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Abstract 

In order to secure a sustainable development and minimize the dependence on fossil fuels, 

energy production has to turn to alternative energy resources like wind, solar or bio energy.  

Renewable energy resources are not only naturally replenished, but also do not have the 

negative impact of environmental degradation and pollution, CO2 emission and so on. Wind 

energy has shown to be a serious competitor on the renewable energy market. According to 

the European wind agency, wind energy meets already 11% of the EU’s total power demand, 

with €43bn investments made in this sector only in 2016. 

Wind farm development and choosing suitable locations is a complex and iterative process 

that requires analysis of a number of criteria. Multi-criteria Decision Analysis (MCDA) 

methods, in conjunction with GIS (Geoinformation Systems) are used more and more as an 

effective support tool in renewable energy planning.  

Following a methodology that first investigates different aspects of spatial optimization and 

wind farm development, this research tries to address the problem of assessing the potential 

of an area for wind energy production, by developing an algorithm that facilitates the search 

for an optimal scheme for wind farms. The algorithm considers shape and size of the 

available area, different turbine types and the wind resource. The results obtained in this 

process describe the applicability of the developed approach. 

Keywords: spatial optimization, wind farm layout design, multi-criteria analysis, binary 

integer linear programming  
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1. Introduction 

1.1. Background 

An important part of the EU strategy for a sustainable future is the “20/20/20” clause, that 

aims at reducing the carbon dioxide emission by at least 20% (compared to the levels from 

1990), an increase in the energy efficiency by 20% and increasing the total share of renewable 

energy sources in the energy consumption up to 20% (European Commission, 2010). In 

order to achieve this goal, the extensive use of fossil fuels in energy production must be 

substituted with alternative energy sources with low CO2 emissions. Renewable energy 

sources, like wind or solar, are naturally replenished and have a far lower negative impact on 

the environment. More and more countries in Europe, and around the world, are starting to 

recognize the advantages of clean energy production and are working towards transitioning 

in this direction. 

Wind energy has become very popular in recent years, and proved to be a serious competitor 

on the renewable energy market, with significant increases in installed capacity every year 

(Gigović et al., 2017).  For example, at the end of 2016 Netherlands had a total of 4.3 GW 

wind capacity installed, and is planning to reach 10 GW by the end of 2020 (Wind EUROPE, 

2016). According to the European wind agency, wind energy meets already 11% of the EU’s 

total power demand, with €43bn investments made in this sector only in 2016. 

 

Figure 1-1: Types of energy production in Europe (Wind EUROPE, 2016) 
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1.2. Research problem 

When it comes to building wind farms, especially in smaller countries with densely populated 

areas, choosing suitable locations is a complex and iterative process that requires analysis of 

a number of criteria (Grassi, Chokani and Abhari, 2012; Gigović et al., 2017). Although the 

suitability depends foremost on the wind speed of an area, a number of other factors also 

must to be taken into consideration (environmental, cultural and visual impact, land use, land 

cover type and topography to name a few). 

Managing sustainable energy is starting to rely more on the use of Multi-criteria Decision 

Analysis (MCDA) methods; that in conjunction with GIS (Geoinformation Systems) makes 

for an effective support tool in renewable energy planning (Pohekar and Ramachandran, 

2004; Díaz Ignacio, 2016). Multi-criteria decision methods are generally categorized into two 

groups: multi-attribute decision analysis (MADA) and multi-objective decision analysis 

(MODA) (Malczewski and Rinner, 2015). 

Multi-attribute decision analysis is used for identifying suitable areas for wind farms on a 

macro level, defining different criteria of suitability by which an area is then being rated.  

Although  less researched, the field of multi-objective optimization has shown to be a very 

promising tool in wind farm planning and design. Simply said, the optimization of a wind 

farm layout can be described as the process of finding the optimal position of a wind turbine 

that maximizes the value of an objective function (Tesauro et al., 2012). Given a predefined 

area, the goal of the Wind Farm Layout Optimization (WFLO) is to determine where to 

locate wind turbines in order to maximize the output under certain conditions. Although a 

very important factor, the environmental impact of wind farms has not been addressed 

sufficiently in past studies and it has been treated as a minor criteria. But since more land is 

going to be exploited for future wind farm projects, wind farms are more likely to be located 

in proximity of residential areas. The impact of wind turbines on the landscape is a common 

objection for wind farm development. It is becoming a big concern for the wind farm 

owners, since many studies showed that the visual intrusion of wind turbines together with 

the noise that they produce and the shadow flickering effect are the biggest causes of 

skepticism in the local level towards building wind farms. Another concern is also the risk 

for bird populations who get killed by the spinning blades of wind turbines. This means that 

in the process of allocating a wind farm, these issues will also have to be addressed, in order 
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to ensure maximum operation with a minimal negative impact to the surrounding area and 

its residents (Kwong et al., 2012; Zhang, 2013; Mittal, Kulkarni and Mitra, 2016).   

1.3. Research objectives 

Number of studies that address the evaluation of locational suitability, or the optimization 

of sites for wind power development is still relatively low. The main goal of this research is 

to develop a method that will facilitate the search for the best possible layout scheme for 

wind farms in a defined region, and on a more general level, to investigate the possible 

solutions for applying Multi-Criterial Decision Making methods in conjunction with GIS in 

spatial optimization of wind farms. Specific objectives that require completion are as follows: 

➢ Identify the main factors that influence wind farm development 

➢ Develop an understanding of the spatial optimization methods and their main 

aspects 

➢ Define the mathematical problem of placing wind turbines in a region of interest 

➢ Implement an optimization algorithm for determining the most appropriate wind 

farm layout, at the same time assessing the cost and energy output, and considering 

different wind turbine types  

In order to meet the above-mentioned objectives, the following research questions should 

be answered: 

➢ How to formulate an objective function in order to maximize the AEP (Annual 

Energy Production)? 

➢ Which multi-objective optimization techniques are best for a wind farm layout 

scenario? 

➢ Should this model account for turbine wakes, and how can this effect be incorporated 

into the model? 

➢ Which optimization algorithm will provide the best trade-off between accuracy of 

the output result and computing effort? 

➢ How to assess the quality of the model? 

  



SPATIAL OPTIMIZATION FOR WIND FARM ALLOCATION 

 

9 
 

2. Theoretical background 

In this chapter, the basic terms related to optimization are explained, as well as the definition 

and context of spatial optimization. Methods for solving spatial optimization are presented, 

relating to the structure of a spatial optimization problem. This chapter also provides a review 

of the criteria and factors influencing wind farm development, and presents a discussion 

about the previous work related to this field.  

2.1. What is optimization 

Optimization is described in literature as a sub-field of operational research (OR), that applies 

techniques from mathematics and computer science to find the best decision in a set of 

alternatives, regarding some criteria (Scholz, 2016). According to Malczewski and Rinner 

(2015), multi-objective optimization belongs to the area of Multi-criteria Decision Making 

(or Multi-criteria Decision Analysis, MCDA) and is applied in many fields of science and 

engineering.  

An optimization problem is defined using three elements: 

➢ One (single-objective optimization) or a number of objective functions (multi-

objective optimization) that define the goals of the optimization 

➢ Constraints that define the necessary conditions to be satisfied, in order to make the 

solution acceptable for the problem at hand (Coello, Lamont and Van Veldhuizen, 

2007; Malczewski and Rinner, 2015) 

➢ Decision variables, that are the numerical quantities, for which values are to be 

chosen as a result of the optimization (Coello, Lamont and Van Veldhuizen, 2007) 

The mathematical expression of this would be: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐹(𝑥) = {𝑓1(𝑥), 𝑓2(𝑥), … 𝑓𝑛(𝑥)} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑖(𝑥)  ≥ 0,   ℎ𝑖(𝑥) = 0 

𝑥 ∈ 𝑋 

where F(x) is the n-dimensional objective function, hi(x) and gi(x) a set of equality and 

inequality constraints, X is the set of feasible alternatives and x = (x1, x2, …, xm) is the vector 
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of decision variables xi ≥ 0, for i =1, 2,…, m (Church, 2002; Tong and Murray, 2012; Zhang, 

2013; Malczewski and Rinner, 2015).  

2.2.1. Spatial optimization 

In a spatial context, optimization plays a very important role in geography and GIS, used as 

a basic tool for land use planning, location and allocation models, transportation and vehicle 

routing, medical geography and many others (Tong and Murray, 2012). 

What distinguishes a spatial optimization problem from any other type, is that the 

parameters, constraints and decision variables used in this case have geographic 

characteristics, that make them spatially interdependent. The decision to be made is usually 

in the context of where should something be placed or located. This allows for the solutions 

to be easily presented on maps, but it also means that spatial optimization models are specific 

and  more often than not difficult to appropriately structure and solve (Tong and Murray, 

2012; Lei, Church and Lei, 2015; Malczewski and Rinner, 2015). 

It is important to explain the difference between spatial objective problems (or models) and 

the methods (or algorithms) for solving these problems, as well as their classifications. The 

objective functions determine whether the model is linear or nonlinear, and depending on 

the type of the decision variables, the problem at hand can be modelled as a discrete or as a 

continuous one (Coello, Lamont and Van Veldhuizen, 2007; Malczewski and Rinner, 2015). 

A discrete variable can take only a finite number of values, while continuous variables can 

take on any real value in a specified interval (Gropp and Moré, 1997). If all of its decision 

variables are discrete, the problem can be called an integer optimization problem, otherwise 

it is classified as an continuous optimization, unless there are both type of variables involved 

in which case we are calling it a mixed type optimization (Malczewski and Rinner, 2015).  

2.2.1.1.  Spatial optimization and GIS 

Geographic Information Systems (GIS) can be described as information systems that possess 

a wide range of functions and toolboxes for spatial data collection, manipulation and 

visualization. In the context of spatial optimization problems and allocation models, the use 

of GIS tools is indispensable. This includes collection, processing and analysis of spatial data 

sets,  assistance in identifying candidate sites, as well as generating graphical outputs and 

appropriate visualization of the solution (Church, 2002; Tong and Murray, 2012; Lei, Church 

and Lei, 2015). 
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2.2.2. How to solve an optimization problem 

All methods for solving optimization problems fall into one of the two categories: exact 

(deterministic) methods and approximate (stochastic) methods (Coello, Lamont and Van 

Veldhuizen, 2007; Tong and Murray, 2012; Malczewski and Rinner, 2015). 

Exact methods go through all possible scenarios for the problem solution, ensuring that the 

final output is the best and optimal result, and that no other values of the decision variables 

would result in a better objective. Enumeration and linear programming are commonly used 

types in this case. However, because of their complexity and intensive computation, spatial 

optimization problems are difficult to solve by exact methods (Tong and Murray, 2012; 

Malczewski and Rinner, 2015). 

On the other hand, different heuristic methods have been developed, that present the 

approximate solution strategy to an optimization problem. Heuristic algorithms function as 

a trial and error search, which computes near optimal solutions but at the same time 

decreases computation time. The candidate solution is improved in a number of iterations, 

defined by the user, until a certain quality of the solution is reached. Metaheuristics (or 

advanced heuristics) are a group of methods based on natural processes, they are easy to 

implement and do not require continuous objective functions (Herbert-Acero et al., 2014).  

A wide range of different metaheuristics have been described in literature and used for 

solving spatial optimization problems: 

 Genetic (evolutionary) algorithms are based on the principles of natural selection and 

survival of the fittest. These algorithms are population based, which means they operate on 

the whole set of individuals. In biology and evolution process, the genetic material of 

individuals is stored in chromosomes and combined in creating offspring, which means it 

changes from generation to generation.  When applying genetic algorithms, a population 

represents an initial set of randomly generated solutions, a chromosome is one individual 

solution, and the genes (e.g. variables) are the characteristics of a single solution. Each 

iteration (generation) is formed by combining solutions from the previous one, that had the 

best characteristics (level of fitness), and this is done by using the selection, mutation and 

crossover operators. When a pre-defined condition (iteration limit) is reached, the process 

terminates (Malczewski and Rinner, 2015; Sunak et al., 2015). One of the most popular 

genetic algorithms is the Non-dominated Sorting Genetic Algorithm II (NSGA-II), which 

produces finds the global optimum with high accuracy but requires high computing effort 

(Sunak et al., 2015). 
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 Particle Swarm Optimization (PSO) is another meta-heuristic method that applies 

population-based search. Swarm intelligence is inspired by swarm behavior, exhibited in 

nature by swarms of insects (e.g. bees, ants), flocks of birds etc. (Cortez, 2014; Malczewski 

and Rinner, 2015). Similar to genetic algorithms, PSO starts with a set of random solutions, 

where each particle has its own velocity and position in the search space (Zhang, 2013). In a 

cycle of iterations, a particle changes its position according its velocity, but also depending 

on the best position found by its neighboring particles and its own best position. The 

particles are linked so that one can inform the other about its memory of movement.  

 In contrast with the population search methods, local search algorithms focus on 

local neighborhoods of an initial solution. E.g. Simulated Annealing (SA), inspired by the 

phenomenon in metallurgy when a material is heated and slowly cooled, recreates the process 

of rearranging atoms from a disordered state and high energy to a solid state and low energy 

(Cortez, 2014; Malczewski and Rinner, 2015). SA iteratively improves the initial solution until 

certain convergence criteria are met, by using a control temperature parameter (T) that 

determines the probability of accepting inferior solutions (Cortez, 2014). Other commonly 

used types of local search algorithms are the tabu search method and hill climbing. 

2.2. Wind Farm Development 

As discussed in previous chapters, wind farm development is a complex process, that 

requires an iterative approach. However, two main steps can be distinguished here: 

➢ Site selection    -  Identification of suitable land for building wind farms 

➢ Micrositing - Determining the layout of the wind turbines, as well as their number 

and size 

Wind farms are very versatile, which means they can be integrated into different types of 

landscapes (Herbert-Acero et al., 2014). However, choosing suitable locations for wind farms 

is time-consuming, because of a number of factors that need to be considered at this stage. 

Wind potential of an area is of course the critical factor, but there are other criteria that have 

to be taken into account. As showed in Figure 2.1, these include distance from roads and 

urban areas, distance from the electricity grid, slope of terrain, land cover, distance to places 

of interest and natural reserves, forest areas and last but not less important social acceptability 

(Sunak et al., 2015). 
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Figure 2-1: Wind farm development criteria (Sunak et al., 2015) 

Wind farm design and layout modelling refers to the process of determining the size of a 

wind farm and the arrangement and number of individual wind turbines. The size depends 

on the available area, but also on the expected energy output (Herbert-Acero et al., 2014). 

Energy production of a wind turbine is a function of the wind speed at rotor height (Zhang, 

2013). Proper turbine placement within a suitable area is of great importance, because the 

smallest change in wind speed can affect the energy output a great deal. 

2.2.1. Wind turbines 

Wind conditions of an area can also determine which wind turbines should be used. 

Technical specifications of turbines, that are also related to wind farm layout optimization 

are: 

➢ Cut-in speed Vi 

➢ Cut-out speed Vo  

➢ Rated speed Vr 

➢ Rated power Pr 

➢ Power curve 

➢ Rotor diameter D 

➢ Hub height H 
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Cut-in speed is the wind speed needed for the turbine blades to start spinning, and generating 

power. If the wind speed is higher that the cut-out speed Vo, the turbine mechanism will shut 

down in order to prevent turbine damage. How much energy will the turbine produce with 

wind speeds between Vi and Vo depends on the power curve of the turbine. But if that speed 

is equal or higher than the rated speed Vr, the energy output will be constant and equal to the 

rated power Pr (Samorani, 2013). 

2.2.2. Wind modelling and energy output 

The wind phenomena can be represented with different regimes: 

➢ Fixed wind direction and constant wind speed 

➢ Variable wind direction and constant wind speed 

➢ Constant wind direction and variable wind speed 

➢ Variable wind direction and variable wind speed (Mittal, 2010). 

When a wind farm is experiencing uniform wind speed, the power generated from the 

turbines can be calculated with this simplified expression: 

𝑃 = ∑
1

3
𝑢𝑖

3

𝑁

𝑖=1

, 

where ui is the wind speed, and N is the number of wind turbines (Bã Nos et al., 2010; Mittal, 

2010). This is a generalized case, because the power output depends also on the power curve 

of the turbine used. Finally, the Annual Energy Production (AEP), which can be defined as 

integration of the total power (kW) produced over time (h), is calculated as  

𝐴𝐸𝑃 = 8760 ∑ ∑ ∑ 𝐹𝑖𝑗𝑘𝑃𝑖𝑗𝑘,

𝑘𝑗𝑖

 

where 8760 is the number of hours in a year. Fijk function presents the distribution of wind 

speeds and directions, and Pijk is the corresponding power generated by that turbine (Gu and 

Ji, 2010; Zhang, 2013). Coefficients i, j and k represent the number of wind directions, wind 

speeds and number of wind turbines, respectively. 

2.2.3. Cost modelling 

Optimization of wind farm layout cannot rely only on energy production as main criteria, 

because the financial balance is always an important aspect to make a project feasible. The 



SPATIAL OPTIMIZATION FOR WIND FARM ALLOCATION 

 

15 
 

cost parameters mainly depend on the installation costs of the wind turbines, but there are 

also operation and maintenance costs and grid connection costs (IRENA (International 

Renewable Energy Agency), 2012; Tesauro et al., 2012). According to Mosetti, Poloni and 

Diviacco, and many other authors that applied this approach later on, a very simple function 

can be used, that defines the cost of a wind farm as a function of the number of turbines: 

𝑪𝒐𝒔𝒕 = 𝑪𝑵 (
𝟐

𝟑
+

𝟏

𝟑
𝒆−𝟎,𝟎𝟎𝟏𝟒𝟕𝑵𝟐

), 

where N is the number of installed turbines, and C is the cost of one individual turbine. C 

can be defined in different ways, but can also be left out, in which case the cost would be a 

dimensionless parameter, depending only on the number of turbines. This expression 

assumes that the cost per turbine drops with the number of installed turbines. 

2.2.4. Minimum distance between turbines 

When wind passes through a turbine, it absorbs its energy, and its speed decreases in the area 

around the turbine rotor, resulting in production losses between neighboring turbines 

(Fagerfjäll, 2010). This effect is called the wake of the turbine. The wake is the reason why 

turbines cannot just be placed close as possible, but depend on the needed recovery of wind 

energy behind the neighboring turbine (Mustakerov and Borissova, 2010; Borissova and 

Mustakerov, 2017). Depending on the type of wind that is taken into account, uniform or 

predominant, different distance constraints can be defined that are usually function of the 

rotor diameter of the turbine (Yamani et al., 2016). 

2.3. Previous work 

Over the years, different approaches were used for MCA (Multi-criteria Analysis) and 

decision making in wind farm development.  

For analysis of land suitability, most studies are focusing on the AHP (Analytical Hierarchy 

Process) approach, that requires the hierarchy of criteria to be defined by using weights 

(Szurek, Blachowski and Nowacka, 2014; Latinopoulos and Kechagia, 2015; Höfer et al., 

2016; Villacreses et al., 2017).  

In order to address the NIMBY (Not In My Back Yard) syndrome, which refers to the 

negative attitude on a local level towards wind farm building, some authors focused on 

creating applications that would help in increasing the social acceptance for wind farm 
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projects. The work of Grassi and Klein (2016) describes the advantages of a 3D interactive 

visualization platform in wind farm planning, or the case study by Slikker (2016), presents a 

web-application based on MCA, that allows users to manually set different values for 

suitability criteria and observe the results. 

The WFLO (Wind Farm Layout Optimization) problem has been researched in different 

scenarios, is with different objectives. A literature review showed that these approaches differ 

in terms of the optimization method used, but also in modeling of wind conditions, type of 

search space representation, and so on. Some of the used criteria for the objective functions 

are first of all the energy production, AEP (Annual Energy Production) and the cost of 

energy (CoE, cost per KWh of energy produced, that also takes into account the costs of 

installation and maintenance), but also profit and net present value (Tesauro et al., 2012; 

Herbert-Acero et al., 2014). 

The work by Mosetti, Poloni and Diviacco dating from 1994 is one of the first studies that 

applied optimization to the wind farm layout problem. The parameters and criteria that were 

set here, served as a guide for many of the studies done after. The location site was modelled 

as 10 x 10 square grid, and the authors considered two objectives: maximization of energy 

output and minimization of investment costs. Every cell of the grid is sized to 5D (5 rotor 

diameters), and the center of every cell is a possible location for a wind turbine. The test 

problem was solved with a genetic algorithm, for three wind speed scenarios: uniform wind 

speed, equally distributed (36 directions) with a 12 m/s wind speed, and non-uniformly 

distributed winds of 8, 12 and 17 m/s.  

Sunak et al. (2015) made a GIS-based decision support system for the optimal sitting of wind 

farm projects. This project was performed in two steps: First a selection of best suitable sites 

by means of a spatial Analytic Hierarchy Process (AHP) modelling approach, and then a 

micrositing for optimal wind farm layouts simulation. Multi-criteria analysis was used to 

define exclusion areas and rated areas for wind farm development for the study area of city 

of Aachen, Germany, which was the first step in defining the optimization model. The 

authors used Levelized Cost of Energy (LCOE) as the optimization criteria, which presents 

the minimum cost of energy below which the total discounted revenues would be less than 

the total discounted investments. This formula takes into consideration investment 

expenditures, operation and maintenance costs, energy production and lifetime of the 

system.. Implementation of the optimization process is done with a gradient-based algorithm 

in Matlab, using the existing fmincon function. 
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McWilliam, van Kooten and Crawford (2012) developed an original approach to wind siting 

at large scale; that could serve more as a preliminary screening tool, than a model for wind 

farm layout optimization. This study incorporates the multiple factors that influence site 

suitability into an overall economic cost function. The model predicts the optimal wind farm 

radius and the spacing between installed turbines, and considers the electrical transmission 

network as well as the Annual Energy Production (AEP) of the installed turbines. 

Optimization process is implemented using a gradient type algorithm, Sequential Quadratic 

Programming (SQP), over a Cost of Electricity (CoE) function. 

Chowdhury et al. (2010) presented a new method for unrestricted placement of turbines, with 

different rotor diameters, for maximum power generation. The wind farm dimensions and 

the minimum distance between turbines are treated as system constraints. The wind farm 

layout was treated as a continuous model, for three different cases: wind farm with identical 

turbines, wind farm with non-identical turbines and wind farm with identical turbines that 

can adapt to wind conditions. Each of these went through an optimization process using the 

Particle Swarm Optimization (PSO) algorithm.  

Yamani et al. (2016)  created a wind farm optimization model that represents a trade-off 

between energy generation and noise production, but also accounts for land-use and 

proximity constraints. This study investigates how can land use be incorporated as a 

constraint in the model itself, and what effect this has on the output result. The examination 

of this regulatory constraint is done by calculating the area of all triangles that the location 

of the turbine defines with vertices of a polygon under question. This study applied the Non-

Dominated Sorting Genetic Algorithm (NSGA-II), which is a fast elitist algorithm, for a 3 

km x 3 km square area.  

Mittal, Kulkarni and Mitra (2016) proposed a hybrid methodology for wind farm micro-

siting. The energy-noise trade-off is modelled with a two-step optimization – NSGA-II 

algorithm for determining the number of turbines and their layout (a discrete formulation), 

and in the second phase a gradient search based method to improve the results. The layout 

is divided into a finite number of grid points, and the optimal points found in the first stage 

are used as an input for the second stage, where their locations are improved.  

Although most WFLO studies are focusing on modelling the influence of wind speed and 

direction change on the turbine energy production, and modelling the inter-turbine 

interaction, the approach being developed here aims at assessing the potential of an area for 
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placing turbines, depending on their size and type, and taking into consideration zones where 

turbines cannot be placed, depending on land suitability criteria. 
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3. Methodology 

3.1. Methodology flow 

The work on this project is carried out in several phases, as showed in Figure 3-1. Phase 1 

includes an analysis of all the prerequisites needed to start to tackle the problem, together 

with a comprehensive literature review and overview of the modelling approaches in wind 

farm scenarios used up to date. Phase 2 includes acquisition and preparation of the relevant 

data input. In order to test the algorithm on the study area, it is needed to perform an analysis 

of the available land, based on different land uses and restriction criteria. During phase 4 

formulation and implementation of the optimization algorithm is performed, together with 

a validation and sensitivity testing. In the last phase, the algorithm is applied to the study 

region, for which the data were prepared in phase 2 and 3.  

 

Figure 3-1: Methodological overview 

3.2. Input data preparation 

Different data types are needed to set up the optimization model. How was this data acquired 

and structured is described below. 

3.2.1. Study area 

Once the optimization procedure is established, its applicability can be tested on any given 

area. Enschede is located in the eastern part of the Netherlands, and it is the biggest 

municipality in the Overijssel province, covering an area of approximately 143 km2. Unlike 

the western parts, this part of the country does not have such high annual wind speed 

averages, and falls in the category of 6.5  m/s – 7 m/s annual average wind speed (Senter 
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Novem, 2005).  Considering that areas with 6 m/s and more can be considered for wind 

farm development, especially with constant technological improvements in turbine design 

that allow for even very low wind speeds, it is safe to say that a municipality like Enschede 

could have its first wind farm development projects in the near future. 

In order to comprise the location data for the study area, Top10NL Cadastral Level Vector 

Shape files for 28 East, 29 West, 34 East and 35 West were used. These shapefile blocks were 

merged into a single layer, which was in the next step clipped to the boundary area of the 

municipality of Enschede. Different layer types used in this process are described in Table 1. 

Land use class Source Sub-classes applied 

Agricultural land TOP10NL - terrein typelandgebruik: ”akkerland”, “boomgard”, 

“boomkwekerij”, “fruitwekerij”, 

“populieren” 

Built-up and 

residential area 

TOP10NL - terrein typelandgebruik: ”bebouwd gebiet”, 

“overig”, “dodenakker” 

Forest TOP10NL - terrein typelandgebruik: ”bos: gemengd bos”, 

“bos:loofbos”, “bos: naaldbos” 

Grassland and 

meadow 

TOP10NL - terrein typelandgebruik: ”braakligend”, “grasland”, 

“heide” 

Railway TOP10NL - terrein typelandgebruik: ”spoorbaanlichaam” 

Roads TOP10NL – wegdeel  

Water TOP10NL - waterdeel  

Natural reserve Natura 2000  

Table 1: Location data sources 

As seen in Figure 3-2, the study area demonstrates a densely populated space, with very 

mixed land use. 
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Figure 3-2: Land Use Map of Enschede 

Because the goal here is to apply optimization techniques, the identification of available land 

is done by a simplified process of a multi-criterial analysis. The final output was created 

considering the criteria for restriction and buffer zones from Table 2, and only the left 

available space is taken into account as data input. 

Zones Pixel value 

Urban and residential areas and buffer zones within 1 km from urban and 

residential areas 

0 

Rural residential areas and buffer zones within 0.5 km from rural 

residential areas 

0 

Railroads and buffer zones within 100 m from railroads 0 

Water bodies and buffer zones within 50 m of water bodies 0 

Natural reserve areas and buffer zones within 1 km from natural reserve 

areas 

0 

Agricultural areas 0 

Forest areas 0 

Roads 0 

Others 1 

Table 2: Exclusionary zones for land availability estimation (Azizi et al., 2014) 

After using the available buffer, overlay and intersection functions in QGIS, the available 

area is discretized into a raster map of 250 m x 250 m grid cell size, with a binary pixel value. 
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This specific cell size ensures enough area for placement of the smallest turbine with its 

proximity constraint, in the center of every raster cell. The map below shows potential areas 

for turbine placement. 

 

Figure 3-3: Raster grid map for potential turbine locations 

3.2.2. Turbine specifications 

Three different turbine types were taken as a reference, to describe the variability of 

characteristics that these machines have, and how it effects the production of energy 

(Enercon, 2017; PIERROT, 2017; Siemens, 2017; Vestas, 2017). What these parameters 

from Table 3 represent in practice, has already been explained in Chapter 2.  

 Enercon Vestas Siemens 

Vi [m/s] 4 4 3-5 

Vo [m/s] 21.5 25 25 

Vr [m/s] 11 12 12 

Pr [kW] 800 2000 3150 

H [m] 60 95 129 

D [m] 53 90 142 

Table 3: Turbine specifications 
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These specific turbine types are chosen because they can be considered very typical in 

onshore use. The Vestas V90-2.0 is the most commonly used onshore turbine worldwide, 

while the Siemens SWT-3.15-142 belongs to the group of large wind turbines and its design 

allows for production of energy even at low wind speeds.  

3.2.3. Wind data 

Wind observation data was taken from the KNMI (Royal Dutch Meteorological Institute). 

These datasets have hourly measurements wind speeds and directions, for a number of 

stations across Netherlands. For this purpose, the observations from the Twente station were 

taken, for the year 2015. 

Measuring 

Station No 

Measuring 

Station Name 
LON (east) LAT (north) 

ALT (m) 

290 
TWENTHE 6.891 52.274 

34.80 

Table 4: Twente measuring station 

Because the observations are made at the height of the measuring station, which is 10 m, the 

wind speeds have to be extrapolated to the specified turbine heights, in order to gain a more 

accurate estimate of the wind potential. 

The wind speed values for different heights can be calculated with the following expression: 

𝜈2 = 𝜈1 (
𝑧2

𝑧1
)

𝛼

, 

where ν presents wind speed at height z, and α is the wind shear exponent (Bauelos-Ruedas, 

Angeles-Camacho and Sebastin, 2011; Hadi, 2015). For the wind shear exponent value, we 

adopted the value 0.3 for the area of Enschede, which according to Bauelos-Ruedas et  al. 

(2011) applies for the a smaller city area with trees and shrubs.  

3.3. Problem definition 

Given an urban or rural settlement of a certain size and land use classification, it is certainly 

challenging to assess to what degree could this area be exploited for wind farm projects. If 

we predefine a number of turbines types in potential use, the problem is to determine the 
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most applicable type and number, and their locations, considering the shape and size of the 

available land, restricted areas for turbine placement, and turbine capacity and costs. 

In terms of location modelling and optimization, this problem resembles a number of others, 

like the class of packing problems (packing in 2-dimensional containers, vertex and square 

packing), the knapsack problem, undesirable facility location problems and others (Savić, 

Šukilović and Filipović, 2011; Lei, Church and Lei, 2015).  

An optimal placement scheme is determined by some optimization criteria. As explained in 

the previous chapters, when applying spatial optimization to the case of wind farm layout, 

the goal is to place the turbines in a way that maximizes a value of an objective function. 

Among a number of factors described in the previous chapters, that influence wind farm 

design and development, in this case we are considering the following:   

➢ Turbine type and number 

➢ Turbine interdistance and location 

➢ Turbine capacity, diameter size and height 

➢ Wind speed  

➢ Shape and size of the available land 

3.4. Assumptions 

During the model formulation and structuring of the algorithm, the following assumptions 

were made: 

➢ Energy production of the specified turbines is modelled with a two-parameter logistic 

function, assuming that the wind turbines have identical power curves (Lu and Kim, 

2014) 

➢ Cost is a function of N number of turbines and Pr (installed power), assuming that 

the cost of a single turbine can be defined as 1 million € per MW of installed power  

➢ The geographic area for turbine placement is a flat plane (which is certainly very likely 

to be the case in the Netherlands ) 

➢ The wind has uniform direction with hourly wind speed change, at turbine height. 

Because of the unpredictability of wind conditions, the annual energy production 

figures can be taken as a potential, not an exact calculation 
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➢ The model does not account for the effect of turbine wakes on energy production. 

In order to make this calculation, a set of flow and momentum theories would have 

to be adopted, which is out of the scope for this research. In this case, by adopting a 

5 rotor diameter distance between the turbines, in both X and Y direction, a 

minimum wake influence on the energy production calculation is secured; moreover, 

for the sake of simplifying the calculation process and analysis in defining the cell 

size, the turbine rotor diameters were assigned values 50 m, 100 m and 150 m 

3.5. Grid model 

In a grid representation of space, the center of each cell is a potential location for placing a 

turbine. In Chapter 3.2.1 it is already mentioned that the discretization of the study area is 

done with a cell size of 250 m. As shown in the Figure 3.4 below, this secures the five 

diameter distance constraint for the smallest turbine. Center of each cell is assigned with a 

coordinate, that corresponds to the row and column number of this cell. 

 

1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 

2, 1 2, 2 2, 3 2, 4 2, 5 2, 6 

3, 1 3, 2 3, 3 3, 4 3, 5 3, 6 

4, 1 4, 2 4, 3 4, 4 4, 5 4, 6 

5, 1 5, 2 5, 3 5, 4 5, 5 5, 6 

6, 1 6, 2 6, 3 6, 4 6, 5 6, 6 

Figure 3-4: Grid representation 

In that sense, the bigger turbine will occupy the area of 2x2 grid cells, and the biggest turbine 

will occupy a 3x3 cell area. Turbine rotor diameters are not exactly the values of 50 m, 100 

m and 150 m, but indeed 53 m, 90 m and 142 m, as shown in Table 5, so the distance 

constraint factors 𝑐𝑥 and 𝑐𝑦, will have values slightly differing from number five, as shown 

in the table below: 

 

5D2 
5D1 

5D3 



SPATIAL OPTIMIZATION FOR WIND FARM ALLOCATION 

 

26 
 

Turbine Raster cell size D 5D cx, cy 

Enercon 1x1 250 m 53 m 265 m 4.71 

Vestas 2x2 500 m 90 m 450 m 5.55 

Siemens 3x3 750 m 142 m 710 m 5.28 

Table 5: Turbine distance constraint factors calculation 

These values of the distance constraint factors, 𝑐𝑥  and 𝑐𝑦 , will still insure a minimum 

influence of the wake effect on the energy production potential calculation. 

3.6. Cost of Energy  

Cost of Energy (CoE) criteria implies a solution that is a compromise between the investment 

costs and the amount of energy produced, the logic being that installing a higher number of 

turbines means more energy but at the same time more related cost.  Using turbines with 

different capacities and rotor diameters complicates this choice a bit more, because bigger 

turbines can produce more energy, but they cost more and occupy more space. 

In order to set up the framework for CoE calculation, the following parameters are 

introduced:  

𝐴 {(𝑖, 𝑗), 𝑤ℎ𝑒𝑟𝑒  𝑖 = 1,2, … 𝑚, 𝑗 = 1,2, … 𝑛 } 𝑠𝑒𝑡 𝑜𝑓 𝑋, 𝑌 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑦 𝑎𝑟𝑒𝑎 

𝑇 –  𝑠𝑒𝑡 𝑜𝑓 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 𝑡𝑦𝑝𝑒𝑠 , 𝑎𝑛𝑑 𝑡ℎ𝑒𝑖𝑟 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠:  

 𝑇 {𝑡1 (𝑉𝑖, 𝑉𝑟, 𝑉𝑜, 𝑃𝑟, 𝐷, 𝐻), 𝑡2 (𝑉𝑖, 𝑉𝑟, 𝑉𝑜, 𝑃𝑟, 𝐷, 𝐻), 𝑡3 (𝑉𝑖, 𝑉𝑟, 𝑉𝑜, 𝑃𝑟, 𝐷, 𝐻)} 

𝑉𝑖 –  𝑐𝑢𝑡 𝑖𝑛 𝑠𝑝𝑒𝑒𝑑 

𝑉𝑜 –  𝑐𝑢𝑡 𝑜𝑢𝑡 𝑠𝑝𝑒𝑒𝑑 

𝑉𝑟 –  𝑟𝑎𝑡𝑒𝑑 𝑠𝑝𝑒𝑒𝑑 

𝑃𝑟 –  𝑟𝑎𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 

𝜈 –  𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 𝑎𝑡 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 

𝐷 –  𝑡𝑢𝑟𝑏𝑖𝑛𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 

𝐻 –  𝑡𝑢𝑟𝑏𝑖𝑛𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 

𝑁 –  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑠 

𝑐𝑥, 𝑐𝑦 –  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 

𝐴𝐸𝑃𝑡𝑜𝑡  –  𝐴𝑛𝑛𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑁 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑠 

𝐴𝐸𝑃 (𝑡) –  𝐴𝑛𝑛𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑡 

𝐶 –  𝑐𝑜𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑁 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑠  
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𝐶𝑜𝐸 − 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐸𝑛𝑒𝑟𝑔𝑦 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 

Case 1 – Rectangular shaped wind farm area with one turbine type 

When considering a square or rectangle shaped wind farm, designed with one turbine type, 

the following mathematical formulation should determine the number of turbines by 

minimizing the value of the objective CoE function: 

 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐶𝑜𝐸 =

𝐶𝑜𝑠𝑡

𝐴𝐸𝑃𝑡𝑜𝑡
 (1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
𝐶𝑜𝑠𝑡 = 𝑃𝑟 ∗ 𝑁 ∗ (

2

3
+

1

3
∗ 𝑒−0.00174∗𝑁2

) (2) 

 𝐴𝐸𝑃𝑡𝑜𝑡 = 𝑁 ∗ 𝐴𝐸𝑃(𝑡) (3) 

 

𝐴𝐸𝑃(𝑡) = {

𝜈 − 𝑉𝑖

𝑉𝑟 − 𝑉𝑖
𝑃𝑟, 𝑉𝑖 ≤ 𝜈 < 𝑉𝑟

𝑃𝑟,                        𝑉𝑟 ≤ 𝜈 < 𝑉𝑜
0,                                          𝑒𝑙𝑠𝑒

 (4) 

 
𝑁 ≤  (

𝑆𝑥

𝑐𝑥 ∗ 𝐷
+ 1) (

𝑆𝑦

𝑐𝑦 ∗ 𝐷
+ 1) (5) 

 𝑆𝑥 = 𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 (6) 

 𝑆𝑦 = 𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛 (7) 

Case 2 – Rectangular shaped wind farm area with three turbine types 

If we are using different turbine types, the cost and energy output are calculated separately 

for each turbine type, depending on N number of each turbine installed, and the final result 

is a sum of these values: 

 

𝐶𝑜𝐸 =
𝑃𝑟 ∗ 𝑁 ∗ (

2
3 +

1
3 ∗ 𝑒−0.00174∗𝑁2

)

𝑁 ∗ 𝐴𝐸𝑃(𝑡)
 

(8) 
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 𝐴𝐸𝑃𝑡𝑜𝑡 = 𝑁𝑡1𝐴𝐸𝑃𝑡1 + 𝑁𝑡2𝐴𝐸𝑃𝑡2 + 𝑁𝑡3𝐴𝐸𝑃𝑡3 (9) 

 
𝐶𝑜𝑠𝑡 = 𝑁𝑡1𝐶𝑡1 + 𝑁𝑡2𝐶𝑡2 + 𝑁𝑡3𝐶𝑡3 

(10) 

The objective function to be minimized then takes on the following form: 

 
𝐶𝑜𝐸 =

𝑁𝑡1𝐴𝐸𝑃𝑡1 + 𝑁𝑡2𝐴𝐸𝑃𝑡2 + 𝑁𝑡3𝐴𝐸𝑃𝑡3

𝑁𝑡1𝐶𝑡1 + 𝑁𝑡2𝐶𝑡2 + 𝑁𝑡3𝐶𝑡3
 

(11) 

 

Case 3 – Irregular shaped area with forbidden zones for turbine placement 

In a more complicated case, the area for wind turbine placement is irregularly shaped, and 

raster cell values indicate what are the allowed locations for turbine placement, like in the 

example below. 

 

Figure 3-5: Irregularly shaped area with forbidden zones 

The optimization procedure applied here should ”scan” the available area for turbine 

placement, and for a determined number of turbines calculate the value of the objective 

function. 

3.7. Formulation of the optimization model 

The combinatorial problem we are dealing with here can be put in the category of geometric 

packing problems. In the spirit of other GIS site-selection models, the proposed algorithm 
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is based on a binary linear integer programming approach. Linear programming is commonly 

used to solve combinatorial optimization problem, and the binary type is a special case of 

the pure integer programming method (Motozawa, 2009; Chinneck, 2016). As already 

explained in Chapter 2, this implies decision variables that can take values 1 or 0 to indicate 

if a cell is selected for turbine placement. The formal mathematical expression for this would 

be: 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑖𝑥𝑖

𝑛

𝑖=1

 
(8) 

 

∑ 𝑎𝑖𝑗𝑥𝑖 ≤ 𝑏𝑗

𝑚

𝑗=1

 (9) 

 
𝑥𝑖 ∈ {0,1}, 𝑓𝑜𝑟 𝑖 = 1,2, . . , 𝑛 

(10) 

 
𝑐𝑖 > 0, 𝑓𝑜𝑟 𝑖 = 1,2, . . , 𝑛 

(11) 

The objective function has the form 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒, because the goal here is to maximize the N 

number of turbines placed in a designated area. The m number of inequality constraints serve 

as a condition to avoid overlapping of the turbine wake area. Last two conditions relate to 

defining the 𝑥𝑖  as binary variables, and their coefficients 𝑐𝑖  as non-negative numbers. In 

practical implementation number n represents the number of candidate turbine locations, 

enumerated by cell number from top left to bottom right, while m is equal to the number of 

cells in the input raster area. Algorithm operates with cell numbers, which are in the process 

converted to row and column numbers and finally point coordinates. 

Implementation of the algorithm was done using R1 programming language, and package 

lpSolve2, that is an optimization framework in R for solving linear, integer and mixed integer 

programs. 

                                                 
1 R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria. URL https://www.R-project.org/ . 

2 Michel Berkelaar and others (2015). lpSolve: Interface to 'Lp_solve' v. 5.5 to Solve Linear/Integer Programs

 R package version 5.6.13. https://CRAN.R-project.org/package=lpSolve   
 

https://www.r-project.org/
https://cran.r-project.org/package=lpSolve
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3.8. Algorithm framework 

The conceptual diagram shown in Figure 3-6, gives an overview of the implemented 

procedure and its specific steps. 

 

Figure 3-6: Algorithm framework 

In order to explain how the allocation of turbines occurs, we are illustrating it on the 

following scenario: 

1 1 1 0 0 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 0 0 

0 0 1 1 1 

 

•Wind data

•Turbine data

•Location raster

Import

•Function curves

•Initial values of Parameters

Data preprocessing

•Candidate turbine locations

•Constraint matrix

•Vector of coefficients

Generate

•Iterative placing of turbines 
of different types

LP optimization

•Solution to cell numbers

•Cell numbers to 
coordinates

Convert

•AEP

•Cost

•CoE

•Turbine Coordinates

Output

We have an 5x5 area of 25 cells, out of which 19 cells 

are marked available for turbine placement (cells with 

value 1). 
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4 6 5 4 2 

6 9 8 7 4 

6 9 8 7 4 

4 7 7 7 4 

2 4 4 4 2 

 

Referring to (8) and (9), number of candidate locations 𝑛 in the first iteration is 2, and 

number 𝑚 is equal to the number of cells, which is 25 in this case. Everything stated until 

now is formulated using matrix notation in the following way: 

- X is the vector of numeric coefficients of objective function, size 𝑛 

𝑋𝑇 = {1, 1} 

- F  is the matrix of numeric constraint coefficients, size 𝑚 𝑥 𝑛 

𝐹𝑇 = {
{1,1,1,0,0,1,1,1,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0}

{0,0,0,0,0,1,1,1,0,0,1,1,1,0,0,1,1,1,0,0,0,0,0,0,0}
} 

- B is the vector of numerical values for the right-hand sides of the constraints, size m 

𝐵𝑇 = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} 

- Vector of size 𝑚 that defines the direction for every constraint; all constraint have 

the same inequality sign ’’<=’’ 

The constraints defined here ensure that the wake areas of two turbines do not overlap, by 

limiting the sum of every row in the constraint matrix to 1. 

The solver is initialized with the matrix input, and because the search is performed from the 

top left corner, it takes the first candidate cell as the solution. 

1 1 1 0 0 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 0 0 

0 0 1 1 1 

In the first iteration, the algorithm wants to assign a 

maximum possible number of the biggest turbines 

(which occupy a 3x3 cell area) in the available space. In 

order to generate candidate locations, it performs a 

summing of values for a 3x3 cell area, in every cell. 

Candidate turbine locations are cells with the value 9, and 

in this case there are two.  

It is obvious that only one of the two candidate 

turbine locations could be used as a solution, since 

their wake areas overlap. 
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1 1 1 0 0 

 1 1 1 1 1 

1 1 1 1 1 

1 1 1 0 0 

0 0 1 1 1 

 

0 0 0 0 0 

0 0 0 1 1 

0 0 0 1 1 

1 1 1 0 0 

0 0 1 1 1 

 

0 0 0 0 0 

0 0 0 1 1 

0 0 0 1 1 

1 1 1 0 0 

0 0 1 1 1 

 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

1 1 1 0 0 

0 0 1 1 1 

In the next step, the turbine location cell and its wake 

area are marked unavailable and the next iteration can 

start. 

This time the algorithm performs a search on the rest 

of the available cells, to determine locations for the 

next turbine type (2x2 cell area).  

Following the identical steps from the previous 

iteration, the next solution is generated. There is only 

one candidate location in this case, and thus only one 

turbine is allocated in the available area. 

After marking the solution cells from previous 

iteration as unavailable, the rest of the available area is 

assessed for placement of the third turbine type. 
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0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

1 1 1 0 0 

0 0 1 1 1 

 

The number of turbines allocated in each iteration serves as the input for calculating the 

parameters of the CoE function, while the turbine locations are converted from cell numbers 

to point coordinates. 

3.9. Software used  

This research was conducted by using the following software and tools: 

➢ Operating system: 64-bit Windows 10 Home 

➢ Desktop GIS: QGIS 2.18.7 

➢ Programming Language: R 3.4.1 

➢ Integrated Development Environment (IDE): RStudio 1.0.143 

➢ Referencing: Mendeley Desktop 1.17.10 

➢ Office suite: Microsoft Office 365 ProPlus Student 

 

  

In this last iteration, in each available cell one turbine 

can be placed, so the allocation is done by a simple 

search of the available space  
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4. Results 

Following the methodological framework from the previous chapter, this chapter 

demonstrates and explains the results generated in testing and applying the algorithm 

procedure in different cases. The model is first validated with a number of hypothetical 

scenarios, after which it is applied to the study area in question. 

4.1. Preprocessing output 

After inputting the necessary data into the R environment, as a result of preprocessing, the 

algorithm generates turbine power curves that graphically demonstrate their performance, 

and curves for the objective function in question. 

Parameters for the power curves are calculated using the expression (4) from previous 

chapter. This also graphically demonstrates what was already explained in Chapter 2, 

regarding the performance of wind turbines at different wind speeds. The biggest turbine has 

the biggest production capacity and vice versa, which is also obvious from the graph below. 

 

Figure 4-1: Energy output of three turbine types, for wind speed at hub height 

Initial starting values of the cost and energy parameters, for one turbine, based on (2) and 

(4) are shown in the table below: 
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N = 1 Enercon Vestas Siemens 

Cost (€) 800 000 2 000 000 3 150 000 

AEP (kW) 2 477 536 7 531 257 14 363 679 

Table 6: Initial values for cost and energy production 

CoE function (8) is primarily in dependence of N (number of turbines), and as seen in Figure 

4-2, using a turbine with a bigger capacity definitely results in lower values for the cost/energy 

ratio. 

 

Figure 4-2: CoE function curves for three turbine types 

This goes in favor of the ‘’greedy’’ approach implemented here, where the algorithm first 

tries to place as many of the biggest turbines, then following the middle and smallest size.  

4.2. Algorithm validation 

In order to confirm the applicability of the implemented algorithm, its performance is tested 

on different cases, regarding area size and used turbines.  

4.2.1. Case 1: One turbine type 

In the first scenario, we are analyzing the turbine layout for using just one type per area, with 

raster of 3000 m x 3000 m, 3000 m x 1000 m and 1000 m x 1000m size. Figure 4-3, 4-4 and 

4-5 below, show the turbine placement for the given area sizes, respectively. 
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In this gridded representation, it is easy to determine the number of turbines, just by visual 

inspection. As explained in Chapter 3.5, the amount of space that every turbine occupies is 

defined by its wake area. 

a) 

 

b) 

 

c) 

 

a) Enercon  b) Vestas  c) Siemens 

Figure 4-3: Turbine layout for area 3000 m x 3000 m 
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a) 

 

b) 

 

c) 

 
 a) Enercon  b) Vestas  c) Siemens  

Figure 4-4: Turbine layout for area 3000 m x 1000 m 

   

a) Enercon   b) Vestas   c) Siemens 

Figure 4-5: Turbine layout for area 1000 m x 1000 m 

Numerical values for the presented turbine settings are shown in Table 7.  In any case, the 

number of placed Enercon turbines is the same as the number of available cells, since the 

cell size of 250 m x 250 m is already the size of the wake area for this smallest turbine type. 

The table allows for comparison of the parameter and CoE function values. It is obvious 

that using the smallest turbine type will result in highest cost per unit of energy produced, 

but it will yield the highest energy output. At the same time, in most cases using the biggest 

turbine type will have the lowest cost value of the CoE function, but at the expense of 

producing less energy. The middle-sized turbine then presents a satisfactory choice both in 

terms of cost and energy, so the question would be simply whether to put more weight on 
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the cost or on the energy produced. In building commercial wind farms, this information is 

usually known upfront, meaning at least one of these values is a fixed one (financial 

limitations or required energy output).  

 

Raster size 1000 m x 1000 m 3000 m x 1000 m 3000 m x 3000 m 

Number of available cells 16 48 144 

 Enercon 

CoE (€/kW) 0.284212 0.217221 0.215268 

Cost (€) 11 266 314 25 832 349 76 800 000 

AEP (kW) 39 640 582 118 921 746 356 765 237 

N 16 48 144 

  Vestas     

CoE (€/kW) 0.263130 0.245941 0.186323 

Cost (€) 7 926 784 22 226 918 50 516 864 

AEP (kW) 30 125 028 90 375 085 271 125 254 

N 4 12 36 

 Siemens     

CoE (€/kW)  0.219176 0.217296 0.193026 

Cost (€) 3 148 175 12 484 685 44 361 112 

AEP (kW) 14 363 679 57 454 716 229 818 866 

N 1 4 16 

Table 7: Values of CoE function parameters for given area sizes 

4.2.2. Case 2: Three turbine types 

In this case, the output was generated for using all turbine types on one area. This time the 

area sizes are 2500 m x 2500 m and 3500 m x 1500 m (chosen differently from previous case, 

because of the iterative structure of the algorithm that would result in the same turbine 

placement). The figures below demonstrate the iterative procedure, because the smallest and 

middle-sized turbines are placed only in the left available area after placing as many of the 

biggest turbines as possible. In the first test area (a), after placing the biggest turbines, there 

is no more place for the Vestas turbine type, so in the remaining cells the algorithm places 

the smallest turbine type. In Figure (b) it is the opposite case, so after the allocation of the 

first and second turbine type, there is no more place left for the smallest turbine size.  
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a) 

 

b) 

 

 

Figure 4-6: Turbine layout for 2500 m x 2500 m area size (a), and 3500 m x 1500 m (b) 

Values of the parameters and CoE function here are calculated with (9), (10) and (11), and 

shown in Table 8. 

Raster size 2500 m  x 2500 m 3500 m x 1500 m 

Number of available cells 100 84 

N (E) 19 0 

N (V) 0 3 

N (S) 9 8 

Ntot 27 11 

Cost (€) 39 944 538  30 283 704 

AEP (kW) 176 346 303 137 503 204 

CoE (€/kW) 0.226512 0.220240 

Table 8: Values of CoE function parameters for given area sizes (three turbine types) 

If we were to disregard the biggest turbine and start from iteration two, the result would be 

much different, for the same test area: 
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a) 

 

b) 

 

 

Figure 4-7: Turbine layout for 2500 m x 2500 m area size (a), and 3500 m x 1500 m (b) (without 
first iteration) 

In this case the algorithm does not reach the third iteration, because the middle-size turbines 

take up all of the available space. By comparing the CoE parameters from Table 8 and Table 

9, we can see that this setting actually results in a lower cost per unit of energy produced. 

Raster size 2500 m x 2500 m 3500 m x 1500 m 

Number of available cells 100 84 

N (E) 0 0 

N (V) 25 21 

N (S) 0 0 

Ntot 25 21 

Cost (€) 38 950 968  34 499 449 

AEP (kW) 188 281 426 158 156 398 

CoE (€/kW) 0.2068763 0.218135 

Table 9: Values of CoE function parameters for given area sizes (three turbine types, without first 
iteration) 

4.2.3. Case 3: Three turbine types and area with forbidden zones 

In the third case scenario, we are using a hypothetical raster of size 2500 m x 2500 m, that 

has approximately 70% of available area. This time the algorithm was able to place at least 
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one of each turbine type. It is obvious from the figure below, that this placement depends 

primarily on the shape and size of the available area. By visual inspection of Figure (a) it is 

easily determined where could the biggest turbines be placed (because they require a 3x3 cell 

size area). In the remaining available space, only one Vestas turbine can fit, so for the rest of 

the available cells the algorithm assigns placement of turbine type three. 

  

a) Raster area with 69 available cells b)  Turbine placement 

 

Figure 4-8: Turbine placement in a 2500 m x 2500 m area with forbidden zones 

As described in previous cases, the values of the CoE parameters are calculated first for each 

turbine type, and the final value is a sum of this calculation. 

Raster size 2500 m  x 2500 m 

Number of available cells 69 

N (E) 27 

N (V) 1 

N (S) 4 

Ntot 32 

Cost (€) 39 944 538 

AEP (kW) 131 879 455 

CoE (€/kW) 0.234370 

Table 10: Values of CoE function parameters for area with forbidden zones 

Like in previous case, the algorithm was run first for all turbine types, and then just for the 

middle and smallest size. This again allowed for comparison of the CoE parameter values 

for both cases. 
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Figure 4-9: Turbine placement in area with forbidden zones (without first iteration) 

The results again show that the second configuration has a higher energy production at a 

lower cost.  

 

Raster size 2500 m  x 2500 m 

Number of available cells 69 

N (E) 43 

N (V) 6 

N (S) 0 

Ntot 49 

Cost (€) 35 149 868 

AEP (kW) 151 721 606 

CoE (€/kW) 0.231673 

 

Table 11: Values of CoE function parameters for an area with forbidden zones (without first 
iteration) 

4.2.4. Summary 

By running the algorithm on different test cases, it is established that the procedure 

developed here can correctly asses the size and shape of the available area, and place a 

number of turbines, or types of turbines, in this space.  

Analysis of the numerical output also shows how different turbine configurations, on the 

same area, can have different CoE parameter values, that depend on the turbine type and 

number of turbines installed. 
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4.3.  Applying the algorithm to the study area  

After testing the algorithm performance on different hypothetical cases, the procedure was 

implemented on the study area in question. The complete R report for this case is presented 

in Appendix 1, together with turbine coordinates and other parameters. Here we are 

presenting the main parts of this report. 

The solution took 35.728 seconds on a PC with Intel Core m3-5Y30 CPU at 0.90 GHz and 

4GB RAM, under Windows OS. After importing the raster file into the R environment, as 

shown in Figure 4-10, it is converted in a rectangular form even though the initial input is 

clipped to the municipality border. This is necessary because the algorithm works on a matrix 

format, meaning the number of cells in rows and columns has to be the same. So in this case, 

the number of cells to be checked in each iteration goes up to 3472. 

 

Available cells 

Figure 4-10: Input raster for the study area 

As demonstrated before, the algorithm follows its iterative structure, and in that process, it 

allocated a total of 487 turbines in the study area. 
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Figure 4-11: Turbine placement in the study area 

Values of the numerical parameters for the study area are presented in the table below. They 

show a very high cost and energy output, which is reasonable considering the number of 

turbines placed. 

Raster extent 

Xmax = 263 908.6 

Xmin = 248 408.6 

Ymin = 464 717.4 

Ymax = 478 717.4 

Number of cells 
(available/total)  

658/3472 

N (E) 445 

N (V) 33 

N (S) 9 

Ntot 487 

Cost (€) 311 748 515 

AEP (kW) 1 480 308 280 

CoE (€/kW) 0.210597 

Table 12: CoE parameter values for study area implementation 

After retrieving the turbine coordinates from the algorithm output, it was possible to  indicate 

these locations on the land use map presented in Chapter 3. The result of this is presented 

in Figure 4-12.
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 Figure 4-12: Land Use map of Enschede with turbine location 
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5. Discussion 

In the previous chapters we presented the methodology that was followed in order to 

implement a spatial optimization model, as well as the output generated as a result of this 

implementation. Therefore it is also needed to conduct a critical examination of both, and 

see how and to what extent this approach answered the research questions posed in Chapter 

1. This chapter tries to meet this requirement, by analyzing the results in different 

perspectives, stating the limitations of the research itself, as well as proposing ways of 

improvement in future work. 

5.1. Results analysis 

The WFLO problems are interdisciplinary, and they fall into the scope of different research 

fields. The optimization algorithm developed in this case, is one that tries to address the 

WFLO problem with a binary integer linear formulation.  Linear programming is an exact 

optimization method, that searches for the optimal solution, but in more complex cases 

results in high computational times. 

Solution in case of applying the algorithm to the study area took 35.728 s, but the number 

of cells to be checked in each iteration was 3472, which can to some extent explain the time 

of algorithm execution. Other reason could also be the speed of the computer processor in 

use. In other tests made on smaller raster sizes, the solution times took under 3 seconds. This 

means that although an exact method, binary linear programming still proved to be applicable 

to a more complex optimization problem like the WFO, and able to convey such 

formulation. 

The accuracy of the assessment of the cost and energy production for different wind farm 

design scenarios, is constrained by the assumptions made in Chapter 3. That is why these 

figures should be understood as potential, and not exact values. On the other hand, the same 

assumptions were applied to all turbine types used in this case, which is why in a relative 

sense the accuracy can allow for comparison of the performance of these turbines. 

Testing the turbine performance on areas of different shape and size, showed interesting 

results. If using a configuration with only one turbine type, it can be concluded that a bigger 

turbine will always be an optimal solution in terms of the CoE criteria. This is a reasonable 



SPATIAL OPTIMIZATION FOR WIND FARM ALLOCATION 

47 
 

conclusion, considering that the trends in this field are always towards constructing bigger 

and bigger turbines, and replacing the small ones. Results also showed that a configuration 

with turbines of different capacity (and different rotor diameters) can be a better option, than 

using just one turbine type on a designated area, because it allows for installment of more 

turbines and thus yields more energy. Depending on the size and shape of the available land, 

the results sometimes went in favor of using just the middle-sized turbine, Vestas, especially 

when testing on area with forbidden zones. The reason for this case is in the geometry of the 

available cell area, that did not allow a high number of the biggest turbines to be placed. 

The algorithm proved to indeed find the optimal solution, in terms of fitting as many turbines 

as possible, in a designated available area. The potential limitation of this approach is that, 

although it generates an optimal solution, it generates one solution, even when there are more 

than one. Because the ’’scanning’’ of the available area is performed from top left to bottom 

right, it is not possible to know if a different arrangement of the Siemens turbines (with the 

same number of turbines), could result in placing more of the other turbine types. The 

possible workaround here would be in reordering the columns of the raster matrix, so that 

the shape and size of the available area stay the same, but the search would start and finish 

at different cells, thus maybe produce different optimal results. 

As shown in Figure 4-12, when we placed the turbine coordinates on the original land use 

map from Chapter 3, it is obvious that some turbines fall on the border, or in the areas that 

were initially not defined as available. The reason for this is found in the different resolutions 

that we are dealing with. One is the resolution of the vector data set that was used, and the 

other is the resolution at which the rasterization is done, i.e. the cell size. Also because of the 

process of the rasterization itself, some vector features that are smaller than the prescribed 

raster cell size will still end up as an ’’available’’ cell in the output raster. On the other hand, 

larger available vector areas could be defined not available in the raster. This proves again 

that the results of any spatial analysis, in this case a MCA, is highly scale dependent. In this 

case, a possible answer would be to adjust the spatial resolution of the areal units, either by 

using a vector data set of smaller scale, or to define a bigger resolution in the process of 

rasterization. The latter would then of course increase the number of cells, and the 

computational time, as well as require redefining of the algorithm parameter setting. 
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5.2. Future work recommendations  

In order to increase the performance and result usability of the developed approach, we 

believe that further research should be made. Because of the time shortage, only limited 

amount of parameters could be considered in the model implementation. 

 The wind farm cost is complex with a number of factors involved. In this case we defined 

the cost in function of the number of the installed turbines and their capacities, but in order 

to make a more realistic assessment the cost of different land could also be included as an 

input parameter. Right now the only information that the raster input has is the land 

availability, but different areas could also have different associated costs, or account for any 

other parameter like complex terrain. This information would then also be conveyed in the 

input raster cells, but would need a more powerful optimization solver to allow for such 

formulation, and come up with a result in reasonable computational time. Using a more 

powerful optimization method could then allow for adding parameters in any stage of the 

algorithm set, for example adding more turbine types as well as wind direction and wind 

speed distribution. Another improvement would be to use a more complex objective 

function, or a multi-objective formulation. 

Although the primary objectives of this research were not directed at the actual visualization 

and presentation of the results as such, nor did time allow for it, in order to put the work 

done here in a broader context, it is necessary to mention this aspect also. Algorithm 

developed here could be incorporated into the already existing Desktop-based or Web-based 

SDSS (Spatial Decision Support Systems) and applications, used either in wind farm 

development and policy making, or in raising public awareness and social acceptability of 

wind farm projects. Of course that would require certain improvements and adjustment to 

the software architecture in question, and thus imply further research.  
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6. Conclusion 

In this study, the primary focus was on developing a method that will facilitate the search for 

the best possible layout scheme for wind farms in a defined region, and on a more general 

level, to investigate the possible solutions for applying Multi-Criterial Decision Making 

methods in conjunction with GIS in spatial optimization of wind farms.  

In order to satisfy the research goals stated in Chapter 1, the proposed methodology included 

a comprehensive literature review and overview of the modelling approaches in wind farm 

scenarios used up to date. After reviewing all the factors that influence wind farm 

development, and understanding the formulation of a spatial optimization problem, the WFL 

scenario was formulated into a binary integer linear problem and solved by the use of an 

appropriate optimization solver. Testing and analysis of different cases showed that binary 

integer linear programming and the use of GIS posses a great potential to aid in the process 

of development of wind farm projects. At the same time, these tools are highly adjustable, 

and in that sense can be adopted to many different scenarios. From the performed research 

and the output results, it can be concluded that the implemented methodology is effective in 

solving the given optimization problem.  

The proposed algorithm aims to serve as a tool for preliminary screening in wind farm siting 

at a large scale. The assessment of energy production potential of an area and the associated 

cost, can assist in the decision-making process, providing necessary estimations in the earlier 

stages of the wind farm planning.  
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8. Appendices 



 

 

 

 

 

 

 

 

 

APPENDIX 1 – COMPILED R REPORT 

 

  



 

 

 

wflo.R 

Mon Sep 11 20:23:43 2017 

old <- Sys.time() 
library(raster) 
library(sp) 
library(lpSolve) 
library(ggplot2) 
library(rgdal) 
#Import wind data 
ws10 <- read.csv("10.csv", header=FALSE, sep=",") 
wsE <- ws10[,1] 
wsV <- ws10[,2] 
wsS <- ws10[,3] 
#Import turbine specifications 
wtur <- read.csv("wtur.csv", header=TRUE, sep=",") 
row <- c("D", "Vi", "Vo", "Vr", "Pr", "H") 
row.names(wtur) <- row 
coll <- c("Siemens", "Vestas", "Enercon") 
wtur <- (`colnames<-`(wtur, coll)) 
viE <- as.numeric(wtur["Vi","Enercon"]) 
vrE <- as.numeric(wtur["Vr","Enercon"]) 
voE <- as.numeric(wtur["Vo","Enercon"]) 
dE <- as.numeric(wtur["D","Enercon"]) 
hE <- as.numeric(wtur["H","Enercon"]) 
prE <- as.numeric(wtur["Pr","Enercon"]) 
viV <- as.numeric(wtur["Vi","Vestas"]) 
vrV <- as.numeric(wtur["Vr","Vestas"]) 
voV <- as.numeric(wtur["Vo","Vestas"]) 
dV <- as.numeric(wtur["D","Vestas"]) 
hV <- as.numeric(wtur["H","Vestas"]) 
prV <- as.numeric(wtur["Pr","Vestas"]) 
viS <- as.numeric(wtur["Vi","Siemens"]) 
vrS <- as.numeric(wtur["Vr","Siemens"]) 
voS <- as.numeric(wtur["Vo","Siemens"]) 
dS <- as.numeric(wtur["D","Siemens"]) 
hS <- as.numeric(wtur["H","Siemens"]) 
prS <- as.numeric(wtur["Pr","Siemens"]) 
#Calculate Energy Production for three turbine types 
power.curveE <- function(x) { 
  if (x>=viE && x<vrE)  
  {P <- (x-viE)/(vrE-viE)*prE } 
  else if (x>=vrE && x<voE)  
  {P <- prE} 
  else {P <-0} 
  return(P) 
} 
power.curveV <- function(x) { 
  if (x>=viV && x<vrV)  
  {P <- (x-viV)/(vrV-viV)*prV} 
  else if (x>=vrV && x<voV)  
  {P <- prV} 
  else {P <-0} 
  return(P) 
} 
power.curveS <- function(x) { 
  if (x>=viS && x<vrS) 
  {P <- (x-viS)/(vrS-viS)*prS } 
  else if (x>=vrS && x<voS)  
  {P <- prS} 
  else {P <-0} 



 

 

  return(P) 
} 
pwoE <- sapply(wsE, power.curveE) 
pwoV <- sapply(wsV, power.curveV) 
pwoS <- sapply(wsS, power.curveS) 
aepE <- sum(pwoE) 
aepV <- sum(pwoV) 
aepS <- sum(pwoS) 
 
#Cost of Energy functions 
#ENERCON 
obj.funE <- function(N) { 
  C <- N*prE*1000*(2/3+1/3*exp(-0.00174*N^2)) 
  E <- N*aepE 
  CoE <- C/E 
  return(CoE) 
} 
curve(obj.funE, from = 1, to =100, xlab = "N", ylab="CoE", col="blue", main="Cost of 
Energy Enercon") 

 

#VESTAS 
obj.funV <- function(N) { 
   
  C <- N*prV*1000*(2/3+1/3*exp(-0.00174*N^2)) 
  E <- N*aepV 
  CoE <- C/E 
  return(CoE) 
} 
curve(obj.funV, from = 1, to =100, xlab = "N", ylab="CoE", col="red", main="Cost of E
nergy Vestas") 

 



 

 

#SIEMENS 
obj.funS <- function(N) { 
  C <- N*prS*1000*(2/3+1/3*exp(-0.00174*N^2)) 
  E <- N*aepS 
  CoE <- C/E 
  return(CoE) 
} 
curve(obj.funS, from = 1, to =100, xlab = "N", ylab="CoE", col="green", main="Cost of
 Energy Siemens") 

 

#OPTIMIZATION PREPROCESSING 
 

#raster input 
enschede1 <- raster::raster('11111.tif') 
qgis <- enschede1 
A <- values(qgis) 
plot(qgis, breaks=c(0,0.2,1),col=c("gray96", "gray61", "gray61"), legend=FALSE) 
plot(rasterToPolygons(qgis), add=TRUE, border='gray90', lwd=1) 

 
 

#First iteration – Siemens turbines 

#generation of candidate locations 

coordqgis <- coordinates(qgis) 
matrix <- as.matrix(qgis) 



 

 

result <- matrix(0, nrow=nrow(qgis), ncol=ncol(qgis)) 
for (i in 2:(nrow(qgis)-1)) { 
  for (j in 2:(ncol(qgis)-1)) { 
    result[i,j] <- sum(matrix[i,j], matrix[i-1,j-1], matrix[i,j-1], matrix[i+1,j-1],m
atrix[i-1,j],matrix[i+1,j],matrix[i-1,j+1], matrix[i,j+1], matrix[i+1,j+1]) 
  } 
} 

inds_posible <- which(result==9, arr.ind = TRUE) 
count_posible <- NROW(inds_posible)  
options_cellnumber <- cellFromRowCol(qgis, inds_posible[,1], inds_posible[,2]) 
plotcoord <- coordqgis[options_cellnumber,] 
points(plotcoord, col="green") 
M <- ncell(qgis) 
N <- count_posible 
row_pos <- matrix (0, nrow=9, ncol=N ) 
col_pos <- matrix (0, nrow=9, ncol=N ) 
for (n in 1:N) { 
  row_pos [,n] <-  c(inds_posible[n,1], inds_posible[n,1]-1,inds_posible[n,1]-1,inds_
posible[n,1]-1,inds_posible[n,1],inds_posible[n,1],inds_posible[n,1]+1,inds_posible[n
,1]+1,inds_posible[n,1]+1) 
  col_pos [,n]<-  c(inds_posible[n,2],inds_posible[n,2]-1, inds_posible[n,2], inds_po
sible[n,2]+1, inds_posible[n,2]-1,inds_posible[n,2]+1, inds_posible[n,2], inds_posibl
e[n,2]-1,inds_posible[n,2]+1) 
} 
options_neighbourhoodcellnumber <- matrix(0, nrow=9, ncol=N ) 
for (n in 1:N) { 
options_neighbourhoodcellnumber[,n] <- cellFromRowCol(qgis, row_pos[,n], col_pos[,n]) 
} 
plotcoord_neighbourhood <- coordqgis[as.vector(t(options_neighbourhoodcellnumber)),] 
points(plotcoord_neighbourhood, col="yellow") 
points(plotcoord, col="green") 

 

resultbin <- matrix (0,nrow=M, ncol=N) 
for ( n in 1:N) { 
 resultbin[options_neighbourhoodcellnumber[,n],n] <- 1  
} 
#generate input for optimization algorithm 
f.obj <-  rep(1,N) 
f.con <- resultbin 
f.dir <- rep("<=", M) 
f.rhs <- rep (1,M) 



 

 

 
#initialize LP solver 
lp ( "max", f.obj, f.con, f.dir, f.rhs) 

## Success: the objective function is 9 

solution <- lp ( "max", f.obj, f.con, f.dir, f.rhs)$solution 
solution 

##  [1] 1 1 0 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 

obj.value <- sum(solution) 
obj.value 

## [1] 9 

solution_cellno <- options_cellnumber[which(solution==1, arr.ind = TRUE)] 
solution_coord <- coordqgis[options_cellnumber[which(solution==1, arr.ind = TRUE)],] 
solution_coord #coordinates of Siemens turbines 

##              x        y 
##  [1,] 251783.6 471842.4 
##  [2,] 252033.6 466092.4 
##  [3,] 253283.6 467342.4 
##  [4,] 254783.6 466092.4 
##  [5,] 255533.6 466092.4 
##  [6,] 257533.6 476842.4 
##  [7,] 260033.6 467592.4 
##  [8,] 260783.6 468092.4 
##  [9,] 261283.6 474592.4 

plot(qgis, breaks=c(0,0.2,1),col=c("gray96", "gray61", "gray61"), legend=FALSE) 
plot(rasterToPolygons(qgis), add=TRUE, border='gray90', lwd=1) 
points(solution_coord, col="chartreuse4", bg="chartreuse4", pch=21, cex=2) 

 

# Second iteration – Vestas turbines 

#Preprocessing 

solution_rowcol <- rowColFromCell(qgis, solution_cellno) 
solution_neigh_row_pos <- matrix (0, nrow=9, ncol=obj.value ) 
solution_neigh_col_pos <- matrix (0, nrow=9, ncol=obj.value ) 
for (k in 1:obj.value) { 
  solution_neigh_row_pos [,k] <-  c(solution_rowcol[k,1], solution_rowcol[k,1]-1,solu
tion_rowcol[k,1]-1,solution_rowcol[k,1]-1,solution_rowcol[k,1],solution_rowcol[k,1],s
olution_rowcol[k,1]+1,solution_rowcol[k,1]+1,solution_rowcol[k,1]+1) 
  solution_neigh_col_pos [,k]<-  c(solution_rowcol[k,2],solution_rowcol[k,2]-1, solut



 

 

ion_rowcol[k,2], solution_rowcol[k,2]+1, solution_rowcol[k,2]-1,solution_rowcol[k,2]+
1, solution_rowcol[k,2], solution_rowcol[k,2]-1,solution_rowcol[k,2]+1) 
} 
solution_neighbourhoodcellnumber <- matrix(0, nrow=9, ncol=obj.value ) 
for (k in 1:obj.value) { 
  solution_neighbourhoodcellnumber[,k] <- cellFromRowCol(qgis, solution_neigh_row_pos
[,k], solution_neigh_col_pos[,k]) 
} 
 
A [solution_neighbourhoodcellnumber] <- 0.5 
A [solution_cellno] <- 0.2 

values(qgis) <- A 
plot(qgis,  legend=FALSE) 
plot(rasterToPolygons(qgis), add=TRUE, border='gray90', lwd=1) 
points(solution_coord, col="chartreuse4", bg="chartreuse4", pch=21, cex=2) 

 

A [solution_neighbourhoodcellnumber] <- 0 
values(qgis) <- A 
matrix2 <- as.matrix(qgis) 

#generation of candidate locations 
result2 <- matrix(0, nrow=nrow(qgis), ncol=ncol(qgis)) 
for (i in 1:(nrow(qgis)-1)) { 
  for (j in 1:(ncol(qgis)-1)) { 
    result2[i,j] <- sum(matrix2[i,j], matrix2[i+1,j+1], matrix2[i,j+1], matrix2[i+1,j
]) 
  } 
} 

inds_posible2 <- which(result2==4, arr.ind = TRUE) 
count_posible2 <- NROW(inds_posible2)  
options_cellnumber2 <- cellFromRowCol(qgis, inds_posible2[,1], inds_posible2[,2]) 
plotcoord2 <- coordqgis[options_cellnumber2,] 
points(plotcoord2, col="red") 
M <- ncell(qgis)  
N2 <- count_posible2  
row_pos2 <- matrix (0, nrow=4, ncol=N2 ) 
col_pos2 <- matrix (0, nrow=4, ncol=N2 ) 
for (n in 1:N2) { 
  row_pos2 [,n] <-  c(inds_posible2[n,1], inds_posible2[n,1],inds_posible2[n,1]+1,ind
s_posible2[n,1]+1) 
  col_pos2 [,n]<-  c(inds_posible2[n,2],inds_posible2[n,2]+1, inds_posible2[n,2]+1, i
nds_posible2[n,2]) 
} 



 

 

options_neighbourhoodcellnumber2 <- matrix(0, nrow=4, ncol=N2 ) 
for (n in 1:N2) { 
  options_neighbourhoodcellnumber2[,n] <- cellFromRowCol(qgis, row_pos2[,n], col_pos2
[,n]) 
} 
plotcoord_neighbourhood2 <- coordqgis[as.vector(t(options_neighbourhoodcellnumber2)),
] 
resultbin2 <- matrix (0,nrow=M, ncol=N2) 
for ( n in 1:N2) { 
  resultbin2[options_neighbourhoodcellnumber2[,n],n] <- 1  
} 

 
#generate input for optimization algorithm 
f.obj2 <-  rep(1,N2) 
f.con2 <- resultbin2 
f.dir <- rep("<=", M) 
f.rhs <- rep (1,M) 
f.rhs[options_cellnumber] <- 1 

#initialize LP solver 
lp ( "max", f.obj2, f.con2, f.dir, f.rhs) 

## Success: the objective function is 33 

solution2 <- lp ( "max", f.obj2, f.con2, f.dir, f.rhs)$solution 
solution2 

##  [1] 1 1 0 1 1 0 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 
## [36] 0 1 0 1 1 1 1 1 0 1 1 0 0 1 0 1 

obj.value2 <- sum(solution2) 
obj.value2 

## [1] 33 

solution_cellno2 <- options_cellnumber2[which(solution2==1, arr.ind = TRUE)] 
solution_coord2 <- coordqgis[options_cellnumber2[which(solution2==1, arr.ind = TRUE)]
,] 
solution_coord2  

##              x        y 
##  [1,] 249533.6 471092.4 
##  [2,] 249783.6 470592.4 
##  [3,] 251283.6 468592.4 
##  [4,] 252033.6 467092.4 
##  [5,] 252283.6 467842.4 
##  [6,] 252783.6 472842.4 
##  [7,] 252783.6 468842.4 
##  [8,] 253033.6 468342.4 
##  [9,] 253033.6 466592.4 
## [10,] 253283.6 466092.4 
## [11,] 254033.6 477092.4 
## [12,] 255533.6 475342.4 
## [13,] 255533.6 474342.4 
## [14,] 256783.6 465092.4 
## [15,] 257283.6 475342.4 
## [16,] 257283.6 474092.4 
## [17,] 257533.6 466342.4 
## [18,] 257533.6 465092.4 
## [19,] 258033.6 475842.4 
## [20,] 258033.6 467342.4 
## [21,] 258533.6 475592.4 
## [22,] 258783.6 476342.4 
## [23,] 259033.6 467592.4 
## [24,] 259533.6 477092.4 



 

 

## [25,] 259533.6 468592.4 
## [26,] 260533.6 474592.4 
## [27,] 261283.6 469092.4 
## [28,] 261533.6 469842.4 
## [29,] 261783.6 473592.4 
## [30,] 262033.6 471342.4 
## [31,] 262533.6 475342.4 
## [32,] 262783.6 474842.4 
## [33,] 262783.6 474342.4 

solution_coord2_cent <- solution_coord2 
for (s in 1:obj.value2) { 
  solution_coord2_cent[s,'x'] <- solution_coord2_cent[s,'x']+125 
  solution_coord2_cent[s,'y'] <- solution_coord2_cent[s,'y']-125 
} 
solution_coord2_cent #coordinates of Vestas turbines 

##              x        y 
##  [1,] 249658.6 470967.4 
##  [2,] 249908.6 470467.4 
##  [3,] 251408.6 468467.4 
##  [4,] 252158.6 466967.4 
##  [5,] 252408.6 467717.4 
##  [6,] 252908.6 472717.4 
##  [7,] 252908.6 468717.4 
##  [8,] 253158.6 468217.4 
##  [9,] 253158.6 466467.4 
## [10,] 253408.6 465967.4 
## [11,] 254158.6 476967.4 
## [12,] 255658.6 475217.4 
## [13,] 255658.6 474217.4 
## [14,] 256908.6 464967.4 
## [15,] 257408.6 475217.4 
## [16,] 257408.6 473967.4 
## [17,] 257658.6 466217.4 
## [18,] 257658.6 464967.4 
## [19,] 258158.6 475717.4 
## [20,] 258158.6 467217.4 
## [21,] 258658.6 475467.4 
## [22,] 258908.6 476217.4 
## [23,] 259158.6 467467.4 
## [24,] 259658.6 476967.4 
## [25,] 259658.6 468467.4 
## [26,] 260658.6 474467.4 
## [27,] 261408.6 468967.4 
## [28,] 261658.6 469717.4 
## [29,] 261908.6 473467.4 
## [30,] 262158.6 471217.4 
## [31,] 262658.6 475217.4 
## [32,] 262908.6 474717.4 
## [33,] 262908.6 474217.4 

points(solution_coord2_cent, col="mediumblue", bg="mediumblue", pch=21, cex=2) 



 

 

 

# Third iteration – Enercon turbines 

#Preprocessing 

solution_rowcol2 <- rowColFromCell(qgis, solution_cellno2) 
solution_neigh_row_pos2 <- matrix (0, nrow=4, ncol=obj.value2 ) 
solution_neigh_col_pos2 <- matrix (0, nrow=4, ncol=obj.value2 ) 
for (k in 1:obj.value2) { 
  solution_neigh_row_pos2 [,k] <-  c(solution_rowcol2[k,1], solution_rowcol2[k,1],sol
ution_rowcol2[k,1]+1,solution_rowcol2[k,1]+1) 
  solution_neigh_col_pos2 [,k]<-  c(solution_rowcol2[k,2],solution_rowcol2[k,2]+1, so
lution_rowcol2[k,2]+1, solution_rowcol2[k,2]) 
} 
solution_neighbourhoodcellnumber2 <- matrix(0, nrow=4, ncol=obj.value2 ) 
for (k in 1:obj.value2) { 
  solution_neighbourhoodcellnumber2[,k] <- cellFromRowCol(qgis, solution_neigh_row_po
s2[,k], solution_neigh_col_pos2[,k]) 
} 
A [solution_neighbourhoodcellnumber2] <- 0.5 
A [solution_cellno2] <- 0.2values(qgis) <- A 
plot(qgis) 
grid(nx=ncol(qgis), ny=nrow(qgis)) 

 

A [solution_neighbourhoodcellnumber2] <- 0 
values(qgis) <- A 



 

 

matrix3 <- as.matrix(qgis) 
inds_posible3 <- which(matrix3==1, arr.ind = TRUE) 
count_posible3 <- NROW(inds_posible3)  
count_posible3 
[1] 445 

 
options_cellnumber3 <- cellFromRowCol(qgis, inds_posible3[,1], inds_posible3[,2]) 
plotcoord3 <- coordqgis[options_cellnumber3,] 
plotcoord3 
          x        y 

  [1,] 248783.6 470842.4 

  [2,] 248783.6 470592.4 

  [3,] 249033.6 471342.4 

  [4,] 249033.6 470592.4 

  [5,] 249033.6 470092.4 

  [6,] 249033.6 469842.4 

  [7,] 249283.6 471342.4 

  [8,] 249283.6 470592.4 

  [9,] 249283.6 469092.4 

 [10,] 249533.6 471842.4 

 [11,] 249533.6 471592.4 

 [12,] 249533.6 469342.4 

 [13,] 249533.6 468342.4 

 [14,] 249533.6 467842.4 

 [15,] 249783.6 472842.4 

 [16,] 249783.6 469842.4 

 [17,] 249783.6 469342.4 

 [18,] 249783.6 469092.4 

 [19,] 249783.6 468842.4 

 [20,] 249783.6 468592.4 

 [21,] 249783.6 468092.4 

 [22,] 249783.6 467592.4 

 [23,] 250033.6 472842.4 

 [24,] 250033.6 472592.4 

 [25,] 250033.6 471592.4 

 [26,] 250033.6 471342.4 

 [27,] 250033.6 469842.4 

 [28,] 250033.6 468842.4 



 

 

 [29,] 250033.6 467842.4 

 [30,] 250283.6 472592.4 

 [31,] 250283.6 471842.4 

 [32,] 250283.6 470592.4 

 [33,] 250283.6 470342.4 

 [34,] 250283.6 470092.4 

 [35,] 250283.6 469592.4 

 [36,] 250283.6 469342.4 

 [37,] 250283.6 467842.4 

 [38,] 250283.6 467092.4 

 [39,] 250533.6 472342.4 

 [40,] 250533.6 470842.4 

 [41,] 250533.6 470592.4 

. 

. 

. 

[444,] 263033.6 469092.4 

[445,] 263783.6 471342.4 

 
 
points(plotcoord3, col="firebrick2", bg="firebrick2", pch=21, cex=1) 

 

obj.value3 <- count_posible3 
obj.value3 

## [1] 445 

#Calculate CoE parameter values 



 

 

COE <- function(Ne, Nv, Ns) { 
  Ce <- Ne*prE*1000*(2/3+1/3*exp(-0.00174*Ne^2)) 
  Ee <- Ne*aepE 
  Cv <- Nv*prV*1000*(2/3+1/3*exp(-0.00174*Nv^2)) 
  Ev <- Nv*aepV 
  Cs <- Ns*prS*1000*(2/3+1/3*exp(-0.00174*Ns^2)) 
  Es <- Ns*aepS 
  CoE <- (Ce+Cv+Cs)/(Ee+Ev+Es) 
  return(list(Ne, Nv, Ns, Ce, Cv,Cs, Ee, Ev, Es, CoE)) 
} 
list_coe <- COE(obj.value3,obj.value2,obj.value) 
list_coe 

## [[1]] 
## [1] 445 
##  
## [[2]] 
## [1] 33 
##  
## [[3]] 
## [1] 9 
##  
## [[4]] 
## [1] 237333333 
##  
## [[5]] 
## [1] 47307466 
##  
## [[6]] 
## [1] 27107716 
##  
## [[7]] 
## [1] 1102503685 
##  
## [[8]] 
## [1] 248531483 
##  
## [[9]] 
## [1] 129273112 
##  
## [[10]] 
## [1] 0.210597 
 
# Plot area with all turbine locations 

qgis <- enschede1 
plot(qgis, breaks=c(0,0.2,1),col=c("gray96", "gray61", "gray61"), legend=FALSE) 
plot(rasterToPolygons(qgis), add=TRUE, border='gray90', lwd=1) 
points(solution_coord, col="chartreuse4", bg="chartreuse4", pch=21, cex=2) 
points(solution_coord2_cent, col="mediumblue", bg="mediumblue", pch=21, cex=1) 
points(plotcoord3, col="firebrick2", bg="firebrick2", pch=21, cex=1) 



 

 

 

write.csv(solution_coord, file = "Siemens.csv") 
write.csv(solution_coord2_cent, file = "Vestas.csv") 
write.csv(plotcoord3, file = "Enercon.csv") 
new <- Sys.time() - old 
print(new) 

## Time difference of 35.72827 secs 

 

 

 


