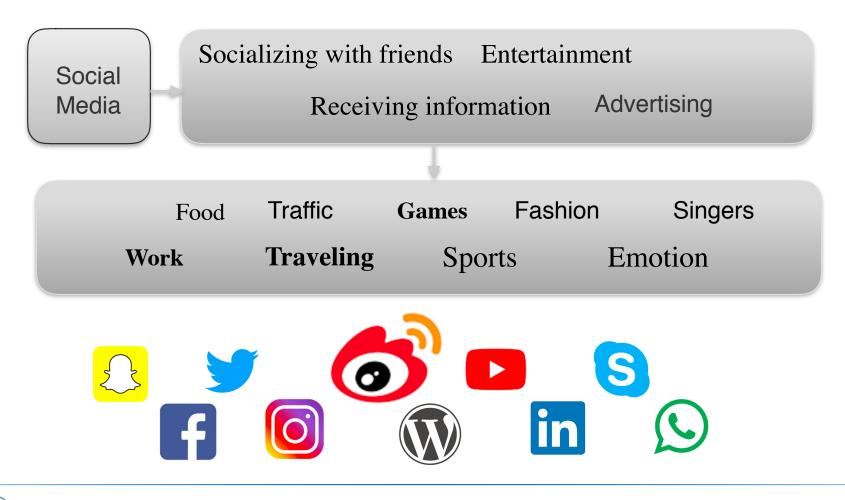
Extraction and Visual Analysis of Negative Traffic Events from Weibo Data

Author: Chenyu Zuo


Supervisor: Dr.-Ing. Linfang Ding Second Supervisor: Prof. Mag.rer.nat. Dr.rer.nat. Georg Gartner

Outline

- 1. Introduction
- 2. Related Work
- 3. Methodology
- 4. Experiments
- 5. Conclusion
- 6. Outlook

1 Introduction

1.1 Background

1.1 Background

Studies about Social Media

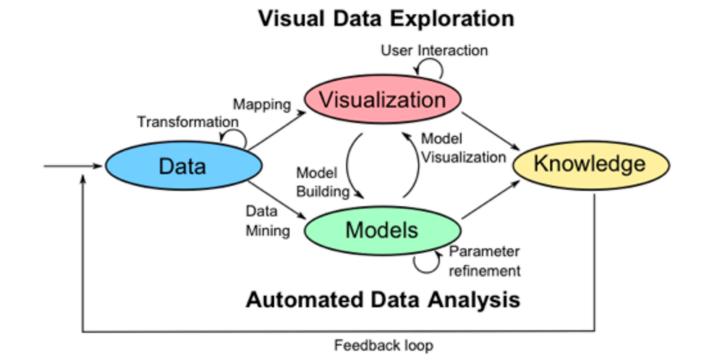
- Real time event detection
- Market prediction
- Industry competitive analysis
- Traffic condition information extraction
- Real-time road traffic congestion detection

1.2 Objectives

- 1. Design text mining methods for negative traffic related information extraction from Weibo text.
- 2. Derive high-level negative traffic events by using spatial clustering and aggregation methods.
- 3. Propose visual analytic methods for the exploration of the semantic, temporal and spatial patterns and the correlations among different types of negative traffic events.

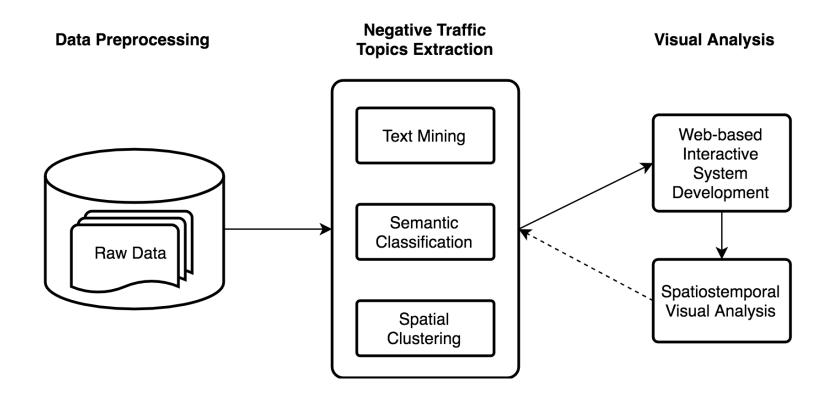
2 Related Work

2.1 Text Mining Methods


- Sentiments and opinion analysis
- Natural language processing techniques
- Pre-selected lexicon to extract specific topics

2.2 Clustering Methods

Partitioning methods	Hierarchical methods	Density-based methods	Grid-based methods
Knowledge of resulting number of clusters	Hierarchical decomposition	Detects noise points	Quantizes the data into cells
Assigns all points into clusters	Compact cluster	noise insensitive	calculation time is independent of data dimensions
Spherical-shaped cluster	Spherical-shaped cluster	clusters of arbitrary shape	grid structures
K-means, ISODATA	CURE, BIRCH	DBSCAN	STING



2.3 Visual Analytics

3 Methodology

3.1 Workflow

Raw Data Parameters

Categories	Parameters	
Time	idNearByTimeLine, createdAT, createdATUnixTime	
Message	msgID, msgmid, msgtext, msgin_reply_to_status_id, ms-	
	gin_reply_to_user_id, msgin_reply_to_screen_name, msgfavorited, ms-	
	gsource	
Location	geoTYPE, distance, Latitude, Longitude, NAME_1, NAME_2, NAME_3	
User	userID, userscreen_name, userprovince, usercity, userlocation, userde-	
scription, userfollowers_count, userfriends_count, userstatuses_count,		
userfavourites_count, usercreated_at, usergeo_enabled, userverified,		
userbi_followers_count, userlang, userclient_mblogid		
a Data exe	mple: 95, 2014-07-17 04:28:57, 1405571337, 3154521583132051,	
315452158313	32051, Morning! http://t.cn/RPzg4sq, 0, 0, , 0, , Point, 8200,	
31.192111595703125, 121.68149358007813, Shanghai, Shanghai, Pudong, 3963897579,		
muamuamua, 31, 15, Shanghai, , 18, 95, 70, 0, 2013-12-30 14:22:56, 1, 0, 3, zh-cn, , .		

PS: Texts from Weibo data are mostly Chinese.

Selected Fields

Field Name	Field Value
createdAT	2014-07-17 04:28:57
Latitude	31.192111595703125
Longitude	121.68149358007813
msgtext	Morning! http://t.cn/RPzg4sq

• Integrity Check

Remove records lack of coordinates, time records and/or text content.

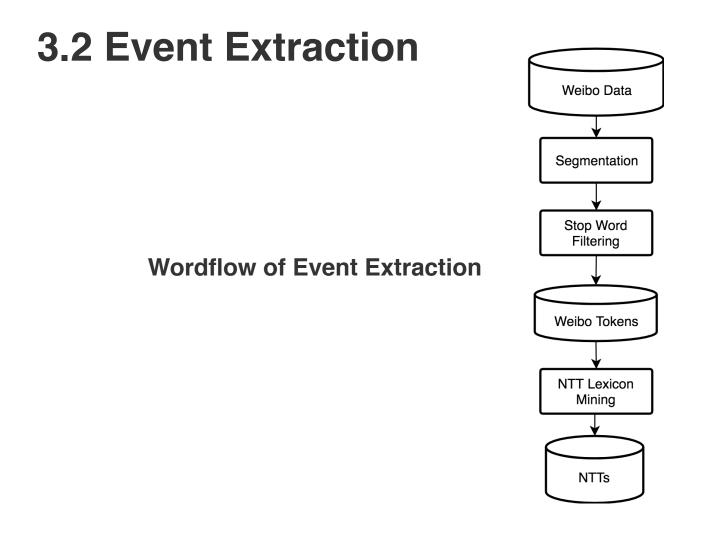
• Deduplication

Remove redundant records, such some repeating/similar Weibos.

Text Cleaning

Items	Item Value	
Link	http://t.cn/RPzg4sq	
Emoji	Ü	
User Tagging	@ Jack	
Punctuation	!,。 ~ «≫: () 🚺	
White Space	" "	
Digits	345	
Tags	#New Year#	

3.2 Event Extraction


What to extract?

- Negative Traffic Events (NTE)
- Negative Traffic Topics (NTT)

3.2 Event Extraction

Negative Traffic Topics Examples:

- The cars are not moving. There is an accident again.
- Too crowded in the bus today.
- It's so hard to find a taxi here.
- So many people are waiting for the metro.
- No buses are coming.
- One unlucky guy had car crash.
- I have been waiting half an hour for the cab.
- It's so crowded in metro every day when I'm going to work.

3.2.1 Text Segmentation

Example

Raw Text: 延安路上发生了一起车祸。 (An car accident happened at Yan'an Road.)

Segmented: 延安路 发生 车祸 (Yan'an road, happened, accident)

3.2.1 Text Segmentation

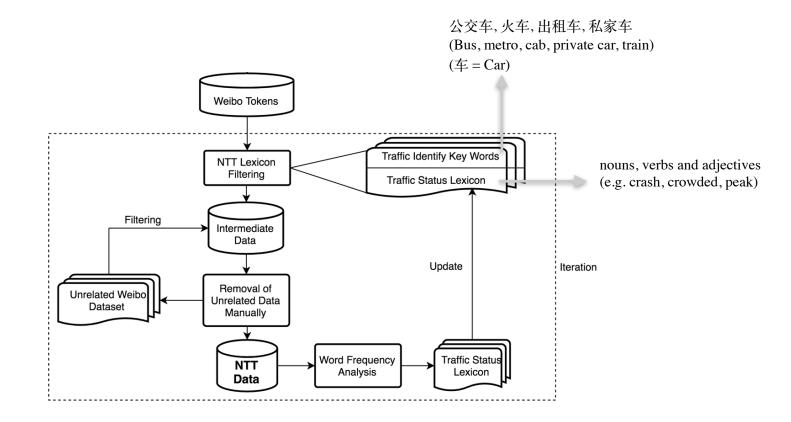
Term Frequency – Inverse Document Frequency

$$ittf(t_i) = log \frac{\sum_j dl_j}{\sum_j tf_{i,j}}$$

- ti term
- $ittf(t_i)$ the frequency of term
- dl_j the length of the document
- $tf_{i,j} = t_i$ in document d_j

Python package: Jieba https://github.com/fxsjy/jieba

3.2.2 Stop Words Filtering


Stop Words Examples

Languages	Stop Words Examples
Chinese	嗯,哦,后来,还有,或者,我,我们,你的,上述,主要, 其次,到底,因为,基本上,亲自,一些,一天,依照,即 刻,逐渐,非常,按时,每天
Translation	刻, 逐刑, 平舟, 政则, 母人 em, huh, then, and, or, me, our, yours, above, mainly, secondly, actually, because, basically, personally, some, one day, according
	to, this moment, gradually, very, on time, everyday

A online stop word list: 1609 words. http://blog.csdn.net/shijiebei2009/article/details/39696571

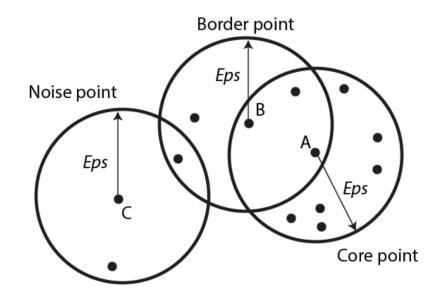
3.2.3 Lexicon-based NTT extraction

3.2.3 Lexicon-based NTT extraction

Final Traffic Status Lexicon

Categories	Chinese Lexicon	Translation
No taxis	叫不到车,打不到车 没叫到车,没打到车	cannot find a taxi have not found a taxi
No cars	没车 车呢,车在哪	no car/bus/taxi where is the car/bus/taxi
Congestions	堵 挤	(car) blocking crowded
Accident	车祸 撞车	car accident car crash
Peak	高峰	peak/rash hour

3.3 Spatial Clustering


Grid-based Clustering

- Grid-structured
- Quick
- Data dimensions independent
- An overview of a statistical spatial pattern

3.3 Spatial Clustering

DBSCAN Clustering

Eps	MinPts	Scale
3.5 km	18	Town
3.5 km	23	Town
350 m	4	Street

3.4 Visualisation

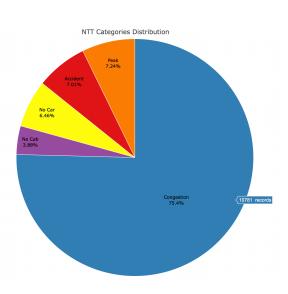
Methods

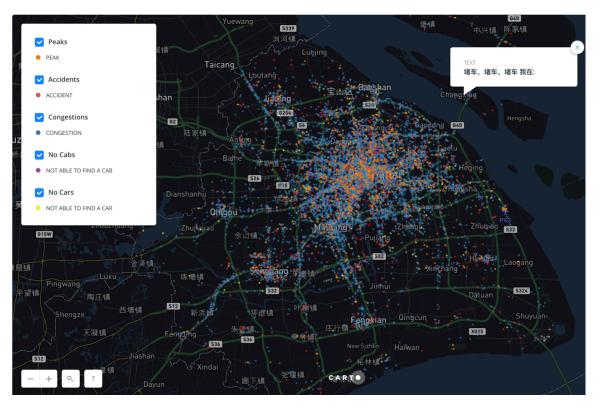
- Scatter plot map
- Heat map
- Chord diagram
- Alluvial diagram

3.4 Visualisation

Interactivity in the System

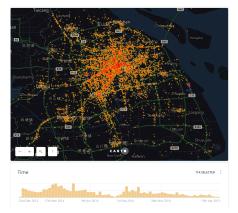
- Zoom in/out
- Mouse hovering
- Animation
- Time slider


4 Experiments


4.1 Test Area Shanghai

Population: 24.15 million in 2016 Area: 6,340 km²

4.1 Overall NTE Patterns



4.2 Overall NTE Patterns

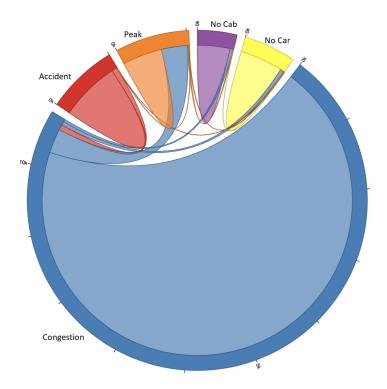
Shanghai Center Area

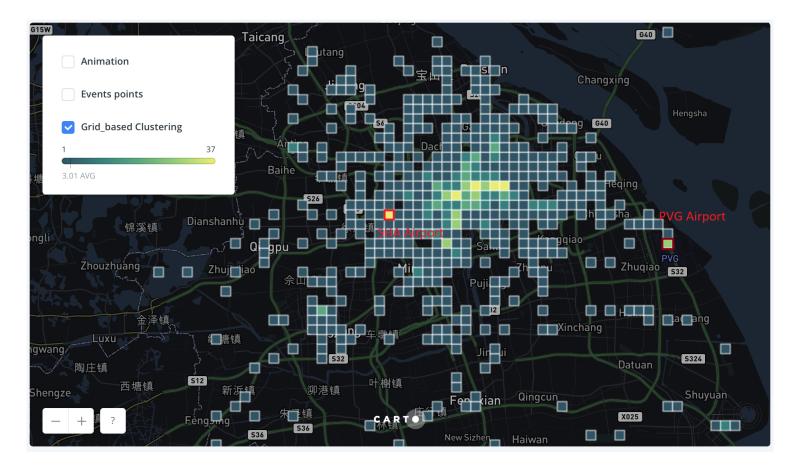
4.3 Semantic NTE Patterns

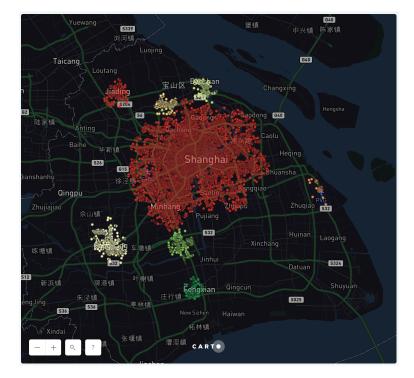
"Congestion"

Scatter Plot Maps with Semantic Categories

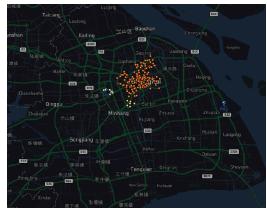
"Peak"


"Accident"

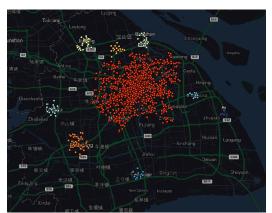

4.3 Semantic NTE Patterns

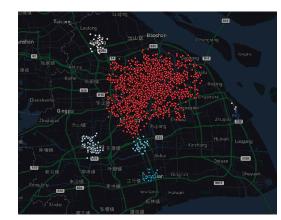

Correlation Matrix

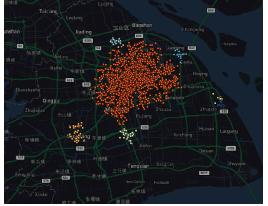

Categories	No Cabs	No Cars	Congestions	Accident	Peak
No Cabs	498	3	40	0	14
No Cars	3	654	55	2	12
Congestions	40	55	10232	83	371
Accident	0	1	83	911	7
Peak	14	12	398	7	605

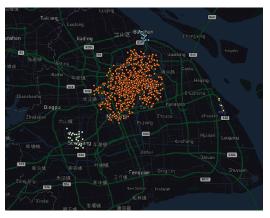


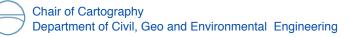
A Chord Diagram of NTEs



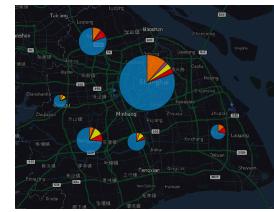

1.00 - 5.00


5.00 - 9.00

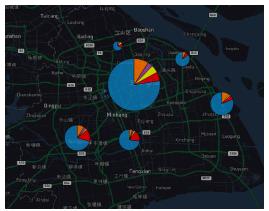

13.00 - 17.00

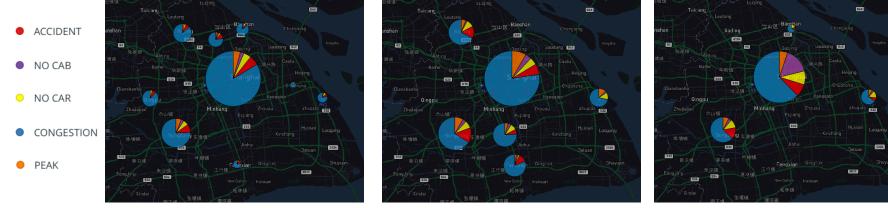

17.00 - 21.00

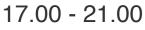
9.00 - 13.00



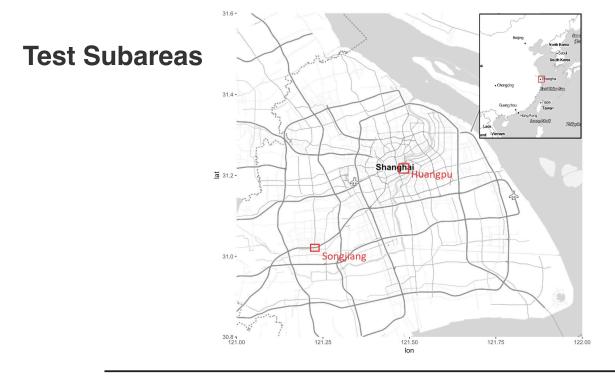
21.00 - 1.00



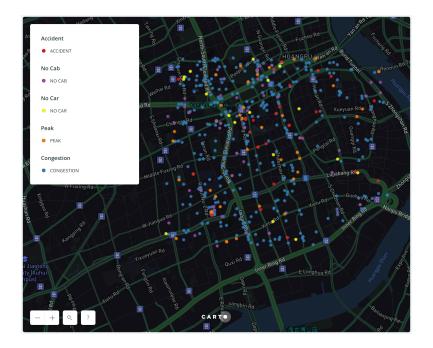

1.00 - 5.00

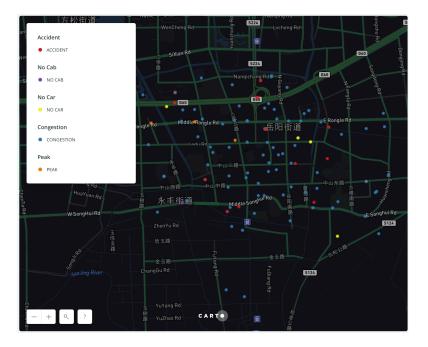

5.00 - 9.00

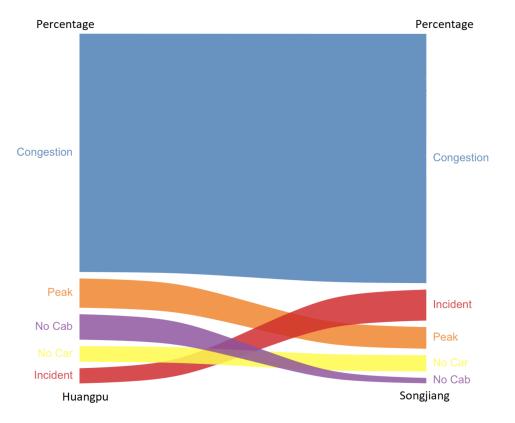
9.00 - 13.00



13.00 - 17.00




21.00 - 1.00


Area	Latitude Range	Longitude Range
Huangpu District	31.202848 - 31.233495	121.455047 - 121.496953
Songjiang Town	30.986531 - 31.026639	121.204753 - 121.245824

Huangpu District

Songjiang Town

An Alluvial Diagram of Huangpu District and Songjiang Town

A Scatter Map of NTE Skeleton Extracted by DBSCAN in city centre

5 Conclusion

Conclusion

- 1. The NTEs information was obtained based on the text mining from social media data.
- 2. A high-level negative traffic event information is driven by clustering methods.
- 3. The scatter plot map, the heatmap, the chord diagram and the alluvial diagram were proposed to visualize the NTE patterns.

6 Outlook

Future Work

- Enhancing the temporal analysis (weekday/weekend).
- Adding auxiliary data for analysis (e.g. weather data).
- Analyzing the emotion score according to NTE.
- Integrating more interactive methods in the system (3D).