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Abstract

Central Asia is highly exposed to natural disasters that annu-
ally lead to substantial deaths and economic losses. Some of them
can be prevented through a better understanding of the geological
and geomorphological processes. Landslides are a common event
in the Pamir and Tien Shan, triggered by climatic conditions,
landscape features, and tectonic activity. To understand which
factors are more relevant to the landslide occurrence and identify
regional areas that should be studied in detailed in future works,
this study proposes to analyse the spatial association between dif-
ferent factors and the known landslides occurrences. We then use
this knowledge in order to model the landslide susceptibility for
the area which encompasses the Tadjik basin, South Western Tien
Shan and Western Pamir. The weight of evidence (WOE) uses
the log-linear form of the Bayesian probability to assign weights
to the predictive factors and relate them to the landslide occur-
rence. The Logistic Regression (LR) is a modification of linear re-
gression that fits a sigmoid curve equation to a dependent binary
variable and a certain number of independent variables. Random
Forest (RF) implements the Bayesian tree combined by the idea
of bagging and random feature selection to grow a forest of many
trees. The receiver operating characteristic (ROC) is used to eval-
uate the performance of the model along with the model error. The
best model is selected for each of the methods, and the differences
among them are discussed. Finally, the results are compared with
previous works from the area.
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Zusammenfassung

Zentralasien ist stark von Naturkatastrophen betroffen, welche
jährlich mit Todesfällen und wirtschaftlichen Verlusten einherge-
hen. Einige dieser Folgen könnten durch ein besseres Verständnis
der geologischen und geomorphologischen Prozesse vermieden wer-
den. Erdrutsche sind häufige Ereignisse im Pamir und Tien Shan,
welche durch klimatische Bedingungen, Landschaftsmerkmale und
tektonische Aktivitäten ausgelöst werden. Um zu verstehen welche
Faktoren für ein Erdrutschereignis relevant sind und um regionalen
Gebiete zu identifizieren, die in zukünftigen Arbeiten detailliert
untersucht werden sollten, schlägt diese Studie vor den räum-
lichen Zusammenhang zwischen verschiedenen Faktoren und den
bekannten Erdrutschereignissen zu analysieren. Wir nutzen dieses
Wissen, um die Erdrutschanfälligkeit für das Gebiet südwestlich
des Tadjik-Becken von Tien Shan und West-Pamir umfassend, zu
modellieren. Die verwendete weight of evidence-Methode (WOE)
ist eine loglineare Form der Bayes’schen Wahrscheinlichkeit, um
den prädiktiven Faktor zu wichten und mit dem Erdrutschereig-
nis in Beziehung zu setzen. Die Logistische Regression (LR) ist
eine Modifikation der linearen Regression, die eine sigmoidale
Kurvenausrichtung an eine abhängige binäre Variable und eine
bestimmte Anzahl unabhängiger Variablen anpasst. Random For-
est (RF) implementiert den Bayes’schen Wahrscheinlichkeitsbaum,
kombiniert mit der Idee des Baggings und der zufälligen Merk-
malsauswahl, um einen Wald mit vielen Wahrscheinlichkeits-
bäumen wachsen zu lassen. Die Receiver operating characteris-
tics (ROC) wird verwendet, um die Leistung des Modells, unter
Berücksichtigung des Modellfehlers, zu bewerten. Für jede der
Methoden wird das beste Modell ausgewählt und die Unterschiede
zwischen ihnen diskutiert. Schließlich werden die Ergebnisse mit
früheren Arbeiten in der Region verglichen.
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Chapter 1

INTRODUCTION

The occurrence of different natural hazard like earthquakes, landslides, extreme temper-
atures and rainfalls worries the communities located in vulnerable areas not only for the
structural vulnerability of the cities but also for the economic vulnerability of the country.
Natural disasters cause many deaths and injuries per year around the world. According
to the EM-DAT (The international disaster Database), just in 2016, 342 disasters triggered
by natural hazards caused a total of 8.733 fatalities and 569.4 million people were affected.
The number of deaths reported for 2016 were the second lowest since 2006, however, the
number of people affected was the highest, resulting in an estimated cost of 154 billion
US Dollars (Guha-Sapir et al. , 2017).

Figure 1.1: Natural disasters impact. Comparison between 2016 and 2006 to 2015 data. Cli-
matological group: Drought, glacial lake outburst, wildfire; Geophysical group: earthquake, mass
movement (dry),volcanic activity; Hydrological group : Flood, landslide, wave action; Meteoro-
logical group: storm,extreme temperature, fog. source: (Guha-Sapir et al. , 2017)
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The most common natural disaster during the period of 2006 to 2016 are related to
hydrological processes that include floods, landslides and wave action with an average
of 50.5% of events and an 2006-2017 annual average of 6 657 deaths (Guha-Sapir et al. ,
2017). While hydrological events occur more frequently, the rate of morality is lower for
the events related to geophysical events like earthquakes, mass movements or volcanic
activity (figure 1.1). Earthquakes are the most common geophysical event, that caused
1315 deaths in 2016.

The spatial distribution of the worldwide natural catastrophes, provides evidence
that for 2016, 46% of the events happened in Asia; followed by Americas, Africa, Europe
and Oceania. The hydrological disasters are the most frequently reported in Asia. Dur-
ing 2016 a total of 12905 people were affected by floods or landslides in Central Asia, of
which 12750 were affected by a single flood in Tajikistan. (Guha-Sapir et al. , 2017). More-
over, landslides are a common mountainous process and Asia represents the dominant
geographical area where those events takes place (Froude & Petley, 2018). The distribu-
tion of landslides occurrence around the world (figure 1.2) and the associated fatalities
emphasize the importance of Central Asia with annual deaths between 100 and 5000 in
the period of 2007 to 2013 (Kirschbaum et al. , 2015).

Figure 1.2: Global map of reported landslide events from 2007-2013 in the GLC source: (Guha-
Sapir et al. , 2017)

On the other hand, earthquakes remain as important natural disasters in Asia (Guha-
Sapir et al. , 2017). The continent is exposed to a high geophysical hazard (figure 1.3) due
to its location in one of the most active tectonic areas of the world. Seismic activity has
been reported in Central Asia since 1887 and 1910 when the city of Almaty in Kazakhstan
was affected two magnitude 7-8 earthquake rupture. Countries like Kyrgyzstan, Tajik-
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istan, Turkmenistan and Uzbekistan report an important number of earthquakes though
time, some of them with magnitudes of seven to eight in the Richter scale (Thurman,
2011a).

Figure 1.3: Peak ground acceleration (m/s2) map with 10% of exceedance in 50 years for North-
ern Eurasia source: (Ulomov, 1999)

Secondary effects of earthquakes are also a relevant factors in Central Asia. Seismic
events can directly trigger or accelerate other natural disasters like landslides, rockslides,
mudflows, soil liquefaction and the rupture of glacial lakes and outburst flood (GLOFs).
The most famous example of this type of interaction between natural hazards is the 1949
Khait earthquake in Tajikistan (Evans et al. , 2009). The Khait area is located near the
southern limit of the Tien Shan Mountain and the northern limit of the Tajik Depression
within the northern edge of the Pamir salient; which marks the active indentation of the
India Plate into Eurasia. An earthquake occurred on July 10 and triggered many loess
flows and rockslides in the area, affecting 7200 people located in more than 20 villages.

The Natural Disaster Risk in Central Asia (Thurman, 2011b) report that a significant
portion of disasters that impacts the area could have been avoided if the vulnerability to
natural hazard is reduced, however, in order to implement plans to decrease the degree
of vulnerability, susceptibility maps should be created.

Creating such susceptibility maps require a deep knowledge of the factors associ-
ated to the type of natural disaster. Landslides can be triggered by a single factor like
an extreme precipitation event or by a combination of factors like earthquake-triggered
landslides, however, they are not spatially constant and change from one area to an-
other. Global parameters like slopes, lithology, soil distribution, precipitation and peak
ground acceleration are used to model global landslide susceptibility (Nadim et al. , 2006)
whereas others parameters like fault presence, distance to streams or aspect could result
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in a more relevant information in a regional or local scale.

In order identify areas which are most at risk in Central Asia, a landslide susceptibility
map is created by the implementation of different statistically-based approaches. During
the study some of the most used parameters are used among to geomorphological indices
with the aim to characterize the landscape, to better understand the surface processes and
their impact on mass movements.

1.1 Problem Statement

The Central Asia region consists of the former Soviet republics of Kazakhstan, Kyrgyzs-
tan, Tajikistan, Turkmenistan and, Uzbekistan. It is an area with varied geographical
domains like the Tien Shan and Pamir mountains as well as the deserts of Kyzyl and
Taklamakan. Moreover, the weather in the region is affected not only by the Indian mon-
soons but also by the westerlies that influence the amount of precipitation inside the
area (Pohl et al. , 2015). On the other hand, the geological setting is dominated by active
tectonics that leads to an important number of earthquakes with different depths and
magnitudes (Käßner et al. , 2016; Negredo et al. , 2007; Liu et al. , 2017; Ischuk et al. , 2013).
Also, a variety of geomorphological environments like glacial process and high moun-
tain erosional processes influence the landscape among calm sedimentary deposition in
flatlands (Fuchs et al. , 2015).

Central Asia has been studied since the USSR time in order to characterize and de-
termine the geological potential of the area in terms of mineral resources, consequently,
detailed geological maps are available in paper-based and Russian language as well as
an important number of publications related to the geodynamic setting of the area and
geophysical analysis (Leith & Simpson, 1986; Burtman & Molnar, 1993). However, this is
not the case for the others factors that are related to landslide triggering.

The variety in conditions of the area, limit the understanding of which factors influ-
ence more in the landslide triggering. The aim of this study is to understand the rela-
tionship between an important number of trigger factors and the landslide occurrence as
well as to determine which of them places a major role in the landslide-triggering in the
area.

1.2 Research Significance

Some studies have been performed in the area at country scale or more regional as a
first attempt to understand the factors that trigger landslides (Gruber & Mergili, 2013;
Saponaro et al. , 2015; Mergili & Schneider, 2011) using different approaches and databases.
Previous studies attempt to understand the surface processes by the implementation of
methodologies like risk indicator using GRASS GIS (Gruber & Mergili, 2013) or landslide
factor analysis (Havenith et al. , 2015b). However, recent techniques based on statistical
approaches are more frequently used and reported good and accurate results.

This study aims to assess the landslide susceptibility on a regional scale by the imple-
mentation of three different statically-based approaches: The Weight of evidence, logistic
regression as one of the most used method, and random forest, a machine learning tech-
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nique. Methodologies never implement for the study area.

Apart from the computation of landslide susceptibility maps based on new and more
accurate techniques, the creation of different thematic information is a contribution to
the knowledge of the area, known for the scarcity of information regarding to landslide
triggering factors. Different geomorphological indices are computed with the aim to rep-
resent better the landscape and compensate the lack of information. Also, some of the
geomorphological indices have never been used in the literature for the landslide sus-
ceptibility mapping. The aim of this work is thus to test their applicability and evaluate
their effectiveness for modelling landslide susceptibility.

The study covers a large area, however, the landslide susceptibility assessment is per-
formed in fine resolution (30m), forcing the implementation of a workflow that allows to
work with big datasets. The developed workflow also rely exclusively on open source
softwares such as Python and R for processing the data and Qgis for handling geograph-
ical informations. One of the aims is to achieve a workflow that can be replicated by
populations in Central Asia, which often face limited software and computational means.

1.3 Research Objectives

The aim of this research is to determine the relationship between the mass movement
and the possible trigger factors.The research objectives are listed below and a brief expla-
nation of the methodology used to achieve them is presented.

• To create a reliable landslide catalogue using remote sensing techniques and pre-
vious catalogues.

To achieve the research objectives, first data integration of previous landslide cat-
alogues is implemented. To complete the missing areas, manual delimitation of
using google earth imagery is done. A field work also allowed to check existing
maps and identify new events.

• To understand the interaction and spacial associations between different factors
and mass movements.

The factors that influence slope stabilities the most are defined based on the re-
sults of the landslide susceptibility models. The approaches are implemented by
the creation of different variables combinations - models-, and a sequential process
is applied in order to find the combination of variables that leads to the best model.

• To determine the relationship between the mass movements and the seismo-
tectonic setting for the study area.

Different geomorphological indexes are computed in order to understand the dif-
ferent landscape features of the area. Some of the indexes reflects the response of
the landscape to the tectonic uplift of the studied region. The relationship between
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each of the variables and the landslide catalogue are explored by the analysis of
spatial associations and landslide densities.

In order to complete the above-mention tasks, the following research questions should
be answered:

• How different are the mass movements (size, frequency) along the area and how
different are they from neighbouring regions?

• How do the frequency and size of mass movements correlate with geologically ac-
tive mapped disturbances and seismicity?

• Are there any areas where mass movements occur but are aseismic or have low
seismic activity?

• How do the mass movements correlate with geology (for example, the occurrence
of evaporites on overlay fronts) and precipitation?

• What are the interactions /relations with the morphological parameters of the area
(relief)?

• Along which tectonic disturbances do mass movements occur frequently?
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Chapter 2

STUDY AREA

This chapter introduces the principal characteristics of the study area. First, the geolog-
ical framework and climate, which tightly control natural hazard such as landslides are
described . The second part of this chapter focusses on landslides. First the basic con-
cepts about landslides are introduces. Then, a brief review of past events and previous
works done in the area is provided. Finally, the landslide catalogue used in this study is
introduced.

The area of study area is located in Central Asia between 66.2100N�to 71.9800N�and
36.5100E�to 39.9800E�. It covers parts of the countries of Tajikistan, Uzbekistan, Afghanistan,
and Kyrgyzstan and has a total surface area of 188 316 km2. Dushanbe is the only cap-
ital city located inside the study area; however, other populated regions like Urgut and
Samarqand in Uzbekistan are included (figure 2.1).

The South Tien Shan and Western Pamir mountain ranges are the most relevant ge-
ographical features along with the Tadjik depression, where the capital city of Tajikistan
is located. The landscape is characterised by a substantial variation in the topography
as well as important altitudinal changes from 258 to 6049 m a.s.l.. The altitude increases
rapidly from west to east ruling the changes in temperature, characteristic of the slopes
and the depth of the valleys.

The Panj is the main river in western. It forms a deep valley which incises the Pamir
Plateau and its different levels of alluvial terraces have been used to understand the evo-
lution of the area concerning geology and geomorphology and the relationship between
climate and tectonics (Fuchs et al. , 2015). Some landslide has dammed the river in the
past creating problems to the communities and the infrastructure (Strom, 2010). The
Vakhsh river flows in the valley between the Pamir and the Tien Shan. It is dammed for
hydroelectric power generation north to the Nurek town, giving the name to the dam
and it is also used for irrigation of local agricultural. The valley of the Vakhsh is also
characterized by the occurrence of landslides that constantly endanger the infrastructure.

The Zarafshon (Zeravshan) is the main river in north.western. The source of the
Zarafshon (Zeravshan) rivers is located near the highest point in the area located at 5621
m. a.s.l in Kyrgyzstan. The river flows in a East-West trend valley characterized by a a
high presence of populated area. Also, a significant number of landslides are reported,
affecting the populated areas located in it.
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Figure 2.1: Map of the location of the study area. Country borders are represented by red lines.
Main populated and urban perimeters are presented in blue dot and gray polygons. Roads are
denoted as white lines. Summits are marked by pink rectangles.

2.1 Geology and Tectonics

The area is located at the northwestern end of the India-Asia collision zone. Conse-
quently, different tectonic units or terranes characterize the area. The northern part con-
sists of a reactivated Paleozoic orogen formed by a successive arc and micro-continental
collision from Devonian to Triassic times. The South Tien Shan mountain (figure 2.2)
consists of Paleozoic basement overlain unconformably by Jurassic to recent sedimen-
tary units. Three Paleozoic sutures can be identified in the South Tien Shan, however,
just two of them are present in the area. The Turkistan Suture is the northern suture in
the area as well as the northern limit of the Turkistan-Alai complex characterized by an
overthrust from the north by the oceanic and arc units of the South Fergana basin (Brook-
field, 2000). The basement of the Turkistan-Alai units is unknown and alternating shales
and quartz-sandstones with Ordovician to Silurian graptolites compose the unit. Then it
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pass up into a dominantly carbonate section of Upper Silurian to Devonian and Lower to
early Middle Carboniferous carbonates (Rogozhin, 1993). The transition to the Zarafshan
unit is marked by a highly deformed and non-continuous ophiolitic belt (The Zirabulak
unit) and coincides roughly with the Zeravshan fault zone (Kurenkov & Aristov, 1995).
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Figure 2.2: Map of the regional geology of the Tien Shan. The sedimentary units are classify by
age, while the igneous rocks are grouped by the type of rock. source: Ratschbacher (2018) personal
communication.

The Zarafshan complex consists of turbidites interbedded with sedimentary bloc melanges
derived from the Turkestan-Alai zone to the north and thin, mature Cambrian to Ordovi-
cian passive margin clastic materials, overlain by thick Silurian turbidite and thick Lower
to Middle Devonian carbonates (Brookfield, 2000).

Huge late Paleozoic batholiths dominate the Gissar unit. They present Carboniferous
(Khasanov, 1975) and Permian (Baratov, 1966) cooling ages and represent marked differ-
ences in morphology, composition and texture. It intrudes thin Ordovician to Devonian
sections that consist of mature deep shelf or slope turbidites passing up into massive
shelf limestones (Tulyaganov in (Brookfield, 2000)) as well as the unconformably over-
lain Carboniferous volcanic rocks (andesite and dacite) and the associated marine vol-
caniclastics and thin limestones. The Carboniferous sequence continues with coarse non-
marine clastic rocks affected by intense folding at the end of the Middle Carboniferous,
accompanied by numerous granitoid intrusions and regional metamorphism ((Baratov,
1966)).The South Gissar unit or Gissar suture is an ophiolitic suture dominated by green-
schist metamorphics, ophiolites and melanges .This suture contains only Carboniferous
and younger oceanic material and is too young concerning the Late Carboniferous colli-
sion within the Tien Shan to be anything other than a marginal basin or narrow rift basin
(Brookfield, 2000).
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The southernmost unit in the Tien Shan is the Baysunta unit; consist of a Protozoic
metamorphic core (metapelites) unconformably overlain by Lower Carboniferous conti-
nental conglomerates, sandstones, acid volcanics (quartz porphyries and dacites ) and
tuffs, with some marine limestones in the middle, overlain by Upper Carboniferous
marine sediments that begins with submarine spilitic basalts, which underlie a coars-
ening upwards section of interbedded sandstones, siltstone, and shales with occasional
conglomerates and limestones. These are overlain by latest Carboniferous conglomer-
ates with limestones lenses and Upper Permian non-marine conglomerates (Brookfield,
2000).The Gram Massif is located in the eastern part of the Tien Shan and represents the
only exposed Precambrian continental metamorphosed crust.

On the other hand, the Eastern part of the area is characterized by a series of sutures,
magmatic belts and crustal blocks accreted to the Eurasian plate during the Paleozoic to
Mesozoic times (Burtman & Molnar, 1993) that correspond to the evolution of the Pamir
mountain belt (figure 2.3). The main tectonic sutures in the Pamir, separate three dis-
tinct terranes: The Northern, Central and Southern Pamir, although, in the area, just the
Northern Pamir is present. These terrane represent the Paleozoic suture zone between
the Central Pamir and the rest of Asia, and consists of oceanic Carboniferous igneous
and sedimentary rocks (ophiolites) presented as a section of tholeiitic basal tectonically
overlaid by gabbro and ultrabasic rock; or as melanges of serpentinite overlain by pillow
basalt of tholeiitic composition (Darvaz Range). The upper part of the sections contains
limestones, island-arc volcanic rocks or terrigenous sediments depending on the location
of the section. Carboniferous and Permian conglomerate and limestones overlie these
ophiolites. These group of rock as well as the late Paleozoic mafic and ultramafic meta-
morphosed volcanic rocks located in the south of the terrane, indicate the existence of
a Carboniferous ocean basin denominated the Akzhilga zone. On the other hand, meta-
morphosed Precambrian and Paleozoic rocks are located in the south of the unit and they
are interpreted as continental fragments that collided with Asia probably during the Per-
mian time after the closure of the Akzhilga ocean basin (Burtman & Molnar, 1993).

Figure 2.3: Map of the simplified geology of the Parmir. The lithological information is divided by
geodynamic units. Modify from: Burtman & Molnar (1993).
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The territory between Pamir and Tien Shan, is represented by the Tadjik Depression.
It was an area of marine and continental sedimentation in the Cretaceous and Paleogene
that suffered a disruption of the sedimentation pattern facies during the Late Cenozoic
a product of crustal shortening during the convergence between the Pamir and the Tien
Shan that resulted in an overthrust of the Pamir massif onto the Tien Shan during the
India and Eurasia collision (Burtman & Molnar, 1993). The Early Cretaceous facies cor-
responds to a red-coloured clastic fluviatile sedimentary rocks covered by strata of inter-
calating marine and non-marine deposits, while the Late Cretaceous is characterized by
a marine environment. The Paleogene sequence starts with marine deposits followed by
an early Oligocene marine transgression (Burtman, 2000) and apparently the sedimen-
tary basin was continuous from the Tadjik Depression in the west across the Alai region
to the Tarim Basin to the east (Davidzon et al., 1982). The Neogene deposits are siltstones,
sandstones and mainly gravel to boulder conglomerates that include large brecciated car-
bonate blocks interpreted as rock-avalanches deposits. Molasse deposits are also located
in the front of the main Pamir thrust system (MPT) (Arrowsmith & Strecker, 1999).

Finally, the quaternary deposits are mainly coarse pediment-cover gravels, glaciall
terraces and alluvial-fan gravels along with glacial tills and landslide deposits. Arrow-
smith & Strecker (1999) used those deposits to constrain the spatial and temporal distri-
bution of the late Quaternary deformation along the Trans Alai Range front in the Alai
valley.

The area is characterized by an important number of active faults (figure 2.4). Normal
faulting is reported by Schurr et al. (2014) along the western edge of the Pamir mountains.
On the other hand, left-slip faults systems are mapped in the south of the area following
two different predominant directions. The Badakhshan Fault zone is composed by 10
different traces intersecting each other following a general N-S orientation; in contrast,
The Alburz-Marmul Fault zone located at the south of the Tadjik depression presents a
predominant E-W orientation.

The Gunt Shear Zone (dextral strike slip) (Schurr et al. , 2014), as well as the Henjvan
Fault are located at the Pamir. They are reported as strike-slip faults by Schurr et al.
(2014); Ruleman et al. (2007). Some landslides area located in the north part of the Hen-
javan Fault. Additionally, an important number of thrust are located in the area; they are
considered as the main structures related to the high seismicity because of the complex
subduction interaction among the South Tien Shan, Pamir and Tadjik depression. The
predominant tendency of these structures is E-W to SW-NE and an important vertical
displacement of basement rocks reflects its activity; for example the Illiac fault shows as
much as 3km vertical displacement (Leith & Simpson, 1986). Others thrust in the area are
represented by the Tanymas, Sarez-Murghab and Pamir Thrust systems - Vakhsh thrust
System being the northernmost one of the most important in the area as well as the Dar-
vaz Fault Zone (sinistral transpressive)

The neotectonic activity is dominated by the northward propagation of the Indian
plate inducing east-west striking mountain ranges. Crustal shortening is mainly accom-
modated at the MPT by subduction beneath the frontal part of the orogen where most of
the seismicity occurs. The lateral margins of the orocline display strike-slip motion of -12
mmyr-1 along the western Darvaz Fault Zone (DFZ) (Mohadjer et al. , 2010).
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Figure 2.4: Map of the geology of the study area divided into 16 units. The division is made based
on the age and the type of rock. 1. Quaternary, 2. Neogene, 3. Paleogene, 4. Paleogene-Intrusive,
5. Cretaceous, 6. Cretaceous-Jurassic, 7. Jurassic, 8. Jurassic-Triassic, 9. Permian-Igneous,
10. Permian, 11. Carboniferous, 12. Carboniferous-Igneous, 13. Devonian, 14. Silurian, 15.
Cambrian/Precambrian, 16. Glacier areas. Active faults represented by dotted lines.

The seismicity in the northern margin of Pamir that interacts with the Tien Shan
is characterized by shallow-intermediate earthquakes. Fault plane solutions are deter-
mined suggesting a large component of thrust faulting and roughly north-south crustal
shortening. The plane solutions suggest southward under thrusting of the Ferghana
Basin beneath the South Tien Shan (Burtman & Molnar, 1993).

On the other hand, the Nurek reservoir area presents superficial earthquakes, mostly
between 2 to 8 km, while deeper seismicity (> 20 km) is identified for the rest of the area
(Leith & Simpson, 1986). Schurr et al. (2014) suggest that the seismicity in the Pamirs is
spatially partitioned and occurs along well-defined zones. The Pamir’s northern perime-
ter is outlined by a band of earthquakes; whereas its eastern and western flanks exhibit
only sparse and more diffuse seismicity. On the other hand, the south margin of the Pamir
that interacts with the Hind Kush is marked by intense intermediate depth seismicity
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(90-250 km). This area has been interpreted as a continental subduction by (Burtman &
Molnar, 1993) and supported by seismic tomography (Negredo et al. , 2007).

2.2 Climate

The climate in the area is temperate, semi-arid to arid and continental with a hot sum-
mers and cold winters. The position of the area coincides with the transition between
the atmospheric circulation systems of the Indian Summer Monsoon (ISM) and the West-
erlies, implying a particular climatic setting in terms of erosion, rainfall patterns and
temperatures because the region is highly sensitive to variation in atmospheric circula-
tion patterns. From a global scale analysis, Aizen et al. (2001) concluded that the area is
weakly influenced by the Siberian anticyclonic circulation and moderately influenced by
a southwest cyclonic circulation that brings warm moist air masses into the region. The
moist air masses increases the precipitation falls during winter, however, the maximum
of precipitation occurs during spring (figure 2.5), while the second maximum precipi-
tation occurs in autumn. Contrasting, the formation of a thermal low during summer
causes a decrease in precipitation in August and September.

Figure 2.5: Annual variation in precipitation in altitudinal zones. Data source: Reference book of
Climate USSR, Kirgiz SSR (1988) source: Aizen et al. (2001).

The seasonal variation of the precipitation in the area is studied by (Pohl et al. , 2015)
based on the analysis of harmonic time series (HANTS) using the High Asia Refined
analysis project (HAR) database. The first general conclusion of the study is that there
are strong differences in the average winter and summer precipitation distribution in the
Pamir area. The area is divided into main orographic barriers because they would in-
tercept the moisture supply among others. The Western Pamir and the Alay mountains
(South Tien Shan) are characterize by a significant amount of precipitation in winter,
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while the Western Pamir receive almost no precipitation in summer (figure 2.6).

An important number of glaciers are located in this area, however, many studies re-
port there their retreat, favoring the development of lakes in the glacier forefields or in
subsiding areas, increasing the probability of mass wasting or glacier lake outburst flood
(GLOF) events in the surroundings. Mergili & Schneider (2011) identify 6 very hazardous
lakes and 34 hazardous lakes in the south-western Pamir, some of them dammed by land-
slide deposits or older moraines.

Figure 2.6: Precipitation distribution of the applied HANTS method for the annual, winter and
summer precipitation patterns. TS: Tien Shan, WP: Western Pamir source: Pohl et al. (2015).

2.3 Landslides

2.3.1 Landslide definition and classification

The term landslide is defined as a general term to describe the downslope movement of
soil, rock, and organic materials under the effect of gravity and also the landform that
results from such movement (Highland et al. , 2008). This term refers to several different
things from mudflows to rock avalanches and it is broadly used as a non-technical word
to describe any or all relatively rapid forms of mass wasting (Tarbuck et al. , 2014). Mass
wasting is a surface process that must not be confused or related to erosional processes
because mass wasting does not require a transporting medium such a water, wind or
glacial ice (Tarbuck et al. , 2014).

Specific terms are used to describe the morphology of a landslide (figure 2.7). The
crown of a landslide is the undisplaced material still in place and adjacent to the highest
part of the main scarp; a steep surface on the undisturbed ground caused by the move-
ment of the material away from the undisturbed ground. In addition, these areas are
characterized by the presence of crown cracks parallel to the crown, product of an instabil-
ity in the terrain. Similarly, the head of the landslide is the upper part of material located
along the contact between the displaced material and the main scarp and can or not, be
limited by minor scarps that divided the moved material, produced by differential move-
ment within the displacement.
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On the other hand, the toe of a landslide is usually the curved margin of the displaced
material and it is the most distant part from the main scarp. This area present transverse
cracks formed for the compression of the material at the toe of surface rupture as well as
radial cracks near to the end of the toe as a product of the material divergence (Highland
et al. , 2008).

Figure 2.7: Illustration of the most commonly used labels for the parts of a landslide. source:
Varnes (1978) in Highland et al. (2008).

The surface of rupture is the lower boundary of the displaced material below the orig-
inal ground surface and the toe of surface of rupture. The toe of the surface of rupture is
the intersection (usually buried) between the lower part of the surface of rupture and the
original ground surface. The morphology of the surface rupture determines the type of
mass wasting and it is related to the material that is moved.

The displaced material that overlies the surface rupture, between the main scarp and
the toe of the surface rupture is the main body. The area where the main body is located
is denoted as the depletion zone as the material lies below the original ground surface. In
contrast, the accumulation zone is where the material lies above the original ground sur-
face. The material that overlies the original ground surface and is located beyond the toe
of surface of rupture is denoted as the foot of the landslide (Highland et al. , 2008).

Landslides are classified based on the type of movements on the surface of rupture
and the type of material moved. The most accepted classification was proposed by Varnes
(1958). New classifications are present (Hungr et al. , 2014) based on the Varne’s proposal
(figure 2.8), but only bring minor changes.

The first type of movement or landslide type is Falls. This is the simplest type and
begins with the detachment of soil or rock from a steep slope along a surface with little
or no shear displacement. The material subsequently descends mainly by falling, bounc-
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ing, or rolling. Additionally, Highland et al. (2008), propose a variation of the rockfall
denominate topple that consist of the rotation, out of a slope, of a mass of soil or rock
around a point or axis below the center of gravity of the displaced mass (figure 2.9).

Figure 2.8: Classification of landslides based on the type of movement and the type of material.
source: Varnes (1958).

Figure 2.9: Ilustration of the different types of rockfalls. Left: Illustration based on Varnes (1958).
Right: Illustration based on Highland et al. (2008). source: Highland et al. (2008).

The second type of mass-wasting is denoted as a slide. It is described as a material
that moves as a discrete block. In this type of movement, a distinct zone of weakness
separates the slide material from the more stable underlying material. Two basic types
of slides are recognized based on the morphology of the surface of rupture: rotational
slide where the surface of rupture is a concave-upward (spoon-shaped). The descending
material exhibits a rotational movement and translational slide where the material moves
along a relatively flat surface such as a joint, fault or bedding plane Highland et al. (2008)
(figure 2.10).
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Figure 2.10: Illustration of the different types of slides. Left: Illustration of a rotation slide. Right:
Illustration of a translational slide. source: Highland et al. (2008).

Figure 2.11: Illustration of a flow. source: Highland et al. (2008).

And the third is described as a spatial continuous movement in which the surface of
shear is short-lived, closely spaced and usually not preserved (figure 2.11). The materi-
als in a flow behave as a viscous liquid that flows downslope. The most studied flows
are debris flows, that occurs due to rapid melting of snow in semi-arid mountain areas,
where a large quantity of soil and regolith are washed into nearby stream channels be-
cause of the lack of vegetation and the particle size. In contrast, mudflow is most often
formed on hillsides in humid areas during the time of heavy precipitation or snowmelt.
Most of the big magnitude landslides cannot be classified under a single type as because
a combination of movements, materials, and triggers are related. Those landslides are
classified as complex because of the combination of multiple landslide types.

2.3.2 Historical Landslides

In the area of study, some historical landslides are reported and mapped based on their
magnitude and the impact they produced in the landscape and the population. One of
the most famous events was related to the Kait Earthquake. The main Khait earthquake
occurred on July 10, 1949, with a M7.4 (magnitude calculated using surface waves). The
exact location of the epicenter is uncertain, but three different locations were reported, all
three within 8.5 km from Khait. The focal depth has been estimated at between 16 and
20 km by Rautian & Leith (2002) and many loess flows and rockslides were widespread
in the epicentral area as well as cracks in rock slopes. In the Yaman valley, hundreds
of loess landslides coalesced to form a massive loess flow with an estimated volume of
245M m3 that traveled up to 20km on a slope of only 2� and killed an approximately 4000
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people located in 20 villages (kishlaks) (Evans et al. , 2009). In the adjacent valley, the Kait
landslide (rockslide) (figure 2.12) was transformed into a very rapid flow (3̃0 m/s) by the
entrainment of saturated loess into its movement. Evans et al. (2009) performed simula-
tion in the Khait landslide and estimated a volume of 75 M m3 and ca. 800 causalities. A
total of approximately 7200 people were killed by earthquake-triggered landslides in the
epicentral region.

Figure 2.12: View of the Khait rockslide trigerred by the 1949 M7,4 Khait earthquake. The scar on
Chokhran mountain shows the origin of the slide, which overwhelmed the village of Khait source:
(Evans et al. , 2009).

The Gissar earthquake occurred on January 23, 1989, South of Dushanbe, capital of
Tajikistan. It triggered a series of earth-floss in loess and killed an least 200 people and
buried hundreds of houses. The mass wasting was related to extensive liquefaction,
which had developed from a horizontal acceleration of about 0.15g (Ishihara et al. , 1990).
The largest landslide, called "Okuli", had an estimate volume of 20 ⇤ 106m3. It is the re-
sults of two independent slides triggered in the north, which then merge into the main
stream of the mudflow. The scarps of many of the landslides are located along a wa-
ter channel installed on the shoulder of the hills, with the sliding surface located at a
depth of about 15m within the saturated part of the 30m thick loess deposit. Ishihara
et al. (1990) assumed that the the mass wasting was triggered during the earthquake,
but the materials had been saturated over many years by the stream. Theory supported
by observation of muddy water oozing from the earth-flow (Havenith & Bourdeau, 2010).

On the other hand, the effects of the landslides on the area are not only limited to the
damage caused by the mass displacement; but, frequently, landslide dams area created
(Strom, 2010). In the Panj River valley, it is possible to find partially or complete eroded
rockslide dams with a volume higher than 1km3. An example is the Shids rockslide dam
formed during prehistoric times (figure 2.13); it is composed of Proterozoic granite and
gneiss by now almost completely incised by the Panj river, however, 20-30 m high dam
still exist and a remnant lake extends about 15 km upstream (Strom, 2010).
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Another landslide dam in the area is the Shiva lake. It is located in the Afghan part of
the Pamirs (figure 2.14).The lake Shiva is an evidence of the impact of the large landslides
in the landscape. It is located 16 km from the south-west of Khorog along the valley of
Arakht in the border between Afghanistan and Tajikistan. The natural dam is 1.6 km
wide. It is composed by material of at least three landslides and many rock glacier. The
dam has never been overtopped because the water supplied by the catchment travelled
through the dam’s permeable material forming a stream (figure 2.14).The lake is deter-
mine as a no immediate hazard area, but a partial collapse of the dam due to retrogressive
and piping erosion cannot be excluded (Schenider et al. , 2013).

Figure 2.13: Google earth panoramic view of the Shids rockslide and remnant lake in the Panj
River source: (Strom, 2010)

Similarly, the Tien Shan mountains are also highly affected by bedrock landslides of
which many of them caused river’s damming like the Iskandrkul, the largest landslide-
dammed water body in the area. The Iskanderkul-Daria river is the source of the lake.
The rockslide of nearly 1 km3 is related to the collapse of a mountain slope composed of
Paleozoic sedimentary rocks. The actual river erodes it and an up to 50-70 m deep gorge
formed in the landslide body with an impressive waterfall in its central part. The pos-
sibility of a breach is plausible because the dam undergoes intensive backward erosion.
Others small lakes had been formed in the valley, but they had been partially filled, and,
finally, drained (Strom, 2010).

The Yashinkul lake is located in the north-east corner of the study area. It is a rock-
slide about 50 ⇤ 106m3 in volume, that had converted into rock avalanche and filled the
valley of the Alichur River, the source of the Gunt River. The dam is characterized by
dual a structure with semi-rounded moraine-like boulders inside, overlaid by angular
gneiss blocks and debris. An explanation for this structure is that the lake was firstly
dammed by the end moraine, later cover by a rockslide, however, (Strom, 2010) consider
the whole dam as a pure rockslide. The dam is stable and the outflow is artificially con-
troled to increase power production of the hydraulic power plants at the lower part of
the Gunt Valley (figure 2.15).

A recent event is the Aini blockage occurred in 1964 (Strom, 2010), when 20 million
cubic meters of debris blocked the Zeravshan valley and created a dam up to 150 m high
and 1 km long the stream, however, the situation was controlled and become one of the
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Figure 2.14: Lake Shiva. The depression spring (circular lake of approximate 200m) and head-
water of Arakht torrent in the foreground. To the left, the lake Shiva. source: Schenider et al.
(2013).

Figure 2.15: Overview of the Yashilkul rockslide dam before the spillway construction source:
Strom (2010).

first examples of the successful prevention of the rock-slide dam breaching disaster .

2.3.3 Previous works

Previous regional scale analysis has been done in the area in order to identify multi-
hazards and risk indicator; Gruber & Mergili (2013) used GRASS GIS to implement a
model framework that includes high-mountain processes like rock slides, ice avalanches,
periglacial debris flows and lake outburst floods in an area of 98 300 km2 in the Pamir
(Tajikistan - figure 2.16). The objective of the model framework is to help gain an idea
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about possible hazards and risks based on the analysis of parameters like elevation,
glaciers location, lakes information (lake type, lake drainage, calving of ice, lake area,
lake evolution), mean annual air temperature, permafrost susceptibility, seismic suscep-
tibility, exposure and communities location.

Figure 2.16: Distribution of the hazard indicator for the analyzed high-mountain processes. Ap-
proach : Model framework. source: Gruber & Mergili (2013).

The results of the study show that the periglacial debris flow susceptibility/hazard is
the most common in the area studied by Gruber & Mergili (2013) (figure 2.17), in contrast
to the ice avalanch and lake outburst susceptibility, due to their confinement to glaciers
and lakes respectively. On the other hand, rock slide susceptibility displays intermediate
patterns in terms of the total area because it is associated with limited locations occupied
by very steep slopes Gruber & Mergili (2013).

Similarly, the Earthquake Model Central Asia (EMCA) project (Saponaro et al. , 2015)
made a contribution to the landslides susceptibility mapping in Central Asia by the com-
puting of a weight of evidence model using seismic intensity as a trigger mechanism in
order to increase the understanding about the role of the earthquakes as triggering fac-
tors (figure 2.17). The seismic intensity is expressed through the observed macro-seismic
intensity (MSK 64). The territories of Kyrgyzstan and Tajikistan area characterized by
returned intensities of VIII and IX which are expected in the future, while for Uzbekistan
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an intensity of VIII is foretelled. The model takes into account parameters like slope gra-
dient, slope aspect, profile curvature, geology, distance from faults and seismic intensity.

Figure 2.17: Landslide susceptibility index (LSI) map for Kyrgyzstan, Tajikistan and Uzbekistan.
Model accuracy level greater than 70%. Approach: Weight of evidence. source: Saponaro et al.
(2015).

The most recent study in the area was performed by Havenith et al. (2015b). The
study used the Tien Shan geohazard database collected by the author, that includes a
more complete landslide catalogue as well as an earthquake catalogue. The study as-
signed landslide susceptibility based on the landslide factor analysis using morphologi-
cal parameters, geological information, river distance, precipitation, earthquake and fault
distance as thematic variables and two different models were computed. The first one in-
cludes four factors (morphological, geological, river distance and precipitation), while
the second one is a combination of the first model plus the seismo-tectonic influence (fig-
ure 2.18). The performance of the model is statistically analyzed based on the scarp and
landslide densities obtained, however, it cannot be considered as a prediction model. The
resulting landslides susceptibility assessment reproduces well the trend of the observed
landslides activity taking into count the large extent of the area that almost covers an en-
tire mountain range.
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Figure 2.18: Landslide susceptibility map considering morphological, geological, hydrological,
climatic and seismo-tectonic parameters. Landslides are outlined in red. Black ellipses outline
problematic zones where either significantly over- or underestimated the observed landslide den-
sity. Approach: Landslide factor analysis. source: Havenith et al. (2015b)

.

2.3.4 Landslide catalogue

A landslides catalogue or landslide inventory is a collection of information related to
where, when and why landslides occurred. Other relevant information can be associated
like type of landslides, area or other morphological information of the landslide, num-
ber of people affected, deaths, material losses, geomorphological features, rain intensity,
earthquake magnitude and so on, depending on the purpose of the catalogue and the
sources of information. The techniques used to create the landslide catalogue depends
not only on the purpose of the inventory but also the extent of the study area, the scale
of the base maps, resolution, characteristics of the available imagery and the resources
available to complete the work (Guzzetti et al. , 2012).

The traditional method to collect landslide data is based on the aerial or satellite im-
ages interpretation, topographic maps analysis, and field inspection. The result of this
methodology is often subjective, incomplete, time-consuming and resource intensive.
However, it is still used for areas where the data is scarce or when the area to cover is
too extensive. On the other hand, new resources like google earth allow a faster delimi-
tation of landslides and the creation of a polygon based catalogue through digitization.

The study area does not have a complete landslide catalogue; however, the amount
of recorded events is sufficient to perform the landslide susceptibility assessment. The
Global Landslide Catalog (GLC) (Kirschbaum et al. , 2015, 2010) is a point dataset with
a total of 18 points in the study area. The attribute table associated is complete and gives
information about the country, triggering factor, type of movement, fatalities, date and
so on. On the other hand, the Tien Shan Geohazard Database (Havenith et al. , 2015a) is
a polygon database created by the compilation of small datasets that used different tech-
niques like manual delimitation, supervise classification and compilation of events re-
ported in newspapers or local databases, as well as fieldwork. In total 701 polygons area
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taken from the Tien Shan Geohazard database; however, the available database doesn’t
contain information related to the type of movement, date of occurrence or triggering
factors.

A final polygon landslide catalogue was created by the integration of the GLC, the
Tien Shan Geohazard database and manual delimitation of landslides from Google Earth
Imagery to include the Western Pamir and the Tadjik basin in the analysis. Finally, 0.02%
of the area is covered by a total of 1003 polygons with areas in the range of 0.23km2 to
16.9km2, from which, landslides with less than 0.5km2 are predominant (figure 2.19).

Figure 2.19: Area distribution of the landslides in the study area. Left axis: Frequency values,
right axis: Individual landslides area.

The distribution of the landslides based on the catalogue is shown in figure 2.20. The
area with most landslides mapped is located in the valley of the Zerafshon river, east to
the cities of Samarqand and Urgut. This area also identified by Havenith et al. (2015a)
as hosted a major relatively recent important mass movements events. Also, some land-
slides dam related to rockslides were reported in the surroundings by Strom (2010). Other
areas associated with a relevant concentration of landslides are located north and south-
east of Dushanbe respectively. The north area of Dushanbe was the focus of a study in
1989 where an earthquake of M = 5.5 (Gissar Earthquake) triggered a debris slide (flow)
killing hundreds of people in a village close to Dushanbe (Havenith et al. , 2003). On the
other hand, the third area is located north to the Nurek dam in the Vakhsh River valley;
Havenith et al. (2013) reported different landslides events that affected the area. The
most recent event is the Baipaza landslide located downstream the Nurek dam which
has been active since 1968. The first displacement was reported because the landslide
partially blocked the Vakhsh river. Since the first movement, reactivations are recorded
in 1992 triggered by a heavy rain and in 2002 triggered by the M = 7.4 Hindu Kush
Earthquake. The last reactivation caused problems to the Nurek and Baipaz hydropower
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plants. Other relevant spots are observed along the Vakhsh thrust system (Main pamir
thrust) where intermediate size landslides are located. Also, a concentration of small
landslides are presented throughout the Darvaz fault system.

The landslide catalogue created for the study does not have a description of the type
of movement; however, from a literature review and further field observation it can be
concluded that the predominant landslides type are rock falls, rock slides, rock flow
loess/debris flow and complex landslides. They are landslides characterized by a de-
tachment of the material along a surface with little or no shear displacement and the
subsequent movement of the material downhill. Depending on the type of material in-
volved, the accumulation zone can reach meters to kilometres from the crown.

Figure 2.20: Landslides distribution map. Landslides are indicated by dots which increasing size
depending of the area.
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2.3.5 Field observations

A field campaign took place in the Tien Shan area. During which, some landslides were
included in the landslide catalogue. Also, field observations of the predominant type of
landslides in the area were collected and how they relate to the landscape.

Rock falls are commonly observed in the valleys. An substantial amount of mate-
rial is mobilized and deposited at the bottom of the valley created an obstruction of the
channel. An example was observed in the Yagnob river (figure 2.21), where the unstable
material completely filled the valley, dammed the river and blocked the road. The vicin-
ity surrounding the landslides is characterized by high slopes with rock exposure. other
smaller rock flows are observed too.

Figure 2.21: Rockfall damming the Yagnob River. Left: Field picture. Right: Google Earth view.
The red arrow indicates the direction from which the photo was taken.

Figure 2.22: Rock landslide that dam one of the Seven lakes in Tadjikistan. Left: Field picture.
Right: Google Earth view. The red arrow indicates the direction from which the photo was taken.

The area of the seven lakes (Marquzor lakes) in Tien Shan is characterized by a succes-
sion of landslides which created several dams along a single river. A big rock complex
landslide took place in the lower part of the slope and produced a complete fill of the
narrow valley (figure 2.22). The size of the mobilized material is mixed. Big blocks are
identifid on the surface and also small gravel is located in the surroundings. The source
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of the material in the bottom of the valley comes from both sides of the slope and land-
slides crowns can be identified in the surroundings.

The Iskander lake is considered one of the prettiest lakes in Tajikistan. It is formed by
the dam of the Iskanderkul-Daria river by a massive landslide. The crown of the land-
slide is easy to identify in the figure 2.23 because of change in the concave slope and the
morphology of the surface. A continuous mark is observed in the along the slopes sur-
rounding the lake. It corresponds to the paleo-level of the lake when it was completely
dammed.

Figure 2.23: Landslide that dam the Saratogh river to form the Iskander lake. Above: Field
picture. The yellow arrows indicate the paleo-level. Oragen arrows indicate the crown of the
landslide. Below: Google Earth view. The red arrow indicates the direction from which the photo
was taken. The yellow line indicates the pale-level of the lake before started draining.

One of the lithological units characterized by the presence of landslides is the Cre-
ateceous/Paleogene units composed by calcareous rocks. Interbedded layers of gypsum

Page 27



Landslide hazard in Central Asia Chapter 2. STUDY AREA

associated to the folding of the strata favor the detachment and sliding of massive rock
bodies (figure 2.24).

Figure 2.24: Mass wasting related to the Crecteceous/Paleogene sequences. Left: Rock falls located
in the backslope of a cuesta in the Cretaceous/Paleogene sequence near the Khodzhagarib town.
Pink arrows enhance the location of the blocks. Right: Field picture of a landslide located in the
Cretaceous/Paleogene sequence.
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Chapter 3

INSTABILITY FACTORS

This chapter introduces the most common instability factors used in the landslide suscep-
tibility assessment and the different thematic variables selected for the implementation of
the different landslides susceptibility models during this work. For each thematic vari-
able, the data-source, the method, and computation are described, and the interaction
between the variable, and the landslides are discussed.

3.1 Review of the thematic variables

Mass wasting or landslides are the result of erosional processes related to landscape evo-
lution.As previously defined, a mass wasting occurs under certain circumstances that
require interaction among different factor related to materials, geomorphology, meteo-
rological, geological and human conditions.Based on the classification of landslides, it is
clear that different type of materials can be moved during a landslide. These materials
must to follow characteristic like fractured material or saturated soil combined with slope
gradient, in order to be affected by the gravity. Based on these, some thematic variables
can be analysed in order to identify areas which are most susceptible to landslide occur-
rence.

Reichenbach et al. (2018) studied different thematic variables used for landslides sus-
ceptibility models based on a total of 596 different inputs from the literature. The number
of thematic variables used vary from 2 to 22 with an average of nine variables for every
single model. The author summarized the most used thematic variables and grouped
them in five cluster (figure 3.1).

Morphological variables are obtained by processing terrain elevation data and have
proven particularly effective in predicting the spatial distribution of landslides or the lack
of landslides (Marchesini et al. , 2014). Reichenbach et al. (2018) concluded that authors
prefer "simple" morphologic measures that include elevation, relief, slope, aspect, and
curvature because these variables are simple to calculate and DEM are nowadays easily
available. As expected, slope and aspect are the most used thematic variables to repre-
sent the relationship between the landscape features and the gravitational forces, while,
factors like curvature can determine the velocity and the path of the waste movement.
The elevation is another frequently input even though others morphometric variables
could represent better the relation between altitude and landslide occurrence. Reichen-
bach et al. (2018) states that "simple" morphometric variables may not be the best way
to capture the morphometric signature of landslides, instead complex variables that de-
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Figure 3.1: Treemap char showing the portion of the original thematic variables as listed in the ar-
ticles reviewed. Legend: EO, Earth observation; GEOM, geomorphological; GEOT, geotechnical;
LR, landslide related; OA, other anthropic; OC, other climatic; SE, seismic. source: Reichenbach
et al. (2018)

scribe in an overall way the morphology of an entire slope are also good descriptors of
landslide terrain; however, they are not commonly used in the literature, primarily due
to the lack of specialized software.

Geological information is used to understand the materials exposed to denudation
and gravitational movement. Some types of rocks are more easily eroded than others
depending of the chemical composition and the size of the minerals that form it; thus it
is one of the most used inputs. Whereas, information related to tectonic activity as dis-
tance to fault or geo-structural information is commonly used too, probably interpreted
as triggering factors or as an indicator for the degree of fracturing of the rock.

Landcover information is mainly represented by land use/cover where the type of
surface and vegetation are discriminated, while the less used but also important, is the
composition of the soils which determines the characteristics of the materials that could
be moved by a landslide. Other parameters in the clusters are the distance to roads which
relates to the footprints of the human activity in the landscape as well as tree presence
and other anthropogenic information.

Two hydrological variables are commonly used. The river/catchment variable is
widely used to understand how landslides are spatially distributed concerning the catch-
ment areas. The study of the catchment enables the discriminate between areas that are
affected by regional processes like tectonic: also, characterized slopes under the same
erosional conditions. On the other hand, the distance to river aims to recognize patterns
on the landslide distribution associated to the river channel.
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Finally, Reichenbach et al. (2018) groups other parameters like precipitation (one of
the most common triggering factors), earth observations, geotechnical information, seis-
mic data, landslide related, other climatic and others grouped a less relevant miscella-
neous group.

In this study, a total of 17 thematic variables were created and used as a predictors of
landslides occurrence for the present work. They are grouped in 5 thematic groups based
on the purpose of the variable and its significance (table 3.1).

Table 3.1: Thematic variables

Thematic group Factor Significance Datasource

Geology Lithology Rock type association. Geological maps

Climatic
and hydrological Precipitation Rainfall landslides triggering. HAR

Glacial distance Glacial and periglacial
geomorphological processes. RGI

Elevation
Above Channel

Influence of the gradient
and potential energy. DEM

Distance to river River dynamic impact . DEM
Topographic
wetness index Saturation conditions. DEM

Land Cover NDVI Slope instabilities in relation to
presence or absence of vegetation. Landsat 8

Geomorphology Slope Potential energy. DEM
Aspect Effects to sun/wind exposition. DEM
Topographic
position index

Separation between ridges,
valley bottoms and fat areas. DEM

Surface Roughness Erosional processes. DEM
Elevation Relief Ratio Characterization of the landscape. DEM

Surface Index Discrimination between erosional
and steady-state landscapes. DEM

Local Relief River incision. DEM
EigenValues Curvature of valleys and ridges. DEM

Tectonic Distance to Fault Effects of seismicity
and fracturation. CAFD

Seismo-zones Density/recurrence of earthquakes. EMCA

Variables like elevation and curvature are not included in the study because it is con-
sidered that others of the geomorphological parameters can represent better the relation
of the altitude or the surface characteristics and the landscapes. On the other hand, the
soil information is not available at a detailed scale, thus, the NDVI is used to discrimi-
nate vegetated areas. The river/catchment analysis is not implemented because of the
size of the area; however, geomorphological parameters like elevation relief ratio reflect
the influence of different processes at the catchment level. Variables like EigenValues, to-
pographic position index (TPI), surface index (SI), surface roughness (SR) and local relief
(LR) are less or never explore to the implementation of landslide susceptibility models.
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The relationship between the different thematic variables and the landslides are anal-
ysed first, based on the normalized landslide density for standard classes in the variables,
calculated by the equation 3.1. Values of 1 indicate an average landslide density. Values
less than 1 represent a class characterized by landslides less than the average, while, more
than 1 represent a higher landslides density than the average (Havenith et al. , 2015b). The
landslide density is contrasted by the number of pixels per class.

LandslideDensity =
NLandslidesclass

NLandslides
⇤ NLandslidesvariable

Npixelsclass
(3.1)

Based on (Carranza & Sadeghi, 2010), an analyse of the spatial distribution of the
landslides with respect to the predictive variables is implemented by the construction
of cumulative relative frequency distribution graphs. First, the cumulative relative fre-
quency distribution for the variable (CRFv) is plotted as well as the cumulative relative
frequency distribution of the landslides in the variable (CRFL). The differences between
the two is understood as the spatial distribution. A positive spatial association is deter-
mined when the CRFL plots above CRFv, on th contrary, if CRFL plots below CRFv, a
negative spatial association is determined. The differences (CRFL � CRFv), indicates for
every value of the variable, how much different the frequency of landslides are.

3.2 Geology

A substantial number of geological work has been done in the area since the Soviet Union
times in order to determine the geodynamics and its relation to the mineral occurrence.
All those studies have focus either on local scales that do not allow the creation of re-
gional cartography, or on regional scales where lithological units have been generalized
based on their geodynamic unit or age.

A complete-paper based geological atlas is available for the area as well as the de-
scription of the geological units in 1:200.000 scale. The area is entirely covered by 34
maps in .tiff format and its corresponding legend is available in Russian at the Federal
State Budgetary Institution A.P. Karpinsky Russian Geological Research Institute (FGUP
VSEGEI) (2018).

On the other hand, some digital geological cartography is available for the Tien Shan,
Central Pamir, North Pamir, and South Pamir and Afghanistan. This information is avail-
able as a shapefile, but it is not public. The metadata related to the creation of the dataset
is not presented, making quality evaluation difficult. Although, by the comparison of the
georeferenced paper-based maps and the datasets it is possible to recognize similitude in
the polygons shapes, geological codes and description, thus, we assume that they were
digitalized from the geological maps from the (Federal State Budgetary Institution A.P.
Karpinsky Russian Geological Research Institute (FGUP VSEGEI), 2018).

The digital datasets are not homogeneous concerning the scale of production, the-
matic completeness or consistency. Additionally, the datasets present an important num-
ber of topological errors and do not cover the whole area. Some dataset overlaps each
other creating inconsistencies as well as some gaps between the datasets. In order to use
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this information an intense and time-consuming preprocessing must to be done.

The spatial accuracy of the different datasets is determined by the visual comparison
between the shapes of the polygons and the geological maps. The spatial accuracy for
Tien Shan, North Pamir, Central Pamir, and South Pamir are very good (90-95% of the
polygons fits). Nevertheless, accuracy cannot be determined for the Afghanistan dataset
because no information about the data source is available. On the other hand, the the-
matic accuracy varies from one dataset to another. The North Pamir dataset has a very
good accuracy, based on the comparison of the codes in the attribute tables and the one as-
signed in the geological maps. Similarly, the Central Pamir has a good thematic accuracy
because some of the polygons have different codes related to the ones in the geological
map. In contrast, the Tien Shan and South Pamir dataset have a bad thematic accuracy,
that means that less than 50% of the codes are related to the geological map. The former
has no geological codes; the attribute table consists only names of geological time periods
except for the quaternary units; while the later used geological codes that do not fit with
the international standard for geological coding.

The precision of the dataset is assumed as the scale of the map from which the in-
formation was digitalized. For the Tien Shan, North, Central, and South Pamir, the pre-
cision is 1:200.000; however, for the Afghanistan database this information is unknown;
although, the detail of the information in this dataset is similar to the other datasets, so
it is possible to conclude that the precision of all dataset is not different one from the other.

The spatial consistency of the datasets is determined by the topological rules in the
digitalized polygons. The most common geometrical errors in the datasets are polygons
with holes and silver polygons; Only the South Pamir dataset contained information on
self-intersection between polygons. After running topological analysis; we found that all
the datasets have a bad spatial consistency. On the other hand, the thematic consistency
is analysed based on the geological description in the attribute table and its relation to
the map description. For the Tien Shan database, just a few descriptions are storaged and
corresponds to less than the 9% of the total information. The bad thematic accuracy of
this data set is related to the dataset purpose because it was created to analyse the ig-
neous rock in the area (Käßner et al. , 2016). For North and Central Pamir presents 60%
and 70% of the descriptions are similar to those collected by the (Federal State Budgetary
Institution A.P. Karpinsky Russian Geological Research Institute (FGUP VSEGEI), 2018).
In consequence, it is possible to say that the thematic accuracy of this dataset is accept-
able. The South Pamir and Afghanistan dataset have a good and very good thematic
accuracy. The first one contains 88% of the descriptions according to the based maps and
the second one includes all the descriptions such as the lithology as a general field, but
also essential information such as descriptions of the materials.

Finally, the completeness of the dataset is evaluated based the requirements to use the
data. The geological description is the most important attribute related to the objective
of the project. The Tien Shan dataset presents bad completeness because the information
associated with the polygons is not enough to fill the project needs. Similarly occurs to
the Central Pamir and South Pamir dataset where more information is reported still it is
not enough, for this reason, it is considered a dataset with acceptable completeness. In
contrast, The North Pamir and Afghanistan datasets have good completeness and just a
few processing will need to use them as an input.
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Figure 3.2: Geological map classify in 16 geological units based on the lithology.

The final map for lithological information was obtained after a data integration pro-
cess using Qgis as GIS software, topological errors were also corrected as part of this. The
lithological information is grouped based on the age of formation and the type of rock
(figure 3.2).

The Quaternary unit (1) is composed by pebbles, loess, sandy loams and quaternary
alluvium located in the flat areas, generally associated with alluvial plains or terraces.
The Neogene unit (2) is characterized by siltstone, clays, sandstones, and conglomerates
identified in the souring and in the mountain ranges inside the Tadjik basin; even though
the materials are susceptible to move, the slopes where they are located are not repre-
sentative enough to present a high landslide density (figure 3.3). The Paleogene units
are divided in a sedimentary unit (3) (Limestones, sandstones, clays, dolomites, marls,
conglomerates and gypsum) and Paleogene intrusions (4) represented by granites. The
sedimentary unit is predominantly located the mountain ranges inside the Tadkid de-
pression; while the intrusions are located in the surroundings of the Gissar Suture (Tien
Shan).
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Figure 3.3: Histogram of the number of pixels per class compared to the landslide density per class.
1. Quaternary, 2. Neogene, 3. Paleogene, 4. Paleogene-Intrusive, 5. Cretaceous, 6. Cretaceous-
Jurassic, 7. Jurassic, 8. Jurassic-Triassic, 9. Permian-Igneous, 10. Permian, 11. Carboniferous,
12. Carboniferous-Igneous, 13. Devonian, 14. Silurian, 15. Cambrian/Precambrian, 16. Glacier
areas

The Cretaceous unit (5) is dominated by conglomerates, sandstone, clay, siltstone, and
gravel. It is predominant in the Gissar range, some areas of the Main Pamir Trust (MPT)
and the south of the Tadjik basin. Similarly, the Cretaceous-Jurassic unit (6), is spatially
associated and it is composed by limestones, marls, mudstones, clay, sandstones, gyp-
sum and few conglomerates. All those units are characterized by the presence of low
landslide density (figure 3.3).

The highest landslide density is associated with the Jurassic unit (7) where conglom-
erates, shales and, coal are predominant; however, it is important to recognize the low
number of pixels that represent this class. Similarly occurs to the Jurassic-Triassic unit
(8), composed by pophyritis, tuffs, tuff breccia, quartz conglomerate, sandstone, shale,
coal lenses, gravelitas, allite and bauxita.

The Igneous Permian unit (9) present a slightly high landslide density. It is located
near to the Gissar suture as well as in the Pamir. It is composed of granite, diorite, gabbro
and, andesite. On the other hand, the Permian sedimentary rocks (10) are predominant in
the Pamir, characterize by sandstone, limestones, shales, conglomerates and some tuffs.
Another unit associated with high landslide density is the Carboniferous sedimentary
(11) unit. It is composed by conglomerates, sandstones, shales, limestones, siltstone, and
dolomites located mainly in the Tien Shan, but some stripes are identified in the Pamir.
The Igneous unit in the Carboniferous (12) is broadly extended in the south of Tien Shan
and the Western Pamir. It is composed of granodiorite, granite, porphyry leucocratic
granites, basalts, tuff, and breccias.

A high landslide density characterizes the Devonian (13) and Silurian (14) sedimen-
tary rocks. They are composed by limestones, dolomites, sandstones, and shales, but the
Devonian sequence presents conglomerates and siliceous rocks too. They are located in
the Northern part of the area in the Tien Shan. The Cambrian and Precambrian units
(15) are metamorphic rocks like schist, marble, gneiss, migmatite, and cataclasite located
mainly in the Pamir and as a small stripe in the north of Tien Shan and are associated to
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a low landslide density.

3.3 Precipitation

The Chair of Climatology - TU Berlin, provides a high-resolution atmospheric dataset, as
part of the High Asia Refined analysis project (HAR) (Maussion et al. , 2014)). The dataset
is generated by dynamical downscaling of global data using the Weather Research and
Forecasting (WRF-ARW) model. The results are strongly dependent on the quality of the
global input data and the capacity of the WRF model to simulate the atmospheric pro-
cesses.

The data is delivered as binary NetCDF files with different spatial and temporal res-
olutions. For the study area, the data is available in a spatial resolution of 30 km. Even
that the spatial resolution of the data is coarser than the mapping unit, precipitation in-
formation is a crucial factor in the landslide susceptibility understanding. On the other
hand, the temporal resolution of the data set is proximately 12 years, from October 2000
to December 2012 and the dataset is available with an extend of month or years.

Figure 3.4: Annual average precipitation map calculated based on the HAR annual precipitation
from 2000 to 2014.
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The authors claims that unrealistic precipitation gradients are present in areas with
steep topography like the Himalayas, however,Pohl et al. (2015) tested different precip-
itation products for their application in a hydrological modelling approach in the Pamir
and found that the HAR provides the most reliable estimates for precipitation compared
to the TRMM (Tropical Rainfall Measuring Mission).

The HAR dataset was re-projected from the map projection used by the WRF model
to WGS 84. The 12-yearly precipitation information was integrated by the calculation of
the mean of the yearly precipitation given in mmh�1 and re-sampling by a cubic interpo-
lation method to obtain the precipitation information to be used (figure 3.4).

The precipitation distribution is presented in figure 3.4 from which is possible to con-
clude that the area that received more precipitation per hour in the last 14 years is located
in the eastern area of the Tien Shan mountain range; however, high precipitation values
are reported as well in the Pamir. The distribution of the precipitation is coherent with
the analysis of Pohl et al. (2015) whose reported almost no precipitation during the sum-
mertime in the Pamir, a fact that decrease the annual average precipitation to this area
compared to the Tien Shan.

Figure 3.5: Spatial relation between precipitation and landslides. Left: Cumulative relative fre-
quency. Right: Histogram of the number of pixels per class compared to the landslide density per
class.

Landslides triggered by rainfall are associated either to extreme events (unusual pre-
cipitation) or long duration precipitation period. By analysing the difference in the cu-
mulative relative frequency of the landslides and the precipitation variable (figure 3.5);
we clearly observe a negative spatial association for areas with low precipitation (< 0.07
mm/h)(figure 3.5).On the other hand, the landslide density per class show a bimodal dis-
tribution with higher densities around 0.07 mm/h and above 0.15 mm/h This binomial
distribution is a complex to interpret. It is possible to expect association between land-
slides density and precipitations (Wieczorek & Guzzetti, 1999; Dai & Lee, 2001; Saito et al.
, 2010) and the higher densities for precipitations above 0.15 mm/h would be reflect his
association. However, the peak at 0.07 mm/h is more difficult to interpret and suggest
that other factors need to be taken into account.
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3.4 Distance to a glacier

The study area is characterized by the presence of a significant number of glacial areas not
only in the Pamir but also in the Tien Shan covering the north and east part of the area
permanently. Glacial dynamic gives a unique characteristic in regarding geomorphol-
ogy and surface processes. In order to introduce this factor in the model, The Randolph
Glacier Inventory (RGI) was used.

The RGI is a global inventory of glacier outlines as part of the Global Land Ice Mea-
surement from Space initiative (GLIMS). The outlines of glaciers intended to represent
how the world’s glaciers were, near the beginning of the 21st century. The dataset claims
a high priority in the completeness of coverage rather than accuracy in dating, delin-
eation, and georeferencing. However, the 2017 product (used for this project) present a
lot of improvements concerning spatial and thematic consistency. The inventory is avail-
able for different parts of the world. For Central Asia, the database was created as a
compilation of different datasets created by T Bolch (n.d.); Guo et al. (2015); Nuimura
et al. (2015); Shi et al. (2009); Raup et al. (2000); Kutuzov & Shahgedanova (2009); Kriegel
et al. (2013), as well as manually mapping and semi-automatic delimitation from ASTER
and Landsat images.

Figure 3.6: Map of the distance from the the present day glaciers calculated from on the GLIMS
inventory .
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Figure 3.7: Spatial relation between the glacier areas and landslides. Left: Cumulative relative
frequency. Right: Histogram of the number of pixels per class compared to the landslide density
per class.

The glacier contours from the RGI are rasterized with a pixel size of 30 meters. Then, a
calculation of the Euclidean distance from every pixel to the glaciates areas is performed
to obtain the minimun distance to a glacier (figure 3.6).

Glaciers have a strong influence in the development of the landscape as well as in
the erosional and slope processes. They are located in the Pamir and Tien Shan and its
influence decrease to the south-west (figure 3.6). Glacier distance as a triggering factor is
associated with the increasing of water supply to the soil during the melting season, that
leads to mass wasting like landslides or flows because of the saturation of the materials.
Another influence is related to the degree of fracturing of the rocks due to gelifraction
and the lack of vegetation to give support the outcrops where rock falls or flow can be
triggered. Also, moraine deposits are not mapped in the lithological information, but
they are unconsolidated materials where big landslide can occur (Korup & Tweed, 2007).

A strong positive spatial association exists between the landslides occurrence and the
distance to the glacier areas (figure 3.7), that decreases to a negative spatial association
with the increase in distance.

3.5 Distance to channel

The global 1-arc second (30m) SRTM (Shuttle Radar Topography Mission) digital eleva-
tion model is used to create the hydrological information as well as the geomorphological
parameters.

The Shuttle Radar Topography Mission (SRTM) was a project launched in 2000 to ac-
quire radar data which were used to create a global land elevation dataset. Two sensors
collected the information; the first one a SIR-C band Spaceborne Imaging Radar with
a Wavelength of 5.6 cm from National Aeronautics and Space Administration (NASA)
(2000) and the second a X-Band Synthetic Aperture Radar (X-SAR) from German Aerospace
Center (DLR), Italian Space Agency (ASI) (2000) in order to collect interferometric radar
data, which compares two radar signals taken at slightly different angle but at the same
time to calculate the surface elevation.
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The mission was orbiting the earth 16 times each day for 11 days. In total, the mis-
sion completed 176 orbits of which 159 were used for operational mapping and also col-
lected rada data successfully, over 80% of the Earth’s land surface between 60�north and
56�south latitude. The mission offers three types of data products: SRTM Non-Void filled,
SRTM Void Filled and SRTM 1 Arc-Second Global elevation data. The last product is the
one used for producing geomorphological data during this research (National Aeronau-
tics and Space Administration (NASA), 2000).

The digital elevation model (DEM) is provided in geographic coordinates with a
WGS84 Datum; a horizontal spacing of 1 arcsec that corresponds approximately to 30m
of resolution. The vertical elevation is given in meters and WGS84 is used as vertical
datum too; this means that ellipsoidal heights are provided. The required horizontal ac-
curacy is 20m (90%). The errors in the horizontal accuracy are related to uncertainties
in the antenna position and from the interferometric phase process; but no displacement
higher than 20 m are reported (Rabus et al. , 2003).

Figure 3.8: Map of the distance to channel calculated based on the DEM using TecGEMS.

The absolute vertical accuracy is related to the error budget throughout the entire
mission and it is calculated in 16m (90%). Initially, it was expected that only a slow vari-
ation of drift of the radar and the start trackers contribute to the vertical error; however,
during the calibration phase, it was recognized that those variations affected more than
expected. Because these variations are not linear, alternative strategies are currently be-
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ing investigated to reduce the error. The vertical relative accuracy is set as 6m (90%)
within a 225x225 km area. It is assumed that the user can easily correct the interest area
by adding a single corrective height value; however, this requirement can only be met
with little margin (Rabus et al. , 2003).

The drainage system is extracted from the DEM using TecGEMS 0.4.2 (Andreani et al.
, 2018). The network extraction process starts with the implementation of a pit filling
algorithm as a correction procedure to the DEM to avoid the existence of pixels of group
pixels surrounded by cells with larger values. Then, the flow direction and the iden-
tification of flat areas is performed by calculating the difference between the high cells
surrounding a pixel. To compute the flow direction in the flat areas, a medial axis algo-
rithm is used and then, the medial axes are connected to the outlets to resolve the flow
directions and create the flow direction raster. Based on the flow direction raster, the flow
accumulation is calculated and it is used to create the flow paths. Build on the number of
connecting nodes, the Strahler orders are assigned and the final river network is created.

Streams were identified using a minimum contributing area of 50km2 and a minimum
length of 50 km, in order to obtain the main rivers and their largest tributaries and avoid
high Strahler order information. Euclidean distance is calculated from each main river
(figure 3.8).

Figure 3.9: Spatial relation between the distance to river channel and landslides. Left: Cumulative
relative frequency. Right: Histogram of the number of pixels per class compared to the landslide
density per class.

The cumulative relative frequency diagram shows a very week positive spatial associ-
ation to the distance to a river channel and the landslide occurrence (figure 3.9) that start
to decrease at 10 km. On the other hand, before 10 km, the landslide density is slightly
higher; however, the peak is reached at 20 km where a crucial number of landslides are
mapped. After this distance, the influence of the river dynamic is considered as non-
significant.
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3.6 Elevation Above Channel

The same river network extracted from the DEM using TecGEMS for the calculation of
the distance to river is used as a data source.

The elevation above the channel is calculated as the difference in elevation between
each pixel an their nearest stream (equation 3.2). The variable is presented as a better
approach to relate the river network to the morphology.

ElevationAboveChannel = hpixel � hnearestStream (3.2)

The elevation above the channel seeks to understand the spatial relation of the slope
in terms of elevation. The higher values represent the ridges, while the lowest values are
associated to flat areas or the bottom of the valleys. The maximum value in the area is
3983 m; reflecting the maximum depth of some of the major valleys (figure 3.10).

Figure 3.10: Map of the elevation above the channel calculated based on the river network extracte
from the DEM.

A strong negative spatial association is presented between the elevation above the
channel and the landslide occurrence until 700 m (figure 3.11). On the other hand, the
landslide density present a peak at 1300 m (figure 3.11) and the landslide density re-
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mains high (above 1) until 2500 m. This means that landslides are predominant in the
upper part of the valleys above 700m.

Figure 3.11: Spatial relation between elevation above the channel and landslides. Left: Cumu-
lative relative frequency. Right: Histogram of the number of pixels per class compared to the
landslide density per class.

3.7 Topographic Wetness Index

A DEM is used as a data source to compute the topographic wetness index. It is calcu-
lated as the ratio of the natural log of the specific catchment area (contributing area) to
the slope (refeq:TWI) where a is the local upslope area draining through a certain point
per unit contour length and tan b is the local slope calculated from the DEM.

TWI = ln
a

tan b
(3.3)

Figure 3.12: Spatial relation between TWI and landslides. Left: Cumulative relative frequency.
Right: Histogram of the number of pixels per class compared to the landslide density per class.

The topographic wetness index describes the influence of the topography and the
river system on a slope. It describes the potential saturation of an area based on the slope
characteristics and the river network. High values are located in the Tadjik depression
mainly associated with the fluvial plains of the main rivers as well as the lakes and river
channels; while low values are located in the mountainous areas (figure 3.13). The inter-
mediate values (around 50) are associated with the rivers and gullies in the mountainous
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areas.

Figure 3.13: Map of the topographic wetness index calculated based on the river network extracte
from the DEM.

There is a positive spatial association for TWI values below 40 and the landslide oc-
currence. For values above 20, the landslide density remains low (figure 3.12). The low
values of TWI are related to hillslopes and upper channels where the landslides area
mainly located.

3.8 Normalized difference vegetation index

The normalized difference vegetation index (NDVI) is a transformation of the spectral
signature calculated based on band math between the Near Infra-red and the Red band
(equation (3.4)). It is obtained from the processing of the selected Landsat images. First,
the NDVI is calculated using a Python 3.0 script for every single image, and then the re-
sults are merged using histogram matching in the borders to obtain a continuous single
image for the area using ENVI.

NDVI =
NIR � Red
NIR + Red

(3.4)
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The Landsat 8 was launched on February 11, 2013. It is a spatial satellite mission fo-
cused on the collection of high resolution multi spectral data of the Earth’s surface on a
global range. The Landsat 8 carries two instruments: The Operational Land Imager (OLI)
and the Thermal Infrared Sensor (TIRS). The Landsat 8 OLI Multispectral bands have a
pixel size of 30 meters. It has nine bands with spectral resolution as 433 nm in Band 1
and is described as the Coastal Aerosol band. The second, third and fourth are the cor-
responding Blue, Green, Red band with the spectral value in the range of 482, 562 and
655 nm respectively. The fifth band is the Near-Infrared (NIR) band (865 nm), while the
Short Wavelength infrareds (SWIR1 - SWIR2) are assigned to the sixth and seventh band.
The Panchromatic band with the center in 590 nm corresponds to the eight band while the
last band corresponds to the Cirrus with center in 1375 nm (U.S. Geological Survey, 2015).

The Landsat 8 OLI/TIRS Level-2 data products - Surface reflectance provides an es-
timate of the surface spectral reflectance as it would be measured at ground level in the
absence of atmospheric scattering or absorption. They are generated at the Earth Re-
sources Observation and Science (EROS) Center with a spatial resolution of 30 meters
(U.S. Geological Survey, 2015).

Figure 3.14: Map of the distribution of the values of NDVI multiply by 100 calculated based on
Landsat 8 images.
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The area of study is covered by sixteen images in the paths 152, 153, 154 and 155 and
rows from 32 to 35. The months of July and August 2017 are selected based on the low
cloud cover in most of the area; however, some areas from Tien Shan are analysed based
on images taken in the same period of time but in 2016.

The NDVI values are used to identify areas with vegetation, soil predominance or
rock exposure. Based on the spectral signature of the materials, it is possible to discrimi-
nate water because it is characterized for a decreasing signature from the red to the NIR
band, corresponding to very negative values in the NDVI (lower than -0.25). Snow and
ice because they have similar values in the NIR and the Red band, with the NIR being
slightly lower, that is why the NDVI for those materials is close to -0.04. On the other
hand, the soil reflectance increases with the increase of the wavelength and the values
in the NIR and the red band are similar. However, the red band reflectance is slightly
slower, resulting in values near to 0.025. Higher values of NDVI represent the vegeta-
tion, because of the absorption of the chlorophyll of the leaves and the high reflectance
of the vegetation in the NIR.

Values between 2.5 to 20 (0.025 to 0.2 NDVI) can be associated with soil coverage
or no vegetation presence. Those values predominate in the South of the Panj river in
the Tadjik basin along with the Zarafshon valley. Also, the surrounding of the Gissar
range and the ranges inside the Tadjik basin are characterized by a predominance of
the positive lower values(figure 3.14). NDVI values between 20 to 30 (0.2 to 0.3) are
identified as grassland areas and are mainly located in the mountain ranges, except for
some areas in the surrounding of the glaciers or local areas. Also, low density crops are
enhance in the Tadjik basin. The higher values of NDVI represent dense vegetation and
the abundance is limited in the area. The landslide density increase increases rapidly for
the positive values, however an association between the NDVI values and the landslides
is very weak (figure 3.15)

Figure 3.15: Histogram of the number of pixels in the NDVI classes compared to the landslide
density per class.
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3.9 Slope

The most common used derivative from a DEM is the slope that is calculated as the
maximum change in elevation over the distance between the cell and its eight neighbours
based on the equation 3.6.

Slope = ATAN

s

[
dz
dx

]2 + [
dz
dy

]2 (3.5)

where,

[
dz
dx

] =
(c + 2 f + i)� (a + 2d + g)

8 ⇤ cellsize
, [

dz
dy

] =
(g + 2h + i)� (a + 2b + c)

8 ⇤ cellsize
(3.6)

Being e the pixel of interest and a, b, c, the upper neighbours, d, e the lateral neigh-
bours and g, h, i the down neighbours.

The slope angle and the landslides present a strong negative spatial correlation based
on the analysis of the cumulative relative frequency. The lower the slope angle, the fewer
the associated landslides. On the other hand, based on the landslide density (figure 3.16),
it starts increasing after 40�until it reaches a peak near to 90�. This peak is an artefact
created by the landslide catalogue. Because to represent the instability conditions, the
depletion zone was selected, the actual slope is higher than the original slope when the
landslide occurred. This peak doesn’t represent the original conditions of slope.

Figure 3.16: Spatial relation between the slope and landslides. Left: Cumulative relative fre-
quency. Right: Histogram of the number of pixels per class compared to the landslide density per
class.
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Figure 3.17: Map of the distribution of the slopes.

3.10 Aspect

The aspect is defined as the downslope direction of the maximum rate of change in value
from each cell to its neighbours. It is usually interpreted as the slope direction and is mea-
sured clockwise in degrees from 0 (North) to 360 (again North). It is calculated applying
the equation 3.7; where [ dz

dx ] and [ dz
dy ] are calculated in the same way as for the Slope.

Aspect =
180
P

⇤ ATAN2([
dz
dy

],�[
dz
dx

]) (3.7)

The aspect reveals patterns related to the orientation of the slope and common char-
acteristics like sun exposure, wind impact or structural controls where preference planes
of erosion are created (figure 3.18). The most common orientation of the slopes is N-NE;
followed by orientations S-SW; however, those orientation present a low landslide den-
sity; in contrast, orientation S-SE are characterized by a high landslide density as well as
those NW-N (figure 3.19). On the other hand, the spatial correlation between the slopes
orientation and the landslide occurrence is almost null, from where is possible to con-
clude that there is not a preference slope orientation where landslides tend to occur more
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frequently than others in the study area.

Figure 3.18: Map of the distribution of the orientation of the slopes (Aspect).

Figure 3.19: Spatial correlation between the Aspect and landslides. Left: Cumulative relative
frequency. Right: Histogram of the number of pixels per class compared to the landslide density
per class.
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3.11 Surface Roughness

The surface roughness (Smith, 2014) is expressed as the ratio between the relief (TS =
Topographic surface) and a flat surface (FS = Flat surface) as it is given by equation 3.8
(Shahzad & Gloaguen, 2011). SR is commonly used to describe landslide activity because
it is related to both landslide mechanics and features (Grohmann et al. , 2009). The SR
values are close to 1 for flat areas and increase rapidly as the real surface becomes irreg-
ular (more dissected by the drainage network). A kernel size of 1000m is used, to have a
smaller detail in the information regarding the surface of the slopes.

SR =
TS
FS

(3.8)

The surface roughness exhibit a strong negative spatial association for low values as
it is shown in the figure 3.21. However, for values higher than 1.2, the landslide density
is constantly higher, until reach a peak at 1.9.

Figure 3.20: Map of the distribution of the elevation relief ratio.

The surface roughness enhances the areas that differ from a flat surface. Higher val-
ues of SR are associated in small scale to landslides areas because of the deformation of
the terrain caused by the material movement, whereas, for large scales, it is related to
erosive surfaces. The area is characterized by high surface roughness in the Panj river
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Figure 3.21: Spatial correlation between the SR and landslides. Left: Cumulative relative fre-
quency. Right: Histogram of the number of pixels per class compared to the landslide density per
class.

valley as well as in the south of the Zaravshan valley in the western zone of the Tien
Shan. Also, the source area of the Zaravshan river is enhanced by high values in the SR
(figure 3.20).

3.12 Elevation Relief Ratio

The elevation relief ratio (Pike & Wilson, 1971; Strahler, 1952; Schumm, 1956) is consid-
ered as an indicator of the cycle of erosion, defined as the total time required for a land-
scape to reach the base level. It allows discriminating between areas that are considered
stable or unstable in terms of landscape evolution. The elevation relief ratio (ERR) ex-
press the relative portion of upland to lowland areas, and it is calculated as it is shown in
equation 3.9 based on the height values (h). High values of the ERR are possibly related
to young active tectonic areas and low values are related to older landscapes that have
been more eroded and less impacted by recent active tectonics. A kernel size of 20000m
is used to the calculation with the aim of understanding regional tectonic influences.

ERR =
h � hmin

hmax � hmin
(3.9)

The lower values of ERR enhance the areas that are considered old landscapes where
just a few erosional processes are involved. Those areas are located in the Tadjik depres-
sion and mainly associated with the flat areas where fluvial deposition is the dominant
process (figure 3.22). Commonly, values between 0.3 to 0.6 (Strahler, 1952) are consid-
ered as stable landscapes, this means that river incision and the slope are adjusted to
each other, so the landscape will not change substantially through time, while values
higher than 0.6 are related to young landscape.

The spatial association between the ERR and the landslide occurrence is negative for
values below 0.45 (figure 3.23) associated to landscape dominated by V-shaped valley
or steep scarps where less landslides occurred. Contrary, values above 0.45 are charac-
terized by a high landslide density and a slightly positive spatial correlation (figure 3.23
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Figure 3.22: Map of the distribution of the elevation relief ratio.

Figure 3.23: Spatial correlation between the ERR and landslides. Left: Cumulative relative fre-
quency. Right: Histogram of the number of pixels per class compared to the landslide density per
class.

because the drainages are entrenched and strong topographic scarps are finding the equi-
librium state. The areas characterize by very high ERR values (> 0.6) are mainly located
in the Pamir areas and represent plateau areas incised by depth rivers like the Panj. The
high of the plateaus decrease to the west from 4500 m. a.s.l to 3000 m a.s.l. A small resid-
ual plateau is identified in the south of the Tien Shan with an average high of 4000 m
a.s.l; however, it is hardly dissected and non-continuous. Values below 0.2 represents flat
areas or very gentle scarps, describing the Tadjik basin.
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3.13 Surface Index

A combination between the SR, ERR and the elevation of the area is proposed by An-
dreani et al. (2014) as surface index. This index map simultaneously preserved and
eroded portions of an elevated landscape because, the elevation relief ratio is sensitive
to elevated surfaces and poorly eroded scarps, while surface roughness identifies areas
with dissection by the drainage network. The computation of the index is presented in
equation 3.10. Positive values of SI are mainly associated with poorly incised surfaces
(landscape characterize by a high hypsometric integral or elevation relief ratio and low
surface roughness), whereas, negative values are associated with dissected landscapes
(high surface roughness).

SI = (
ERR � ERRmin

ERRmax � ERRmin
) + (

h � hmin
hmax � hmin

) + (
SR � SRmin

SRmax � SRmin
) (3.10)

The surface index separates poorly incised surfaces from those characterized by high
dissection. The North and West part of the study area is characterized by a dissected
landscape represented by negative values of SI. The most negative areas are located in
the valley of the Panj river as well as Easter to the source of the Zerafshon river, however,
the more abundant areas present values close to 0. The positive values are associated
with poor incised surfaces located first in the Tadjik basin but also, in the Pamir as well
as in few areas of the Tien Shan (figure 3.25).

Figure 3.24: Spatial correlation between the SI and landslides. Cumulative relative frequency

The negative values close to 0 of SI are strongly negative associated to the landslide
occurrence (figure 3.24); however, below -0.4 a high landslide density is observed (figure
3.26). Similarly, the positive values are characterized by a strong negative association
until 0.03, where a slightly positive association is presented, nevertheless, the positive
values are identified with low landslide density.
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Figure 3.25: Map of the distribution of the surface index.

Figure 3.26: Histogram of the number of pixels per class in the SI compared to the landslide
density per class.
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3.14 Local Relief

The local relief (Ahnert, 1984) is the difference between the highest and the lowest ele-
vation in a specific area (equiation 3.11). In general, the local relief is calculated for a
watershed in order to detect tectonic influences and/or incision. The watershed also can
be defined as kernel areas for large areas. A kernel size of 10000m is used based on the
size watershed of the main rivers like the Panj and the Zeravshan.

LR = hmax � hmin (3.11)

The changes in elevation are shown in the local relief map (figure 3.27). The Tadjik
basin is characterized by a low local relief where small changes in elevation take place.
In contrast, the higher values of local relief are located in the mountain ranges.

Figure 3.27: Map of the distribution of the local relief.

A negative spatial association is presented in the figure 3.28 between low values of
local relief and the landslide distribution. This association remains until values of 1800-
2200m. However, the landslide density start increasing up to 1500 m , reaching a peak in
at 2500 (figure 3.28).
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Figure 3.28: Spatial correlation between the local relief and landslides. Left: Cumulative relative
frequency. Right: Histogram of the number of pixels per class compared to the landslide density
per class.

3.15 Topographic Position Index

The topographic position index (De Reu et al. , 2013; Trentin & de Souza Robaina, 2018)
compares the elevation of each cell in the DEM to the mean elevation of a specified neigh-
bourhood around the cell given a predetermined radius or kernel size (equation 3.12).
The range of the values of TPI depends not only on the elevation differences but also on
the kernel size. Large kernel sizes will reveal major landscape units, while smaller values
highlight smaller features, such as minor valleys and ridges. Positive TPI values indi-
cate that the central point is located higher than its average surroundings, while negative
values indicate a lower position than the average. For the study area, a kernel size of
10000m is used in order to obtain information related to the significant landscape units in
the area.

TPI = hcentralPoint � hsurroundings (3.12)

The TPI enhance the bottom of the valleys with negative values and the peaks with
positive values (figure 3.29). The depth of the major valleys in the Tien Shan and the
Pamir are similar. Also using the TPI is possible to identify areas of discharge when the
depth of the valley change. It is evident in the south-east of the area; where three main
tributaries create an shallower intra-mountainous basin. The values near 0 dominate
the area, where very low landslide density is associated. A bimodal distribution of the
landslide density is observed (figure 3.30). Characterized by a negative association for
values near to 0 until -300 and 800 (figure 3.31), where the maximum landslide density is
reached. This indicate that the landslides tends to occur either in the bottom of the valley
or near the top of the ridges.
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Figure 3.29: Map of the distribution of the topographic position index values.

Figure 3.30: Histogram of the number of pixels per class in the TPI compared to the landslide
density per class.
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Figure 3.31: Spatial correlation between the TPI and landslides. Cumulative relative frequency

3.16 EigenValues

The eigenValues is an approach to analyse the curvature of an image (Frangi et al. , 1998)
and it has been extrapolated to the landscape. It is calculated based on the Hessian ma-
trix, a 2x2 matrix composed of the second partial derivatives of the elevation values.
The calculation is made based on a convolution with derivatives of a Gaussian filter at
a scale s. The result is a matrix with the principal directions in which the curvature of
the landscape can be decomposed and its magnitudes represented by the eigenvectors
|l1|  |l2|. For the implementation in geomorphology, the l2 is used since the mag-
nitude increase as the local curvature of the feature increase and topographic features
without a preferential direction will have low magnitudes.

Figure 3.32: Spatial correlation between the EigenValues and landslides. Cumulative relative
frequency

The Eigenvalues allows to discriminate the ridges in negative values (negative curva-
ture) and the bottom of the valley with positive values (positive curvature) (figure 3.33).
The higher the curvature, the more extreme the value will be. Values close to 0 represent

Page 58



Landslide hazard in Central Asia Chapter 3. INSTABILITY FACTORS

low curvatures.

A strong negative spatial association is observed for the negative values above -
0.0002, meaning that wide ridges are less associated to the landslide occurrence (fig-
ure 3.32). The positive values are strongly negative spatial associated for values below
0.00005 and a slightly positive association is observed for the value above characterized
by a slightly positive landslide density (figure 3.34).

Figure 3.33: Map of the distribution of the Eigenvalues.
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Figure 3.34: Histogram of the number of pixels per class in the EigenValues compared to the
landslide density per class.

3.17 Distance to fault

A reliable catalogue of active faults was created as part of the Central Asia Fault Database
(CAFD) from Eberhard Karls Universität Tübingen and the University of Montana. The
catalogue includes in total 1196 faults with detailed information and references.

The source of the information is a collection of previously published literature and
databases in the area. One of the primary sources for this database is the HimaTibetMap
which is an open-source digital database of active faults located in the Indo-Asia collision
zone. It is created based on field observations and interpretations of satellite images and
global digital topography.

The CAFD is considered as a database with high thematic accuracy and consistency;
based on the fact that the data collection includes fieldwork. Also, the data has a high
completeness because first, part of the information was collected by field work and sec-
ond, each fault contains relevant information like fault name, sense of movement, refer-
ences and variations in fault name or location if they exist. The authors claim that the
fault spatial accuracy depends on the scale of observation used in previous investiga-
tions.

The CAFD catalogue is improved using a digitalization of the faults from the paper
maps (Federal State Budgetary Institution A.P. Karpinsky Russian Geological Research
Institute (FGUP VSEGEI), 2018) provided by Ratschbacher (2018 - personal communica-
tion). The faults are rasterized using a 30 meters pixel-based and the Euclidean distance
from each fault to the pixels in the raster is calculated.

A crucial concentration of landslides is identified in the valley of the Zerafshon where
a large number of active faults are located. On the other hand, small but abundant land-
slides are located along the Girssar-Kokshal Fault and the Vakhsh Trust System (figure
3.35). Finally, the Darvaz Fault, another of the most essential thrust system in the area
is surrounded by small landslides. The remaining thrust systems in the Parmir are not
associated with landslide occurrence. Nevertheless this can be interpreted as a limitation
of the catalogue rather than the lack of mass wasting.
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Figure 3.35: Map of the distribution of the distance to faults in the area and the size of the land-
slides.

Figure 3.36: Spatial correlation between the Fault distance and landslides. Left: Cumulative
relative frequency. Right: Histogram of the number of pixels per class compared to the landslide
density per class.

There is a strong positive spatial association between the distance to a fault and the
landslides (figure 3.36) that start decreasing in less than 10km, but remains slightly posi-
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tive until the farthest point. In terms of landslide density, areas located in less than 10km
from faults have a high landslide density. Another smaller peak is observed for areas
between 25 and 35 km .

3.18 Seimozones

The area of study is considered as one of the most active areas in terms of seismicity in
the world; however, it is a lack of instrumentation like accelerometers that allows the
calculation of the peak ground acceleration(PGA); the ideal parameter to analyse how
shaking during an earthquake affect the materials in the surface; however, probabilistic
seismic hazard assessment studies are another source to obtain PGA. The Global Seismic
Hazard Assessment Program (GSHAP) was launched in 1992 by the International Litho-
sphere Program (ILP) with the support of the International Council of Scientific Unions
(ICSU) in order to mitigate the risk associated with the earthquakes events. The area of
study is included in the Northern Eurasia region and the seismic hazard assessment was
performed by Ulomov et al. (1999). The expected peak ground acceleration with 10%
of exceedance probability in 50 years was computed in terms of expected Medvedev-
Sponheuer-Karnik scale (MSK) intensity and then transformed to PGA by an empirical
relationship. The results of the GSHAP project are coarse an even though site approach
methodology has been implemented in order to improve the results (Bindi et al. , 2012)
they do not cover with consistency the whole area of study. However, the Earthquake
Model Central Asia (EMCA) project, created an update earthquake catalogue used to im-
prove the GSHAP. The earthquake catalogue (Natalya Mikhailova, 2015), as well as the
seismozones used to improve the GSHAP (Shahid Ullah, 2015) are available as shapefiles.

The EMCA project computed seismozones in the area in order to improve the earth-
quake susceptibility assessment. The seismozones are characterized for the presence of
unique earthquake conditions not only related to the seismo sources but also to the earth-
quakes associated with them. 14 of those seismozones cover the area; however, most of
them are characterized by very low to not landslide density. All the seismo zones are
related to active shallow crust tectonic regiment; however, the maximum magnitude ex-
pected for the areas 3 (Tien Shan) and 2 (South-east corner) are higher than the expected
from the rest of the area. In term of depth of the associated earthquakes, some deep earth-
quakes are located in the seismozones 2, 5 and 12 in the south-east of the area, as well as
the predominance of intermediate earthquakes.

On the other hand, the north of the Pamir and the Tien Shan are associated to shallow
earthquakes. The density of earthquakes is also different from each seismozone (figure
3.37). The seismo zone 2, 5 and 12 present the most number of earthquakes, followed by
the seismozones 6 and 14 in the MPT area. Lower earthquake densities are located in the
seismozones 3, 8 and 13, while just few earthquakes are located in the others seismozones.

The seismozones 3, 4, 6 present high landslide density (figure 3.38), however, the sesi-
moszones 13 and 14 are also related to landslides, even though they are from a small size
than the ones located in the area or 6.
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Figure 3.37: Map of the distribution of the seismozones in the area, landslide distribution by size
and earthquake density obtained from the EMCA project.

Figure 3.38: Histogram of the number of pixels per seismozone compared to the landslide density
per class.
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Chapter 4

LANDSLIDE SUSCEPTIBILITY
MODELS

4.1 Introduction

The golden rule in geomorphology is "the present is the key to the past." The law as-
sumes that the effects of geomorphic processes seen in action today can be used to infer
the causes of assumed landscape changes in the past (Huggett, 2016). Similarly, the land-
slide susceptibility models assumed that the landslides are going to occur under similar
conditions to those that occurred in the past.

Landslide susceptibility (LS) is defined as the likelihood of occurrence of a landslide
in an area given certain local conditions (Brabb, 1985). It predicts "where" landslides are
likely to occur (Guzzetti et al. , 2006); however, does not consider "when" or "how fre-
quently" and nor the magnitude of the expected landslide. Mathematically, LS can be
defined as the probability of spatial occurrence of slope failure basis on certain condi-
tions (Chung et al. , 1999).

Before the selection of the landslide susceptibility model, the choice of an appropri-
ate terrain subdivision or mapping unit is mandatory to obtain a successful result. The
mapping unit can be selected based on different criteria. It can be pixels size, slope units
or unique conditions(Reichenbach et al. , 2018).

Pixels or grid cells are the most common mapping unit reported in the literature be-
cause they are simple to process at all geographical scales as well as the availability of
GIS software to transform vector data to raster and manipulate them. However, land-
slide’s shapes differ a lot from a square grid cell. Additionally, the different parameters
of the landscape that are related to landslide occurrence are representative at different
scales, hence, coarser or finer pixel size. On the other hand, potential statistical problems
could be associated with the percentage of area covered by landslides vs the area without
landslides, as well as, the difficulty in interpreting some results that predict stable pixels
surrounded by unstable pixels (Reichenbach et al. , 2018).

Slope units are a partition of the territory into hydrological regions bounded by drainage
and divided lines (Carrara et al. , 1991). Because landslides occur primary on slopes, this
mapping unit results suitable to understand the processes that interact to trigger a land-
slide or a group of landslide in a detailed way. The size of the slope will be determined
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by the type and size of landslide, being particularly relevant for the morphometric vari-
ables. Thereby, the presence of landslides is described using the overall geometry of a
slope and allows the use of very detailed DEM and their derivatives. However, even the
slopes are easy to identify in the field as well as in topographic maps, they are difficult to
discriminate, particularly for large areas (Reichenbach et al. , 2018).

Unique conditions units are obtained by intersecting all the thematic variables consid-
ering important for the susceptibility modelling by a simple operation in GIS software.
They were adopted primarily by investigators that used Bayesian approaches to model
landslide susceptibility based on the simplicity of its calculation; however, a larger num-
ber of terrain units reduces the size of the units, and their representativeness for land-
slide susceptibility, creating some challenges in the overlying process based on the need
to avoid many units of very small size. This process is challenging because of the need to
classify the continued variables into reasonably numbered classes along with vector data
having many small polygons and digitalization errors.

Figure 4.1: Horizontal bar chart showing the count of 19 model types classes used to group the
163 model names given by the authors in the literature database. Darker colours indicate a large
number of single models in the group. source: Reichenbach et al. (2018).

Several approaches have been proposed for modelling landslide susceptibility and
they are independent to the mapping unit selected. Three main groups of methods can
be identified, the first is the heuristic method, based on the geomorphological expert deci-
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sion and assigning of lever of susceptibility (Barredo et al. , 2000); Secondly, Qualitative or
semi-qualitative methods that combine thematic layers using decision support tools with
approaches like analytical hierarchy process (AHP) (Kayastha et al. , 2013; Pourghasemi
et al. , 2012; Boroumandi et al. , 2015; Yalcin et al. , 2011) , weighted linear combination
model (Akgun et al. , 2008) or Multi-criteria decision (MCDA) (Akgun, 2012). The third
and bigger group is the deterministic method that is based on mathematical modelling
and includes statistical approaches as well as machine learning.

During this study, statistically-based approaches are adopted. The statistical approaches
are indirect methods and based partly on the field observations and expert knowledge
and partly on statistical computation. The computations determine the importance of
a factor based on the observed relationship with landslides as well as assign weight or
probabilities of occurrence of a landslide (Regmi et al. , 2010). The most common methods
for landslide susceptibility modeling include logistic regression, neural network analy-
sis, data-overlay, index-based and weight of evidence analysis. Reichenbach et al. (2018)
based on a literature review analysis, determined that the most commonly used method
is logistic regression with an important increase since 2005.

A general methodology for the landslide susceptibility assessment consist in: 1) the
data collection of the landslide catalogue and the thematic variables ,2) data preparation
according to the landslide model to be implemented and 3) the implementation of the
model.It is essential to define the type of data required (discrete or continuous) and to
differentiate between the training data set and the validation data set. After that, the
implementation of each landslide susceptibility model is performed based on their indi-
vidual workflows. Finally, the model is evaluated and discussed (figure 4.2).

Figure 4.2: General workflow of the landslide susceptibility assessment.

Page 66



Landslide hazard in Central Asia Chapter 4. LANDSLIDE SUSCEPTIBILITY MODELS

4.2 Data Preparation

4.2.1 Preparation of training and validation data set

The training and validation data are obtained from the landslide catalogue. First, the
polygons are rasterized using a pixel’s size of 30 meters with a unique id per landslide.
Second, the upper pixels of each landslide are since the interest of the study is the char-
acteristics of the source area rather than the depletion zone. This method warranty that
the training and the validation information correspond to the instability conditions.

The validation of the resulting landslide susceptibility model is made based on an
independent dataset from the data used to compute it; however, an independent dataset
is not available for the area. To overcome this difficulty, the landslide catalogue is di-
vided into two datasets using a random selection method. 70% of the landslides in the
catalogue are used as training points to perform the models; while, the remaining 30%
is designated as validation points and is used in the calculation of the receiver operating
characteristic curve (ROC) and the area under the curve (AUC). It is important to point,
that even though a single landslide can be represented by more than 1 pixel; the random
selection is made based on unique labels for each landslide in order to avoid multiple
sampling of the same landslides and introduce biases.

Additionally, the logistic regression and the random forest approaches required pix-
els without landslides to be included in the training dataset. For this purpose, a random
selection of a number of pixels equal to the number of pixels with landslides among the
unaffected areas is made.

4.2.2 Preparation of thematic variables

In order to prepare the different variables to the requirements of the landslide suscepti-
bility approaches, two main pre-processing must be done. The first one is the discretiza-
tion of the continuous variables for the implementation of the weight of evidence (WOE)
approach; while, for the logistic regression (LR) and random forest approaches (RF), a
normalization and binarization of the variables are needed.

4.2.2.1 Discretization

Discretization of continuous variables is a difficult and tricky procedure because of the
introduction of bias or overfitting parameters in the model. In most of the literature
where the WOE method is implemented, the categorization of continuous values like
those derivatives from DEM, are made based on expert knowledge; however, (Regmi et al.
, 2010) proposed the identification of breaking point based on the variation in weight con-
trast values (equation 4.12) within the variables. Nevertheless, one of the methodological
problems of the WOE is the performance when a very few pixels of landslides are present
in a given variable class. This problem was faced by (Regmi et al. , 2010), assigning a zero
weighted value to the class or combine the class with other classes; a methodology that
increases the processing time. In order to avoid the existence of very few pixels or land-
slides per variable class; an alternative classification based on an equal number of pixels
per class is implemented and compare with the results of the last two approaches.
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4.2.2.2 Binarization

For LR and RF; the landslide catalogue is used as a dependent variable, taking values
between 0 to 1; where 0 is an absence of landslide and 1 represents presence. However,
before relating the dependent variable to the independent variables; a normalization of
all thematic variables in the range of -1 to 1 is performed.

The categorical data (lithology) is transformed to a continues variable based on the
weights obtained from the WOE analyse, and then, standardized as the other continuous
variable. This procedure aims to decrease computation power and number of inputs.
Otherwise, a single input should be created per lithological category.

4.3 Model evaluation

There are many approaches to evaluate the performance of a model. Success and predic-
tion rate curves, contingency table and receiver operating characteristic curve (ROC) and
the area under the curve (AUC) are some examples. In order to use a single approach to
evaluate all the methods implemented for the calculation of the landslide susceptibility,
the ROC curve, and the AUC are selected.

The ROC curve measures the goodness of the model prediction. It is a plot of the
True Positive rate (TPR) and the False Positive rate (FPR) calculated by cross-tabulation;
where

TPR =
TP

TP + FN

and corresponds to the proportion of positive data point that are correctly consider as
positive, while,

FPR =
FP

FP + TN

corresponds to the proportion of negative data points that are mistakenly considered
as positive.

The AUC of the ROC varies from 0.5 (diagonal line) to 1. Values near to 1 indicate a
better predictive capability of the model, while, values less than 0.7 indicate poor predic-
tive ability.

In order to understand the variability of the model. 50/100 predictions are imple-
mented using different training and validation dataset. Also, the standard deviation of
the results is analyse to detect overfitting in the results.
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4.4 Weight of evidence

4.4.1 Method

The Weight of evidence (WOE) is a non-linear statistical technique based on the log-linear
form of the Bayesian probability model (Bonham-Carter, 1994). This method has been ap-
plied extensively in geology not only for the landslide susceptibility analysis but also to
assess mineral potentials areas, prediction of the location of flowing wells and groundwa-
ter springs, and to determine the spatial association between mapping cliff instabilities
associated with land subsidence (Regmi et al. , 2010; Lee et al. , 2002; Armaş, 2012; Tseng
et al. , 2015, e.g.,).

For mapping susceptibility areas related to landslides, the WOE method calculates
the weight for each causative factor of landslides based on the presence or absence of
landslides within the area. This method assumes that future landslides will occur under
similar conditions to those contributing to previous landslides as well as those causative
factors remain constant over time.

Figure 4.3: Relation between landslides and factors used in WOE. The Venn diagrams illustrate
the presence and absence of a factor(s) in relation to the landslidessource: (Regmi et al. , 2010)

The WOE is based on the calculation of prior (unconditional) probability and pos-
terior (conditional) probability. The prior probability is the probability of an event; It is
determined by the same type of events that occurred in the past for a given period. Con-
cerning to landslides, this can be determined by taking the ratio of the landslides in the
area. The prior probability can be modified using other sources of information or evi-
dence like the thematic variable. This revised probability of past events, based on new
evidence, is called posterior probability, that is defined as the probability of occurrence of
landslides based on a specific factor. The figure 4.3 illustrate the relationships between
landslides and factors used to the calculation of the WOE.

The implementation of WOE to calculate landslides susceptibility taking into account
multiple variables is explained by (Regmi et al. , 2010). First, the conditional probability
of occurrence of a landslide given the presence of a certain factor (PL|F) is defined by the
equation 4.1.
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P{L|F} =
P{L \ F}

P{F} (4.1)

Similarly, the conditional probability of existence of a factor where a landslide occur
is express as (PF|L) (equation 4.2)

P{F|L} =
P{L \ F}

P{F} (4.2)

Because the equations 4.1 and 4.2 are the same, the conditional (posterior) probability
of a landslides, given the presence of the factor can be determined as:

P{L|F} = P{L}P{F|L}
P{F} (4.3)

This model can be also expressed in terms of odds (
P

1 � P
) as the equation 4.4 :

O{L} =
Probabilitythataneventwilloccur

Probabilitythataneventwillnotoccur
=

P{L}
1 � P{L} =

P{L}
{L}

(4.4)

Likewise,

O{L|F} =
P{L|F}

1 � P{L|F} =
P{L|F}
{L|F}

(4.5)

Dividing both sides of the equation 4.3 by P{L|F}

P{L|F}
P{L|F}

=
P{L}P{F|L}
P{L|F}P{F}

(4.6)

Similar to equation 4.1 and equation 4.3, the conditional probability for the absence
of landslides given a factor is:

P{L|F} =
P{L \ F}

P{F} =
P{F|L}P{L}

P{F} (4.7)

Substituting the value of P{L|F} (equation 4.7) in the right side of the equation 4.6,
produces:

P{L|F}
P{L|F}

=
P{L}P{F|L}
P{L}P{F|L}

(4.8)

Finally, from equations 4.4, 4.5 and 4.8, the odds of presence of a landslides given the
presence of a factor F is:

O{L|F} = O{L}P{F|L}
P{F|L}

(4.9)

Based on the previous calculations, it is possible to calculate the likelihood ratios LS
(sufficiency ratio) and LN (necessity ratio). For the WOE model, the logarithm of these
ratios corresponds to the positive and negative weights as it is express in equations 4.10
and 4.11.
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W+ = loge(LS) = loge
P{F|L}
P{F|L}

(4.10)

W� = loge(LN) = loge
P{L|L}
P{F|L}

(4.11)

The pattern is positively correlated if the LS value is greater than 1 (W+ = positive)
and LN ranges from 0 to 1 (W- = negative), on the other hand, if the patter is negatively
correlated, LN would be greater than 1 (W- = positive) and LS range from 0 to 1 (W+
= negative). When LS = LN = 1 (W+ = W- = 0), the patter is uncorrelated with land-
slides and the posterior probability would be equal to the prior probability, that means
the probability of a landslide is unaffected by the presence or absence of the factor.

Additionally, the contrast factor is calculated based on the results of the equations
4.10 and 4.11 for each class in the factor (equation 4.12). The contrast factor quantifies
the spatial association between each class of a factor and the occurrence of landslides.
Positive values of Wc represent positive associations between the class and the landslides
occurrence, while, negative values are associated with a negative association between
the class and the landslide pattern. Wc = 0 means that the influence of the class in the
landslides occurrence is given due to chance.

Cw = W+ � W� (4.12)

In order to include more than one factor in the model, a combination of weights of
all the factors is needed. Based on the Bayes’ theorem, the combination is plausible if the
factors F1 and F2 are conditionally independent and it is given by the equation 4.13.

P{L|F1 \ F2} =
P{F1 \ F2|L}P{L}

P{F1 \ F2} (4.13)

If F1 and F2 are conditionally independent, then:

P{F1 \ F2|L} = P{F1|L}P{F2|L} (4.14)

Thus, from equations 4.13 and 4.15

P{L|F1 \ F2} = P{L}P{F1|L}P{F2|L}
P(F1)P(F2)

(4.15)

The previous equation can be formulate as well in term off odds (equation ?? and later
in term of likelihood ratios (equation 4.16).

O{L|F1 \ F2} = O{L}P{F1 \ F2|L}
P{F1 \ F2|L}

= O{L}P{F1|L}P{F2|L}
P{F1|L}P{F2|L}

= O{L} ⇤ LS1 ⇤ LS2

Logit{L|F1 \ F2} = Logit{L}+ W+
1 + W+

2 (4.16)
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Finally, a general expression for combining i = 1,2,3 ..., n maps containing data of
factors is

Logit{L|F1 \ F2 \ F1 \ F2 \ ...Fn} = Logit{L}+
n

Â
i=1

W+ (4.17)

Since all the inputs of the model are categorical data(multi-class maps), they contain
several factors (classes) and the presence of one factor, implies the absence of the other
factors of the same input data. Therefore a total weight must be calculated for each factor
(equation 4.18 where WMinTotal is the total of all the negative weights in the input.

Wmap = W+ + WMinTotal � W� (4.18)

4.4.2 Implementation

The implementation of WOE required discrete data as input. The workflow followed to
the implementation is presented in the figure 4.4. First, the calculation of the weighted
values is computed, then a test of statistical independence is performed and finally, dif-
ferent models are computed and evaluated.

Figure 4.4: Workflow followed to the calculation of the landslide susceptibility in the area based
on the weight of evidence approach
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4.4.2.1 Discrete data

Each of the methodologies results in different break points per variable. The first method
is based on the most common breaks points used in the literature, equal interval of values
and experience gained by the analysis of the relation between each of the variables and
the landslide catalogue. The breakpoints are summarized in the table 4.1.

Table 4.1: Breakpoints for each of the variables based on the 3 different approaches

Thematic group Variable Method1 Method2 Method3

Climatic and hydrology Precipitation 0.009 0.009 0.009
0.05 0.092 0.06
0.1 0.116 0.08
0.15 0.157 0.13
0.219 0.219 0.219

Distance to glaciar 0 0 0
25 25 4.3
50 50 6.4
275.8 64 9.4

95 14.6
275.8 275.8

Elevation above channel 0 0 0
200 700 779
400 1700 1003
600 1900 1279
800 2120 1521
4072 4072 4072

Distance to channel 0 0 0
5 5 2.4
10 15.5 4.26
20 49.2 6.88
30 9.7
40 49.2
49.2

TWI 0 0 0
10 17 8
20 44 11
30 99 13
40 16
60 99
99

LandCover NDVI -25 -25 -25
10 -5 13
-5 0 18
2.5 13 26
20 37 40
30 63 100
100 100

Geomorphology Slope 0 0 0
10 18 20
20 58 27
30 83 34
40 43
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Table 4.1: Breakpoints for each of the variables based on the 3 different approaches

Thematic group Variable Method1 Method2 Method3

60 83
83

SR 1 1 1
1.5 1.1 1.15
2 1.5 1.19
2.5 1.9 1.24

2.5 1.33
2.5

ERR 0.042 0.042 0.042
0.53 0.38 0.4
0.45 0.49 0.42
0.6 0.55 0.44
0.75 0.58 0.5

0.61 0.75
0.75

SI -0.73 -0.73 -0.73
-0.5 -0.33 -0.35
-0.2 -0.13 -0.31
0.1 -0.025 -0.25
0.25 0.25 0.25

Local Relief 16 16 16
1000 550 2015
1500 2450 2296
2000 3100 2423
2500 4100 2631
3000 4100
3500
4100

TPI -1261 -1261 -1261
-1000 -500 -216
-750 -30 66
0 120 264
500 760 459
1000 900 1637
1637 1637

EigenValues -0.00045 -0.00045 -0.00045
-0.0002 -0.0002 -0.000137
-0.00005 -0.00007 -0.000088
0 0 -0.000046
0.00005 0.00014 0.0000427
0.0002 0.00019 0.00039
0.00039 0.00039

Tectonic Distance to fault 0 0 0
5 0.5 0.5
10 5 1.4
20 10 3.2
71.64 71.64 5.7

71.64
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The second approach to categorized the variables is based on the methodology fol-
lowed by (Regmi et al. , 2010), whose defined the breakpoints based on the change in the
curves obtained from de variation on weight contrast in the values of the class. This ap-
proach is based on a graphical interpretation of the implementation of the WOE theory
using the whole landslide catalogue. The results are summarize in the figure 4.5.

Figure 4.5: Weight of contrast curve created by the computation of the WOE using the whole
catalogue. Changes in the curvature are selected manually and are used as breakpoints for the
discretization process.

Page 75



Landslide hazard in Central Asia Chapter 4. LANDSLIDE SUSCEPTIBILITY MODELS

The last approach implemented is the selection of the breakspoints based on the num-
ber of landslides. It aims to divide the variable in n number of classes with a similar
number of landslides. This approach seeks to avoid the methodological problem of hav-
ing not enough landslides per class. A graphical representation of the break points and
the values per class against the weight contrast is used. Each of the variables is divided
into 5 classes with an approximately same number of landslides (figure 4.6).

Figure 4.6: Diagram that represent the break points selected by the method of discretization 3.
Green lines represent the range of values per class and its relation to the weight of contrast.
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4.4.2.2 Calculation of weighted values

The calculation of the weighted values for each of the thematic variables is made based
on the equations 4.10 and 4.11. They can be translated in term of number of pixels and
implemented in Python 3 using the equations 4.19 and 4.20; where N1 = Number of
landslide pixels present in the variable class ; N2= Number landslide pixels not present
in the variable class , N3 = Number of landslide pixels with no presence in the variable
class, and, N4 = Number of pixels in which neither landslide nor the variable class is
present.

W+ = loge

N1
N1 + N2

N3
N3 + N4

(4.19)

W� = loge

N2
N1 + N2

N4
N3 + N4

(4.20)

Table 4.2: Weight calculation for each of the thematic variables using the first method of dis-
cretization.

Dataset Class min Class max nPixels nlandslides W+ W- Wc

Slopes
0 18 118680689 6235 -1.44 0.58 -2.02
18 58 112535060 43559 0.56 -1.19 1.75
58 83 1882006 1872 1.50 -0.03 1.53

Aspect

0 45 36542288 7594 -0.01 0.00 -0.01
45 90 23863553 3163 -0.46 0.04 -0.49
90 135 26727298 4602 -0.19 0.02 -0.22
135 180 32813263 9953 0.37 -0.07 0.44
180 225 36392829 5006 -0.42 0.06 -0.48
225 270 27082528 3315 -0.54 0.05 -0.59
270 315 29724119 5662 -0.09 0.01 -0.11
315 359 33680370 12290 0.56 -0.13 0.68

TPI

-1261 -500 9790698 434 -1.55 0.03 -1.59
-500 -30 83780890 9590 -0.60 0.21 -0.81
-30 120 98565770 11768 -0.56 0.25 -0.81
120 760 52514311 28615 0.96 -0.57 1.52
760 900 1389201 1030 1.26 -0.01 1.28
900 1637 719582 273 0.59 -0.00 0.60

Surface Index

-0.73 -0.33 20675907 13002 1.11 -0.20 1.31
-0.33 -0.13 68374881 30419 0.76 -0.56 1.33
-0.13 -0.025 81833205 6957 -0.89 0.25 -1.15
-0.025 0.25 78433853 1425 -2.44 0.35 -2.79

ERR

0.042 0.38 115777021 16436 -0.38 0.24 -0.62
0.38 0.49 88777268 29464 0.47 -0.40 0.87
0.49 0.55 28854947 3922 -0.42 0.04 -0.47
0.55 0.58 8527189 933 -0.64 0.02 -0.66
0.58 0.61 4611962 644 -0.40 0.01 -0.40
0.61 0.75 2769741 404 -0.35 0.00 -0.36
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Table 4.2: Weight calculation for each of the thematic variables using the first method of dis-
cretization.

Dataset Class min Class max nPixels nlandslides W+ W- Wc

Surface Roughness

1 1.1 138403914 7529 -1.34 0.65 -1.99
1.1 1.5 108038913 41888 0.62 -1.09 1.71
1.5 1.9 2815783 2050 1.25 -0.03 1.28
1.9 2.5 60430 336 3.29 -0.01 3.30

Local Relief

16 550 68947449 212 -4.21 0.32 -4.53
550 2450 149801773 37361 0.18 -0.36 0.54
2450 3100 26752602 14086 0.93 -0.20 1.13
3100 4100 3567363 144 -1.64 0.01 -1.65

Eigenvalues

-0.00045 -0.00020 973016 525 0.95 -0.01 0.96
-0.00020 -0.00007 26801251 24120 1.47 -0.51 1.98
-0.00007 0.00000 87102560 17842 -0.01 0.01 -0.02
0.00000 0.00014 129287512 9036 -1.09 0.54 -1.63
0.00014 0.00019 4068238 92 -2.22 0.01 -2.23
0.00019 0.00039 1086483 188 -0.18 0.00 -0.18

Elevation
above channel

0 700 156996968 13282 -0.93 0.76 -1.69
700 1700 67517344 34226 0.86 -0.76 1.62
1700 1900 6420286 2333 0.53 -0.02 0.55
1900 2120 4664213 501 -0.69 0.01 -0.70
2120 4072 5042217 1280 0.17 -0.00 0.17

Lithology

Quaternary 9228554 6085 0.73 -0.07 0.80
Neogene 0 0 0.00 0.00 0.00
Paleogene 26862125 1411 -1.80 0.16 -1.96
Paleogene
Intrusive 13786220 1540 -1.04 0.06 -1.10

Creataceous 1642547 4 -4.87 0.01 -4.88
Createceous
Jurassic 6330003 2368 0.17 -0.01 0.17

Jurassic 16998217 4150 -0.26 0.03 -0.29
Jurassic
Triassic 860398 576 0.75 -0.01 0.76

Permian
Igneous 4041794 45 -3.35 0.03 -3.37

Permian 2239737 288 -0.90 0.01 -0.91
Carboniferous 4806542 6 -5.54 0.03 -5.57
Carboniferous
igneous 9231340 6179 0.75 -0.07 0.82

Devonia 17292244 3586 -0.42 0.04 -0.47
Silurian 8897271 12292 1.47 -0.22 1.70
Cambrian/
Precambrian 15869855 11347 0.81 -0.15 0.97

Glacier areas 19484756 26 -5.47 0.13 -5.60

Seimo zones

1 9343 11 1.70 -0.00 1.70
2 1391793 0 0.00 0.00 0.00
3 39362394 106 -4.38 0.18 -4.56
4 6060020 3992 1.12 -0.05 1.17
5 56884955 1642 -2.01 0.24 -2.25
6 27115562 322 -2.90 0.11 -3.01
7 15855625 0 0.00 0.00 0.00
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Table 4.2: Weight calculation for each of the thematic variables using the first method of dis-
cretization.

Dataset Class min Class max nPixels nlandslides W+ W- Wc

8 0 0 0.00 0.00 0.00
9 153909 0 0.00 0.00 0.00
10 3569232 0 0.00 0.00 0.00
11 8729753 3594 0.65 -0.03 0.68
12 9528464 1300 -0.46 0.02 -0.47
13 69693495 40527 0.99 -1.18 2.18

Fault distance

0 5 96480313 42077 0.74 -1.18 1.93
5 8.5 35446767 5951 -0.21 0.03 -0.24
8.5 12 26198513 2894 -0.63 0.05 -0.69
12. 26 53347847 542 -3.02 0.23 -3.25
26 71.64 37845620 339 -3.14 0.16 -3.30

Distance to glacier

0 25 93479531 43945 0.82 -1.42 2.23
25 50 28944368 4857 -0.21 0.02 -0.24
50 64 13763013 1507 -0.64 0.03 -0.67
64 95 28291777 1341 -1.48 0.09 -1.57
95 275.8 84840373 153 -4.75 0.41 -5.16

Precipitation

0.009 0.049 100537168 4769 -1.48 0.42 -1.90
0.049 0.092 48539161 22563 0.81 -0.36 1.16
0.092 0.116 40163778 8516 0.02 -0.00 0.02
0.116 0.157 47896341 10750 0.08 -0.02 0.10
0.157 0.219 12167311 5205 0.72 -0.06 0.78

Distance to channel

0 5. 108483821 31051 0.32 -0.34 0.66
5 15.5 119930939 18215 -0.31 0.22 -0.54
15.5 19 10853000 1847 -0.20 0.01 -0.21
19 49.2 9932299 683 -1.11 0.03 -1.13

TWI
0 17 142138757 42172 0.34 -0.86 1.21
17 44 95632003 8950 -0.81 0.31 -1.12
44 99 5475614 18 -4.16 0.02 -4.18

NDVI

-25 -5 2002272 52 -2.06 0.01 -2.07
-5 0 5241782 22 -3.89 0.02 -3.91
0 13 55257627 8316 -0.31 0.07 -0.38
13 37 130692339 30848 0.14 -0.19 0.34
37 63 41917581 10017 0.16 -0.04 0.19
63 100 9491830 755 -0.94 0.02 -0.97

Table 4.3: Weight calculation for each of the thematic variables using the second method of dis-
cretization.

Dataset Class min Class max Pixels nlandslides W+ W- Wc

Slopes
0 18 118680689 6235 -1.44 0.58 -2.02
18 58 112535060 43559 0.56 -1.19 1.75
58 83 1882006 1872 1.5 -0.03 1.53

Aspect

0 45 36542288 7594 -0.01 0 -0.01
45 90 23863553 3163 -0.46 0.04 -0.49
90 135 26727298 4602 -0.19 0.02 -0.22
135 180 32813263 9953 0.37 -0.07 0.44
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Table 4.3: Weight calculation for each of the thematic variables using the second method of dis-
cretization.

Dataset Class min Class max Pixels nlandslides W+ W- Wc

180 225 36392829 5006 -0.42 0.06 -0.48
225 270 27082528 3315 -0.54 0.05 -0.59
270 315 29724119 5662 -0.09 0.01 -0.11
315 359 33680370 12290 0.56 -0.13 0.68

TPI

-1261 -500 9790698 434 -1.55 0.03 -1.59
-500 -30 83780890 9590 -0.6 0.21 -0.81
-30 120 98565770 11768 -0.56 0.25 -0.81
120 760 52514311 28615 0.96 -0.57 1.52
760 900 1389201 1030 1.26 -0.01 1.28
900 1637 719582 273 0.59 0 0.6

Surface Index

-0.73 -0.33 20675907 13002 1.11 -0.2 1.31
-0.33 -0.13 68374881 30419 0.76 -0.56 1.33
-0.13 -0.025 81833205 6957 -0.89 0.25 -1.15
-0.025 0.25 78433853 1425 -2.44 0.35 -2.79

ERR

0.042 0.38 115777021 16436 -0.38 0.24 -0.62
0.38 0.49 88777268 29464 0.47 -0.4 0.87
0.49 0.55 28854947 3922 -0.42 0.04 -0.47
0.55 0.58 8527189 933 -0.64 0.02 -0.66
0.58 0.61 4611962 644 -0.4 0.01 -0.4
0.61 0.75 2769741 404 -0.35 0 -0.36

Surface Roughness

1 1.1 138403914 7529 -1.34 0.65 -1.99
1.1 1.5 108038913 41888 0.62 -1.09 1.71
1.5 1.9 2815783 2050 1.25 -0.03 1.28
1.9 2.5 60430 336 3.29 -0.01 3.3

Local Relief

16 550 68947449 212 -4.21 0.32 -4.53
550 2450 149801773 37361 0.18 -0.36 0.54
2450 3100 26752602 14086 0.93 -0.2 1.13
3100 4100 3567363 144 -1.64 0.01 -1.65

Eigenvalues

-0.00045 -0.0002 973016 525 0.95 -0.01 0.96
-0.0002 -0.00007 26801251 24120 1.47 -0.51 1.98
-0.00007 0 87102560 17842 -0.01 0.01 -0.02
0 0.00014 129287512 9036 -1.09 0.54 -1.63
0.00014 0.00019 4068238 92 -2.22 0.01 -2.23
0.00019 0.00039 1086483 188 -0.18 0 -0.18

Elevation
above channel

0 700 156996968 13282 -0.93 0.76 -1.69
700 1700 67517344 34226 0.86 -0.76 1.62
1700 1900 6420286 2333 0.53 -0.02 0.55
1900 2120 4664213 501 -0.69 0.01 -0.7
2120 4072 5042217 1280 0.17 0 0.17

Lithology

Quaternary 9228554 6085 0.73 -0.07 0.8
Neogene 26862125 1411 -1.8 0.16 -1.96
Paleogene 13786220 1540 -1.04 0.06 -1.1
Paleogene
intrusive 1642547 4 -4.87 0.01 -4.88

Creataceous 6330003 2368 0.17 -0.01 0.17
Creataceous
Jurassic 16998217 4150 -0.26 0.03 -0.29

Jurassic 860398 576 0.75 -0.01 0.76
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Table 4.3: Weight calculation for each of the thematic variables using the second method of dis-
cretization.

Dataset Class min Class max Pixels nlandslides W+ W- Wc

Jurassic
Triassic 4041794 45 -3.35 0.03 -3.37

Permian
ingenous 2239737 288 -0.9 0.01 -0.91

Permian 4806542 6 -5.54 0.03 -5.57
Carboniferous 9231340 6179 0.75 -0.07 0.82
Carboniferous
igneous 17292244 3586 -0.42 0.04 -0.47

Devonian 8897271 12292 1.47 -0.22 1.7
Silurian 15869855 11347 0.81 -0.15 0.97
Cambrian/
Precambrian 16696411 26 -5.32 0.11 -5.43

Glacier areas 2788345 0 0 0 0

Seimo zones

1 9343 11 1.7 0 1.7
2 1391793 0 0 0 0
3 39362394 106 -4.38 0.18 -4.56
4 6060020 3992 1.12 -0.05 1.17
5 56884955 1642 -2.01 0.24 -2.25
6 27115562 322 -2.9 0.11 -3.01
7 15855625 0 0 0 0
8 0 0 0 0 0
9 153909 0 0 0 0
10 3569232 0 0 0 0
11 8729753 3594 0.65 -0.03 0.68
12 9528464 1300 -0.46 0.02 -0.47
13 69693495 40527 0.99 -1.18 2.18

Fault distance

0 5 96480313 42077 0.74 -1.18 1.93
5 8.5 35446767 5951 -0.21 0.03 -0.24
8.5 12 26198513 2894 -0.63 0.05 -0.69
12 26 53347847 542 -3.02 0.23 -3.25
26 71.64 37845620 339 -3.14 0.16 -3.3

Distance to glacier

0 25 93479531 43945 0.82 -1.42 2.23
25 50 28944368 4857 -0.21 0.02 -0.24
50 64 13763013 1507 -0.64 0.03 -0.67
64 95 28291777 1341 -1.48 0.09 -1.57
95 275.8 84840373 153 -4.75 0.41 -5.16

Precipitation

0.009 0.049 100537168 4769 -1.48 0.42 -1.9
0.049 0.092 48539161 22563 0.81 -0.36 1.16
0.092 0.116 40163778 8516 0.02 0 0.02
0.116 0.157 47896341 10750 0.08 -0.02 0.1
0.157 0.219 12167311 5205 0.72 -0.06 0.78

River distance

0 5 108483821 31051 0.32 -0.34 0.66
5 15.5 119930939 18215 -0.31 0.22 -0.54
15.5 19 10853000 1847 -0.2 0.01 -0.21
19 49.2 9932299 683 -1.11 0.03 -1.13

TWI
0 17 142138757 42172 0.34 -0.86 1.21
17 44 95632003 8950 -0.81 0.31 -1.12
44 99 5475614 18 -4.16 0.02 -4.18
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Table 4.3: Weight calculation for each of the thematic variables using the second method of dis-
cretization.

Dataset Class min Class max Pixels nlandslides W+ W- Wc

NDVI

-25 -5 2002272 52 -2.06 0.01 -2.07
-5 0 5241782 22 -3.89 0.02 -3.91
0 13 55257627 8316 -0.31 0.07 -0.38
13 37 130692339 30848 0.14 -0.19 0.34
37 63 41917581 10017 0.16 -0.04 0.19
63 100 9491830 755 -0.94 0.02 -0.97

Table 4.4: Weight calculation for each of the thematic variables using the third method of dis-
cretization.

Dataset Class min Class max nPixels nlandslides W+ W- Wc

Slopes

0 20 127657854 8138 -1.25 0.62 -1.87
20 27 30814351 8641 0.24 -0.04 0.28
27 34 28859706 10946 0.54 -0.11 0.64
34 43 27946252 12642 0.71 -0.15 0.87
43 83 17819592 11299 1.05 -0.17 1.22

Aspect

0 45 36542288 7594 -0.01 0 -0.01
45 90 23863553 3163 -0.46 0.04 -0.49
90 135 26727298 4602 -0.19 0.02 -0.22
135 180 32813263 9953 0.37 -0.07 0.44
180 225 36392829 5006 -0.42 0.06 -0.48
225 270 27082528 3315 -0.54 0.05 -0.59
270 315 29724119 5662 -0.09 0.01 -0.11
315 359 33680370 12290 0.56 -0.13 0.68

TPI

-1261 -216 33691792 3310 -0.76 0.08 -0.84
-216 66 145607451 14354 -0.75 0.57 -1.32
66 264 35891344 14524 0.66 -0.17 0.83
264 459 18435118 9613 0.91 -0.13 1.04
459 1637 13134747 9909 1.28 -0.16 1.44

Surface Index

-0.73 -0.35 17025447 9770 1.02 -0.14 1.15
-0.35 -0.31 7807615 7438 1.52 -0.12 1.65
-0.31 -0.25 16565471 11122 1.17 -0.17 1.35
-0.25 -0.15 38433204 12805 0.47 -0.12 0.59
-0.15 0.25 169486109 10668 -1.19 0.91 -2.1

ERR

0.042 0.4 131420557 22217 -0.21 0.19 -0.4
0.4 0.42 17057733 7245 0.72 -0.08 0.8
0.42 0.44 17353992 5200 0.37 -0.03 0.4
0.44 0.5 45017550 11345 0.19 -0.05 0.24
0.5 0.75 38468296 5796 -0.32 0.05 -0.37

Surface Roughness

1 1.15 166757285 15903 -0.78 0.74 -1.52
1.15 1.19 19072572 7111 0.58 -0.07 0.65
1.19 1.24 23948944 7904 0.46 -0.06 0.53
1.24 1.33 23998232 11540 0.84 -0.15 0.99
1.33 2.5 15542007 9345 1.06 -0.13 1.2

Local Relief

16 2015 179755599 16513 -0.82 0.9 -1.71
2015 2296 26056114 10337 0.65 -0.11 0.76

Page 82



Landslide hazard in Central Asia Chapter 4. LANDSLIDE SUSCEPTIBILITY MODELS

Table 4.4: Weight calculation for each of the thematic variables using the third method of dis-
cretization.

Dataset Class min Class max nPixels nlandslides W+ W- Wc

2296 2423 10793838 8889 1.38 -0.14 1.52
2423 2631 13673301 10956 1.35 -0.18 1.53
2631 4100 18790335 5108 0.27 -0.03 0.29

Eigenvalues

-0.00045 -0.00014 6376892 6482 1.59 -0.11 1.7
-0.00014 -0.00009 13265706 11991 1.47 -0.21 1.68
-0.00009 -0.00005 23327530 14635 1.11 -0.23 1.34
-0.00005 0.00004 159383206 15291 -0.77 0.67 -1.44
0.00004 0.00039 46965726 3404 -1.05 0.14 -1.19

Elevation
above channel

0 779 164521217 16667 -0.75 0.76 -1.51
779 1003 18945428 9161 0.81 -0.11 0.93
1003 1279 19526420 10311 0.9 -0.14 1.04
1279 1521 13707542 7785 0.97 -0.1 1.08
1521 4072 23940421 7698 0.4 -0.06 0.46

Lithology

Quaternary 1 9228554 6085 0.73 -0.07 0.8
Neogene 3 26862125 1411 -1.8 0.16 -1.96
Paleogene 4 13786220 1540 -1.04 0.06 -1.1
Paleogene
intrusive 5 1642547 4 -4.87 0.01 -4.88

Cretaceous 6 6330003 2368 0.17 -0.01 0.17
Cretaceous
Jurassic 7 16998217 4150 -0.26 0.03 -0.29

Jurassic 8 860398 576 0.75 -0.01 0.76
Jurassic
Triassic 9 4041794 45 -3.35 0.03 -3.37

Permian
Igneous 10 2239737 288 -0.9 0.01 -0.91

Permian 11 4806542 6 -5.54 0.03 -5.57
Carboniferous 12 9231340 6179 0.75 -0.07 0.82
Carboniferous
igneous 13 17292244 3586 -0.42 0.04 -0.47

Devonian 14 8897271 12292 1.47 -0.22 1.7
Silurian 15 15869855 11347 0.81 -0.15 0.97
Cambrian/
Precambrian 16 19484756 26 -5.47 0.13 -5.6

Glacier areas 2788345 0 0 0 0

Seimo zones

1 9343 11 1.7 0 1.7
2 1391793 0 0 0 0
3 39362394 106 -4.38 0.18 -4.56
4 6060020 3992 1.12 -0.05 1.17
5 56884955 1642 -2.01 0.24 -2.25
6 27115562 322 -2.9 0.11 -3.01
7 15855625 0 0 0 0
8 0 0 0 0 0
9 153909 0 0 0 0
10 3569232 0 0 0 0
11 8729753 3594 0.65 -0.03 0.68
12 9528464 1300 -0.46 0.02 -0.47
13 69693495 40527 0.99 -1.18 2.18

Page 83



Landslide hazard in Central Asia Chapter 4. LANDSLIDE SUSCEPTIBILITY MODELS

Table 4.4: Weight calculation for each of the thematic variables using the third method of dis-
cretization.

Dataset Class min Class max nPixels nlandslides W+ W- Wc

Fault distance

0 0.5 15539586 8509 0.97 -0.12 1.08
0.5 1.4 22609863 12572 0.98 -0.18 1.17
1.4 3.2 33375410 14919 0.77 -0.2 0.96
3.2 5.7 33039081 8437 0.21 -0.04 0.24
5.7 71.64 144755120 7366 -1.41 0.72 -2.12

Distance to glacier

0 4.3 41045944 6101 -0.34 0.05 -0.39
4.3 6.4 10614858 4916 0.8 -0.06 0.86
6.4 9.4 11677938 6803 1.03 -0.09 1.12
9.4 14.6 13602623 10804 1.34 -0.18 1.52
14.6 257.8 171970469 23179 -0.43 0.58 -1.01

Precipitation

0.009 0.6 134573638 23860 -0.16 0.16 -0.32
0.6 0.08 0 0 0 0 0
0.08 0.13 76891929 17887 0.11 -0.05 0.17
0.13 0.219 37853063 10056 0.25 -0.05 0.3

Distance to channel

0 2.4 56414033 14074 0.18 -0.06 0.24
2.4 4.26 38098840 12813 0.48 -0.12 0.6
4.26 6.88 46993939 9790 0 0 0
6.88 9.7 40693341 6938 -0.2 0.03 -0.23
9.7 49.2 66999906 8181 -0.53 0.14 -0.67

TWI

0 8 9437735 5007 0.93 -0.06 0.99
8 11 32704884 12395 0.59 -0.13 0.72
11 13 33115225 10048 0.37 -0.07 0.44
13 16 50975824 11847 0.1 -0.03 0.13
16 99 117012706 11843 -0.73 0.39 -1.12

NDVI

-25 13 62501681 8390 -0.42 0.11 -0.53
13 18 47114878 7054 -0.31 0.06 -0.37
18 26 49945048 12463 0.2 -0.06 0.26
26 40 40898395 13795 0.5 -0.14 0.64
40 100 44143429 8308 -0.08 0.02 -0.1

4.4.2.3 Test for conditional independence

The theory of WOE assumes that the variables used are conditional independent. Condi-
tional independence means that the probability that one occur does not affect the prob-
ability of the other event to occur. To warranty this assumption as true, a conditional
independence test is performed based on the integrated Wc results by pairwise compari-
son using chi-square statistics.

First, the variables are converted into a binary pattern based on the presence or ab-
sence of landslides. 2x2 contingency tables for all possible pairs of variables are prepared
based on the table 4.5 (Regmi et al. , 2010).

Finally, the Chi-square test is performed with 1 degree of freedom following the equa-
tion 4.21. The Chi-square values are compared with the value for 1 degree of freedom at
the 99% of confidence level (c2 = 6.64). A Chi-square value greater than 6.64, suggesting
that the pairs are not significantly different, given the occurrence of landslides, so, they
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Table 4.5: 2x2 contingency table construction. Observed frequencies (Oi) and expected frequen-
cies (Ei)

Binary variable 1
V1

Lanslide Presence Absence Total

Binary variable V2

Presence O1 = {V1 \ V2 \ L} O3 = {V1 \ V2 \ L} T
E1 = {V2\L}⇤{V1\L}

L E3 = {V2\L}⇤{V1\L}
L

Absence O2 = {V1 \ V2 \ L} O4 = {V1 \ V2 \ L} T
E2 = {V2\L}⇤{V1\L}

L E4 = {V2\L}⇤{V1\L}
L

Total {V1 \ L} {V1 \ L} {L}

are considered statistically dependent and cannot be used together to the implementation
of the WOE model.

c2 =
n

Â
k=1

(Oi � Ei)2

Ei
(4.21)

The results of the Chi-square test for each of the discretization approaches are pre-
sented graphically using an association plot, where the dependent variables are high-
lighted in yellow (figure 4.7)

Figure 4.7: Chi-square test result for 1 degree of freedom and 99% confidence level (c2 =
6.64).Method 1

The conditional dependence of the variables change according to the method imple-
mented to create the different classes; however, for all the methods EigenValues and
Lithology are conditional dependent on most of the other variables. For the first method
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(figure 4.7) it is possible to use different geomorphological parameters; however, slope
and TPI are conditional independents for all the methods. Contrary, the number of de-
pendent variables increase in the method 2 (figure 4.8) and method 3 (figure 4.9).

Figure 4.8: Chi-square test result for 1 degree of freedom and 99% confidence level (c2 = 6.64).
Method 2

Figure 4.9: Chi-square test result for 1 degree of freedom and 99% confidence level (c2 = 6.64).
Method 3
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4.4.2.4 Combination of variables

For each of the categorization approaches, 1 or 2 models are created taking into account
the spatial association of the variable to the landslide occurrence as well as the results of
the Chi-square test. The models are presented in table 4.6. They are starting model; that
means, they are implemented and improved using reduction of variables until finding
the variables that produce the best model.

Table 4.6: Possible combinations of the variables based on the spatial association and the Chi-
square statistics to performed the WOE approach.

Method1 Method2 Method3

Thematic group Variable Model1-1 Model1-2 Model2-1 Model2-2 Model3-1

Lithology Lithology x x x x x

Climatic and
hydrological

Distance
to glacier x x

Precipitation x x x x x
Distance
to channel x x x

TWI x x x x

LandCover NDVI x x x x x

Geomorphology Slope x x
SR x x
ERR x x
SI x x x x
Local Relief x x x
TPI x x x x x
Elevation
above channel x

Tectonic Distance
to fault x x x x x

4.4.2.5 Model creation and improvement

Each of the five models presented in table 4.6 is implemented. The results are analysed
based on the prediction power (ROC) and the quality of the resulting susceptibility map.
Improvements are made to each model in order to get the best result.

The Model 1-1 is calculated using 10 predictive variables. Prediction power of 0.81
is obtained; however, the resulting map presents some pixels areas that can be deter-
mined as incoherences because of high Wc values are located near to very low values
(figure 4.10). This zonation is reduced by the exclusion of the variable distance to glacier
(Model 11-2); however, the resulting model doesn’t improve the prediction capability
(figure 4.11); instead new incoherent areas appear, where higher weight of contrast val-
ues are surrounded by lower values (figure 4.10).
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Figure 4.10: Normalized total weight map resulting for the different variables combination based
on the model 1-1 using the WOE approach.
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The model 1-1 is finally improved by the exclusion of the variables distance to glacier
and precipitation (model 11-3). Without those variables the model prediction increase to
0.84 and there is a reduction of the incoherent areas; however, they are still present (figure
4.10).

Figure 4.11: Prediction capability for the model 1-1 and its variations. Left: Model 11-1 imple-
mented with 10 thematic variables. Center: Model 11-2 implemented with 9 thematic variables.
Distance to glacier excluded. Right: Model 11-3 implement with 8 thematic variables. Distance
to glacier and precipitation excluded.

A similar process is applied to the model 1-2. The starting model contains 11 the-
matic variables and has a slightly better predictive capability (AUC = 0.84). However,
the weight contrast map presents evident incoherent areas. Those anomalies can be re-
lated to the influence of the distance to channel variable or the presence of an active fault.
Also, sharp limits are observed in the north of Tien Shan where very high values are in
direct contact with very low values. Those sharp limits are probably related to a zonation
influenced by the precipitation information (figure 4.13).

Figure 4.12: Prediction capability for the model 1-2 and its variations. Left: Model 12-1 imple-
mented with 11 thematic variables. Center: Model 12-2 implemented with 9 thematic variables.
Distance to channel excluded. Right: Model 12-3 implement with 8 thematic variables. Distance
to channel and precipitation excluded.

First, the distance to channel variable is excluded from the modelling. An improve-
ment in the number of areas with incoherent values is obtaining; however, the AUC de-
crease (figure 4.12). Finally, the precipitation information is excluded too. The model 1-3
presents a good predictive capability (AUC = 0.87) as well as a significant improvement
in the resulting contrast weight map (figure 4.13).
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Figure 4.13: Normalized total weight map resulting for the different variables combination based
on the model 1-2 using the WOE approach.
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Figure 4.14: Normalized total weight map resulting for the different variables combination based
on the model 2-1 using the WOE approach.

Page 91



Landslide hazard in Central Asia Chapter 4. LANDSLIDE SUSCEPTIBILITY MODELS

The model 2-1 is based on the second approach to discretize the continuous variables.
The first model is computed based on 8 thematic variables. This model present a bad pre-
dictive power (AUC = 0.76) (figure 4.15) that is also supported by extensive areas with
incoherent values. For example, for the flat landscape of the Tadjik basin, positive weight
contrast values are presented; however, for the small mountain ranges located in the cen-
ter of the area, high negative values are assigned. Those higher values follow the pattern
given by the distance to channel (figure 4.14).

The model 2-1 is improved by the elimination of the distance to channel variable from
the model (model 2-2) and the inclusion of TPI to increase the homogeneity of the areas
in the Tadjik basin because the TPI present a negative spatial correlation with landslides
for values close to 0 (figure 4.14). Even though the predictive capability of the model
increase, zonation is still present. In previous models, the zonation is associated with the
precipitation information. A final model (model 21-3) is computed without the distance
to channel and the precipitation. These changes improve in almost a 10% the predictive
capability of the model compared to the initial base model (model 21-1). Also, the result-
ing weight contrast map is more homogeneous and less incoherent areas are recognized.

Figure 4.15: Prediction capability for the model 2-1 and its variations. Left: Model 21-1 imple-
mented with 8 thematic variables. Center: Model 21-2 implemented with 8 thematic variables.
Distance to channel excluded and TPI included. Right: Model 21-3 implement with 7 thematic
variables. Distance to channel and precipitation excluded, TPI included.

Figure 4.16: Prediction capability for the model 2-2 and its variations. Left: Model 22-1 imple-
mented with 11 thematic variables. Center: Model 22-2 implemented with 10 thematic variables.
Precipitation excluded. Right: Model 22-3 implement with 10 thematic variables. Distance to
glacier and precipitation excluded.
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Figure 4.17: Normalized total weight map resulting for the different variables combination based
on the model 2-2 using the WOE approach.
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A second model is also proposed for the second approach of discretization, where,
11 thematic variables are taking into account. The resulting model has a good predictive
power (AUC = 0.84) (figure 4.16); however, the weight contrast map exhibit areas with
incoherent values associated with a zonation that creates irregularities in the whole area.
As it was shown in previous models, those areas correlate to the influence of the precipi-
tation in the model. Thus, the model 22-2 is computed without the precipitation variable.
The predictive power of the model decrease dramatically along with the resulting map,
which presents erratic values that are not coherent between each other. A third model
(model 22-3) is implemented omitting the precipitation, the distance to glacier instead.
The results evidence a decreasing in the AUC = 0.82 and in congruence with the resulting
weight contrast map(figures 4.17 and 4.16).

For the third method, a single model is proposed because of the high conditional de-
pendence among the variables. Model 3 has a good performance. It has a prediction
capability of 86% (AUC = 0.86). The resulting map exhibit some areas with lower nega-
tive weight contrast values that follow the distribution of the NDVI. Also, values near 0
are enhanced in the areas associated with active faulting (figure 4.19).

The model 31-2 is computed without the precipitation information. The resulting
model decreases the predictive capability (AUC =0.84); however, just a few incoherent
areas are identified in the model. Also, the impact of the distance to fault decrease (figure
4.18).

(a) Model 31-1. 7 thematic variables
(b) Model 31-2. 6 thematic variables. Pre-
cipitation excluded

Figure 4.18: Prediction capability for the model 3-1 and its variations. Left: Model 31-1 im-
plemented with 7 thematic variables. Right: Model 31-3 implement with 6 thematic variables.
Precipitation excluded.
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Figure 4.19: Normalized total weight map resulting for the different variables combination based
on the model 3-1 using the WOE approach.
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4.5 Logistic Regression

4.5.1 Method

Logistic regression is a statistical approach that aims to find the best fitting model that
describes the relationship between a dichotomous characteristic of interest (dependent
variable) and a set of independent (predictor or explanatory) variables.

(a) Linear regression over data points
(b) Logistic regression fitting for the data
points

The dependent variable output is either 0 (no) or 1 (yes), so if linear regression is fit;
values between 0 to 1 will be generated as well as impossible values - negative values
and values higher than one- which have no meaning. That is so; logistic regression will
fit better the data. The equation 4.22 gives the logistic function, where L is the curve’s
maximum value, k is the steepness of the curve and x0 is the x value of a Sigmoid’s mid-
point.

f (x) =
L

1 + e�k(x�x0
(4.22)

From equation 4.22, a standard logistic regression function can be express as equation
4.23, where k = 1, x0 = 0, L = 1.

S(x) =
1

1 + e�x (4.23)

The Sigmoid function graphical representation (figure 4.21) is a S-shaped curve with
a finite limit of X = 0 where the values approaches to a negative infinity and X = 1 for a
a positive infinity.

Figure 4.21: Graphical representation of the Sigmoid’s function (Equation 4.23)
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When x = 0, the Sigmoid function results is 0.5. Thus, if the output of the equation
4.23 is more than 0.5, it is possible to classify the outcome as 1 (yes), and if it is less than
0.5, the value is assigned as 0 (no); however, the results from the sigmoid function are not
able to classify yes or no absolutely, but, the Sigmoid function results can be interpreted
in term of probability of yes/no.

4.5.2 Implementation

The LR approach is implemented based on the standardization of continuous indepen-
dent variables and the binary dependent variable that correspond to the landslide cat-
alogue. Because Logistic regression is a modification of linear regression, the first step
of the workflow is a multi-colinearity test to exclude the redundant variables. Then, the
LR model is applied, and the results are tested in order to find the best model (figure 4.33).

Figure 4.22: Workflow followed to the calculation of the landslide susceptibility in the area based
on the logistic regression approach

In landslide susceptibility maps, the result of the logistic regression is the proba-
bility of belonging to a landslide class (e.g., Lee, 2005; Raja et al. , 2017, and references
therein).This probability is represented by the general sigmoid curve equation (equation
4.24), where P is the probability of belong to a landslide class (y = 1), while z is a feature
vector that represents the probability of success for any given observations.

P(y = 1) =
1

1 + e�z (4.24)

The vector z is the logit transform of the log-odds of the probability of success for
each of the independent variables (b). It is the simple linear regression model; where the
y-intercept (b0) moves the curve left or right (equation 4.25).

z = b0 + b1x1 + b2x2 + ... + bnxn (4.25)
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4.5.2.1 Multi-collinearity test

Multi-collinearity is defined as the existence of near-linear relationships among variables.
If the relationship is perfect (R2 = 1), there will be a problem during the regression cal-
culation because it will result in a division by 0; however, division by minimal quantities
still distort the results. Hence, the first step to apply the LR approach is to determine
whether multicollinearity exist (Lee et al. , 2018).

The correlation matrix among all the variables is obtained using R corr function,
which returns the Pearson correlation coefficient between pairs of variables. Coefficient
values with more than 0.5 or less than -0.5 suggest moderate to a strong linear relation-
ship and are mutually exclusive for the model creation. Additionally, the variance in-
flation factors (VIFs) are calculated as support to the correlation matrix. The VIFs is the
ratio of variance in a model with multiple terms, divided by the variance of a model with
one term alone. It measures how much the variance is increased because of collinearity.

Figure 4.23: Multicolinearity test results

The test shows that relations exist between some of the geomorphological variables. A
strong negative linear relationship characterizes local relief and surface roughness. Also,
elevation relief ratio presents a weak negative linear relationship with SR. Contrary, Sur-
face Index has a strong positive linear relationship with LR, while the EigenValues has a
moderate positive linear relationship with TPI (figure 4.23).

Local relief, elevation above the channel and distance to glaciers are highly correlated
with other variables. Apart from the geomorphological variables, local relief presents a
negative strong linear relationship with elevation above the channel, and an intermedi-
ate linear relationship with lithology, seismozones, and precipitation. Contrary, a strong
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positive relationship is presented between local relief and glacier distance.

As it was stated, distance to glaciers is characterized by a strong positive linear rela-
tionship with local relief as well as precipitation. However, the collinearity relationship
that must be avoided is those that are strong and near to 1. In order to get a quantification
of the multi-collinearity nature of each of the variables, the VIF is computed (table 4.7).
The highest values of VIF characterized local relief, followed by elevation above channel;
that means that the introduction of those variables in the model will change the variance
by a significant factor.

Table 4.7: Multi-collinearity test results- VIF

Variable VIF Variable VIF Variable VIF

Slopes 2.31 TPI 2.97 ERR 2.30

Aspect 1.02 SI 3.20 SR 2.63
Elevation
above chanel 4.73 Eigen

Values 1.30 LR 5.49

Lithology 1.52 Distance
to fault 1.05 NDVI 1.10

Distance to
Glacier 2.46 Distance

to channel 1.24 TWI 1.33

Precipitation 1.75

4.5.2.2 Combination of variables

A total of four models are created based on the results of the multicollinearity test as well
as the understanding of the behaviour of each variable in relation to the dependent vari-
able (table 4.8). The logistic regression is implemented for each model, and the results
are analysed regarding of the significance of the variables to the model, the odds and the
ROC.

Table 4.8: Possible combinations of the variables based on the multicollinearity test. Double dots
(:) indicate used of the interaction function of the LR.

Thematic group Variable Model1 Model2 Model3 Model4

Lithology Lithology14 x x x x

Climatic and hydrological Precipitation x x x :
Distance to channel x x x
TWI x x x
Elevation above channel x

LandCover NDVI x x x

Geomorphology Slope x x x x :
SR x
ERR x x
SI x
TPI x
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Table 4.8: Possible combinations of the variables based on the multicollinearity test. Double dots
(:) indicate used of the interaction function of the LR.

Thematic group Variable Model1 Model2 Model3 Model4

EigenValues x x x

Tectonic Distance to fault x x x x

4.5.2.3 Model creation and improvement

The model 1 is computed using 10 predictive variables. However, the precipitation and
the NDVI are characterized by low odds ratios; thus they do not play an essential role in
the landslide probability assessment, and they are excluded (figure 4.25). The odds ratios
> 1 reflects the association of the slopes, TPI and lithology with landslide occurrence, con-
trary, TWI, distance to channel, SI, ERR and distance to faults have odds ratios < 1, which
indicates a negative association. A low presence of intermediate values characterizes the
resulting landslides susceptibility map, and they are limited to certain areas, while very
low values and very high values are predominant (figure 4.24).

Figure 4.24: Landslide occurrence probability map resulting for the different variables combina-
tion based on the model 1 using the LR approach.

After the implementation of model 2, a similar result is obtained as the model 1 in
terms of the significance of the variables. Precipitation and NDVI are omitted to obtain a
final model with 7 variables. Similarly, the slope and lithology plays an important role in
the prediction of the landslide occurrence, while TWI, distance to channel, eigenValues,
and distance to fault decrease the probability (figure 4.27).
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Figure 4.25: Results of the implementation of the model 1 using logistic regression. Left: Odd
ratio of each of the variables in the model 1. Odds ratios near to 1 reflect low significance for the
model computation. Right: Model 1 statistical summary for the 8 predictive variables.

The influence of the eigenValues is evident in the resulting landslide susceptibility
map for model 2. Better delimited ridges are associated with a very high landslide sus-
ceptibility (figure 4.26) compared to the homogeneous areas represented by model 1 (fig-
ure 4.24). Low susceptibility areas associated with the active faults presence and they
create some incoherences in the map.

Figure 4.26: Landslide occurrence probability map resulting for the different variables combina-
tion based on the model 2 using the LR approach.
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Figure 4.27: Results of the implementation of the model 2 using logistic regression. Left: Odd
ratio of each of the variables in the model 2. Odds ratios near to 1 reflect low significance for the
model computation. Right: Model 2 statistical summary for the 8 predictive variables.

The model 3 is the only model where all the variables are significant. However, the
odds ratios of precipitation and distance to channel are close to 1, meaning that they could
be no significant for some another training dataset (figure 4.28). As it is identified before,
slope and lithology influence the most the landslide probability occurrence. Also, eleva-
tion above the channel becomes an significant predictor for this combination of variables.

Figure 4.28: Results of the implementation of the model 3 using logistic regression. Left: Odd
ratio of each of the variables in the model 3. Odds ratios near to 1 reflect low significance for the
model computation. Right: Model 3 statistical summary for the 8 predictive variables.
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The resulting susceptibility map predicts similar areas as high probability of landslide
occurrence; however, by the use of SI and ERR instead SR, those areas are more detailed
and better delimited; however, some areas show incoherences too, especially those lo-
cated along the active faults (figure 4.29).

Figure 4.29: Landslide occurrence probability map resulting for the different variables combina-
tion based on the model 3 using the LR approach.

The model 4 is created by the use of the interaction capability of LR (represented by (:).
Table 4.8). The model is computed using 8 variables that include the interaction among
slope (positive odd ratios) and precipitation (odds ratios close to 1). This interaction does
not present an increase in the landslide probability of occurrence, contrary, decrease it.
Nevertheless, the resulting map is characterized by a reduction of the incoherences re-
lated to the active fault information, increasing the number of areas characterized by a
very low landslides susceptibility (figure 4.31).

Even though the logistic regression approach deprecates the precipitation as a signif-
icant predictor variable, the addition or subtraction of it has an essential influence in the
resulting map; particular in its interaction with the areas near to active faulting.
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Figure 4.30: Landslide occurrence probability map resulting for the different variables combina-
tion based on the model 4 using the LR approach.

Figure 4.31: Results of the implementation of the model 4 using logistic regression. Left: Odd
ratio of each of the variables in the model 4. Odds ratios near to 1 reflect low significance for the
model computation. Right: Model 4 statistical summary for the 7 predictive variables.
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4.6 Random Forest

4.6.1 Method

Random Forest is a multivariate statistical technique that implements the Bayesian tree
or binary classification tree and a combination of the idea of bagging (technique that
combines the predictions from multiple machine learning algorithms together to make
more accurate predictions than any individual model) and random feature selection, to
grow a forest of many trees. Random Forest algorithm utilizes bootstrap (method for
estimating a quantity from a data sample) and random techniques to select the subsam-
ple of data and predictor parameters while growing an ensemble of trees. Besides, each
tree is constructed using a different bootstrap sample of the data. Contrary to the tradi-
tional decision trees, RF split each node based on the best among of a subset of predictors
randomly chosen at that node. This strategy leads to higher performance than other clas-
sifiers and makes RF robust against overfitting (Breiman, 2001).

Figure 4.32: Illustration of the implementation of the random forest algorithm. Source: (Koehrsen,
2007)

To classify a new object based on the attributes, each tree gives a classification and the
forest used the most vote class as a final decision (figure 4.32).

4.6.2 Implementation

The RF approach is implemented using the same input data as for the logistic regression
approach (standardize continuous independent variables and binary dependent vari-
able). The first step to implement a random forest is to determine the variables to be
used; after that, different models can be created to be tested. For each model, unique
model parameters are identified based on cross-correlation methods in order to get the
best results from the RF implementation. The models are improved based on the impor-
tance of the variable to the creation of the RF results; as well as the ROC values and the
model error (figure 4.33).

Page 105



Landslide hazard in Central Asia Chapter 4. LANDSLIDE SUSCEPTIBILITY MODELS

Figure 4.33: Work flow followed to the calculation of the landslide susceptibility in the area based
on the random forest approach

4.6.2.1 Most important predictor variables

Based on the experience gained from the implementation of others susceptibility models;
as well as the data exploration, it is possible to exclude some predictor variables without
affect the landslide susceptibility result but improving the computation time. However,
in order to test which variables are more important for the RF implementation, a ranking
of all the variables is performed using Python 3 for the random forest classifier.

The first methodological step to implement the random forest is the selection of the
variables that are more important to prepare an accurate map of landslide susceptibility.
In order to decrease the number of possible combination, a ranking of the variables is
implemented using generic model parameters (table 4.9). The ranking is created using
recursive feature elimination from the Sklearn package in Python 3. The goal of recursive
feature elimination is select features by recursively considering smaller and smaller sets
of features.

Table 4.9: Ranking of the variables according to its importance for the RF model.

Ranking Variable

1 Lithology
1 Distance to glaciers
2 EigenValue
3 LR
4 Distance to faults
5 SI
6 Elevation above channel
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Table 4.9: Ranking of the variables according to its importance for the RF model.

Ranking Variable

7 Precipitations
8 SR
9 TPI
10 ERR
11 Slopes
12 Distance to channel
13 NDVI
14 TWI
15 Aspect

This ranking is supported by the importance results obtained from the RF implemen-
tation using all the variable (figure 4.34). The importance is one of the outcomes from
the Random Forest Classifier and are calculated based on the out-of-bag error (prediction
error of the model) for each data variable during the fitting processing.

Figure 4.34: Percentage of importance for each of the variables.

Page 107



Landslide hazard in Central Asia Chapter 4. LANDSLIDE SUSCEPTIBILITY MODELS

4.6.2.2 Combination of variables

A total of five models are created based on the results of the ranking of the variables and
the importance of each variable (table 4.9, figure 4.34). The first model corresponds to all
the first 15 more important variables. Then, less important variables are excluded until
finding the best model. From the ranking results presented in the table 4.9 and its com-
parison to the importance percentage for a generic RF model (figure 4.34) is possible to
omit variables like aspect, NDVI, TWI and distance to channel. On the other hand, dis-
tance to glaciers is selected as a significant variable; however, the resulting susceptibility
map tend to present inconsistent areas based on the buffers associated with this feature,
so this variable is not taken into account.

Table 4.10: Possible combinations of the variables used for the implementation of the random
forest approach.

Thematic group Variable Model1 Model2 Model3 Model4 Model5
Lithology Lithology16 x x x x x
Climatic and
hydrological Precipitation x x x x

Elevation
above channel x x x

LandCover NDVI
Geomorphology Slope x x x x

SR x x
SI x x x x x
Local Relief x
TPI x x x
EigenValues x x x x

Tectonic Distance
to fault x x x x x

4.6.2.3 Selection of the model parameters

The RF approach is implemented in Python 3 using the library sklearn. This library al-
lows the manipulation of the model parameter in order to get the best of the RF classifier.
For each of the models, parameters like criterion (gini, entropy), max_ features (2, 3),
min_ sample_ split (0.005, 0.01, 0.025, 0.050) and min_ sample_ leaf (0.005, 0.01, 0.025,
0.050) are selected based on cross-validation.

The criterion is the splitting decision method follow to create a tree. Gini index and
the Entropy measure the node purity used to decide where to split the parent node among
a child. The max_ features are the number of features considered at each split. It has a
significant impact on the behaviour of the RF. For the classification problem, the sqrt(n_
features) is considered as a good approximation. The min_ sample_ split is the percent-
age of the data required to split the three in an internal node, while min_ sample_ leaf is
the minimum of samples required to be at a leaf node.

Other parameters like n_ estimators or max_ depth are fixed. The number of trees
should be as large as possible; however, it is limited by the computation time needed for
a large forest. Thus, we used 100 based on previous studies (figure ??) that suggest that
the OOBE stabilize after 100 trees Trigila et al. (2015); Paudel et al. (2016); ?. The depth of
the trees is defined as the maximum possible depth.
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For each selected variable combination the cross-validation is implemented obtaining
the best parameters per model. The (table 4.11) summarized the criterion and the values
of maximum features, the min samples split and the min sample leaf defined per model.

Table 4.11: Parameters for each model based on the best estimator results.

Parameters Model1 Model2 Model3 Model4 Model5

Criterion entropy entropy entropy entropy gini
max_features 2 2 2 3 2
min_samples_leaf 0.025 0.05 0.025 0.025 0.025
min_samples_split 0.005 0.01 0.005 0.025 0.025

4.6.2.4 Model creation and improvement

The implementation of the RF is made using the module RandomForestClassifier from
Sklearn in Python 3.0, and for each model, the parameters are listed in table 4.11.

The model 1 is computed using 9 predictive variables. Slopes, TPI and precipitations
are reported as the less important variables for the model, while Lithology, eigenVal-
ues, and local relief are considered as the most important ones. The ranking influence
is observed in the resulting landslide susceptibility map (figure 4.35) where a very high
landslide susceptibility is associated with the ridges. The influence of the geology is ap-
preciated in the area of Pamir, where straps of very high, high and intermediate LS are
presented.

Figure 4.35: Results of the implementation of the model 1 using the RF approach. Left: Landslide
susceptibility map Right: Importances of each thematic variables used for the model 1.
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For the model 2 thematic variables are selected by the elimination of the TPI that
is taken as a no relevant variable for the computation. The exclusion of this variable
does not affect the importance of the others. However, the resulting map exhibit some
changes. First, the areas characterized as high landslide susceptibility increase, giving a
more broad view of the areas represented by a significant landslide density (figure 4.36).

Figure 4.36: Results of the implementation of the model 2 using the RF approach. Left: Landslide
susceptibility map Right: Importances of each thematic variables used for the model 2.

The model 3 is computed using the 4 more important variables, SI, eigenValues, lithol-
ogy, and distance to fault. The predictive power of the model is good; however, the re-
sulting landslide susceptibility map is characterized by the presence of areas with strong
changes between landslide susceptibility class, probably associated with the lithological
information. The increase in the LS is related to the presence of higher values of SI (figure
4.37).
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Figure 4.37: Results of the implementation of the model 3 using the RF approach. Left: Landslide
susceptibility map Right: Importances of each thematic variables used for the model 3.

Model 4 explore the influence of the SR in the results. After the introduction of this
variable instead of SR, LR or ERR the percentage of importance maintain unchangeably.
Thus, the lithological informational and the eigenValues remains as the most important
parameters (figure 4.38). The resulting landslide susceptibility maps are similar to the
results obtained for the model 2.

Figure 4.38: Results of the implementation of the model 4 using the RF approach. Left: Landslide
susceptibility map Right: Importances of each thematic variables used for the model 4.

Finally, model 5 seeks for the improvement of the resulting map regarding homo-
geneity. For that, the elevation above channel and the EigenValues are excluded from
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examining how other parameters increase its importance. As a result, no changes in the
importance of the parameters is observed. They present a similar importance percentage
as if the other parameters be included.

Figure 4.39: Results of the implementation of the model 5 using the RF approach. Left: Landslide
susceptibility map Right: Importances of each thematic variables used for the model 5.

However, the resulting map is more generalized than others; however, the distribu-
tion of the landslide susceptibility classes seems coherent, and just a few areas can be
considered as great incoherence..
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Chapter 5

DISCUSSION

In this chapter, methodological steps and results are discussed. First, the biases of the
landslide catalogue used for the work are presented. Secondly, the data preparation pro-
cess is examined. Third, the importance of the thematic variables is discussed concerning
the preference in the modelling implementation. Forth, a summary of the methodologi-
cal performance of each of the statistical models implemented point out the limitations,
advantages, and disadvantages. Fifth, the best model for each of the methodological
approaches is selected and posterior they are compared between others. Finally, a com-
parison between the actual results and other landslide susceptibility assessments is pre-
sented.

5.1 Landslide catalogue and thematic variables

The landslide catalogue used for the landslide susceptibility modelling covers 0.02% of
the area of study. It is considered a limited representation of the surface processes in the
area. On the other hand, the distribution of the landslides is not homogeneous, a fact that
introduces biases in the analysis. As it is possible to perceive in the figure 2.20, there is
high landslide density in the Tien Shan, where many studies have been performed, lead-
ing to a complete landslide catalogue of the region. On the other hand, the distribution
of the size of the landslide is not homogeneous either. Big landslides are reported in the
Tien Shan, but just small landslides are mapped in part of Pamir. Some big landslides are
reported in Pamir; however, they are not located inside the area.

The influence of the distribution of landslides in the area is recognized in the land-
slide susceptibility result. The Tien Shan is represented by a more significant amount of
areas classified as higher susceptibility in comparison to the areas in the Pamir. Those ar-
eas follow the spatial distribution of the landslides. Contrary, the areas characterized by
high landslides susceptibility in the Pamir are more limited to specific geomorphological-
lithological characteristics rather than the landslides distribution. Thus, the results for the
Pamir are less confident for interpretations and decision making than the results obtained
for the Tien Shan because of the bias introduced by the landslide catalogue.
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5.2 Data preparation

5.2.1 Discretization

Three different approaches were implemented to discretized the continuous variables.
The breaking points resulting from the different approaches are similar or close to, for
precipitation, SR and ERR. Significant changes in the breaking point are presented in the
rest of the variables.

The first method based on the expert knowledge and literature review results in ac-
ceptable predictive capability (ROC = 0.84 - 0.87), however, the resulting landslide sus-
ceptibility map presented a lot of incoherent areas probably associated with the low num-
ber of landslides per class, that created difficulties in the model implementation.

The second method based on the resulting weight of contrast (Wc) exhibit an improve-
ment in the resulting landslides susceptibility map; however, the predictive capability of
the resulting models does not improve. This methodology requires an important com-
putation time in order to create the representation of the weight of contrast against the
variable values to select the breakpoints; because not all of the values in a continuous
variable presents landslides. This creates curves with variations that goes to 0; as well as
some erratic curves that decrease and increase strongly related to the values associated
with low landslide density. After the elimination of the values with 0 landslides and the
use of not single buy smaller classes for the continuous variables, an acceptable curve is
created (4.5). After the creation of a smooth curve, changes in the curvature are selected
as breakpoints. This methodology leads to bias in the discretization based on the exper-
tise of the person that select the breakpoints as well as the quality of the curve.

The third method based on the selection of classes with a similar or equal number
of landslides lead to the models with the higher predictive capability (ROC = 0.86). The
resulting landslide susceptibility is coherent and the computation time is short. Also,
because the method warranty that each of the classes contains a significant number or
landslides, the problems related to the implementation of the WOE model are reduced.

5.2.2 Binarization

The logistic regression approach can use as input continuous and discrete variables. The
only discrete variable used for the implementation for the method is the lithological in-
formation, categorized in 16 different classes. However, those classes represent the age
of the rock, not the importance for the landslides susceptibility, as the logistic regression
model understands it. There are two ways to introduce the lithological information. The
first one to create a binary input per class, that result in a total of 16 rasters, or to use of
the resulting weight of contrast Wc from the WOE approach.

The second method is selected, and the results are consistent. It can be seen in a com-
parison between the result of the same model using the lithological information discrim-
inate in 14 classes, where the Mesozoic and the Paleozoic sedimentary units are grouped
and the one with 16 classes where the sedimentary units are discriminated by periods.
From the figure 5.1 it is possible to recognize in purple color the shape of the Paleozoic
units as a whole, indicating that the geology14 influence the prediction in the Tien Shan
as well as in the Pamir in a positive way. The contrary is observed for the Mesozoic sedi-

Page 114



Landslide hazard in Central Asia Chapter 5. DISCUSSION

mentary units, where the Cretaceous unit that is separated from the Cretaceous-Jurassic
sequence is associated with higher landslides susceptibility values. The changes related
to yellow and blue colors (smaller changes between the models) are related to the influ-
ence of other variables.

Figure 5.1: Map of the differences between the geology 16 (Mezosoic and Paleozoic sedimentary
units discriminated) to the geology 14 (Mezosoic and Paleozoic sedimentary units grouped)

5.3 Important variables

Each of the statistical approaches implemented used different variables to obtain the best
landslide susceptibility map; however, some of the less important variables are common
for two or the three models. The first variable without relation to the landslide occurrence
is the Aspect. It is broadly used as a predictor for LS; however, its importance is based
on a structurally related origin for the landslides, like the slopes in a synclinal-anticline
landscape or in areas where the slope orientation controls the amount of sun, wind or
precipitation received. Aspect can be a significant predictive factor at smaller scales than
the one used for the study.

The NDVI is used to represent the land cover in the area; however, its implication in
the modelling of the LS is not decisive. It is because of the homogeneity in the vegetation
type in the area, where grasslands are abundant are distributed all around the mountain-
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ous areas (figure 5.2).

Figure 5.2: NDVI values classified as water, snow/water, Rock/sand, Soil, Grasslands and Dense
vegetation based on the most common thresholds. Landslides area superimposed.

The TWI is used to discriminate between areas based on the saturation. However, TPI
values below 20 characterized the area creating a similar pattern that decreases the pos-
sibility of associate specific values with the presence or absence of landslides. Distance
to channel is another commonly used predictor variable; however, other hydrological re-
lations can represent better the landslides distribution. Parameters like elevation above
the channel follow better the relation between the streams and the landscape, then a Eu-
clidean distance.

The distance to glaciers is identified as an important variable because it is a specific
condition of the area; however, the use of the variable in the models implementation fre-
quently created incoherent areas and zoning that decrease the predictive capability of the
model and the credibility of the resulting landslide susceptibility map. Probably a sim-
ilar approach which use elevation instead Euclidean distance can be explored in future
works.
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The lithological information is an essential input because it is directly related to the
materials that can create instabilities. For the study area, Paleozoic sedimentary units are
associated with the highest landslide density (figure ??), especially, the Devonian unit,
followed by the Carboniferous and finally the Permian. On the other hand, from the
Mesozoic sedimentary units, the Cretaceous and Jurassic units present a high landslide
density. All those units are associated with marine sedimentary deposits where siltstone,
dolomites, limestones, shales, coal lenses, sandstones, and conglomerates are predomi-
nant.

Figure 5.3: Histogram of the geological units in the area and its associated landslide density.
Left: 1. Quaternary, 2. Neogene, 3. Paleogene, 4. Paleogene/Intrusive, 5. Cretaceous, 6. Tri-
assic/Jurassic, 7. Permian/Igenous, 8. Carboniferous, 9. Carboniferous/Igneous, 10. Permian-
Silurian-Devonian, 11. Cambrian/Precambrian, 12. Glacier areas. Right: 1. Quaternary, 2.
Neogene, 3. Paleogene, 4. Paleogene/Intrusive, 5. Cretaceous, 6. Cretaceous/Jurassic, 7. Jurassic,
8. Triassic/Jurassic, 9. Permian/Igenous, 10. Carboniferous, 11. Carboniferous 12. Carbonifer-
ous/Igneous, 13. Devonian, 14.Silurian, 15. Cambrian/Precambrian, 16. Glacier areas

The precipitation information was not selected as an ideal variable in most of the
models because of the of zonation effects in the resulting landslide susceptibility map
which introduce incoherent values. However, the precipitation increase and enhance
others predictor factors. This situation is evident in the logistic regression when the ex-
traction of the precipitation variable from the models decrease the probability of landslide
occurrence due to the distance to a fault.

The selection of the appropriate scale and kernel size for the computation of the the-
matic variables derived from DEM is another factor to discuss. Some authors implement
techniques like random forest (Paudel et al. , 2016) to determine the optimal scale of the
DEM to compute each of the geomorphological parameters. In this study, the same DEM
is used to compute all the variables; however, different kernel sizes are used for the pa-
rameters. The definition of the kernel size for parameters like TPI, SR, ERR, and local
relief allow the selection of which features are highlighted or identify by the variable. For
example, for the TPI, large kernel sizes will reveal major landscape units, while smaller
values highlight smaller features such minor valleys and rides.
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Figure 5.4: Comparison between the landscape features identified by the EigenValue, TPI and
elevation above channel.
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The eigenvalues are used as a significant predictor for more than one model. It can be
associated with the ability of this variable to discriminate ridges and valleys, similarly to
the TPI that is used for most of models, but represents lower importance or significance.
The similarity between the landscape features that are depicted for different variables
crates redundant information that is deprecated by the statistical models. Similar ob-
servations are made with the elevation above channel, that separates the bottom of the
valleys form the areas located higher to them (figure 5.4).

Nevertheless, it is essential to recognize that from each of the different variable in-
formation can be extracted. Also, the spatial association of the values and the landslide
performed differently. For the EigenValues, the significant landslide density is located
in the valley; however, from the TPI is possible to discriminate also the position of the
slope where the landslides occur. The last information can also be supported by the areas
identified by the elevation above the channel as more related to the landslide occurrence.

Similar behaviour is observed with the slope, considered one of the most important
predictor variables, however, for this study, other geomorphological parameters are iden-
tified as more significant predictors. Because high slopes dominate the area, geomorpho-
logical variables that discriminate between different topographic domains provide more
pieces of information. The Surface roughness, for example, highlights those areas where
the erosion is modelling the landscape, thus, the unstable areas. Additionally, because
the slope is a function of the change of the elevation, other parameters can provide simi-
lar information to the slope.

The ERR, SI, and local relief enhance similar areas (figure 5.6) Those parameters seek
to the identification of the possible tectonic influence in the landslide evolution and can
be easily exchanged between each other, however, concerning statistical behaviour, the
local relief is identified as a variable that can be easily predicted from other variables
(Multi-collinearity). For the logistic regression approach, the ERR and SI are associated
with similar odds ratios, while for the random forest approach, the SI is a relevant pa-
rameter. It is because of the nature of the SI that efficiently discriminated poorly incised
surface and dissected landscape.
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Figure 5.5: Comparison between the landscape features identified by the slope and the SR.
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Figure 5.6: Comparison between the landscape features identified by the EigenValue, TPI and
elevation above channel.
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5.4 Landslide susceptibility models

Three different statistically based approaches have been implemented to obtain a land-
slide susceptibility assessment for the area of Western Pamir and South Tien Shan. The
first model, WOE, is characterized by its easy implementation and the calculation of the
weights related to each factor is well documented in the literature. Also, the results of the
model are easy to understand, and the implementation of the workflow is very intuitive.
However, the model can easily overestimate or underestimates susceptibilities based on
the number of landslides per classes when they are not evenly distributed, making it
less suitable for areas with incomplete landslide catalogue. In order to avoid it different
methodologies were tested; however, the implementation of the approach using a major-
ity of continuous variables becomes time-consuming. On the other hand, in order to de-
termine the appropriate combination of variables, a sequential and lengthy process need
to be done to obtain the best model. Finally, the resulting LS maps are not comparable
in terms of degree of susceptibility, because the weight contras (Wc) is not standardized;
adding another methodological step to the process.

Figure 5.7: Comparison of the binary variables and its fit within the logistic regression function

Logistic regression allows faster implementation of the landslide susceptibility through
a selection of the relevant variables based on the multi-collinearity results. However, it
is possible to recognize that not all the variables fit the sigmoid equation or the logistic
regression model, introducing the question of whether this model represents the real be-
haviour of the variables. The slope, TPI, Local relief, and elevation above the channel
present behaviour that fits tightly to the logistic regression (figure 5.7). Similarly, eigen-
Values and Surface index fits a transposed sigmoid function because more landslides
occur for the smaller values of the parameters.
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Figure 5.8: Comparison of the binary variables and its fit with the logistic regression function

However, the rest of the variables does not fit the sigmoid equation, and they fit better
to others functions. Surface roughness, distance to faults, distance to glaciers and TWI
fits better an exponential function. This behaviour can explained by the presence of land-
slides in a more limited range of values as is possible to observe in the upper histogram,
while, the weights for the lithological units, aspect, precipitation, distance to channel and
elevation relief ratio could be more associated with a linear regression function (figure
5.8).The fact that not all the variables fit in a logistic regression function opens the dis-
cussion about whether the input data are well adapted to the model. The exploration of
other types of functions should be explored.

Neverthless, concerning the predictive power, the results of LR are higher than the
ones obtained by WOE; however, all of the outcomes are characterized by a ROC < 0.9.
The resulting landslide susceptibility map depicts the probability of landslide occurrence.
Because the values are always in the range of 1 to 100, comparing between models is
straightforward. One of the disadvantages of the LR approach is the overestimation of
the results when an inadequate landslide catalogue is available as well as when there are
more variables than observations
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The Random forest approach is designed as a more robust technique that enables the
production of landslide susceptibility maps with a high predictive capability following
a very easy workflow. RF can handle different type of data types as well as variables
with conditional dependence or multicollinearity. Quantification of the importance of
the variables is given as a the main output, being a handy tool to improve the model. The
resulting LS map represents the landslide density in a range of 1 to 100, being possible
the comparison with other models. However, the results are limited by the number of
training points, and it is denoted in the LS susceptibility map, where the areas where less
or null training points are located, are overestimate.

5.5 Landslide susceptibility results

5.5.1 Selection of the best model

The best model is the combination of predictive variables that lead to the landslide sus-
ceptibility map that can identify with the higher accuracy areas where future landslide
will occur.

One of the most common evaluations of the predictive capability of a model is using
cross-validation methods. The ROC curve is selected as a measure of the accuracy of each
model in order to compare between them and select the one with the best performance.
However, a measure of the error of the model is taking in account too. The variation of
the resulting outputs of a model can be used to analyse how stable and adaptive it is
along the possible overfitting. Thus, each model has been implemented in an iterative
way, and the main statistics of the results are computed.

The best model is selected based on the results of the iterative process (i = 50). In the
figure 5.9 is possible to perceive the variation of the ROC with the different implementa-
tions. Based on the stability and the higher accuracy of the model 31 -2 it is selected as
the best model obtained by the WOE approach.

Figure 5.9: Statistics used to select the best model resulting from the implementation of the WOE
approach. Mean prediction accuracy calculated based on the implementation of the model 50
times. Left: Accuracy assessment for the model 12 -3 (11 thematic variables). Center: Accuracy
assessment for the model21- 3 (7 variables). Right: Accuracy assessment for the model31 -2 (6
variables).
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A similar methodology is implemented for the five models defined for the logistic
regression approach. However, the performance of the models is very similar, so, an ad-
ditional statistical measure is added. The 2nd standard deviation (model error) is plotted
against the mean probability to visualize the dispersion of the model error too. Model
number 4 is selected as the best model obtained by the implementation of the Logistic
regression.

Figure 5.10: Statistics used to select the best model resulting from the implementation of the LR
approach. Prediction accuracy and error when the model is compute 100 times. Top-left: Accuracy
assessment and error dispersion for the model 1 (8 variables). Top-Right: Accuracy assessment
and error dispersion for the model 2 (7 variables). Bottom-left:Accuracy assessment and error
dispersion for the model for the model 3 (9 variables). Bottom-right: Accuracy assessment and
error dispersion for the model for the model 4 (7 variables).

Equivalently, the models created by the random forest approach are tested using the
same statistics (figure 5.11). The model 1 is selected as the best mode because of its good
predictive accuracy as well as less error dispersion, leading to stability of the model in
term of changing the training point. The resulting landslide susceptibility map present
consistency between the distribution of the values and just a few areas can be identified
as incoherent.
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Figure 5.11: Statistics used to select the best model resulting from the implementation of the RF
approach. Prediction accuracy and Model error (OOBE) dispersion represented by the second
standard deviation vs the mean when the model is compute 100 times. Top-left: Statistics for the
model 1 (8 variables). Top-Right: Statistics for the model 2 (8 variables). Center-left: Statistics for
the model 3 (4 variables). Center-right: Statistics for the model 4 (9 variables). Bottom: Statistics
for the model 5 (7 variables)
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5.5.2 Best models differences

One of the objectives of applying different methods is to understand if the different ap-
proaches identify the same areas in order to add an extra level of confidence to the results.
In order to compare the results from the different approaches, all of the outcomes are clas-
sified in 5 classes of landslide susceptibility. For the WOE result, natural breaks are used
for the classification, while for LR and RF, equal intervals are implemented.

Figure 5.12: Landslide susceptibility map for the study area computed by three different ap-
proaches.

In general terms, it is possible to conclude that similar areas are identify as high to
very high landslide susceptibility for all the approaches. The WOE results distinguish
areas with a homogeneous distribution of the values in the Tien Shan and the Pamir. On
the other hand, the logistic regression map enhances some areas in the Pamir as high to
very high susceptibility; however, the distribution tends to be striped probably marked
by the geology. The Random forest results evidence fewer areas as very high susceptibil-
ity, while an increment of intermediate to high LS zones are denoted. The results reveal
the influence of the landslide catalogue in the classification that results in fewer areas
associated with very high LS for the models with higher predictive accuracy.

The WOE model presents more areas classified as high landslide susceptibility, com-
pared to the results of the LR (3 to 4- Purple). The main areas are located in Pamir. The
area number 1 in figure 5.13 is probably associated with the lithological information, be-
cause a different grouping of the rocks was used for the WOE implementation and LR.
The area 2 can be influenced by the characteristics of the SI used in the WOE but not in
the LR. This area is characterized by very low SI values indicating the predominance of
a dissected landscape. Also, very high values of LR are associated, where a substantial
number of landslides are mapped.

Similarly, essential differences in the landslide susceptibility categories are found be-
tween the WOE and the RF approach. Even though the total area with robust different
classification is less, in the comparison to the WOE against LR, they are consistent con-
cerning spatial distribution. The RF and the WOE were implemented using the same
lithological features; thus, a difference in the classification based on the materials is less
plausible. The decreasing in the areas with strong differences could be related to the use
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of similar geomorphological variables like TPI and SI (figure 5.13).

Figure 5.13: Comparison maps between the resulting landslide susceptibility maps. Red circles
are areas to be discuss in detailed.

Contrary, sharp differences between the RF model and LR are drastically limited.
However, the general landslide susceptibility for most of the Pamir area is in disagree-
ment by the difference of 2 levels. It means that for LR the area presents a very low LS,
for RF the area could low or intermediate LS. The two models have in common the use
of slope and eigenValues as geomorphological predictive variables (figure 5.13).

Those differences are also represented in the abundance of the landslide susceptibil-
ity classes in the resulting maps. The figure 5.14 restate the higher number of very high
LS areas delimited by the WOE models compares to the other two models. On the other
hand, the LR result is characterized by a high number of very low LS. The WEO presents
a homogeneous distribution of the classes. It could be related to the method implemented
to select the classes. Natural breaks are used to define the landslide susceptibility for the
WOE, while for the RF and the LR, five equal intervals are used.

Figure 5.14: Abundance of the landslide susceptibility class based on the model implemented.
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5.5.3 Compatibility with previous studies

Previous landslide susceptibility assessments have been implemented in the area using
different techniques. (Saponaro et al. , 2015) implemented a weight of evidence model
that covers all the area of study; however, the presented results are not standardized
making the comparison among models difficult. On the other hand, the scales of imple-
mentations vary from this study, changing the level of detail. However, a general pattern
of very high LSI values are reported by Saponaro et al. (2015) for the Pamir area, while
intermediate values are associated with the Tadjik basin, and low LSI values are reported
for the Tien Shan. The results of the WOE for this study characterized the Pamir with
high LSI values; as well as the Tien Shan. Also, the Tadjik basin is defined by the lowest
values of landslide occurrence for all the results obtained during this study, contrary to
the information presented by (Saponaro et al. , 2015) .

(a) Landslide susceptibility maps for the area of study.

(b) Distribution of the landslide susceptibility index. The red square indicate the area
of study of this work.
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The most recent attempt to assess the landslide susceptibility in the area is the im-
plementation of a landslide factor method for the Tien Shan. This result was obtained
using the same base landslide catalogue used for this study. The area is divided into five
classes, similar to the approached followed by this work. The results from (Havenith
et al. , 2015b) are characterized by a predominance of lowest to low susceptibility class
contrary to the different results obtained here. A common important landslide suscepti-
bility spot is located in the south margin of the Sarafshon river; however, the explanation
can be related more to the bias in the landslide catalogue. The landslide factor method
identifies as high susceptibility the areas where a remarkable number of landslides are
located. It is restricted to the data collected leading to very limited results; however, the
author claims that the method is used as a partial estimation of the landslide susceptibil-
ity.

(a) Landslide susceptibility maps for the area of study.

(b) Distribution of the landslide factor. The red square indicate the area of study of
this work.
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Chapter 6

CONCLUSIONS

This work presents a landslide susceptibility assessment for the South Tien Shan and
Western Pamir in Central Asia. A landslide catalogue was created by the compilation
of previous information and the completion by manual delimitation of mass wasting,
mainly for the Pamir area. The catalogue has coverage of 0.02% and introduces differ-
ent biases in the model. First, the area of Tien Shan has better representation than the
Pamir area not only regarding the variety of landslides sizes but also in the distribution.
A substantial landslide density is identified in the North-West area of Tien Shan, in the
valley of the Zarafshon. Also, the areas around Dushanbe, the capital of Tajikistan are
characterized by an important landslide density. Intermediate to small size landslides
are located along the Vakhsh thrust system (MPT); while small landslides characterized
the Darvaz fault system surroundings.

Thematic variables grouped in 5 clusters were created. Geological information is har-
monized to obtain a lithological regional map of the area. Precipitation information is
re-sampling. Satellite images are used to calculate the NDVI values. Euclidean distances
to Glacier and Fault are computed, and DEM derivatives are created. A large number of
geomorphological parameters derived from DEM are generated in order to complement
the knowledge of the study area. Some of those indices have never been implemented
for landslide susceptibility before. The elevation above the channel is an approach to un-
derstand the influence of the gradient and the potential energy. The topographic position
index separates between ridges and valley bottoms; similarly, the eigenvalues depict the
curvature of the valleys and ridges. The surface roughness highlight areas with erosional
processes, while the local relief is related to the river incision. The elevation relief ratio
reflects the conditions of stability of the landscape while the surface index discriminates
between erosional and steady-state landscapes.

Three statically based approaches are implemented to calculate landslide susceptibil-
ity. The WOE shows good performance; however, the methodology is time-consuming.
LR is presented as a faster option to compute landslide susceptibility; however, a more
in-depth discussion about the fitting of the model to the thematic variables is required.
The RF approach is a more robust method with which good landslide susceptibility maps
are obtained.

The selection of the more relevant variables to obtain the optimal landslide suscepti-
bility assessment are chosen based on a sequential process. The lithological information
constrains the areas of very high landslides susceptibility because of a significant number
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of landslides associated with the sedimentary marine sequences deposited in the Jurassic
and the Devonian mostly. The distance to fault is a factor that is used in all the models
because there is a positive spatial association between the closeness to an active fault and
the landslide occurrence. Geomorphological parameters like EigenValues, TPI, SI, local
relieve, and elevation above the channel proved to be useful proxies to map geomorpho-
logical characteristics related to the slope instabilities. However, special care is needed
when selecting the variables in order to avoid multicollinearity.

The influence of the glacial processes in the landslide occurrence must be study in
detail for the area. During this study a positive spacial association was found; however,
the method used to represent the variable creates incoherences in the landslide suscep-
tibility resulting map. Contrary, aspect, NDVI, and TWI are identified as variables with
minimal influence in the landslide susceptibility modelling. It is because of the lack of a
predominant pattern related to the landslide occurrence. For the aspect, a similar num-
ber of landslides are related to the different orientation. On the other hand, grasslands
characterized areas affected by mass wasting along areas that not. Similarly, the values of
TWI are homogeneously distributed for areas with the presence or absence of landslides.
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Armaş, Iuliana. 2012. Weights of evidence method for landslide susceptibility mapping.
Prahova Subcarpathians, Romania. Natural Hazards, 60(3), 937–950.

Arrowsmith, J R, & Strecker, Manfred R. 1999. Seismotectonic range-front segmentation
and mountain-belt growth in the Pamir-Alai region, Kyrgyzstan (India-Eurasia colli-
sion zone). Geological Society of America Bulletin, 111(11), 1665–1683.

Baratov, RB. 1966. Intruzivnyye kompleksy yuzhnogo sklona Gissarskogo khrebeta i svyazan-
nyye s nimi orudeneniya.

Barredo, JoséI, Benavides, Annetty, Hervás, Javier, & van Westen, Cees J. 2000. Compar-
ing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin,
Gran Canaria Island, Spain. International journal of applied earth observation and geoinfor-
mation, 2(1), 9–23.

Bindi, D, Abdrakhmatov, K, Parolai, S, Mucciarelli, M, Grünthal, G, Ischuk, A,
Mikhailova, N, & Zschau, J. 2012. Seismic hazard assessment in Central Asia: Out-
comes from a site approach. Soil dynamics and earthquake engineering, 37, 84–91.

Bonham-Carter, Graeme F. 1994. Geographic information systems for geoscientists-
modeling with GIS. Computer methods in the geoscientists, 13, 398.

133



Landslide hazard in Central Asia Bibliography

Boroumandi, Mehdi, Khamehchiyan, Mashalah, & Nikoudel, Mohammad Reza. 2015.
Using of analytic hierarchy process for landslide hazard zonation in Zanjan Province,
Iran. Pages 951–955 of: Engineering Geology for Society and Territory-Volume 2. Springer.

Brabb, Earl E. 1985. Innovative approaches to landslide hazard and risk mapping. Pages
17–22 of: International Landslide Symposium Proceedings, Toronto, Canada, vol. 1.

Breiman, Leo. 2001. Random forests. Machine learning, 45(1), 5–32.

Brookfield, ME. 2000. Geological development and Phanerozoic crustal accretion in the
western segment of the southern Tien Shan (Kyrgyzstan, Uzbekistan and Tajikistan).
Tectonophysics, 328(1-2), 1–14.

Burtman, Valentin Semenovich, & Molnar, Peter Hale. 1993. Geological and geophysical
evidence for deep subduction of continental crust beneath the Pamir. Vol. 281. Geological
Society of America.

Burtman, VS. 2000. Cenozoic crustal shortening between the Pamir and Tien Shan and a
reconstruction of the Pamir–Tien Shan transition zone for the Cretaceous and Palaeo-
gene. Tectonophysics, 319(2), 69–92.

Carranza, Emmanuel John M, & Sadeghi, Martiya. 2010. Predictive mapping of prospec-
tivity and quantitative estimation of undiscovered VMS deposits in Skellefte district
(Sweden). Ore Geology Reviews, 38(3), 219–241.

Carrara, A, Cardinali, M, Detti, R, Guzzetti, F, Pasqui, V, & Reichenbach, P. 1991. GIS
techniques and statistical models in evaluating landslide hazard. Earth surface processes
and landforms, 16(5), 427–445.

Chung, Chang-Jo F, Fabbri, Andrea G, et al. . 1999. Probabilistic prediction models for
landslide hazard mapping. Photogrammetric engineering and remote sensing, 65(12), 1389–
1399.

Dai, FC, & Lee, CF. 2001. Frequency–volume relation and prediction of rainfall-induced
landslides. Engineering geology, 59(3-4), 253–266.

De Reu, Jeroen, Bourgeois, Jean, Bats, Machteld, Zwertvaegher, Ann, Gelorini, Vanessa,
De Smedt, Philippe, Chu, Wei, Antrop, Marc, De Maeyer, Philippe, Finke, Peter, et al.
. 2013. Application of the topographic position index to heterogeneous landscapes.
Geomorphology, 186, 39–49.

Evans, Stephen G, Roberts, Nicholas J, Ischuk, Anatoli, Delaney, Keith B, Morozova,
Galina S, & Tutubalina, Olga. 2009. Landslides triggered by the 1949 Khait earthquake,
Tajikistan, and associated loss of life. Engineering Geology, 109(3-4), 195–212.

Federal State Budgetary Institution A.P. Karpinsky Russian Geological Research Institute
(FGUP VSEGEI). 2018. Cartographic resources on regional geology. data retrieved from
http://webmapget.vsegei.ru/index.html.

Frangi, Alejandro F, Niessen, Wiro J, Vincken, Koen L, & Viergever, Max A. 1998. Multi-
scale vessel enhancement filtering. Pages 130–137 of: International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer.

Froude, Melanie J, & Petley, David N. 2018. Global fatal landslide occurrence from 2004
to 2016. Natural Hazards and Earth System Sciences, 18(8), 2161–2181.

Page 134

http://webmapget.vsegei.ru/index.html


Landslide hazard in Central Asia Bibliography

Fuchs, MC, Gloaguen, R, Merchel, S, Pohl, E, Sulaymonova, VA, Andermann, C, & Rugel,
G. 2015. Millennial erosion rates across the Pamir based on 10 Be concentrations in
fluvial sediments: dominance of topographic over climatic factors. Earth Surf Dyn
Discuss, 3, 83–128.

German Aerospace Center (DLR), Italian Space Agency (ASI). 2000. Shuttle Radar To-
pography Mission. data retrieved from, https://www.dlr.de/eoc/en/desktopdefault.
aspx/tabid-5515/9214_read-17716/.

Grohmann, CH, Smith, MJ, & Riccomini, C. 2009. Surface roughness of topography: a
multi-scale analysis of landform elements in Midland Valley, Scotland. Proceedings of
geomorphometry, 31, 140–148.

Gruber, FE, & Mergili, M. 2013. Regional-scale analysis of high-mountain multi-hazard
and risk indicators in the Pamir (Tajikistan) with GRASS GIS. Natural Hazards and Earth
System Sciences, 13(11), 2779–2796.

Guha-Sapir, Debarati, Hoyois, Philippe, Wallemacq, Pasacline, & Below, Regina. 2017.
Annual Disaster Statistical Review 2016. Tech. rept. Center for research on the epidemi-
ology of disasters.

Guo, Wanqin, Liu, Shiyin, Xu, Junli, Wu, Lizong, Shangguan, Donghui, Yao, Xiaojun,
Wei, Junfeng, Bao, Weijia, Yu, Pengchun, Liu, Qiao, et al. . 2015. The second Chinese
glacier inventory: data, methods and results. Journal of Glaciology, 61(226), 357–372.

Guzzetti, F, Galli, M, Reichenbach, P, Ardizzone, F, & Cardinali, M. 2006. Landslide
hazard assessment in the Collazzone area, Umbria, Central Italy. Natural Hazards and
Earth System Science, 6(1), 115–131.

Guzzetti, Fausto, Mondini, Alessandro Cesare, Cardinali, Mauro, Fiorucci, Federica, San-
tangelo, Michele, & Chang, Kang-Tsung. 2012. Landslide inventory maps: New tools
for an old problem. Earth-Science Reviews, 112(1-2), 42–66.

Havenith, H-B, Strom, A, Jongmans, D, Abdrakhmatov, A, Delvaux, D, & Tréfois, P. 2003.
Seismic triggering of landslides, Part A: Field evidence from the Northern Tien Shan.
Natural Hazards and Earth System Science, 3(1/2), 135–149.

Havenith, Hans-Balder, & Bourdeau, Céline. 2010. Earthquake-induced hazards in
mountain regions: a review of case histories from Central Asia–an inaugural lecture
to the society. Geologica Belgica, 13, 135–150.

Havenith, Hans-Balder, Abdrakhmatov, Kanatbek, Torgoev, Isakbek, Ischuk, Anatoly,
Strom, Alexander, Bystrickỳ, Erik, & Cipciar, Andrej. 2013. Earthquakes, landslides,
dams and reservoirs in the Tien Shan, central Asia. Pages 27–31 of: Landslide Science and
Practice. Springer.

Havenith, Hans-Balder, Strom, Alexander, Torgoev, Isakbek, Torgoev, Almazbek, Lamair,
Laura, Ischuk, Anatoly, & Abdrakhmatov, Kanatbek. 2015a. Tien Shan geohazards
database: Earthquakes and landslides. Geomorphology, 249, 16–31.

Havenith, Hans-Balder, Torgoev, Almazbek, Schlögel, Romy, Braun, Anika, Torgoev,
Isakbek, & Ischuk, Anatoly. 2015b. Tien Shan geohazards database: Landslide sus-
ceptibility analysis. Geomorphology, 249, 32–43.

Page 135

https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-5515/9214_read-17716/
https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-5515/9214_read-17716/


Landslide hazard in Central Asia Bibliography

Highland, Lynn, Bobrowsky, Peter T, et al. . 2008. The landslide handbook: a guide to under-
standing landslides. US Geological Survey Reston.

Huggett, Richard. 2016. Fundamentals of geomorphology. Routledge.

Hungr, Oldrich, Leroueil, Serge, & Picarelli, Luciano. 2014. The Varnes classification of
landslide types, an update. Landslides, 11(2), 167–194.

Ischuk, Anatoli, Bendick, Rebecca, Rybin, Anatoly, Molnar, Peter, Khan, Shah Faisal,
Kuzikov, Sergey, Mohadjer, Solmaz, Saydullaev, Umed, Ilyasova, Zhyra, Schelochkov,
Gennady, et al. . 2013. Kinematics of the Pamir and Hindu Kush regions from GPS
geodesy. Journal of geophysical research: solid earth, 118(5), 2408–2416.

Ishihara, Kenji, Okusa, Shigeyasu, Oyagi, Norio, & Ischuk, Anatoliy. 1990. Liquefaction-
induced flow slide in the collapsible loess deposit in Soviet Tajik. Soils and foundations,
30(4), 73–89.

Käßner, Alexandra, Ratschbacher, Lothar, Jonckheere, Raymond, Enkelmann, Eva, Khan,
Jahanzeb, Sonntag, Benita-Lisette, Gloaguen, Richard, Gadoev, Mustafo, & Oimah-
madov, Ilhomjon. 2016. Cenozoic intracontinental deformation and exhumation at the
northwestern tip of the India-Asia collision—southwestern Tian Shan, Tajikistan, and
Kyrgyzstan. Tectonics, 35(9), 2171–2194.

Kayastha, Prabin, Dhital, Megh Raj, & De Smedt, Florimond. 2013. Application of the
analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study
from the Tinau watershed, west Nepal. Computers & Geosciences, 52, 398–408.

Khasanov, A Kh. 1975. Overall sequence and time of formation of igneous rock and ore-
metasomatite associations in the Gissar- Alay region, southern Tien Shan. Pages 91 – 94
of: Dokl. Akad. Nauk SSSR, vol. 223.

Kirschbaum, Dalia, Stanley, Thomas, & Zhou, Yaping. 2015. Spatial and temporal analy-
sis of a global landslide catalog. Geomorphology, 249, 4–15.

Kirschbaum, Dalia Bach, Adler, Robert, Hong, Yang, Hill, Stephanie, & Lerner-Lam,
Arthur. 2010. A global landslide catalog for hazard applications: method, results, and
limitations. Natural Hazards, 52(3), 561–575.

Koehrsen, William. 2007. Random forest simple explanation.

Korup, Oliver, & Tweed, Fiona. 2007. Ice, moraine, and landslide dams in mountainous
terrain. Quaternary Science Reviews, 26(25-28), 3406–3422.

Kriegel, David, Mayer, Christoph, Hagg, Wilfried, Vorogushyn, Sergiy, Duethmann,
Doris, Gafurov, Abror, & Farinotti, Daniel. 2013. Changes in glacierisation, climate
and runoff in the second half of the 20th century in the Naryn basin, Central Asia.
Global and planetary change, 110, 51–61.

Kurenkov, SA, & Aristov, VA. 1995. On the time of formation of the Turkestan paleoocean
crust. Geotectonics, 29(6), 469–477.

Kutuzov, Stanislav, & Shahgedanova, Maria. 2009. Glacier retreat and climatic variability
in the eastern Terskey–Alatoo, inner Tien Shan between the middle of the 19th century
and beginning of the 21st century. Global and Planetary Change, 69(1-2), 59–70.

Page 136



Landslide hazard in Central Asia Bibliography

Lee, Jung-Hyun, Sameen, Maher Ibrahim, Pradhan, Biswajeet, & Park, Hyuck-Jin. 2018.
Modeling landslide susceptibility in data-scarce environments using optimized data
mining and statistical methods. Geomorphology, 303, 284–298.

Lee, S. 2005. Application of logistic regression model and its validation for landslide sus-
ceptibility mapping using GIS and remote sensing data. International Journal of Remote
Sensing, 26(7), 1477–1491.

Lee, Saro, Choi, Jaewon, & Min, Kyungduck. 2002. Landslide susceptibility analysis and
verification using the Bayesian probability model. Environmental Geology, 43(1-2), 120–
131.

Leith, William, & Simpson, David W. 1986. Seismic domains within the Gissar-Kokshal
seismic zone, Soviet Central Asia. Journal of Geophysical Research: Solid Earth, 91(B1),
689–699.

Liu, Dongliang, Li, Haibing, Sun, Zhiming, Cao, Yong, Wang, Leizhen, Pan, Jiawei, Han,
Liang, & Ye, Xiaozhou. 2017. Cenozoic episodic uplift and kinematic evolution be-
tween the Pamir and Southwestern Tien Shan. Tectonophysics, 712, 438–454.

Marchesini, I, Ardizzone, F, Alvioli, M, Rossi, M, & Guzzetti, F. 2014. Non-susceptible
landslide areas in Italy and in the Mediterranean region. Natural Hazards and Earth
System Sciences, 14(8), 2215–2231.

Maussion, Fabien, Scherer, Dieter, Mölg, Thomas, Collier, Emily, Curio, Julia, &
Finkelnburg, Roman. 2014. Precipitation seasonality and variability over the Tibetan
Plateau as resolved by the High Asia Reanalysis. Journal of Climate, 27(5), 1910–1927.

Mergili, M, & Schneider, JF. 2011. Regional-scale analysis of lake outburst hazards in the
southwestern Pamir, Tajikistan, based on remote sensing and GIS. Natural Hazards and
Earth System Sciences, 11(5), 1447–1462.

Mohadjer, S, Bendick, R, Ischuk, A, Kuzikov, S, Kostuk, A, Saydullaev, U, Lodi, S, Kakar,
DM, Wasy, A, Khan, MA, et al. . 2010. Partitioning of India-Eurasia convergence in the
Pamir-Hindu Kush from GPS measurements. Geophysical Research Letters, 37(4).

Nadim, Farrokh, Kjekstad, Oddvar, Peduzzi, Pascal, Herold, Christian, & Jaedicke, Chris-
tian. 2006. Global landslide and avalanche hotspots. Landslides, 3(2), 159–173.

Natalya Mikhailova, N.N Poleshko, I.L Aristova A.S Mukambayev G.O Kulikova. 2015.
EMCA Central Asia Earthquake catalogue v1.0. data retrieved from GFZ Data Services,
http://doi.org/10.5880/GFZ.EWS.2015.001.

National Aeronautics and Space Administration (NASA), National Geospatial intelli-
gence agency (NGA). 2000. Shuttle Radar Topography Mission. data retrieved from,
https://lta.cr.usgs.gov/SRTM1Arc.

Negredo, Ana M, Replumaz, Anne, Villaseñor, Antonio, & Guillot, Stéphane. 2007. Mod-
eling the evolution of continental subduction processes in the Pamir–Hindu Kush re-
gion. Earth and Planetary Science Letters, 259(1-2), 212–225.

Nuimura, T, Sakai, A, Taniguchi, K, Nagai, H, Lamsal, D, Tsutaki, S, Kozawa, A, Hoshina,
Y, Takenaka, S, Omiya, S, et al. . 2015. The gamdam glacier inventory: a quality-
controlled inventory of Asian glaciers. Cryosphere, 9(3).

Page 137

http://doi.org/10.5880/GFZ.EWS.2015.001
https://lta.cr.usgs.gov/SRTM1Arc


Landslide hazard in Central Asia Bibliography

Paudel, Uttam, Oguchi, Takashi, & Hayakawa, Yuichi. 2016. Multi-resolution landslide
susceptibility analysis using a DEM and random forest. International Journal of Geo-
sciences, 7(05), 726.

Pike, Richard J, & Wilson, Stephen E. 1971. Elevation-relief ratio, hypsometric integral,
and geomorphic area-altitude analysis. Geological Society of America Bulletin, 82(4),
1079–1084.

Pohl, Eric, Gloaguen, Richard, & Seiler, Ralf. 2015. Remote sensing-based assessment
of the variability of winter and summer precipitation in the Pamirs and their effects
on hydrology and hazards using harmonic time series analysis. Remote Sensing, 7(8),
9727–9752.

Pourghasemi, Hamid Reza, Pradhan, Biswajeet, & Gokceoglu, Candan. 2012. Applica-
tion of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility
mapping at Haraz watershed, Iran. Natural hazards, 63(2), 965–996.

Rabus, Bernhard, Eineder, Michael, Roth, Achim, & Bamler, Richard. 2003. The shuttle
radar topography mission—a new class of digital elevation models acquired by space-
borne radar. ISPRS journal of photogrammetry and remote sensing, 57(4), 241–262.

Raja, Nussaïbah B, Çiçek, Ihsan, Türkoğlu, Necla, Aydin, Olgu, & Kawasaki, Akiyuki.
2017. Landslide susceptibility mapping of the Sera River Basin using logistic regression
model. Natural Hazards, 85(3), 1323–1346.

Raup, Bruce H, Kieffer, Hugh H, Hare, Trent M, & Kargel, Jeffrey S. 2000. Generation of
data acquisition requests for the ASTER satellite instrument for monitoring a globally
distributed target: Glaciers. IEEE Transactions on Geoscience and Remote Sensing, 38(2),
1105–1112.

Rautian, Tatyana, & Leith, William. 2002. Composite regional catalogs of earthquakes in
the former Soviet Union. US Geological Survey Open File Report, 2, 500.

Regmi, Netra R, Giardino, John R, & Vitek, John D. 2010. Modeling susceptibility to land-
slides using the weight of evidence approach: Western Colorado,USA. Geomorphology,
115(1-2), 172–187.

Reichenbach, Paola, Rossi, Mauro, Malamud, Bruce, Mihir, Monika, & Guzzetti, Fausto.
2018. A review of statistically-based landslide susceptibility models. Earth-Science Re-
views.

Rogozhin, Ye A. 1993. Southern Tien Shan folding. Geotectonics, 27, 51–61.

Ruleman, CA, Crone, AJ, Machette, MN, Haller, KM, & Rukstales, KS. 2007. Map and
database of probable and possible Quaternary faults in Afghanistan. Tech. rept. Geological
Survey (US).

Saito, Hitoshi, Nakayama, Daichi, & Matsuyama, Hiroshi. 2010. Relationship between
the initiation of a shallow landslide and rainfall intensity—duration thresholds in
Japan. Geomorphology, 118(1-2), 167–175.

Saponaro, Annamaria, Pilz, Marco, Bindi, Dino, & Parolai, Stefano. 2015. The contribu-
tion of EMCA to landslide susceptibility mapping in Central Asia. Annals of Geophysics,
58(1).

Page 138



Landslide hazard in Central Asia Bibliography

Schenider, JF, Gruber, FE, & Mergili, M. 2013. Impact of large landslides, mitigation
measures. Ital J Eng Geol Environ, 6, 73–84.

Schumm, Stanley A. 1956. Evolution of drainage systems and slopes in badlands at Perth
Amboy, New Jersey. Geological society of America bulletin, 67(5), 597–646.

Schurr, Bernd, Ratschbacher, Lothar, Sippl, Christian, Gloaguen, Richard, Yuan, Xiaohui,
& Mechie, James. 2014. Seismotectonics of the Pamir. Tectonics, 33(8), 1501–1518.

Shahid Ullah, Kanat Abdrakhmatov, Alla Sadykova Roman Ibragimov Anatoly Ishuk
Danciu Laurentiu Stefano Parolai Dino Bindi Marc Wieland Massimiliano Pittore. 2015.
EMCA Central Asia seismic source model v1.0. data retrieved from GFZ Data Services,
http://doi.org/10.5880/GFZ.EWS.2015.002.

Shahzad, Faisal, & Gloaguen, Richard. 2011. TecDEM: A MATLAB based toolbox for
tectonic geomorphology, Part 2: Surface dynamics and basin analysis. Computers &
geosciences, 37(2), 261–271.

Shi, Yafeng, Liu, Chaohai, & Kang, Ersi. 2009. The glacier inventory of China. Annals of
Glaciology, 50(53), 1–4.

Smith, Mark W. 2014. Roughness in the earth sciences. Earth-Science Reviews, 136, 202–
225.

Strahler, Arthur N. 1952. Hypsometric (area-altitude) analysis of erosional topography.
Geological Society of America Bulletin, 63(11), 1117–1142.

Strom, Alexander. 2010. Landslide dams in Central Asia region. Journal of the Japan Land-
slide Society, 47(6), 309–324.

T Bolch, N Mölg, H Frey F Paul. DynRG-Tip, Aksu-Tarim-RS and Glaciers_cci . Projects ex-
ecuted by Technical University of Dresden, Germay and University of Zürich, Switzer-
land.

Tarbuck, Edward J., Lutgens, Frederick K, et al. . 2014. Earth: An Introduction to Physical
Geology. Pearson.

Thurman, Michael. 2011a. Natural Disaster Risks in Central Asia: A Synthesis. Tech. rept.
UNDP/BCPR, Regional Disaster Risk Reduction Advisor, Europe and CIS.

Thurman, Michael. 2011b. Natural Disaster Risks in Central Asia: A Synthesis.

Trentin, Romario, & de Souza Robaina, Luís Eduardo. 2018. STUDY OF THE LAND-
FORMS OF THE IBICUÍ RIVER BASIN WITH USE OF TOPOGRAPHIC POSITION
INDEX. Revista Brasileira de Geomorfologia, 19(2).

Trigila, Alessandro, Iadanza, Carla, Esposito, Carlo, & Scarascia-Mugnozza, Gabriele.
2015. Comparison of logistic regression and random forests techniques for shallow
landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology,
249, 119–136.

Tseng, CM, Lin, CW, & Hsieh, WD. 2015. Landslide susceptibility analysis by means
of event-based multi-temporal landslide inventories. Natural Hazards & Earth System
Sciences Discussions, 3(2).

Page 139

http://doi.org/10.5880/GFZ.EWS.2015.002


Landslide hazard in Central Asia Bibliography

Ulomov, Valentin I, Group, GSHAP Region 7 Working, et al. . 1999. Seismic hazard of
northern Eurasia. Annals of Geophysics, 42(6).

Ulomov, V.I. 1999. Global Seismic Hazard Assessment Program. Tech. rept. International
Lithosphere program/ International Council of Scientific Unions (ICSU).

U.S. Geological Survey. 2015. Landsat 8 OLI/TIRS Level-2 Data Products - Surface Reflectance.
https://lta.cr.usgs.gov/L8Level2SR.

Varnes, David J. 1958. Landslide types and processes. Landslides and engineering practice,
29(3), 20–45.

Wieczorek, GERALD F, & Guzzetti, F. 1999. A review of rainfall thresholds for triggering
landslides. Pages 407–414 of: Proc. of the EGS Plinius Conference, Maratea, Italy.

Yalcin, A, Reis, S, Aydinoglu, AC, & Yomralioglu, T. 2011. A GIS-based comparative
study of frequency ratio, analytical hierarchy process, bivariate statistics and logis-
tics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey.
Catena, 85(3), 274–287.

Page 140

https://lta.cr.usgs.gov/L8Level2SR

	INTRODUCTION
	Problem Statement
	Research Significance
	Research Objectives

	STUDY AREA
	Geology and Tectonics
	Climate
	Landslides
	Landslide definition and classification
	Historical Landslides
	Previous works
	Landslide catalogue
	Field observations


	INSTABILITY FACTORS
	Review of the thematic variables
	Geology
	Precipitation
	Distance to a glacier
	Distance to channel
	Elevation Above Channel
	Topographic Wetness Index
	Normalized difference vegetation index
	Slope
	Aspect
	Surface Roughness
	Elevation Relief Ratio
	Surface Index
	Local Relief
	Topographic Position Index
	EigenValues
	Distance to fault
	Seimozones

	LANDSLIDE SUSCEPTIBILITY MODELS
	Introduction
	Data Preparation
	Preparation of training and validation data set
	Preparation of thematic variables
	Discretization
	Binarization


	Model evaluation
	Weight of evidence
	Method
	Implementation
	Discrete data
	Calculation of weighted values
	Test for conditional independence
	Combination of variables
	Model creation and improvement


	Logistic Regression
	Method
	Implementation
	Multi-collinearity test
	Combination of variables
	Model creation and improvement


	Random Forest
	Method
	Implementation
	Most important predictor variables
	Combination of variables
	Selection of the model parameters
	Model creation and improvement



	DISCUSSION
	Landslide catalogue and thematic variables
	Data preparation
	Discretization
	Binarization

	Important variables
	Landslide susceptibility models
	Landslide susceptibility results
	Selection of the best model
	Best models differences
	Compatibility with previous studies


	CONCLUSIONS

