal, Chang, Oh, & Lee, 2010). TWI can be considered an indicator of soil moisture spatial 

patterns (Dragićevića et al., 2015). 

TWI has been used various landslide susceptibility models (Costanzo et al., 2012; Dou et al., 

2015; Wilson, 2012). Yilmaz (2009) spoke of their findings, high TWI values distributed in 

higher elevations alludes to the infiltration of surface water into slope-forming materials, and 

decreasing shear strength occurs alongside an increase in pore pressure. Overall it was found 

that landslides were less common at higher elevations with high TWI values. Moore et al. 

(1991) concluded that the thresholds which give meaning to the TWI and SPI index values will 

vary from area to area.  

 

3.3.3 Roughness 

Topographic roughness can be broadly defined as the variability or irregularity of the terrain; 

however, the definition varies depending on the calculation used. Scale is an important factor 

in any roughness calculation, for example, is the surface roughness characterising a localised 

or regional scale landscape? Surface also varies depending on the landscape, urban landscapes 

have a different set of surface roughness calculations (Jhaldiyal, Gupta, Gupta, Reddy, & 

Kumar, 2016). According to Pawley, Hartman, and Chao (2017), topographic roughness is 

useful in the characterisation of landslide morphology. Roughness measures have been used 

for various landslide susceptibility studies in the literature (Alkhasawneh, Ngah, Isa, & Al-

batch, 2013; Costanzo et al., 2012). Mumipour and Nejad (2011) used roughness alongside 

basin analysis to interpolate the tectonics of the Zagros Mountains region in Iran. Gosh (2015) 
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discusses earlier uses and definitions and suggests that roughness is slightly more advanced 

than slope and dissection index in that it gives an overall view of the evolutionary rhythmic 

process acting on the landscape.  It is found that DEM grid spacing greatly affects topographic 

indexes (Mukherjee, Mukherjee, Garg, Bhardwaj, & Raju, 2013). The whole concept of surface 

roughness and what is considered rough or not can be ambiguous and there are many variations 

of the roughness measure exist in the literature and have been summarised8 and also reviewed 

and analysed against each other9. Many studies have used the basic “standard deviation of the 

elevation” as the roughness measure (C. T. Lee, Huang, Lee, Pan, & Lin, 2008). For this study, 

two more advanced parameters have been selected which claim to consider more factors and 

used at multiple scales, terrain ruggedness index (TRI) and vector ruggedness measure (VRM). 

Topographic Ruggedness Index (TRI): was proposed by Riley, DeGloria, and Elliot (1999) 

who states that it provides an “objective quantitative measure of topographic heterogeneity and 

that the algorithm calculation can be used at any scale for the purposes of a study. The higher 

the value is the more rugged the terrain is. TRI may be influenced by rock and soil 

characteristics and thus is frequently used to model landslide distribution (Conoscenti, 

Rotigliano, Cama, & Lombardo, 2016). It was originally developed for the use in habitat 

studies but has also been used in LSS models.  

Vector Ruggedness Measure (VRM): was originally proposed by Hobson (1972) and further 

developed by Sappington, Longshore, and Thompson (2007) for the purpose of habitat studies. 

It has also been adapted for landslides studies in recent times, however, these studies focus 

more on landslide detection than susceptibility mapping. Pawley et al. (2017) previously used 

VRM to measure the slope and aspect variation together. The measure takes into account both 

aspect and slope and attempts to solve a problem with ruggedness measures. Many other 

measures focus on slope for the calculation, but just because a slope is steep does not 

necessarily mean it is rough. This method calculates vector dispersion and is less related to the 

slope. Sappington et al. (2007) found that locally that VRM quantifies the ruggedness 

independently of slope than the other measures tested, one of which is the aforementioned TRI.  

 

                                                
 
8 http://gis4geomorphology.com/roughness-topographic-position/ 
9http://www.let-group.com/lecture/l4061ar-dem-based-terrain-roughness-analysis-for-landsl4061e-
characterization-4061.html 
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3.3.4 Dissection Index (DI) 

Dissection Index can be defined as the ratio between relative relief and absolute relief. It can 

also be considered a roughness of sort but in regards to roughness caused by river incision and 

the extent of this incision. DI is a useful indicator in the study of landscape morphology 

evolution. Dissection can refer to both basin and overall landscape morphology and gives 

insight into the age and processes of a system. Lithology, relief, slope and drainage density 

play an impact on the overall dissection (Deolia & Pande, 2014). In the literature, both Gosh 

(2015) and Pandey, Sharma, and Bandooni (2018) included dissection index in the LSS 

modelling process and the latter study concluded that drainage density and dissection index 

were important in that particular study.  

 

3.3.5 Hypsometric Integral (HI) 

Is a derivative of the hypsometric curve which is used to describe the maturity and evolution 

of a basin and eludes to the “cycle of erosion” (Strahler, 1957). Both R.J. Pike and Wilson 

(1971) and (Strahler, 1957) discuss the similarities of HI to a parameter called elevation-relief 

ratio. HI is closely related to the degree of dissection by a drainage network and hence can be 

used to discriminate between landscape types. The HI is considered the area below the 

hypsometric curve (Figure 3.2), hence it corresponds to the shape of the curve. This is based 

on the thought that “a mountain is rapidly uplifted without serious denudation and then 

increases in dissection with a lowering in mean elevation (Davisian scheme)” (Pérez-

Peña, Azañón, Booth-Rea, Azor, & Delgado, 2009). 

A value greater than 0.6 indicated an elevated landscape with a significantly entrenched 

network. HI values from 0.35 to 0.6 correspond to noticeably eroded areas with well developed 

V-valley shaped valley systems. Below 0.35 is considered a relatively flat terrain with little 

incision (Strahler, 1957). Othman et al. (2018) used HI in the context of landslide susceptibility 

mapping and found HI to be a stronger indicator than curvature, improving AUC values by 

2%.  
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Figure 3.2 (a) Hypsometric curve from Strahler (1952). The HI is the area of the region under the curve. (b) hypsometric 

curves demonstrating the evolution of basin shape, from (Ohmori, 1993). 

 

3.3.6  Knickpoints 

A knickpoint is a location on a river where a notable inflection or sharp change occurs in the 

natural channel slope profile. Knickpoints are believed to form as a result of river incision into 

a bedrock that has experienced uplift due to various influences. Multiple factors may cause this 

including tectonics (active and dormant fault-lines), lithology and mass movement debris 

altering the channel profile. Human interference in the natural drainage pattern can also change 

the slope of a channel, resulting in knickpoints. Examples of this are dams, re-routing and 

funneling of channels. Attempts have been made to calculate and link these points to tectonic 

process (Hayakawa & Oguchi, 2006; Kirby & Whipple, 2001; Kirby & Whipple, 2012; Lopes 

Queiroz, Salamuni, & Do Nascimento, 2015; Zahra, Paudel, Hayakawa, & Oguchi, 2017).  

Discovering knickpoints can be done in a variety of ways such as analysing stream cross-

section profile using  Hack (1973)’s stream length-gradient index (SLI) or Etchebehere, Saad, 

Perinotto, and Fulfaro (2004)’s SLI derivative, Relation Declivity Extension (RDE). SLI is the 

ratio of slope to length. RDE gives an idea of the current energy in a particular drainage 

segment and varies with the slope and discharge (Lopes Queiroz et al., 2015). 

Troiani, Galve, Piacentini, Della Seta, and Guerrero (2014) used ordinary kriging interpolation 

on SLI values and were able to make correlations and interpretations from the data generated 

to benefit the study.  Moussi, Rebaï, Chaieb, and Saâdi (2018) used RDE to detect river channel 

anomalies for neo-tectonic studies and found that the derived knickpoints were correlated well 

to large fault lines. Andreani, Stanek, Gloaguen, Krentz, and Domínguez-González (2014) 
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applied knickpoint extraction to the Erzgebirge Mountain area using the TecDEM and reported 

overall positive correlations, this covers some of the area from this research but on a much 

smaller scale study related to the tectonic interpretation.  
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4. Study Area 

4.1 Location 

The study area is located in the East German state of Saxony, covering an area of 531km2 

surrounding the urban centre of Zwickau (Figure 4.1). The district of Zwickau constitutes the 

majority of the overall land coverage. In the South West, the study falls partially within the 

district of Vogtland. The area corresponds to four 1:25,000 topographic map quadrangles 

focused on the urban centre of Zwickau. The city is located at the foothill of the Western 

Erzgebirge Mountains (Ore Mountains). It has developed along the widened valley of the 

Zwickauer Mulde river. Once a prominent coal mining area, there is now a strong focus on 

agriculture with the landscape dominated by pasture and arable land. Due to geological and 

geomorphological conditions, the area is prone to flooding and earthquakes.  

 

 
Figure 4.1 Location of study area 
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4.2 Climate 

Lower altitudes of the study area are classified as warm and temperature whereas the higher 

sections in the SE are classified as cold and temperature. The temperature in the southern 

lowlands averages 8.2°C, varying between -1.3°C in January to 17.3°C in July. Precipitation 

here ranges from 32- 70mm during February and July respectively. Annual average 

precipitation is 573mm10. In comparison temperatures in higher areas in the south and south 

east, annually average 7.2°C, varying between 16.3°C in July to -2.2°C in January. These are 

known for higher snowfall rates. Precipitation averages 639mm annually ranging from 37mm 

in February to 78mm in July11.  

The state of Saxony has suffered from severe storm events and intense long lasting rainfall in 

the past, most notably the rain events of June 2013, August 2002 and July 1954 (Krauter et al., 

2012). These events are defined by specific low-pressure conditions caused by the interaction 

between the continental and oceanic climatic systems which influence the area (Horlacher et 

al., 2007). Events like these can trigger landslides in vulnerable areas prone to failure due to 

oversaturation of the soil, hydrological pressure, and slope destabilisation.  
 

4.3 Geomorphology and Geology 

The geomorphology of the study area is characterised by the higher relief of the western Ore 

Mountains (Erzgebirge) in the south and by the lowland hills and valleys of the Erzgebirge 

foreland in the north. The elevation ranges from 210-813m respectively (Figure 4.2).  

The urban area of Zwickau has developed along the flatter valley floor of the Zwickauer Mulde 

river (ZM). Here the river departs the higher energy environment of the upper southern 

elevations, upon reaching flatter relief the river slows down and widens. Frequent flooding 

events have widened the valley and a significant floodplain has developed.   

The geomorphology of the study area is closely related to the underlying geology, hence any 

discussion about geomorphology must be done in reference to the geology. The higher 

elevations in the south are dominated by the more durable Kirschberg Plutonic Granite which 

is less susceptible to erosion. This Variscan age granite body was intruded into the surrounding 

                                                
 
10 https://de.climate-data.org/location/22790/ 
11 https://de.climate-data.org/location/23109/ 
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sedimentary rock creating a progressive contact zone of metamorphosed to semi-

metamorphosed meta-sediments of Ordovician age, namely phyllite, shale, and mica-schist. 

Faulted blocks of Devonian, Silurian and Carboniferous age sediments mark the boundary 

between the North-East edge of the Erzgebirge with the rolling lowland hills of the Erzgebirge 

Basin. The flatter landscape of the Erzgebirge foreland is geologically composed of late 

Palaeozoic age reddish sandstones and, conglomerates from the Permian and Upper 

Carboniferous. (LfULG, 1875-1900). During the Carboniferous period, forested bogs 

developed in the basin during interruptions in sediment deposition, forming the coal deposits 

which were historically exploited in the region. Evidence of past coal extraction can be seen in 

the numerous mining dumps and a tailings pond located in and around the urban landscape of 

the city (Schneider et al., 2005).  

The slopes around Zwickau’s urban centre are characterised by sedimentary rocks of Permian 

age (Rotliegendes) conglomerates, siltstones and sandstones, and a Tertiary age capping of 

sands and gravels. These sediments are juxtaposed by numerous faults SE-NW trending faults. 

Incision patterns take advantage of these natural avenues of least resistance, which ultimately 

plays an important role in the overall geomorphological presentation of the area. The 

Quaternary deposits in the area are characterised by river sediments of various composition  

(Syrbe et al., 2014). These loose sediments line the rivers and valleys of the Zwickau area.  

 
Figure 4.2 Geological Units of the study area, by age 
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 Figure 4.3 Earthquake occurrence in the State of Saxony 

(http://www.naturgefahren.sachsen.de/erdbeben-erdrutsch.htm) 
  

 

Tectonically, the area is heavily faulted, the most notable feature being the Gera-Jáchymov 

fault zone, trending from SE- NW. Significant earthquake swarm events have occurred in the 

region due to the tectonic interplay along the western extent of the Erzgebirge Mountains and 

to a lesser extent induced by previous mining activities (Korn, Funke, & Wendt, 2008). (See  

Figure 4.3) 

Evidence of past localised block tilting can be seen in the asymmetrical pattern along river 

sources.  

The drainage basins of the Zwickauer Mulde (ZM) and the Weiße Elster crosscut the foreland 

basin in a N-S direction (Figure 4.4). The ZM and it’s tributaries contribute most to the 

geomorphology of the study area in comparison to the Pleiße River, a tributary of the Weiße 

Elster, which plays only a minor role to the west of Zwickau. The ZM valley widens 

significantly as it leaves the higher elevations of the Erzgebirge mountains and enters the 

foreland landscape of the Erzgebirge basin. Upriver it is orientated along the Gera-Jáchymov 

fault zone however upon reaching the foreland basin it re-orientates to the north. The overall 

drainage network creates a varied pattern of incised river valleys and steep valley slopes in the 

southern mountainous region, which upstream concentrates the flow into the ZM valley and its 
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floodplain. This rapid runoff from higher elevations fosters conditions which attribute to the 

intense flooding events that have been experienced in the region.   

 
Figure 4.4 Drainage basins and network by Strahler order 

 

4.4 Soil 

Three main soil type zones are present in the area. The rolling landscape of the north consists 

predominantly of silty brown earth Loess of peri-glacial origin, that are derived from mostly 

sandstone, conglomerates clay or shale, which are interposed with clays, brown pseudo-Gleyes 

and minor brown Podzols (Figure 4.5) (LfULG, 2011). In flat areas alongside and between 

rivers, waterlogged pseudo-Gleyes and alluvial clays/silts have developed (LfULG, 2018b).  

Soils in urban settlements are for the most part classified under the title of anthropogenic origin. 

These include Hortisoil, mixed fill construction material and various dumps of Regosol/Pseudo 

Gleye mixed with waste associated with coal and ore mining activities. The southern zone 

represents soils with a high proportion of acidic to intermediate magmatites and 

metamorphites. These zones represent the transition in the underlying geology, from the 

sedimentary rocks of the Erzgebirge foreland into the granite and metamorphic rocks of the 

Erzgebirge mountains. In the incised valleys of the south, Vega Gleyes, silts and sands have 
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developed over fluvial gravels. Podzols and peat soils are more common on flat terrain of the 

higher elevations in the south.   

 
Figure 4.5 Soil map of the area (LfULG, 1875-1900). 

4.5 Landslide occurrence 

In comparison to other areas of Saxony, the study area is not very susceptible to landslides (see 

Figure 4.6). Landslides in this area can be classified as small failure shallow failures according 

to Varne’s classification in Chapter Two (Varnes, 1978). Interaction and modification of the 

landscape by humans and reoccurring flood events can be identified as the main cause of 

landslides. From a geological perspective, it can be assumed that destabilisation of vulnerable 

slopes due to earthquakes may also occur however, there is no evidence of this in the area at 

present.    

Though all the landslides have not been recorded, during the fieldwork many locations were 

identified as potentially susceptible. In most instances, these are marked along deeply incised 

river valleys, steep slopes, along floodplains or human interaction. All but two locations were 

recorded as small-scale shallow translational landslides. The remaining two locations are 

classified as Rockfalls according to Varne’s classification. The Rockfalls recorded occur at 

locations which still exhibit conditions similar to shallow landslides, so for the purpose of this 

study, they were included for modelling. 
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It was noted that many steep valleys have been previously vegetated with dense forestry as part 

of good land management practices to prevent soil erosion, water funneling during heavy rain 

events and landslides. In many steep sections, evidence of preventative engineering measures 

were visible. These good practices may be the reason for low landslide occurrence in the area, 

but that is not to say that in the future under changing climatic and land use scenarios these 

measures will be sufficient to stop potential failures.  

 

 
Figure 4.6 Landslide occurrence in the State of Saxony 

 (Source: http://www.naturgefahren.sachsen.de/erdbeben-erdrutsch.htm). 
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5. Methodology 

5.1 Data Sources 

For this study, all data was projected into ETRS_UTM 32N with a D_ETRS_1989 datum. All 

sources are provided originally in German (see  

Table 5.1). The following sources were all pre-processed in preparation for modelling, 

however, on further evaluation land-use was not included in the model. 

 

5.1.1 DEM 

The Digital Elevation Model “Digitales Geländemodell DGM10 – Gitterweite 10 m“ which 

was used to derive the majority of the parameters for this study, was supplied by the German 

Federal Agency for Cartography and Geodesy (GeoBasis-De, BKG), in line with the ATKIS 

project (Authoritative Topographic Cartographic Information System) (AdV, 2015b).  The 

DGM10 version being used dates from 2017 and has a locational resolution of 10m and height 

resolution of 0.01m. The accuracy of the DEM is terrain type dependent and varies from 0.5-

2m for both location and height. The production involved using height data taken directly by 

the Land Survey Administration using various methods including, laser scanning, 

photogrammetry, and contour line digitisation. The digital terrain model is provided in the 

ETRS89_UTM position reference system and the DHHN2016 height reference system (AdV, 

2015a).  

 

5.1.2 Geological Map 

A 1:25,000 scale Geological map “Geologische Karte des Freistaates Sachsen GK25" was 

employed for this study, supplied by the Saxon State Office for Environment, Agriculture and 

Geology (LfULG). Detailed descriptions of the rock types and lithological groups and ages 

were provided with the map. The study area is based on four sheets digitised from this map, 

5240 Zwickau (2008), 5241 Zwickau East (2008), 5340 Planitz – Ebersbrunn(1884), 5341 

Kirchberg-Wildenfels (1900), which range from 50°36’ to 50°48’N and 12°20’ to 12°40’E.  
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5.1.3 Soil Map 

A 1:50,000 map “Bodenkarte des Freistaates Sachsen BK50” was the source for soil data. This 

was also provided by the Saxon State Office for Environment, Agriculture, and Geology 

(LfULG). Detailed descriptions of the soil zones, type and substrate are provided. The map is 

based on evaluations from existing databases, incorporating current data collected especially 

for the project. The soil map for Saxony is still being updated since extensive mapping finished 

in 2011. A free online digital version of the soil map exists since 2012 (LfULG, 2018a). All 

other map derived data for this study is on a 1:25,000 scale, with the soil map being the 

exception at 1: 50,000, however, the detail is of a high quality for the study. 

5.1.4 Land-cover map 

Land cover data was derived from the 2016 “Digitales Landschaftsmodell Basis-DLM (AAA)“  

Landscape model was supplied by the German BKG. The datasets used are from the ATKIS 

Basis-DLM of the German Federal state. The model is a digital, object-structured vector dataset 

that is updated continuously (AdV, 2016). Land cover was given in percentage of vegetation, 

with 100% corresponding to forested areas and 0% to urban areas.  

 

 

Classification Sub-
Classification 

GIS Data 
Type Scale Source 

Inventory Landslide Point  Saxony wide LfULG 
Surface Model DEM Grid 10m AdV 

Map 
Geological  Polygon 1:25,000 LfULG 
Land-use Grid 1:25,000 AdV 

Soil Grid 1:50,000 LfULG 
 

Table 5.1 Source data and information 

 

5.1.5 Landslide Inventory and Field Work 

It can be said that past and present landslide locations are key in the prediction and prevention 

of future events (Dou et al., 2015). Logically from this, the compilation of a landslide inventory 

is the first step in undertaking Landslide Susceptibility (LSS) Modelling. The current inventory 

was obtained from the Saxon State Office for Environment, Agriculture, and Geology. Only 
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four event points exist within the extent of the study area. Out of these two were not positioned 

incorrectly in regards to the original landslide location. One was situated directly on train tracks 

and the other was placed adjacent to the failure area. Not much information is supplied about 

the landslides from the original inventory. Such few data points are insufficient for modelling 

purposes. Hence fieldwork was undertaken, the purpose of which was to collect more data 

points for the modelling process and validate results from a previous lower resolution model. 

Twenty-nine locations in total were recorded during the course of the field work, data and 

photographs for each location were collected for each data point. Overall from the fieldwork 

and previous inventory thirty-three points in total were available for modelling.   

5.2 Software 

The data extracted from the DEM and various source data was digitised/extracted and pre-

processed using ArcGIS 10.2. The Landslide susceptibility modelling was carried out using an 

Artificial Neural Network prediction software developed by Beak Consultants Gmbh. Other 

packages such as SAGA 5.0 and MatLab R2018a, were used during the background review to 

assess various package methodologies for deriving surface parameters from DEM’s.  

5.2.1 ArcGIS 10.2  

Is an ESRI software, marketed as a complete Geographic Information System (GIS) with strong 

mapping and analytics capabilities (Esri, 2013). ArcGIS is composed of toolboxes grouped by 

function type, including Spatial Analyst, 3D Analyst, Data Management tools. External 

toolbox packages developed for ArcGIS are also available, of these CalHypso, Vector 

Topographic Roughness (VRM), Basin Asymmetry, and TopoToolbox were reviewed as part 

of the study.  

5.2.2 Advangeo© Prediction Software.  

Advangeo© offers software solutions from data capture to prediction developed by Beak 

Consultants Gmbh. The package includes an Artificial Neural Network (ANN) which can be 

used for the prediction of spatial events and phenomena such as geo-hazard susceptibility 

modelling. It is fully integrated within the ArcGIS platform and as such GIS layers can be 

accessed directly from ArcGIS. The ANN is a Multi-layered Perceptron (MLP) and with a 

Back Propagation learning algorithm.  
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5.3 Pre-processing of the source data 

Data sources in their original state required pre-processing to make them GIS and modelling 

compatible for the purposes of the research. Some tools require prior processing to ready the 

surface for parameter calculation.  

The geological data was first digitised from the original map sheets into polygon format within 

ArcGIS. These sheets were then mosaicked together to join the separate layers and 

subsequently re-projected. The sediment, hard rock and Geological lineaments (fault lines) 

maps were supplied separately. Since all of the landslides recorded were shallow in nature, the 

decision was made to join the sediment and hard rock maps into one layer to represent more 

accurately the geology of the shallow subsurface.  

The geological map units were then divided into different classes according to rock type (GK), 

whether the rock is liable to faulting (KL) and by the structure of the rock (TF). The rock types 

were classed as hard rock, loose sediments or anthropogenic. The loose sediments were then 

further sub-dived into fine, mixed or coarse grain (see  

Table 5.2). The classifications for each category were based on a geological assessment of 

individual properties for each rock type in regards to strength, porosity, grain size and tendency 

to deform. Only the susceptible (2) categories from KL and TF parameters were used. 

Around the fault lines from the geological lineaments map, a linearly graduated buffer of 80 m 

was created. These buffered polygons represent the extent of influence of the fault zone. For 

this study, it was decided that 80m was a sufficient representation for the fault zones in the 

study area for the LSS model. 

GK - Rock Class KL - Fault 
Susceptibility 

TF - Plane susceptibility                                   
(Cleavage, jointing, foliation) 

Class Description Class Description Class Description 
1 Hard Rock 2 Susceptible  2 Susceptible  
2 Loose Rock - fine grain 0 unknown 0 unknown 
3 Loose Rock - mixed grain 1 not susceptible 1 not susceptible 
4 Loose Rock - coarse grain       
5 Anthropogenic       
6 Loose to hard rock - fine grain       

7 Loose to hard rock - mixed 
grain 

      

8 Loose to hard rock - coarse 
grain 

      

 

Table 5.2 Geological Data classes 
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The land-use and soil maps provided by the relevant German authorities were already in raster 

format and as such, minimal processing was required. The datasets were mosaicked and re-

projected. The resultant soil raster was broken down into soil types applicable to the study ( 

Table 5.3). Not all soil types correspond to the training points and hence were not relevant to 

the modelling process. 

Class Soil Type 
1 Anthropogenic  
2 Loose material - Mixed 
3 Alluvial soils 
4 Gleye: wetland soils 
5 Moore & Peat Soils 
9 Water-logged soil 

10 Brown peri glacial earth 
12 Brown - mixed rock 
14 Fluvial hummus soil 

 

Table 5.3 Final list of soil types used in the modelling process 

 

The nationwide Geo-basis DEM from the Adv was supplied in raster tiles which were 

mosaicked and re-projected. All GIS parameters were initially calculated from a DEM larger 

than the study area and clipped to the study boundary polygon during the ArcGIS to 

Advangeo© import phase. The calculation of the various parameters from the DEM utilized 

kernels of varying size, so by using a larger DEM surface continuity of the data around the 

study boundary could be maintained.   

5.4 Data Creation and tool development  

The 10m resolution DEM acts as the base for all extracted parameters used in the LS modelling 

process.  After careful review of the literature, parameters were selected for development and 

assessment based on suitability for the study purpose and scale. These parameters traditionally 

come from predominantly tectonic and soil/hydrology backgrounds.  

All extraction and processing of the data was done in ArcGIS using Model Builder and various 

ArcGIS compatible external scripts and toolboxes. ArcPy was used in conjunction with model 

builder to construct custom toolboxes for extracting parametric data. A combination of 

different methodologies from previous literature were used in the creation of these custom 

toolboxes. Various neighbourhood sizes were tested and final sizes were selected based on the 
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suitability and resolution of each parameter. Upon generation of the parameter data, the data 

output was checked for any outliers and/or holes in the data and to ascertain whether the 

parameters were generated successfully.  

5.4.1 Data from available tools 

The GIS layers for slope, aspect, curvature, drainage density, and flow accumulation were 

created using functions already available as part of the Spatial Analyst toolbox in ArcGIS. 

These functions automatically extract the data from the DEM surface values. All these 

parameter surfaces were calculated on a cell-by-cell basis, as fitted through that cell and its 

eight surrounding neighbours.  

The slope raster can be easily generated from the DEM using spatial analyst. It is the first 

deviation of the DEM raster. The values for the slope raster can be set to degrees or radians, 

and for the purpose of this study, degrees were used which gives the inclination angle of the 

slope in degrees.  Values range from 0-90°, 0° being flat and 90° vertical.  

In ArcGIS, aspect is calculated by the direction of maximum rate of change in value from each 

cell to its neighbours (Esri, 2001). Aspect raster values range between 0-360 degrees, 0° is true 

North and 180° South and so on. For this study raster values from 0-360° were reclassified into 

five divisions based on the orientation, 0.0001- 45 and 315-360 for North, 45-135 for East, 135 

– 225 for South, and 225 – 315 for West. Flat areas are represented with the values -1 to - 

0.0001, referring to a lack of aspect.  

The curvature function produces rasters for the overall curvature, plan and profile curvature. 

The plan and profile rasters were then further subdivided into positive and negative curvature, 

resulting in four curvature layers overall. The curvature is the second derivative of the DEM 

raster. A 0 value indicates a flat surface and this needs to be addressed in some calculations as 

it can cause issues in “raster calculator” from ArcGIS, this also applies to zero slope raster 

values.  

 Flow accumulation is calculated in ArcGIS using the D8 algorithm, which calculates the 

outflow number for each cell based on the surrounding 3x3 matrix (Esri, 2013). The resulting 

raster represents the accumulated flow to each cell, this is determined by the accumulated 

weight for all cells in the neighbourhood that run downslope into the cell. Zero flow locations 

are characterised as topographic highs and can be used to identify ridges. For this study, the 

flow accumulation raster was created as part of the drainage extraction process (Figure 5.1).  
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Drainage extraction can be done using inbuilt functions in the Spatial Analyst toolbox. First, 

any pits in the DEM are filled to maintain flow-lines. The flow direction is then calculated for 

each cell, followed by the flow accumulation. Depending on the size and processing capability 

of the system used the flow accumulation can take some time to calculate. Flow accumulation 

values are spread over a very large range and not all of these values are relevant to the main 

drainage pattern. Hence, the values were logarithmically scaled to better represent the data.  To 

separate the drainage network itself from all surface flow, the raster calculator is used to assign 

values less than 5000 to zero so the areas of concentrated flow can be identified. From this, the 

raster stream segments of the created network are assigned order numbers according to the 

Strahler methodology. In ArcGIS 10.2 this is the standard methodology used for stream 

ordering. The stream to feature function is subsequently used to convert the raster drainage 

network to polylines. Another step that was undertaken for the knickpoint generation but not 

shown in Figure 5.1, was the conversion of the stream network to a 3D network, this was done 

using the 3D Analyst toolbox.  

 
Figure 5.1 Drainage Extraction workflow in model builder 

 

Drainage Density (DD) was calculated using the line density function from the spatial analyst 

toolbox in ArcGIS. The drainage network discussed previously is used as the function input. 

Line density calculates the density of a line features for each output raster cell. The calculation 

is based on the length of each linear segment within a circle of chosen radius around a pixel. 

The length is multiplied by the population field and the resulting figures summed, before being 

divided by the area of the circle.  The measurement is given in units of length per unit area and 

sq km was set as the area unit. The drainage feature layer generated from the DEM is used as 

input. A circle radius of 100m and 500m was used to generate the drainage density for this 

study.  
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5.4.2 Data from developed tools 

After an extensive review of the pre-existing literature, the following parameters were 

extracted based on formulas and methodologies described in the literature. Rectangular and 

circular neighbourhoods were both tested and rectangular neighbourhoods were chosen and 

used for all raster calculation. 

 

5.4.2.1 Stream Power Index (SPI) 

In GIS terminology, SPI is a function of the erosive power of runoff acting on each cell and is 

defined by Moore et al. (1991) as: 

!"# = 	&'()*(,) 

 

As is the upslope contributing area or flow accumulation and β is the slope in degrees. When 

both As and β increase, so too does the amount of water supplied from the upslope contributing 

area and the velocity of the water, this results in an increase in SPI and the risk of slope erosion. 

The formula was translated into model builder to create the final raster used in the modelling 

process (Figure 5.2).  

 
Figure 5.2 SPI workflow in model builder 

The basic formula requires some manipulation to work in model builder. The slope in degrees 

cannot be used in raster calculator and must first be converted to radians. Various 

methodologies were tested but did not produce satisfactory results. After some trial and error, 

the methodology chosen was developed by Danielson (2013) as it produces a full and complete 

raster for interpretation. The final formula used in model builder requires the slope to be in 

percentage rise format. A variable of 0.001 was added to each raster to avoid zero calculation 

discrepancies. The flow accumulation was multiplied by the cell resolution and the natural log 

was used to stretch the values.  
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5.4.2.2 Topographic Wetness Index (TWI) 

Topographic wetness index examines the relationship between slope and flow accumulation 

and as such is regarded as a compound parameter, as is SPI. TWI as defined by Beven and 

Kirkby (1979) as: 

./# = 	 ln &' tan ,  

 

Where As is the cumulative upslope area draining through a cell (flow Accumulation) and β is 

the slope angle at the point. TWI values in high accumulation areas will be greater.  

A model was constructed in model builder to calculate TWI (Figure 5.3), using slope and flow 

accumulation as input. The slope was first converted from degrees to radians, as the raster 

calculator function does not accept rasters in degree format. The tan of the slope was then 

calculated using the raster calculator, a conditional equation was used to calculate values 

greater than zero only, as to avoid any discrepancies. The final equation was constructed in 

raster calculator to create the TWI raster.  For both SPI and TWI, they are classified as indexes 

and hence do not have any measurement value and are rather described as high, medium and 

low values. 

 
Figure 5.3 TWI workflow in model builder. 

 

5.4.2.3 Roughness 

As discussed in Chapter three, many methodologies exist for measuring roughness. For this 

study tools for both Riley’s Terrain Ruggedness Index (TRI) and the more recent Vector 

Ruggedness Measure (VRM) were developed.  

Terrain Roughness Index (TRI): calculates the sum change in elevation between a grid cell and 

its neighborhood, following the method developed by Riley et al. (1999). It was developed by 

Riley et al. (1999) to quantify the elevation difference between adjacent cells of a DEM. The 

equation for the calculation is: 
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.4# = 	 5)6789 : −	 5<*789 : 

 

A model builder toolbox was created to calculate the parameter surface in ArcGIS based on 

the formula (Figure 5.4). It calculates the difference in elevation value from the center cell and 

its neighbors, which is dependent on the kernel size selected. The elevation differences are then 

squared to create positive averaged values before taking the square root of the average.  

The created model calculates the TRI by first using the focal statistics function to create the 

maximum and minimum rasters. Following this, the raster calculator was used to square each 

raster and then get the difference of the two rasters using a subtraction. The result of this was 

squared using raster calculator and then the absolute values were calculated to avoid any 

discrepancies in the resultant raster. Finally, a mean focal statistics function using a 3x3 

neighborhood was run to smooth out any outliers from the final resultant raster. Inputs for the 

model include the DEM and neighborhood sizes. Three output TRI rasters were created using 

different neighborhood kernel sizes, a 3x3, 5x5 and 9x9.  

 
Figure 5.4 TRI workflow in model builder 

 

Vector ruggedness measure (VRM): The raster for VRM was created using an available Arcpy 

script12 developed by Sappington et al. (2007) for use in ArcGIS as part of their habitat study. 

VRM was first proposed by Hobson (1972) before being adapted by Sappington et al. (2007), 

who notes that it appears to decouple slope dependency from the ruggedness calculation better 

than other popular ruggedness indexes such as TRI. The calculation combines the analyses of 

both slope and aspect into a single measure. “Vector analysis is used to calculate the dispersion 

of vectors normal (orthogonal) to grid calls within the specified neighbourhood” (Sappington 

et al., 2007). The script calculated the VRM by first creating x,y and z rasters and calculating 

the sum of these for the selected neighbourhood size (rectangular) (Figure 5.5). It then 

calculates the resultant vector raster before finally creating the final VRM raster. 

                                                
 
12 https://www.arcgis.com/home/item.html?id=9e4210b3ee7b413bbb1f98fb9c5b22d4 
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The resulting values vary from 0 (no variation in the terrain) to 1 (full terrain variation). 

Sappington et al. (2007) states that typical values for natural terrains tend to fall between 0 and 

0.4. Three resultant rasters were created using the aforementioned script in ArcGIS for using 

15x15, 9x9 and 5x5 cell neighbourhoods.  

 
Figure 5.5 VRM workflow in model builder 

 

5.4.2.4 Dissection Index (DI) 

As calculated by Nir (1957) and described in chapter three, DI is the ratio between relative and 

absolute relief of a particular area. Values generally range from 0-1, however, Farhan, Anbar, 

Enaba, and Al-Shaikh (2015) noted that in some cases, these values can be exceeded.  

 

7# = =>?)(<@>	=>?<>A )BCD?E(>	=>?<>A 

 

A toolbox was created in model builder to calculate the index raster (Figure 5.6). The inputs 

for the model are the 10m DEM and the desired neighbourhood size. This involved using the 

focal statistic function in ArcGIS to first calculate the maximum and then the minimum rasters 

using a user designated neighbourhood, and deriving the relative relief from their difference. 

The minimum raster value was extracted from the DEM and used to calculate the absolute 

relief. The DI index was then calculated using raster calculator, as the ratio of relative and 

absolute relief. Any values larger than 1 are considered discrepancies and are set to null to 

create the final raster. Rasters were generated using 5x5, 9x9 and 15x15 cell neighbourhoods.  
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Figure 5.6 DI workflow in model builder 

 

5.4.2.5 Hypsometric Integral (HI) 

As discussed in chapter 3, Hypsometric Integral is an adaption of the Hypsometric curve which 

compares the incision of the surface by the relief. It is also known as elevation/relief ratio and 

Hypsometric Index. A model was built in ArcGIS to calculate the HI (Figure 5.7). Inputs for 

the model are the DEM and the neighbourhood size required. The minimum, mean and 

maximum rasters are calculated and from these, the maximum, minimum difference and the 

mean/minimum difference is calculated. The HI is then derived from the ratio of the two 

according to Strahler (1957) who found that it is inversely correlated with the steepness of a 

slope, the DD, the channel gradient and the total relief. It is expressed as a percentage and 

indication of the erosion and tectonic process of a basin. It is defined as:  

 

F# = 8?>@GHIJ −	8?>@GKJ 8?>@GIL − 8?>@GKJ	 

 

A 9x9 kernel was implemented on the HI using focal statistics (mean), to smooth out outliers 

in the raster. HI rasters were created using 25x25, 15x15, 9x9 cell neighbourhoods.  

 
Figure 5.7 HI workflow in model builder 
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5.4.2.6 Knickpoints 

The most common methodology for the calculation of knickpoints is by analysing the change 

in the run and rise variations along drainage networks, to look for anomalies in the stream 

profiles. This can be done manually through by inspecting longitudinal river profiles, however, 

this can be time-consuming. For this study, an automated knickpoint extraction workflow was 

developed by the adaption of a python script created by the Universidade Federal do Paraná in 

Brazil13 (Lopes Queiroz et al., 2015). This script implements the RDE calculation proposed by 

Etchebehere et al. (2004); (Lopes Queiroz et al., 2015) and is calculated based on the 

relationship between RDEs (stretch index) and RDEt (total index).  

 

478C = 	 ∆F ∆N . N 

 

The change in elevation (ΔH) and change in length (ΔL) refer to the difference in height and 

length between the extremities of a particular segment being examined. L indicates the distance 

between the lower point of the segment and the source of the river (Figure 5.8). 

 

478( = 	 ∆F ∆N . ln N  

 

The total RDE (RDEt) calculation is the similar to RDEs except it refers to the total length of 

a river and accounts for the slope (∆F ∆N) between the source and mouth points of the river 

and the natural logarithm of its entire length (Lopes Queiroz et al., 2015). 

When the RDEs/RDEt rato is greater than two, the segment is considered to be anomalous. A 

value between two and ten is designated as a 2nd order anomaly and values greater than ten as a 

1st order. The code first calculates the RDEt for the whole river and then calculates the RDEs 

for each segment. When a segment drop value (from the previous) exceeds the elevation 

equidistance entered by the user, the code then calculates the relationship between the RDEs 

and RDEt and assigns 1st order or 2nd order designation based on the resultant value.  

 

                                                
 
13 https://github.com/silverlq/KnickpointFinder/blob/master/README.md 
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Figure 5.8 Visual representation of the RDE calculation (from Lopes Queiroz et al. (2015)) 

The code above was adapted for use in the study. The code was broken down and modularised 

in model builder to make it easier for the user to save various outputs from the process (Figure 

5.9). Some elements of the pre-calculation of flow direction and flow accumulation were 

removed as this slows down the process considerably as is not required. Part of the code merges 

river segments based on their “to” and “from” nodes, these segments are then merged and 

interpolated to 3D using the DEM as input. There is no function in ArcGIS for merging rivers 

in this way. By modularising this part of the code, the user can run multiple models faster, as 

this step is only required once, further models with different user input can run the last script 

of the workflow to calculate the RDE relationships.  

Three values for elevation equidistance were given, 20m, 50m, and 100m producing a set of 

point data representing the knickpoints. These points were then interpolated into a surface using 

the point density (hotspot) function in ArcGIS. To produce a smoother result, a large search 

area radius and lower resolution pixel format were chosen.  

 

 
Figure 5.9 RDE workflow in model builder 

 

5.4.3 Collection and processing of Inventory data 

The basis of any good study is on the input data that it uses. This is especially true for LS 

inventories. They provide a window into the past and so that the conditions which lead to the 

failure can be analysed. As stated in section 5.1.5 of this chapter, the result of the fieldwork 
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conducted produced thirty-three points in total, in the end only thirty-one of these points were 

used as one of the original inventory points was incorrectly located and another point collected 

during the fieldwork was deemed as not applicable due to it's close proximity to another point. 

During the fieldwork, careful attention was given to the locational position of each point. Areas 

where failures have occurred tend to no longer exhibit the conditions which once led to it in 

the first place. The points from this study were placed where possible as close to the scarp on 

the uphill part of the slide. Parameter maps were used as a guide when searching for potential 

locations during the field work. Every location was recorded using GPS and later imported to 

ArcGIS (Appendix 2). 

 
Figure 5.10 Landslide Inventory locations 

 

The final points were randomly divided on a roughly 80/20 split into training and validation 

sets respectively (Figure 5.10). This equated to twenty-four validation points and seven training 

points, which is a relatively small inventory, however, as discussed in chapter two, ANN has 

been proven to work well with limited but good quality datasets. The validation and training 

point layers were converted to pixels in two binary rasters using the project extent, each 

inventory points received the value one. It is worth noting that even though polygon extents 

can be used for the LS extent, due to the high resolution of the data and small scale of the 

landslide, it was deemed more accurate to represent each LS by one pixel. Further processing 
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of the training raster was then required. The ANN model needs both positive (LS present: 1) 

and negative (LS absent: 0) cells to train the network. A 50% random raster was created and 

combined with the training raster points, this reduced the processing load on the system, as the 

no data cells are ignored.  

5.5 ANN set up and modelling 

Advangeo© software from Beak Consultants Gmbh was used to model the parameters outlined 

in the previous section. The software is fully integrated with ArcGIS and the interface presents 

similar to the ArcGIS user interface (Figure 5.11), hence it reduces the complexity of 

transferring and viewing the data. Despite this, pre-processing of the produced rasters was 

necessary. Firstly, a file data structure was created to hold the rasters once imported. A base 

raster and polygon extent are required for the processing of the data in the software. All further 

imported data is clipped to the extent polygon and snapped to the base raster to maintain a 

consistent grid system. A total of forty-six data layers were created from pre-existing and 

created functions in ArcGIS and subsequently imported into Advangeo© for modelling 

(Appendix 1). All layers were converted to either continuous or binary rasters in Advangeo© 

using bi-linear interpolation. The software can only process these two formats of data.  

Each category for the soil, geology, and aspect rasters had to be converted to separate binary 

layers. For example, soil type two, present (1) or not present (0). Parameters such as slope, 

curvature, SPI and TWI etc are continuous in nature.  

 

 
Figure 5.11 Advangeo interface and file structure 
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Once all data was imported and processed in Advangeo© into the file system, the modelling 

phase could begin. The model used is an MLP with a BP algorithm and a sigmoid activation 

function. The MLP contains three layers, an input, hidden and output layer (Figure 5.12). The 

hidden layer contained double the number of input nodes (neurons). The output layer contains 

one neuron which classifies the result between 0 and 1. One being most susceptible and 0 being 

the least susceptible. 

 
Figure 5.12 ANN workflow and setup 

For each model, a set of parameters and the training data layer were chosen. Due to processing 

limitations of the system, the number of parameters could not exceed twenty-one. The model 

settings were kept constant for all produced models. 

For the training phase, the epoch number was set to 100, with the initial min and max weights 

for the BP algorithm at -0.1 and 1 respectively. The error function used was tanh and a learning 

rate of 0.7 was assigned. On completion of the training phase, the derived weights and error 

curves were evaluated (this will be discussed in more detail under the Validation section). 

Many parameters combinations were run and assessed, changing the number of hidden layers, 

the learning rate, using 100% of inventory points instead of an 80/20%, and using various 

combinations of parameter rasters. Once an acceptable final model was achieved the training 

weights were applied to the whole study area to create the final susceptibility raster.  

Due to the limitation on the number of input nodes (21), a preliminary assessment was carried 

out to reduce the number of possible parameter combinations included for modelling. 

Parameter data for each training point raster cell was extracted and the values compared 
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(Appendix 3). Using a combination of graph and mapped visual aids an early assessment of 

each parameter was made. This was especially applicable for parameters calculated with 

different kernel sizes. Parameters were eventually selected based on the distribution and 

frequency of each dataset.   

 In the end, five prediction models were selected. To negate the effect of the local minimum 

versus global minimum issue outlined in chapter two, each of the five models were run multiple 

times. These rasters were then averaged to harmonise the resultant data. 

To series of maps and graphs were created to validate and display the output from both the 

models and the parameters rasters generated. Difference rasters were calculated to compare the 

resultant model predictions and comparison maps to highlight the differences between kernel 

sizes for TRI, VRM, DI, DD, and HI.  

5.6 Validation 

Upon completion of the modelling, a variety of measures were used to assess the quality of the 

produced models. Validation of ANN can be complex due to the black box nature of the system, 

however, on a basic level, certain benchmarks must be achieved for the model to be considered 

accurate. 

Once a model training phase is completed, the root mean square error (RMSE) should fall 

below 0.01 for the model to be considered (Figure 5.13). The classification of the training data 

and connection weights must also be analysed. All training pixels are input with a value of 1, 

after system training, these values are recalculated based on the weights derived by the BP. 

The ideal output is that all of these ones remain ones. The quality of the calculated weights can 

be seen in the assigned values. A more realistic requirement to be met is that the new pixel 

values fall within the values 0.9-1 (Figure 5.14). This means the model weight correlation from 

the BP was strong and adheres strongly to the training value of 1 assigned. The same applies 

to zero values, which are expected to fall between 0 and 0.1. 

 
Figure 5.13 Sample error curve 
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Figure 5.14 Sample histograms showing the recalculated training data (right) and the training area (left). 

 

The final assessment on the result of the training phase is to scrutinise the resultant parameter 

model weights. The weights produced should increase steadily from 0.1 upwards with no 

abnormally high weight values. When a connection weight value is becoming too polarised, 

the system assigns a random -15,000 value, which indicates to the user that the training phase 

was not successful at correctly assigning the weights.  

Once the weights from the training phase are applied over the whole raster and a model is 

produced the results can be assessed using other methods. First, each of the raster models were 

reclassified by intervals of 0.1 from 0.6-1. The pixel counts for each threshold were compared 

for each model as these show the distribution and amounts of the values assigned. Ideally, the 

pixels should be evenly distributed to indicate a more precise classification. 

Finally, the receiver operator curve (ROC) was plotted and the area under the curve (AUC) 

was calculated for each model result. This was done using the ROCR package14 in R_studio15. 

ROC is a plot of the true positive against the false positive rates. The more inclined the curve 

is to the upper left corner the better the model result is meant to be. The same applies to AUC, 

the greater the value the better the result.  

 

."4 = ." (." + QR) 

Q"4 = 	Q" (Q" + .R) 

 

Maps and graphs were also used for visual assessment of both the parameter and prediction 

data produced. Difference, comparison, and normal maps were created to better display the 

complexities of the data.  

 

                                                
 
14 https://cran.r-project.org/web/packages/ROCR/ROCR.pdf 
15 https://www.rstudio.com/ 
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6. Results & Discussion 

A total of seven new parameters were developed in ArcGIS as part of this study. These data 

sets were then tested in an ANN and the resulting models evaluated using various techniques. 

All models were trained using an 80/20% split of the data, resulting in 24 training points and 7 

validation points. From this five LSS prediction models were created for further evaluation. 

The results of the body of work will be presented in the following chapter.  

Beak Consultants Gmbh previously modelled LS susceptibility for the whole of Germany with 

a 20m resolution. The parameters used for this model are the foundation for the modelling 

approach on which this research was built. Soil data, fault-line and drainage density are newly 

included data sets for this research, however, they were not used as part of the original model 

from Beak. The soil and fault datasets were pre-processed from the source soil & geological 

maps but were not developed in ArcGIS as with the other parameters. Drainage density was 

derived from the DEM using an existing ArcGIS function and was not developed.  

6.1 Parameters & Landslide Occurrence  

The parameters can be dived into three sets as seen in Figure 6.1:  

1 – Standard parameters previously used by Beak Consultants Gmbh to create a nationwide 

German susceptibility model, from source maps and ArcGIS functions.  

2 - New parameters developed to be tested in an ANN.   

3 - Soil datasets were also included in the new model for analysis, however, this data was not 

used as part of the original model from Beak. Soil, fault-lines, and DD will be included here 

for discussion. 

 
Figure 6.1 List of parameters modelled 
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6.1.1 Standard Parameters 

The standard parameters are datasets previously used by Beak Consultants Gmbh to create a 

nationwide German susceptibility model. These include slope, curvature, flow accumulation, 

and three geological layers (TF, KL, GK1). All percentage distributions graphs for the 

inventory points can be viewed in Appendix 4 for the standard parameters.  

Elevation of the study area ranges from 236m in the North up to 606m in the SE. The lowest 

elevations exist in the Zwickauer Mulde (ZM) lower valley and floodplains. 84% of landslides 

from the inventory occurred between 266-350m.   

The flow accumulation raster was created during the drainage extraction process and is a 

continuous raster (Figure 6.2). High accumulation values exist in areas of concentrated flow 

such as rivers and streams, with the highest values present in the Zwickauer Mulde river. 

Ridges and flat areas can be observed as areas of low flow accumulation, as there is no flow at 

these points. Geomorphological and geological features can clearly be seen in the distribution 

of flow accumulation. The Kirschberg Granite body in the south of the study, is demarcated by 

irregular ridge patterns. In the NE section of the map, east of the ZM very distinctive flow 

patterns exist in the form of numerous small valleys. The majority of landslides occur in the 

lower flow accumulation range (90% <1.6). This is understandable because steeper slope areas 

are not associated with extreme levels of flow accumulation. Higher accumulation is linked to 

river and streams directly and the majority of inventory points were collected close to these 

areas but not close enough to yield extreme values. However, there are some outliers. The value 

range for flow accumulation is high, but most pixels fall into lower value categories making 

the data difficult to visualise, hence log10 was applied to distribute the range better.  

The curvature is a very important parameter in LS susceptibility. Four rasters were created that 

divide the overall curvature into plan positive and negative, and profile positive and negative. 

Landscape form can be easily distinguished by observing patterns of curvature. The curvature 

map in Figure 6.2, displays the distribution of the general curvature values throughout the study 

area, positive values refer to convex slopes and negative to concave slopes. It can clearly be 

seen that distinctive valley prone areas in the NE display higher concentrations of positive 

curvatures. In general, positive convex slope shape tends to occur on upper slopes in contrast 

to the concave slope shape seen as negative values on the map, these occur at slope bases near 

to the valley floor. Intermediate values refer to flatter slopes or terrain with little curvature. 

Once again features such as the granite body in the south can be seen quite clearly in the 

curvature patterns. For plan curvatures, landslide occurrence is focused mainly in the lower 
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value ranges. The locations are relatively evenly distributed between negative (55%) and 

positive (45%). Of the 55% negative values, 35% occur between -1 and 0. Of the 45% positive 

values 27% occur from 0-1. This shows that the landslide locations for this area, are not 

characterised by extremes in curvature but more gentle plan curvatures, meaning the 

convergence/divergence nature of plan curvature is not prominent. In contrast occurrences of 

landslides for profile curvature are skewed towards more positive values amounting to 73%. 

Of this 73%, 55% occur between 0 and 3 or in other words, the lower half of the positive value 

range. This means that while that more landslides occur on upwardly concave slopes.  

Slope and aspect maps display the steepness and orientation of a slope. Eight orientations (N, 

NE, E, SE, S, SW, W, NW) were defined in the aspect map in, from this the nature of the 

geomorphology can be seen (Figure 6.3). The slope values for the study area range from 0 to 

61°, higher slope values occur in the east, with the highest values occurring along the eastern 

edge of the Zwickauer Mulde floodplain near Zwickau and in the SE higher elevation areas 

where the drainage has incised the landscape. 70% of the landslides were recorded on slopes 

between 20-40°, with the highest cluster being from 30-40° at 36%. The distribution of LS in 

regards to aspect is more evenly spread, no landslides occurred on east-facing slopes, whereas 

the highest concentration was on SW facing slopes (25%).  

Geologically, 61% of landslides were recorded in the hard rock category (GK1). TK & KL 

distributions were less conclusive. Out of the 3 categories present for each of these parameters 

only 36% (TK) and 27% (KL) of the landslides, occurred in what would be considered 

conditions more susceptible to failures, namely category 2. For KL this is the fault susceptible 

lithological units and for TF this is the lithological units with a prevalence to separation planes 

such as jointing, bedding, foliation etc.  

 

 
Figure 6.2 General Curvature & Flow Accumulation maps 
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Figure 6.3 Slope & aspect maps 

6.1.2 New Parameters 

A total of seven new parameters were created to be tested in the ANN alongside the previously 

used standard parameters. As mentioned in the previous section soil and fault results will be 

grouped in this section with the newly developed parameters as they were not included in the 

original Beak Gmbh model. All landslide occurrence data graphs for each parameter can be 

found in Appendix 5. 

The distance to faults raster produced buffered areas around each fault by 80m. An intense 

network, of strongly SE-NW and SE-NW trending faults, with clusters in the SW and SE, can 

be seen in  

Figure 6.4. A strong negative correlation exists in relation to the fault lines. 52% of the 

landslides occurred in areas with zero correlation to fault zones. However, this may not 

negatively affect the overall result as the other 48% occur within 80m of a fault line, so this 

may provide some information for the training process. 
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Figure 6.4 Faultline map with 80m buffers. 

Soil types in the study area are well distributed in the study area and have been discussed in 

chapter 4. Most landslides were observed in loose material areas (type 2 at 24%). The nearest 

values closest to this were type 10 (Brown peri-glacial earth) and type 1 (anthropogenic 

material) at 15% each. Overall the soil per landslide occurrence is well distributed across six 

of the nine categories on the graph. 

As is to be expected, the highest intensity of drainage density (DD) values can be seen along 

the major rivers and streams. Two radius sizes were chosen for the DD raster calculation. The 

density radiuses of 100m and 500m yield comparatively different results. Comparing them is 

not directly possible due to the dependency of the calculation on the radius supplied, however, 

they can be described in terms of the data distribution. Landslide occurrence for the 100m 

radius raster groups mainly around mid-range values and 12% of the dataset has zero value, 

which is not ideal. On the other hand, the 500m radius tends to cluster around lower value 

ranges but does not have any points which have zero value (Figure 6.5).  
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Figure 6.5 Drainage Density map, 500 & 100m. 

 

Stream power index (SPI) values were standardised form 0-1, as index parameter values tends 

to vary between different study areas. Lowest SPI values can be seen along ridge lines and 

valley floors. In contrast to the low values on the valley floors, active stream, and river areas 

display the highest SPI values. Higher values can also be seen more frequently in the south, 

especially in the SE, this is more than likely due to the difference in elevation and incision 

process between the north and south. Landslide occurrence in relation to SPI, is distributed in 

the mid- to high ranges, which can be linked to steep slope areas with higher accumulation 

values (Fig?). 

The topographic wetness index or compound topographic index (TWI/CTI) values were also 

standardised between 0-1. The results of the TWI calculation display value distribution as 

expected. Areas prone to saturation are represented by higher values whereas, higher relief 

areas generally exhibit lower values. This is very obvious along the ZM floodplain, which is 

relatively flat and receives a lot of water into the area. An area of high TWI in the north-west 

of the ZM valley can be identified as a water dammed location where mining waste is stored 

(fig?). 85% of the landslide occurrence in relation to TWI occurs in mid-range values in a 

standard distribution (Figure 6.6).  
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Figure 6.6 SPI & TWI (CTI) maps 

 

Riley’s terrain ruggedness measure (TRI), was calculated with three kernel sizes (3,5,9) and 

these were compared to evaluate which kernel size would be more suitable for modelling. The 

data is standardised from 0-1. The highest values present on steep slope sections and overall it 

can be seen that the eastern section of the map and in particular the south-east, generally has 

higher values than the rest of the study area. Flat valley areas like the ZM valley exhibit the 

lowest values. Comparing the different kernel sizes, it is obvious that the distribution of values 

varies greatly depending on which size is chosen. Upon examination of the TRI landslide data, 

it is obvious that each kernel has strong correlations between data peaks and occurrence. 

However, they do vary in the value ranges and a shift in the occurrence peaks per kernel. The 

3x3 cell kernel groups LS occurrence in the lower range of values, this is easily observed in 

Figure 6.7 as the 3x3 kernel map shows a very low distribution of higher values. The percentage 

of higher values in the 3x3 cell kernel is much lower than the 5x5 and 9x9. 

The vector ruggedness measure (VRM) follows similar patterns to the TRI as they are both 

roughness measures, however notably differences are present. In comparison with TRI, the 

VRM values are less focused on slope sections due to the differences in the calculations, and 

VRM can be seen to characterise the slope in more detail (Figure 6.7). Three kernel sizes were 

also used for the VRM calculation (5x5, 9x9, 15x9). After observing the distributions of TRI 

data, it was decided to try a larger 15x15 kernel for VRM and leave out the 3x3 kernel. Also, 

in this case, the 5x5 kernel value distribution was too limited and in the case of the 15x15 

kernel, too generalised. LS occurrence percentage distributions are more varied for VRM. This 

can be attributed to the methodology, which places less bias on steeper slopes, resulting in a 

less homogeneous distribution of values. For both the 15x15 and the 9x9 kernels, roughly 30-

35% of LS's occur at mid-range values. 
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Figure 6.7 VRM & TRI kernel comparison maps 

Three kernel sizes were also used for the dissection index (DI) generation, 15x15, 9x9 and 5x5. 

Notable differences in value distribution can be seen between the three sizes. The 5x5 cell 

calculation resolution is too small to pick up the dissection effectively and can be discounted. 

Both the 9x9 and 15x15 raster show more evenly distributed data and pick up the dissection 

more successfully (Figure 6.8). High DI values correspond to steeper slopes adjacent to incised 

valleys on the map. Landslide occurrence is comparable for both 9x9 and 15x15 kernels. 

However, no clear correlation exists between LS occurrence and the DI value as the distribution 

is over the full range of values.  
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For the Hypsometric Index (HI), three larger kernel sizes were trialled (25x25, 15x15 & 9x9). 

All three rasters show good distributions of values across the landscape, however, the 9x9 

distribution tends to be too limited to the lower range values and doesn't pick up certain 

features. The 15x15 raster, over generalises the landscape features, whereas the 15x15 seems 

to represent the data best. High HI values are present on topographic highs; lower values are 

represented by lower flatter areas. The NE section of the study area displays slighter higher 

values overall; this may have something to do with the interplay of many small dissecting 

valleys. Landslide occurrence per HI value shows a normal distribution around the mid-value 

range. For the 9x9, 15x15 & 25x25 kernels, 97%, 94% & 97% respectively, occur between 

values of 0.3 and 0.6. In this case, deciding on the optimum kernel is best done by visual 

inspection of the map (Figure 6.8). 

 

 
Figure 6.8 DI & HI kernel comparison maps 
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Three knickpoint data sets were produced using the user input of 20, 50 and 100 meters. On 

examination of the data produced, the 50m threshold was selected as being optimal for this 

area (Figure 6.9). Using 20m as the threshold resulted in an oversensitive result that placed 

knickpoints at every small variation in the river course. On the other hand, 100m proved not to 

be sensitive enough. Cross sections plots were examined to confirm or not the presence of the 

knickpoints in the stream section, and satellite images were carefully examined to rule out 

whether the points were due to man-made interference with the river path. The main reasons 

for the knickpoint occurrence were found to be faults, lithological boundaries and man-made 

alterations to the natural river path. In more tectonically active areas, the aim of such a 

parameter would be to detect majorly fault lines which due to active movement would exhibit 

more defined knickpoints. LS's per knickpoint density shows slightly higher occurrences in the 

lower value ranges, 64% between 0 and 0.2. 

 

 
Figure 6.9 Knickpoint density map, with fault superimposed 
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6.2 Parameter selection 

Due to the limitation on the number of input nodes in the ANN model, parameter outputs were 

analysed based on visual distribution from maps and the landslide occurrence inventory data. 

From this, a final list of parameters could be decided upon. 

Initially, the land-cover was to be included as part of the modelling process, however, through 

observations in the field, it was noted that the majority of LS's occur in highly vegetated areas 

(90%). Hence, the model would see this as being a strong predictor of LS occurrence and would 

place a high weight amount. Open un-vegetated slopes are more commonly thought of having 

a higher likelihood of failure because they lack the deep roots to stabilise the ground. From 

this, it was decided to exclude land-cover from the final parameters. 

In the last section, a review of the parameters results showed variability in the many layers 

produced. From this, certain kernel sizes and parameters were chosen and tested. For example, 

for TRI the 9x9 kernel was selected due to better generalisation and distribution of the values. 

For DI both 15x15 and 9x9 kernels were assessed to be of potential for modelling. Only soil 

types with the highest landslide occurrence were chosen. For the lithological types only hard 

rock was used (GK1), this was to keep consistency with the original Beak Consultants model 

but also due to the high occurrence of landslides in this category.  

6.3 Models produced using an Artificial Neural Network.  

As part of the modelling procedure, numerous parameter combinations were tested to obtain 

the best prediction result and ascertain what parameters were most effective for landslide 

susceptibility. Any parameters consistently scoring low weights during the training phase were 

excluded and the models re-run. Once a stable acceptable model was produced, it was re-run 

multiple times to obtain an average result for the weights and accuracies produced.  

All the difference maps used in this section for model comparison have been categorised into 

1 (>>), 0.5 (>), 0, -0.5 (<) and -1 (<<), with 1 (>>) and -1 (<<) being the greatest differences 

between the maps. All model maps are located in the appendix from 6 to 12.  

Parameter weights vary between each model re-run and also between the different models due 

to the use of different parameter combinations, hence, the most effective method of comparing 

their importance is through ranking and not by the values themselves.  
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6.3.1 Basic Model (Basic) 

The basic model tested as part of this body of work included the same nine parameter rasters 

used in the original Beak Consultants Gmbh model; slope, flow accumulation, GK1, TK, FL, 

and the four curvature rasters. The data resolution used to produce the basic model is higher 

than the original, using a 10m and a 1:25,000 geological which includes fault-lines. The 

original model was also applied to buffered areas around the main road networks, however, for 

this study a prediction for the complete area was generated. The training data sets are also very 

different, the original model was trained based on a German-wide inventory of hundreds of 

inventory points, and for this particular area, only the four original inventory points were 

available. In ways, this is both an advantage and a disadvantage. The more training points that 

are available for the model to learn from means there is less bias, however, for this study, there 

is an advantage in having area-specific data but the disadvantage of not having many data 

points overall for the system to learn from. 

Overall system configuration for the MLP is 9-19-1 neurons, which equates to 9 input 

parameters, 19 hidden neurons, one output neuron, leading to 190 total connections. The new 

basic model produced an accuracy of 0.0080 during the training phase, averaged from multiple 

model runs. The result classification of 1’s and 0’s during the training phase was reasonably 

good, with on average 86% of the training points being classified between 0.9 and 1 an example 

is shown in Figure 6.10. 

 

 
Figure 6.10 Sample result histogram from the basic model 

 

On visual inspection of the new higher resolution model, some differences are apparent. The 

two models were compared using a difference map (Appendix 1), as the prediction resolution 

is so detailed it is hard to observe the difference fully by comparing only the two resultant 

maps. 
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The results of this comparison are variable, on one hand, the prediction locations are more 

precise and less generalised as in the original model, however, the new model does tend to over 

predict in many areas, this can be seen by pixel outliers throughout the map. In a very noticeable 

area of high LS prediction from the new model can be seen, this area was not previously 

modelled. Running a low pass filter over the basic model reduces the number of outliers seen 

in the prediction and brings the prediction more in line with the Beak model. The purpose of 

this basic comparison was done as a foundation on which to assess the basic model and assess 

in general the effects of higher resolution data. 

Parameter rankings for the basic model can be seen in Table 6.1. From this, it is obvious that 

all four curvature layers play the biggest role in the prediction followed by slope, with the 

lowest contributor being the hard rock (GK1) classification.  

 

Rank Parameter 
1 Curvature - Profile Neg 

2 
Curvature  - Profile 
Pos 

3 Curvature - Plan Neg 
4 Curvature - Plan Pos 
5 Slope 
6 Flow Acc 
7 TF 
8 KL 
9 GK1 

 
Table 6.1 Basic model parameter weights rank 

6.3.2 Basic model with soil (BS) 

This model was run specifically to test the effect of the soil data alone with the basic model 

before the other parameters are added for testing. Soil type layers 1, 2, 10 and 12 were added 

to the basic parameters for training the system, as these are the layers in which the highest 

percentages of landslides occurred according to the inventory data. The system configuration 

was 13-27-1 with a total of 378 connections. The average accuracy achieved was 0.006, an 

improvement on the previous model. Classification of the training data after training resulted 

in 91% of the points on average being classified between 0.9 and 1, also an improvement on 

the previous model.  

In Table 2.1 curvature also ranks highly out of the 13 parameters. Soil types 1 and 2 scored 

highest out of the four layers included. Overall the inclusion of soil data in the model has seen 
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a separation of the original parameters. KL, for example, has been pushed lower in the rank 

and GK1 still remains lowest on the weight ranking.   

Visual evaluation of the BS against the basic models shows an overall reduction in outlier 

predictions in certain areas.  

 Soil types 1 and 2 scored highest out of the four layers included. Overall the inclusion of soil 

data in the model has seen a separation of the original parameters. KL, for example, has been 

pushed lower in the rank and GK1 still remains lowest on the weight ranking.   

Visual evaluation of the BS against the basic models shows an overall reduction in outlier 

predictions in certain areas.  

 

Rank Parameter 
1 Curvature - Profile Neg 
2 Slope 
3 Curvature - Profile Pos 
4 Curvature - Plan Pos 
5 TF  
6 Flow Acc 
7 Curvature - Plan Neg 
8 Soil Type 1 
9 Soil Type 2 

10 KL 
11 Soil type 12 
12 Soil type 10 
13 GK1 

 
Table 6.2 BS parameter weight ranking 

 

6.3.3 Basic model with new parameters included (FP) 

The third model produced included the selected new parameters with the basic parameters to 

compare their effect on the model without the soil. The advantage of this is that more nodes 

are available for the inclusion of more developed parameters. By running the models in this 

way, possible dependent relationships can be identified, i.e. some parameters react differently 

when included together rather than separately. 

The system configuration was 19-31-1 with a total of 780 connections. The average accuracy 

achieved was 0.0046, a notable improvement from the last model. Classification of the training 

data after training resulted in 93% of the points on average being classified between 0.9 and 1.  
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Visually comparing the basic, BS and FP maps, clear changes in the accuracy of the prediction 

can be seen, high prediction areas show progressively stronger, more detailed classifications 

between the thresholds and further reductions in outliers can be seen. The prediction for this 

model now looks much cleaner.  

The parameter rankings for this model show that the weight ranking given to the VRM 9x9 

parameter now sits higher than plan positive curvature and flow accumulation (Figure 6.9). It 

is important to remember that these rankings are based on averages of the same model run 

multiple times to negate the effects of the local/global minimum problem. Drainage density for 

both radius sizes ranked lowest on the weight influence for the model.  

 

Rank Parameter 

1 Curvature - Profile Neg 
2 Curvature - Plan Neg 
3 Curvature - Profile Pos 
4 Slope 
5 VRM 9  
6 Curvature - Plan Pos 

7 Flow Acc 
8 TWI 
9 TF 

10 DI 9 
11 HI 15 
12 Faults 
13 SPI 
14 TRI 9 
15 GK1 
16 KL 
17 Knick 
18 DD 500 
19 DD 100 

 
Table 6.3 FP model parameter weight rankings 

 

6.3.4 Basic model with parameters and soil included (FPS) 

For this model, both the new parameters and the soil were tested together in the model with the 

basic set of parameters. The system configuration was 21-47-1 with a total of 1034 connections. 

The average accuracy achieved was 0.0036, once again a further improvement from the last 
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model. Classification of the training data after training resulted in 96% of the points on average 

being classified between 0.9 and 1.  

Comparing the FPS prediction map with the previous prediction map (FP) shows that not only 

do the parameters have an effect but combined they further improve the prediction and reduce 

outliers.  The highest-ranking parameters from this model in order are VRM 9x9, DI 9x9, and 

SPI. Soil type 12 ranks much higher than the other soil types and sits alongside VRM 9x9 as 

high in the rankings (Table 6.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 6.4 Average FPS(left) and FVRM (right) model parameter rankings 

 

6.3.5 Basic model with optimised parameters and soil (FVRM) 

This model and the last are for the most part the same, however, for this model the slected  

parameters were modelled (Table 6.4). To determine if the accuracy could be further improved, 

by optimising the parameters used. The system configuration was 21-47-1 with a total of 1034 

Rank Parameter 

1 Curvature - Plan Neg 

2 
Curvature - Profile 
Neg 

3 Curvature - Profile Pos 
4 Slope 
5 Curvature Plan Pos 
6 Flow Acc 
7 VRM 9 
8 Soil 12 
9 TF 
10 Faults 
11 DI 9 
12 SPI 
13 TWI 
14 Soil 2 
15 KL 
16 Knick 
17 HI 15 
18 Soil 1 
19 TRI 9 
20 GK1 
21 DD 500 

Rank Parameter 
1 Curvature - Profile Pos 
2 Curvature - Profile neg 
3 Curvature - Plan Neg 
4 Slope 
5 Curvature - Plan Pos 
6 VRM 9 
7 Flow Acc 
8 Soil 2 
9 KL 
10 Soil 12 
11 Faults 
12 TF 
13 DI 9 
14 HI 15 
15 SPI 



 67 

connections. The average accuracy achieved was 0.0034, once again a further improvement 

from the last model. Classification of the training data after training resulted in 97% of the 

points on average being classified between 0.9 and 1. One of the models achieved 100% 

classification of the training pixels between 0.9-1  

6.3.6 Summary  

Overall an increase in the accuracy of the training sets for each model can be seen both in the 

calculated figure and visually. Interpreting the maps directly can be difficult due to the low 

susceptibility of landslides in the area and the high resolution of the prediction. The results are 

best reviewed and analysed in GIS, however, the use of difference maps can also aid in visual 

interpretation of the whole area. The FPS and FVRM models show the most promising results, 

as a notable reduction in outliers can be seen. 

Due to the variance in the connection weights for each model, it can be hard to assess which 

parameters play the biggest role and show the most promise for further studies. However, by 

assessing their rank in each model patterns begin to emerge. Curvature, slope, flow 

accumulation ranks the highest across all models. The most surprising result was the low 

ranking of the hard rock lithological class (GK1) across all models because 61% of LS from 

the inventory occurred in this class. The reason for this is not easily explained. The interaction 

between different combinations of parameters in artificial neural networks is complex and not 

fully understood. Including new parameters has shown a marked increase in the model 

prediction, of these the most influential and highest ranking without a doubt is the VRM 9x9. 

Presented here are three averaged models in which the VRM 9x9 was included and for which 

the weight ranking was 5, 7, & 7 respectively. Numerous models not presented here were 

trialled and analysed as part of the research, and throughout these, the VRM 9x9 was 

consistently high ranking. On the other hand, DD was repeatedly assigned low weights in the 

training phase and shows the least promise for future modelling. Distance to fault lines also 

showed some correlation in the model along with soil type 2 (Mixed loose material). Loose 

material is more inclined towards small failures as observed during fieldwork. 

6.4 Model Performance & Validation 

The results of the training phase and the validation sample were assessed for each model. No 

one method of evaluation or validation of the models is sufficient, however, a combination of 

techniques can build a bigger overall picture of the models and how they differ from each other. 
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As detailed previously the training phase results can be evaluated based on training pixel 

classification, and the RMSE error output, in all models a steady improvement in these factors 

are seen (Table 6.5). The differences between the final FPS and FVRM models are minimal 

but still an improvement. The error decreased by 0.0002 and the pixel classification increased 

by 1%.    

 
Table 6.5 Model summary table of training phase results 

 

So far only the quality of the training phase has been assessed. To determine the accuracy of 

the final susceptibility prediction two methods were used. Firstly, by comparing the pixel 

distribution per threshold for the prediction rasters. Each raster was classified into thresholds 

and the pixel count for each plotted (). Only thresholds from 0.6 to 1 were compared as 0.6 was 

determined as the threshold above which a slope is liable to failure and also represents a natural 

break in the prediction data. All models have 99%+ of the pixel prediction classification from 

0-0.6. This is a true representation of real life, as the study area is not overly susceptible to 

landslides, so a prediction of 99% as not LS susceptible is a good representation of reality. In 

the higher ranges, the pixel percentage values diverge, this is particularly seen above the 0.9 

threshold (Figure 6.11). The basic and BS models classify 0.39% and 0.29% of the pixels into 

this category, and this is reflected visually in the maps, many higher pixel values are scattered 

as outliers over the model. In contrast, the percentage of pixel classification for the FPS and 

FVRM models has dropped to 0.12% and 0.14%, and the overall distribution of the prediction 

pixels are more evenly spread.  

 

Model Code Description Input # Avg Error
Training pixel 
classification 

0.9-1

Basic

High resolution 10m model using basic set of 
parameter inputs that were previously run by 
Beak Consultants Gmbh at a lower resolution of 
20m .

6 0.00804566 86%

BS The basic including soil data. 13 0.00637834 91%

FP Basic model plus tested parameters 19 0.00459187 93%

FPS Basic model plus tested parameters and soil 21 0.00359103 96%

FVRM Basic model plus optimised/selcted parameters 15 0.00337845 97%
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Threshold Basic BS FP FPS FVRM 

0 - 0.6 99.08 99.25 99.52 99.60 99.55 
0.6 - 0.7 0.17 0.14 0.12 0.09 0.10 
0.7 - 0.8 0.17 0.15 0.10 0.09 0.10 
0.8 - 0.9 0.19 0.18 0.10 0.10 0.12 
0.9 - 1.0 0.39 0.29 0.16 0.12 0.14 

 
Figure 6.11 Comparison of prediction pixel classifications per model (% of total pixels) 

 

In order to further verify the results of the LSS prediction model the ROC curves for each 

model were plotted and the AUC value calculated with the ROCR package in R. The resulting 

plots and values are presented in Figure 6.12. The ROC and AUC are derived from the 

comparison of the validation set (20% - a binary classifier) with the prediction raster results. 

The ROC plots the true positives rates against false positives rates. It provides information 

about the degree of reliability of the model, while a larger area under the curve meaning 

higher accuracy achieved, and, therefore, the AUC values provide a quantitative 

evaluation. The five distribution plots for the ROC are so similar that the plots overlap each 

other and the result AUC values confirm this as the results vary by only 0.001. The validation 

set of seven points is not optimum for plotting of ROC, this results in very contrast in values 

between the true positive rate and the false positive rate.  
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Figure 6.12 ROC plot and AUC values for all prediction models 

 

To develop on the ROC plot and try to show more clearly and break down the differences 

between the models, the TP's against each threshold were plotted for the basic, BS and FP 

models, to show differences between the validation points and the prediction models. Once 

again it can be seen that in Figure 6.13 including the new parameters in the modelling process 

increases the prediction. At the 0.5 threshold, 100% of the FP predictions classified as positive 

matches with the validation points. The BS model also showed a higher classification rate of 

71% in comparison to the basic model which only classified 57%. 

 
Figure 6.13 True positive rate plotted per threshold 
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7. Conclusion and Recommendations 

7.1 Conclusion  

In this study, it was found that new parameters developed in a GIS and modelled in an ANN 

can improve landslide susceptibility predictions. The ANN was trained from a created spatial 

database of the study area which encompasses the city of Zwickau in SW Saxony, Germany. 

A landslide inventory was generated from in the field recordings of landslide locations, 

combined with four points available from the Saxony state LS inventory. For modelling and 

validation purposes, the dataset was divided in an 80/20% split, 80% used to train the ANN 

and 20% kept for validation. 

After an extensive review of the literature and available toolboxes, seven parameters in total 

were implemented using model builder and adapted scripts. After performance assessment 

using weight rankings, instead of the variable weight values, it was determined that the 

parameter vector ruggedness measure (VRM) calculated using a 9x9 cell kernel the parameter 

with most influences on the model. 

From the training phase, the error was reduced by 0.00466721 between the basic and FVRM 

models and the classification of training pixels improved by 11%. The final susceptibility 

predictions were assessed using ROC and AUC but were found to not be sensitive enough to 

determine the accuracy for such a small data set (seven validation cells from 5,309,739). A 

more effective assessment was made by making a direct comparison of true positives per 

threshold. From this, the model differences were more clearly seen. Introducing soil and new 

parameters into different models (BS & FP) increased the prediction accuracy in comparison 

to the basic model.  

7.2 Recommendations 

The landslide occurrence in the study area is relatively low, there is potential for newly 

developed parameters such as VRM to be tested in other areas, particularly in high slope areas. 

VRM is not strongly polarised by slope, so this could potentially lead to more accurate 

assessments in higher elevation terrain. Kernel cells sizes would need to be re-examined in this 

case.   

Due to the low performance of the drainage density, a possible suggestion for further work may 

be to swap this parameter for “distance to drainage”, to see if this offers improvements. 
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Attempts were made to model and assess knickpoint distributions using kriging and stream 

profile analysis, this work could be elaborated on in future research.  

Running a low pass filter over the final prediction raster reduced the number of outliers while 

still maintaining good prediction resolution. Due to the variabilities of high-resolution DEMs, 

more outliers inevitably occur, a low pass filter to smooth the result could be a solution. 

 

7.3 Objectives & research questions 

7.3.1 Objectives  

Review and selection of suitable morphological parameters, with a specific focus on tectonic 

morphological parameters, for the use in Landslide susceptibility modelling. 

Ø After extensive research, nine parameters from both tectonic, soil and classic 

morphological studies were evaluated and developed, however, due to further 

evaluation of suitability in relation to the study area, two parameters, namely Valley 

Asymmetry and Isobase were deemed to be non-applicable due to scale and model 

dependencies. Hence, only the seven remaining parameters will be discussed during 

this thesis. 

 
Investigate the relationship between tectonic morphology and landslide prediction and 

occurrence.  

Ø Due to the limited spatial extent of the high-resolution source data for this study, it was 

concluded that the relationship between tectonics and landslides is impossible to detect 

at this scale, deeper geological studies would be needed to confirm any relationship at 

this scale, which is not possible. Interpretations can be made from parameters that 

work on more regional settings however, any data produced from these parameters 

would produce homogenous results that are impossible for the ANN to interpret. 

 
Assessment of the available morphological analysis toolboxes for DEM’s, i.e. TecLines, 

TecDEM, SAGA, Topotoolbox.  

Ø Various toolboxes were reviewed during the research review phase and the core 

methodologies used by these toolboxes were adapted and, in some cases, improved 

upon (i.e. VRM – Vector Ruggedness Measure instead of more basic methodologies).  
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Adaption of techniques and datasets derived from selected toolboxes, to a GIS-based artificial 

neural network (ANN). 

Ø As mentioned in the previous point, methodologies and formulas specifically were 

adapted successfully, through the use of model builder and adapted python scripts in 

ArcGIS. The derived parameter datasets were then pre-processed for use in the ANN.  

 

Collection of training data for the ANN, through site-based fieldwork. 

Ø Fieldwork was undertaken over the whole study area for the acquisition of new 

landslide inventory data needed to train the ANN. Geological and morphological 

observations were recorded as part of the process. A total of twenty-eight locations 

were mapped, which when added to the original inventory brought the total inventory 

to thirty-two points. One of the original four inventory points that were supplied by the 

Sachsen state was then removed for modelling due to inaccurate user input, bringing 

the total number of inventory points to thirty-one. 

 
Determine the effect of the chosen datasets when incorporated into the ANN modelling 

process. 

Ø By comparing the average weighting ranks for each model, it was possible to determine 

the effect of each parameter, in regards to both the basic and newly included 

parameters. VRM proved the be the best performer from the the new parameters.  

 
Asses various model validation methods to determine if the newly introduced parameters 

increase the accuracy of the model results. 

Ø Receiver Operator Curve (ROC), Area under the curve (AUC), TP plots, pixel 

classification comparison and visual interpretations were made to assess the quality of 

the models produced.   

 
Evaluation and selection of the best methods for visualising the results of the study.  

Ø Due to the very precise prediction locations of the results, it is hard to visualize the 

results on paper and to see the changes clearly, however, a range of difference maps 

and comparison graphs have been created to better display the data. 
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7.3.2 Research questions: 

What are the tectonic morphological parameters that can be derived from a DEM? 

Ø Asymmetry, Isobase, Roughness, mountain front sinuosity, Stream Length Index (used 

in knick point calculations), drainage basin shape, Hypsometrical Integral, and 

Dissection Index.  

 

Of these, which are the greatest importance according to previous literature? 

Ø These parameters have not been used in this particular context so one cannot gauge 

the importance of these parameters. However, in the context of LSS, various forms of a 

roughness calculation have been used in the modelling process throughout the 

literature. Hypsometrical Integral has also been included in some studies. The other 

parameters have been used in the context of tectonic interpretation in relation to 

landslides but not using modelling techniques. 

 
Many toolboxes for morphological analysis exist, can their methodology and produced datasets 

be adapted for the purposes of the project, and what is the best approach to take? 

Ø The parameters can be adapted with various levels of difficulty. Many toolboxes use 

similar methodologies but each one tends to focus on specific outcomes in terms of soil 

analysis, tectonic interpretation, landscape classification etc. The best approach was 

to combine the use of adapted scripts with in-built ArcGIS functions in model builder 

to calculate the parameter datasets. 

 
Does functionality already exist in ArcGIS which can be implemented in Advangeo®?  

Ø Some functionality exists in ArcGIS, but not as stand-alone functions, they must be 

combined within model builder or some cases with python scripts to achieve the desired 

outcome. 

 
What methods can be used on the model output for validation and assessment?  

Ø ROC, AUC, TP plots, pixel classifications and distributions, visual validation, 

difference rasters and running different divisions of the training data. The final models 

presented are based on a 80/20% split of the inventory data in 80% training and 20% 

validation, however, 100% of the inventory points were also used as a test and this did 

not show massive variation in the model predictions. 

Which dataset can be said to add the most benefit to the prediction model?  
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Ø The Vector Ruggedness Measure (VRM) has been shown to consistently rank highest 

out of all newly tested parameters.  

 
 

Can an overall improvement in the susceptibility prediction be obtained? 

Ø Yes, the classification of prediction values in higher thresholds becomes much more 

precise when the new parameters are added to the model. Training phase error was 

reduced and the training data classification improved.  
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9. Appendix 

Source Factor GIS Layer Modelled? Layer Type Comments 

Geology Map                                      
1:25,000 

Geology -                                                               
Hard rock and 
sediments 

GK 1 - Hard Rock Y 

Binary 
raster 

All hard rock types  

GK 2 - Sediment  N Unconsolidated loose sediments - fine 
grained 

GK 3 - Sediment  N Unconsolidated loose sediments - mixed 
grained 

GK 4 - Sediment  N Unconsolidated loose sediments - coarse 
grained 

KL - Fault Susceptibility Y Based on hard rock classifications 
TF - Joint, cleavage prone Y Based on hard rock classifications 

Fault Lines 
Crossing buffer N Continuous 

raster 

Zones where geological lineaments cross 

80m buffer Y Area of influence of an individual fault-
line 

Soil Map                                                
1:25,000 Soil 

Type 1 Y 

Binary 
raster 

Anthropogenic : Construction materials 
Type 2 Y Mixed loose & hard rock 
Type 3 N Alluvial soils 
Type 4 N Gleye: wetland soils 
Type 5 N Moore & Peat soils  
Type 9 N Black Earth 
Type 10 Y Water logged soil 
Type 12 Y Brown peri glacial earth 
Type 14 N Fluvial hummus soil 

Landscape Map 1:25,000 Land-cover 

Percentage of  vegetation N 

Continuous 
raster 

Not used in the modelling, the majority 
of the LS from the inventory occur in 90-
100% vegetated areas, this would have 
created too much positive weighting 
towards forested areas in the model.  

Percentage of sealed ground N 

DEM 

Geo-   
morphological 

Curvature  

Profile Positive Y 

Continuous 
raster 

Curvature describes the convex/concave 
shape of the slope and is an important 
landslide parameter.  

Profile Negative Y 
Plan Positive Y 
Plan Negative Y 

Slope Slope Y 
Slope throughout the literature has 
always been considered an important 
parameter in LSS.  

Aspect Aspect 
N,NE,E,SE,S,SW,W,NW.  N Binary 

raster  
No correlation found and excluded from 
the final model.  

Flow Accumulation Flow Accumulation (Log) Y 

Continuous 
raster 

Drainage patterns are important in LS 
modelling  

Elevation Elevation N 

Traditionally elevation is seen as an 
important parameter, however the 
elevation range within the study are is 
relatively low and no correlation was 
made during modelling.  

Roughness 

VRM 5m N The VRM 9x9m kernel was assessed as 
the most stable value range and was 
selected. 

VRM 9m Y 
VRM 25m N 
TRI 9m Y 

The TRI 9x9m kernel was assessed as the 
most stable value range and was selected. TRI 5m N 

TRI 3m N 

Hpysommetric Index 
HI 25m N 

The HI 15m kernel was assessed as the 
most stable value range and was selected.   HI 15m Y 

  HI 5m N 

Hydrological  

Dissection Index 
DI 15m N 

The DI 9m kernel was assessed as the 
most stable value range and was selected. DI 9m Y 

DI 5m N 

Drainage Density DD 500m Y The DD 500m buffer was selected as the 
most stable value range.  DD 100m N 

Stream Power Index SPI Y Closely linked to erosion processes  
Compound 
topographic Index TWI/CTI Y Closely linked to accumulated water 

Stream Length Index 
(RDE) 

Knickpoints 20m N 

50m knickpoint segments were selected 
and the density calculated using 250m 
buffers. The 100m segments were not 
sensitive enough to possible knickpoints 
and 20m segments proved to be too 
sensitive and selected very localised 
knickpoints  

Knickpoints 50m Y 
Knickpoints 100m N 

 
Appendix 1. GIS raster layers used as part of the study. 
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Appendix 2 Field work data per inventory point 

ID X Y Z Source Train/ Val Landform Landuse Comments Failure Class
1 747,347.49 5,622,564.78 278.1743 Field Points Training slope dump Old mining dump in Zwickau above federal highway, small walls of slag for terracing, heap in Bewegu Landslide
2 747,874.29 5,622,973.92 269.098 Field Points Training slope dump old heap in the city area Zwickau, creeping processes prevailing, erosion gullies from time without vegetation Landslide
3 747,414.46 5,622,676.29 285.9836 Inventory Training Slope dump Failure on mining waste dump Landslide
4 752,086.58 5,617,242.72 306.3311 Field Points Training slope forest steep slope under castle, loose debris on slope, evidence of slope creep and bending of trees. Landslide
5 757,145.04 5,616,455.95 317.513 Field Points Validation slope forest beside stream gully, evidence of movement due to high flowing water, fresh debris imovement Landslide
6 756,989.85 5,616,463.43 313.642 Field Points Training slope road Rocky cliff on road just before Langenbach, Phyllite pending, rocks shattered and fall prone Rockfall
7 757,160.32 5,616,453.17 314.6923 Field Points Training valley forest Side valley to the Zwickauer Mulde, intensive erosion by water Landslide
8 756,886.93 5,616,432.99 322.0667 Field Points Validation slope forest In forest near Langenbach, large landslide Landslide
9 747,301.81 5,624,670.77 276.7542 Field Points Training slope forest wooded slope above Zwickauer Mulde in Zwickau Landslide

10 752,303.80 5,617,150.95 291.9533 Field Points Validation slope forest As above, Steilhaunterhalb Castle Rockfall
11 738,519.64 5,624,263.11 292.2506 Field Points Training slope forest Steep slope near Werdau, intensive channeling and mass transportation Landslide
12 738,597.96 5,626,380.03 274.9482 Field Points Training slope forest Steep hillside road in Werdau, entire slope in motion Landslide
13 749,525.44 5,619,377.38 282.2066 Field Points Training slope road Rockfall and debris at base of slope underneath the autobahn bridge, Wilkau-Hasslau, Rock Fall
14 747,268.09 5,624,715.21 265.8589 Field Points Validation slope forest soil and trees have fanned out from over step area, clay rich soil Landslide
15 744,328.49 5,619,908.76 347.1886 Field Points Validation slope forest outcropping rock, change in slope texture, fall to sw, possible movement on slope Landslide
16 738,650.89 5,623,971.09 299.2048 Field Points Validation valley forest massively cut side valley with lots of water Washout
17 756,868.98 5,616,431.53 323.348 Field Points Training slope forest large slide, rock and soil, fan deposited into terraces, steep scarp face with insitu rock. Landslide
18 746,692.02 5,619,971.26 345.7381 Field Points Training slope village Steep slope in the center of Zwickau, no endangerment, but the slope is clear, but it is not shown here Landslide
19 747,624.31 5,623,238.11 266.4738 Field Points Training slope grassland Slope above roadway Landslide
20 747,425.74 5,623,565.77 271.0089 Field Points Validation slope shrubs Steep slope above Mulden-Aue, above slope development Landslide
21 740,165.52 5,619,278.59 364.3956 Field Points Training hill forest Steep slope under Schönfels Castle, Metasediment, many large loose rocks Rockfall
22 739,525.21 5,620,465.01 325.1195 Field Points Training slope forest slope failure on steep slope, rock outcrop upslope, looks like progressive sliding, matches vrm data Landslide
23 744,454.77 5,619,948.12 362.8653 Field Points Training hill grassland long slope, break in vegetation, apex originating from top of slope, Fault Line? Landslide
24 737,814.91 5,626,433.06 300.0803 Inventory Training hill grassland slope on corner of road intersection Landslide
25 742,419.61 5,620,531.56 345.36 Inventory Training slope Quarry Man made cause, over-steepened from quarrying, engineering methods used, house at base of slope Rockfall
26 737,727.64 5,627,060.88 287.3519 Inventory Validation hill Infrastructure train track failure Landslide
27 749,920.57 5,613,787.81 367.9903 Field Points Training slope forest steep slope behind houses, evidence of engineering methods at preserving the slope, some houses abandoned forest
28 749,828.22 5,613,028.29 394.9484 Field Points Training slope forest very steep slope section, forested, man made feature from quarrying Rock fall
29 750,566.06 5,617,991.90 304.911 Field Points Training slope forest exposed rock outcrop slope beside train track, slope around is forested. Rock Fall
30 750,790.17 5,618,799.80 296.068 Field Points Training slope forest At corner of bend in river, steep section down to river, housing estate at top of slope, forested Landslide
31 749,174.13 5,618,156.53 309.5271 Field Points Training slope forest River at base of slope, steep forested slope, flat pastureland at base Landslide
32 747,568.26 5,621,958.85 291.0931 Field Points Training slope forest On steep slope above housing estate, underneath school Landslide
33 758,917.34 5,614,124.42 456.1094 Field Points Training hill grassland Partly vegetated slope above forest. curved Landslide

INFORMATION
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Appendix 3 Parameter data per inventory point 

 

 

 

 

EXTRACTED FROM DEM

Failure Class ID GK KL TF GEOLIN SOIL VEG ID SLOPE FLACC CPLAN CPRO VRM 15m VRM 9m VRM 5m  TRI 9m  TRI 5m  TRI 3m HI 25m HI 15m HI 9m KNICKDEN SPI CTI DD 500m DD 100m DI 15m DI 9m DI 5m
Landslide 1 5 0 0 0.530 1 100 1 27.886 1.445 1.281 1.394 0.047 0.039 0.021 146.858 118.174 85.845 0.312 0.342 0.383 0.080 1.704 4.119 11747.100 17308.801 0.631 0.580 0.386
Landslide 2 4 0 0 0.937 4 100 2 25.867 1.413 -0.145 2.789 0.076 0.043 0.027 141.186 103.646 72.548 0.354 0.328 0.335 0.080 2.608 4.980 9864.510 15461.800 0.733 0.634 0.352
Landslide 3 5 0 0 0.684 1 100 3 35.213 1.547 -0.563 -0.589 0.030 0.020 0.005 153.793 133.043 99.712 0.409 0.498 0.549 0.080 3.197 4.870 13325.900 17580.000 0.582 0.564 0.444
Landslide 4 1 1 2 0.379 12 100 4 41.579 1.619 0.876 1.543 0.055 0.065 0.035 150.193 137.211 110.134 0.303 0.345 0.382 0.398 0.044 3.208 16249.700 37595.602 0.434 0.391 0.340
Landslide 5 1 1 2 0.000 4 100 5 23.659 1.374 0.679 0.694 0.030 0.035 0.030 128.506 106.167 81.635 0.499 0.500 0.502 0.482 2.658 5.554 18227.000 20972.301 0.300 0.245 0.176
Rockfall 6 1 1 2 0.662 10 100 6 26.572 1.424 1.680 0.960 0.029 0.019 0.014 145.673 114.196 85.285 0.406 0.368 0.367 0.566 1.804 4.329 18344.801 41901.500 0.395 0.330 0.212
Landslide 7 4 0 0 0.000 4 100 7 11.068 1.044 -0.609 2.680 0.028 0.033 0.032 117.853 88.477 64.591 0.501 0.511 0.502 0.488 3.570 9.221 18321.500 20312.699 0.293 0.217 0.119
Landslide 8 1 1 2 0.117 2 100 8 34.288 1.535 0.690 -1.240 0.038 0.038 0.024 156.335 125.579 92.603 0.438 0.415 0.426 0.625 1.513 3.652 17764.301 30553.600 0.403 0.355 0.236
Landslide 9 1 2 2 0.000 3 100 9 38.077 1.581 0.080 1.213 0.029 0.028 0.015 139.525 123.741 96.164 0.472 0.501 0.509 0.080 2.461 4.130 11911.200 16890.900 0.612 0.527 0.465
Rockfall 10 3 0 0 0.000 5 21 10 27.677 1.442 -0.755 5.666 0.038 0.035 0.026 158.066 123.418 89.442 0.371 0.319 0.309 0.410 1.630 4.755 17236.100 18780.500 0.658 0.504 0.333
Landslide 11 4 0 0 0.000 2 100 11 22.890 1.360 -2.033 3.356 0.051 0.066 0.066 146.444 111.431 85.411 0.547 0.534 0.492 0.080 1.923 6.196 7508.700 14730.600 0.604 0.427 0.245
Landslide 12 1 2 2 0.000 1 82 12 33.418 1.524 -1.610 2.498 0.023 0.021 0.019 129.617 111.299 88.345 0.408 0.397 0.412 0.159 2.519 4.415 8898.070 15515.100 0.597 0.473 0.363
Rock Fall 13 3 0 0 0.000 10 100 13 16.934 1.229 0.545 4.258 0.055 0.059 0.052 178.200 128.478 79.561 0.325 0.320 0.317 0.000 2.045 5.690 15670.000 26737.000 0.797 0.759 0.406
Landslide 14 3 0 0 0.122 3 100 14 28.151 1.449 0.308 3.028 0.038 0.036 0.023 134.954 116.438 84.037 0.403 0.405 0.400 0.080 1.784 4.204 13053.600 18088.801 0.653 0.599 0.494
Landslide 15 4 0 0 0.591 4 100 15 23.529 1.372 0.666 2.497 0.028 0.031 0.021 143.586 118.661 86.832 0.399 0.363 0.370 0.176 2.079 4.697 7090.830 16173.400 0.233 0.222 0.161
Washout 16 1 2 2 0.000 2 100 16 30.016 1.477 -3.042 1.352 0.026 0.023 0.012 167.104 128.340 94.670 0.483 0.479 0.473 0.080 4.403 6.268 10199.300 15832.700 0.666 0.513 0.321
Landslide 17 1 1 2 0.000 2 100 17 36.706 1.565 -0.781 0.359 0.038 0.035 0.021 161.845 132.752 98.297 0.447 0.450 0.467 0.633 2.122 3.906 17794.100 31218.600 0.409 0.374 0.264
Landslide 18 1 2 1 0.303 10 100 18 29.421 1.469 -0.217 -0.897 0.015 0.009 0.006 170.216 133.460 99.746 0.548 0.551 0.556 0.243 3.087 5.080 4402.380 15113.500 0.419 0.320 0.201
Landslide 19 1 1 2 0.640 3 99 19 23.491 1.371 0.538 3.178 0.026 0.028 0.022 121.032 106.601 77.518 0.409 0.412 0.407 0.000 2.503 5.057 16137.200 27023.699 0.518 0.483 0.409
Landslide 20 3 0 0 0.065 3 100 20 32.283 1.509 -0.140 0.251 0.019 0.024 0.021 104.772 99.338 83.393 0.450 0.492 0.502 0.000 1.961 4.054 16614.801 22612.801 0.378 0.348 0.312
Rockfall 21 1 2 1 0.442 2 100 21 35.516 1.550 -0.575 0.578 0.030 0.015 0.007 171.240 142.743 110.361 0.363 0.393 0.434 0.140 1.492 3.604 13165.600 24126.100 0.327 0.264 0.188
Landslide 22 1 2 1 0.323 2 100 22 36.143 1.558 -0.266 1.273 0.038 0.043 0.021 152.976 130.127 99.947 0.418 0.378 0.369 0.080 2.315 4.079 7385.030 16637.199 0.339 0.318 0.239
Landslide 23 1 2 1 0.000 2 100 23 16.705 1.223 2.018 -0.368 0.010 0.013 0.012 122.061 93.460 72.147 0.469 0.536 0.533 0.159 -0.434 4.133 7536.890 13674.200 0.229 0.136 0.084
Landslide 24 2 0 0 0.000 9 100 24 10.945 0.000 1.346 -1.204 0.011 0.007 0.004 82.382 71.072 54.194 0.557 0.553 0.534 0.159 -3.372 4.982 8293.940 4873.030 0.167 0.128 0.106
Rockfall 25 1 2 1 0.000 2 50 25 42.818 1.632 5.916 0.751 0.036 0.046 0.066 135.418 127.577 108.541 0.375 0.411 0.443 0.104 -1.439 2.997 9239.270 23996.301 0.237 0.200 0.182
Landslide 26 4 0 0 0.000 14 80 26 10.858 1.036 -0.863 -0.230 0.010 0.010 0.010 74.244 64.972 51.033 0.585 0.656 0.625 0.080 -1.940 5.041 1315.640 0.000 0.194 0.129 0.113
forest 27 1 1 1 0.000 10 78 27 38.861 1.590 -0.149 0.185 0.035 0.034 0.027 147.824 136.463 113.644 0.357 0.368 0.408 0.389 1.689 3.548 12109.400 30102.100 0.224 0.192 0.166
Rock fall 28 1 1 1 0.000 1 100 28 49.138 1.691 -0.387 -1.067 0.058 0.065 0.028 198.333 185.634 146.795 0.509 0.526 0.536 0.398 -0.342 3.477 6147.980 0.000 0.290 0.274 0.251
Rock Fall 29 1 1 2 0.000 12 100 29 40.881 1.612 0.014 -0.343 0.038 0.029 0.010 169.822 145.516 110.588 0.498 0.511 0.510 0.147 3.730 5.063 11220.800 17070.000 0.568 0.504 0.396
Landslide 30 1 1 2 0.743 12 100 30 33.852 1.530 1.329 0.965 0.029 0.037 0.032 131.845 120.935 97.775 0.498 0.532 0.542 0.221 4.450 6.069 9226.520 15317.700 0.409 0.351 0.296
Landslide 31 1 1 2 0.000 12 100 31 42.540 1.629 -1.715 5.740 0.039 0.027 0.011 202.526 163.564 118.806 0.409 0.407 0.416 0.000 3.594 4.812 8429.370 17743.000 0.748 0.649 0.455
Landslide 32 1 2 1 0.509 10 50 32 33.563 1.526 -1.091 1.434 0.032 0.031 0.011 145.407 132.144 101.370 0.511 0.486 0.489 0.099 2.497 4.380 2299.450 0.000 0.499 0.455 0.401
Landslide 33 5 0 0 0.468 1 100 33 26.005 1.415 -1.142 -0.041 0.021 0.015 0.009 190.224 147.636 108.353 0.667 0.601 0.547 0.591 3.429 5.639 3924.760 0.000 0.199 0.166 0.106

INFORMATION GIVEN PARAMETERS
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Appendix 4 Landslide occurrence plots per standard parameter from inventory 
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Appendix 5 Landslide occurrence plots per new parameters from inventory 
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Appendix 6 Original Beak model in low resolution compared to basic higher res 
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Appendix 7 Basic prediction model 

 

 
Appendix 8 BS prediction model 
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Appendix 9. FVRM prediction model 

 

 
Appendix 10. FVRM - BS difference map 
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Appendix 11. Close up of E side of study area, basic & FP models.  
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Appendix 12.  Basic, FVRM close up map  
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