

Faculty of Environmental Sciences Institute for Cartography

A Contribution to Computer-Assisted Recon-

struction of Selected Line Features from Scanned

Maps

submitted by Jiaqin Ni

born on 20.04.1993 in Shanghai

submitted for the academic degree of

Master of Science (M.Sc.)

Submission on 04/10/2017

Supervisors Dr. Nikolas Prechtel
TU Dresden – Institute for Cartography

Prof. Dr. Markus Wacker
HTW Dresden

Dr. Corné van Elzakker

University of Twente – ITC

Master Thesis

Original Task Specification

Objective

A theory part shall summarise technical approaches of automated line recon-

struction from maps and similar documents. It is in general completely legiti-

mate to confine the concept and the implementation of feature extraction in this

thesis to one specific group of linear map elements (as rivers, roads, etc.).

It is common knowledge that due to graphic conflicts (overlays and touching of

elements) within a map face vector paths (streets, rivers, railways, etc.) are fre-

quently intermittent or not easily separable. Useful results (connected, well-

tailored geo-features) cannot be achieved by a simple vectorisation. A further

task relates to a reduction of dual line signatures or graphically augmented lines

(e.g. railway signatures) to their centre line, or, the contrary, a connection of

dashed line signatures to contiguous lines. In order to find good reconstruction

techniques, a concise scheme of cartographic lines in (historic) maps shall be

sought. A comprehensive feature space embedding e.g. parameters of line shape,

line width, line fillings and line colour may thus be offered in order to pinpoint

processing of the scan onto a specific graphic expression. Especially in respect

to colour space, variations due to imperfect print techniques, the aging of the

document (e.g. stains), and the mixing of foreground/background signals (pixels)

along feature edges have to be considered. The concept for an implementation

may concentrate on modules taken from Open Source libraries. Python will be

the preferred script language, both for the existence of specialised packages and

compatibility with geo-software. Examples: OpenCV for Python offers quite a

range of image manipulation and computer vision functionality. For a vectorisa-

tion of original or pre-segmented images, modules like “Potrace”

(http://potrace.sourceforge.net/#description) or “mapseg”

(http://wiki.openstreetmap. org/wiki/Mapseg) may be tested. The final choice

of suitable software modules will, however, be completely a decision of the au-

thor.

The thesis shall contribute to a proposed generic toolbox dedicated to selective

computer-assisted map feature extraction. “Toolbox” indicates a preference for

specialised, efficient, upgradable compact programme modules over a monolith-

ic programme solution tackling the complete extraction task. Human interac-

tion is welcome and promising quicker results, which are crucial within a web

service. Activities can be confined to the map face. Statistics specifying the ex-

traction quality and the performance shall accompany the implementation. A

summarising chapter shall critically evaluate the achievements and name priori-

ties in further work in the context of map feature extraction.

Statement of Authorship

Herewith I declare that I am the sole author of the thesis named

„A Contribution to Computer-Assisted Reconstruction of Selected Line Fea-

tures from Scanned Maps“

which has been submitted to the study commission of geosciences today.

I have fully referenced the ideas and work of others, whether published or un-

published. Literal or analogous citations are clearly marked as such.

Dresden, 04/10/2017 Signature

Contents 1

Contents

Original Task Specification

Statement of Authorship

Contents ... 1

Figures .. 2

1 Introduction ... 4

2 Related Work ... 4

2.1 Layer Separation .. 5

2.2 Line Feature Identification ... 5

2.3 Feature Thinning Methods ... 6

3 Data and Environment ... 8

4 Workflow ... 10

4.1 Image Properties ... 10

4.2 Colour Separation ... 11

4.3 Binarization ... 12

4.4 Filtering .. 16

4.5 Line Feature Identification .. 19

4.6 Vectorization... 22

4.7 Building Referencing System ... 24

5 Conclusion ... 28

References .. 29

Contents 2

Figures

Fig. 3.1 Preview of test maps.. .. 9

Fig. 4.1 Image property matrix of a test map. ... 10

Fig. 4.2 Functions for colour space conversion and colour separation. 12

Fig. 4.3 Colour separation results. ... 12

Fig. 4.4 a Thresholding using OpenCV functions. ... 13

Fig. 4.4 b Thresholding results. .. 13

Fig. 4.5 Comparison between global and local thresholding. ... 14

Fig. 4.6 a Results of thresholding in Fiji. ... 15

Fig. 4.6 b The thresholds in corresponding to the figure above. .. 15

Fig. 4.7 Result of Otsu’s algorithm. .. 16

Fig. 4.8 Profile pattern of three road types. ... 17

Fig. 4.9 Part of the functions during pattern matching. .. 17

Fig. 4.10 The rotation function. ... 18

Fig. 4.11 a Individual results of pattern matching. ... 18

Fig. 4.11 b Overlaid result of pattern matching. ... 19

Fig. 4.12 Parameter setting in Curve Tracing. ... 20

Fig. 4.13 a Colourmap in Curve Tracing. ... 20

Fig. 4.13 b Thresholding in Curve Tracing. .. 21

Fig. 4.14 Traced curved lines in Fiji. .. 21

Fig. 4.15 Compared results. ... 22

Fig. 4.16 Tracing settings. .. 23

Fig. 4.17 SVG output. .. 24

Fig. 4.18 a The vectorized line features in ArcGIS. .. 25

Fig. 4.18 b The attribute table of the line features. ... 25

Fig. 4.19 a Conversion from feature to raster dataset. .. 26

Contents 3

Fig. 4.19 b Adjustment on cell size. .. 26

Fig. 4.20 The converted raster dataset for referencing. .. 26

Fig. 4.21 Result of a reference for line type 2. ... 27

Introduction 4

1 Introduction

In the age of digitisation and internet communication, an increasing number of

historical maps has been scanned and archived as high-resolution digital images.

This opens the door to view these documents, and to visually compare them to

others (in order to compare the geographic knowledge of the time or the spatial

focus of the authors), or to reveal changing spatial knowledge in a culture, or to

detect historic spatial developments over time. However, all these scanned his-

toric sources will not enable a scholar to arrive at unambiguous quantitative

measures in their descriptions and comparisons as long as the image of a map

stays as an image and will not be transformed into structured and individually

processable geo-features in the sense of historic GIS data. This transformation,

however, is a giant task and will need a high degree of automation to show a

substantial progress. This master thesis tries to contribute to this field of re-

search in concentrating on linear features within historic maps and in trying to

find ways to arrive at structured vector features without the simple solution of

manual digitising.

A possible solution should be provided to implement computer-assisted line

feature detection, extraction and reconstruction during the research. The work

aims at a major contribution to a generic toolbox, which performs a complete

process of detection, separating, extraction and vectorisation. Various functions

should be embedded as modules of the toolbox, which are able to perform indi-

vidual steps in line feature extraction. The research should focus on a specific

group of line feature (e.g. roads, streets, rivers, etc.), instead of an attempt of

extracting line features from the scanned map in an unspecific way.

This research could be of great interest to anyone who deals with feature vec-

torization of scanned maps, especially historical maps.

2 Related Work

Research in the field of feature recognition and extraction from paper maps has

been going on for many years, in addition that nowadays the well-developed

scanning technology allows paper maps to be scanned in higher resolution and

quality, therefore, large amount of previous related works and publications

could be found in this field of study. Generally speaking, a typical digital feature

extraction procedure should include the following phases: (1) digitization of the

original paper-based material; (2) filtering, or foreground and background sep-

aration; (3) thresholding; (4) thinning and trimming the features; (5) vectoriza-

tion. (Salvatore, Guitton, 2004)

In this section, the related works will be spread into several related sections and

introduced individually.

Related Work 5

2.1 Layer Separation

Layer separation is in respond to the second phase: filtering. As the quality of

scanned maps usually vary greatly, especially historical maps, since the quality

of the map itself could be affected by lots of external factors. For instance, im-

perfect archaic printing technique, different colouring method and style, or even

stains on the map documents could largely affect the process of determining

continuous line features. In order to have a clear view of the line features that

need to be extracted, the negative influence of the noise and disturbance should

be minimized. In the preliminary stages of processing, the foreground and back-

ground of the scanned image should be separated. The foreground indicates the

features that are needed to be extracted, while the background is in represent of

other needless features in the image. Zack et al. created a global search thresh-

old (THR) in the intensity histogram, using the normalized height and dynamic

range of the histogram, which effectively contributed in foreground pixel seg-

mentation (1977). Besides, reducing the number of colours could also be used

to help layer segmentation. Chiang and Knoblock used Mean-shift and K-means

algorithms to merge colours and to limit the eventual number of the colours in

the output image (2009). For some images that obtain wide variations in colour

intensity, the K-means algorithm could be combined with a previous image en-

hancement to achieve better results (Dhar and Chanda, 2006). Cao and Tan pro-

posed an algorithm to recognize certain pixel as a black pixel and utilized a

morphological method to remove the black layer in the pre-processing stage

(2001). A binarization step could also be taken to first extract the foreground

pixels. In some cases, the binarization step could be combined with a morpho-

logical closing in order to first classify the colour pixels and then remove small

line features (Pouderoux et al., 2007).

2.2 Line Feature Identification

The third and fourth phases could be concluded into the process of line feature

identification. In different cases of various kind of maps, corresponding meth-

ods should be taken to identify different kinds of line features from assorted

backgrounds. Most common cases are normal topographic maps (however not

necessarily historical maps). Usually a colour segmentation method is used to

identify cartographic features according to certain mapping colour standards.

Pouderoux et al. separate the image into five layers according the RGB value in

each pixel. In the blue layer, which indicates rivers and other hydrological fea-

tures, a recognition procedure based on predefined decision criteria were com-

bined with the boundary extraction in order to extract the blue features (2007).

In handling publishes with standard map keys, extracting certain colours could

effectively remove one kind of features. Khotanzad et al. constructed a colour

Related Work 6

key to overcome the problem of false colours and colour aliasing in extraction of

contour lines from USGS topographical maps (Khotanzad, Zink, 2003).

When dealing with colour extraction, the selection of colour space requires

careful consideration. In the research of Salvatore and Guitton, the backwards of

using RGB colour space was pointed out (2004). A colour space with improved

perceptual uniformity and tractability was suggested, in their case, the HSV col-

our space. This separation between hue and other colour properties makes it

easier for users to control the colour shade only by values. Besides topographic

maps, other basic features that are included in various maps could also be re-

garded as clues to feature extraction or subtraction. For instance, detecting the

possible Hough lines could emphasize benefits to recognizing road pixels

(Chiang, Knoblock, 2009). This is less affected by the colour of the map but more

concentrate on the line feature itself. Other methods include double-line format

checking and parallel-pattern tracing (Chiang et al., 2005). These traditional but

effective methods focus on the profile of line features. Considering either single

or double line shape is popularly used to represent roads and streets even in

historical maps, these methods could be potential candidates for road recogni-

tion in this project work.

2.3 Feature Thinning Methods

A pre-extracted foreground need to be trimmed before vectorization. Liu and

Dov concluded several thinning based methods in the image based approach

(1999), which is a process of applying morphological operations to the image. It

is intended to return with a set of black pixels as the skeleton (Montanari, 1969),

forming a clear topological structure of the input image, making the image much

easier to analyse and operate in later stages.

During the morphological stage, making use of a series of operations could help

to remove the outer layer of the contour lines in order to enhance the main

structure of the image, and remove small noise pixels as well. In the work of

Chiang et al., a generalized dilation operator, a generalized erosion operator,

and a thinning operator were applied in order (2005). The hit-or-miss trans-

formations was performed using 3-by-3 binary masks to scan the input image

and measure whether the mask match the input image or not. This operation

would return a result with either “hit” or “miss”, resulting in first an enhance-

ment and then a thinning effect of the line features. When extracting the contour

lines from scanned topographic maps, Salvatore and Guitton also applied a thin-

ning procedure to reduce the width of the output line features (2004). In order

to achieve better results and get rid of non-interested features, a smoothing

process was applied after the thinning procedure.

Related Work 7

There are different algorithms proposed for thinning operation, and could be

used in various approaches such as OCR or line recognition (Liu, Dov, 1999).

These include both complex algorithms and straightforward methods, even

some built-in handy operations. In this project, some of the appropriate meth-

ods were tested and applied to the map image for line extraction.

Data and Environment 8

3 Data and Environment

The historical maps used in the extraction process were all taken from the Vir-

tuelles Kartenforum 2.0 (Virtual Map Forum 2.0), a crowdsourcing approach

built for georeferencing of the historical maps taken from the main part of the

SLUB collection. The map collection at SLUB focuses on maps of Saxony and

topographical maps of Germany and Europe during the 17th to the 20th century,

including both historical maps and their reproductions. It is one of the oldest

and largest map collection in Germany. The total number of collection has al-

ready grown up to 177,000 within the past 10 years (“SLUB Dresden: Maps”,

2016). As one of its portals, the Virtuelles Kartenforum 2.0 provides a platform

for average users to contribute to the large amount of manual georeferencing

for the old maps from the collection. So far, over 5,600 georeferenced historical

maps could be found in high resolution, all of which are saved in tiff uncom-

pressed format (“SLUB Dresden: The Map Collection”, 2016).

Maps in the SLUB collection are composed of various types such as geological

maps, hydrographic maps, country maps, fortress plans, maps of residential ar-

eas, as well as Milestones of Saxony (Meilenblätter von Sachsen), the result of

the topographical land survey of Saxony carried out between 1780 and 1806.

The maps selected for this project work were published during the 18th to the

middle 19th century from the collection. The scale of the test maps are mainly

between 1: 12,000 to 1: 8,000, which indicate that the test maps are all large-

scale maps for towns and its surrounding area. The test maps include both

topographic maps and detail plans. The cartographic techniques for making

these historical maps could be divided into two categories, one of which is li-

thography and the other is hand painting and colouring.

These test maps cover a variety of terrain representations and as well, a rela-

tively wide range of feature complexity. Being regarded as testing maps, these

maps in the collection should share some basic features in common while hav-

ing individual characteristics. One of the most recognizable features of these

historical maps should be the hachures. As an old technique of representing re-

lief, which was standardized in 1799, hachures account for a significant per-

centage of shading technique in these historical maps. On the other hand, the

test maps are all manually water coloured, and as a result, the features are not

evenly painted with a united saturation level, as well as the mixing of fore-

ground and background features. In addition to the uneven colouring quality,

the colour in all these maps started to become yellowish as time goes by, ac-

companied with irregular stains. It is also problematic that the ancient fonts

used in these historical maps are different from modern serif or sans-serif let-

ters.

Data and Environment 9

The original downloaded map data are in tiff format, with a resolution of 72 dpi.

In order to have batter control of the data volume, the test maps were resized

before any processes. The sizes of the maps were adjusted into 4000*4000 pix-

els, without changing the original resolution, and saved in jpg format.

a b

Figure 3.1 Preview of test maps.

Figure 3.1 a shows an example of the test maps that include basic line structures

and limited cartographic features. The foreground is mainly composed of roads,

cartographic icons, small clusters indicating buildings in residential area, and

texts, which are mainly names of towns and rivers. The background includes the

colour of the base map, the areal features, and hachure lines, which are indeed

representative as cartographic features in historical maps during 18th to 19th

century. The roads were sorted into three categories in this test map, namely

main road, street, and walking paths, each with its corresponding road profile.

While Figure 3.1 b represents a test map with rather abundant number of fea-

tures, with large percentage of background areal features and almost all kinds of

foreground features. As it can be observed from the figure below, most of the

map is covered by vegetation (grasslands or forests), in terms of dark and light

green colouring and densely distributed small black icons. In addition, various

foreground features are also included in this map example, especially with

curved and sinuous line features, hence it could be regarded as a rather inte-

grated map example.

This project work requires a Python working environment. The Python version

used is 2.7.13. Besides, many extra packages are applied in this work, especially

those benefit the image processing procedure. In addition, GIS software, third-

party packages, and graphic user interfaces that use other programming lan-

guage are also applied only if they are suitable for the case.

Workflow 10

4 Workflow

4.1 Image Properties

Before actually diving into the extraction work, it is necessary to take a deep

look into the properties of the test maps that we have. Figure 4.1 shows an im-

age matrix including several basic image properties such as the RGB, HSV, and

grayscale histograms. Each channel in different colour spaces are displayed sep-

arately, making it more obvious to observe the distinctive features. For example,

foreground features could be more recognizable in grayscale histogram than in

RGB histograms, or in some other cases, certain colour could be more easily ob-

served in HSV colour space than in RGB colour space.

Figure 4.1 Image property matrix of a test map.

There are lots of choices of modules and libraries for producing these image

properties matrices. In this case one called Matplotlib was applied to plot out

both the histograms and the matrix.

Matplotlib is a Python 2D plotting library, including histograms, various types of

charts, or even 3D plots (“Matplotlib: Python plotting”, 2017). Especially for

plotting diagrams, there are adequate existing plotting commands, making it

possible to customize every single feature in the plot according to the user’s

needs.

The properties of each test image were obtained through OpenCV. It is the Py-

thon library for the famous library dedicated to algorithms related to Computer

Vision and Machine Learning (“Introduction to OpenCV-Python Tutorials”,

Workflow 11

2014). It provides new possibilities in the field of image processing with one of

the most popular programming languages. Besides, OpenCV makes use of

Numpy, which makes it easier to get started with and could better integrate

with other libraries such as SciPy and Matplotlib (2014).

Here some basic functions are applied. The function cv2.imread() reads the im-

age and provides access to the properties, such as image shape, data type, colour

space. Then the images are displayed in Matplotlib instead of using the original

OpenCV display window. This is due to a higher customizability in the Mat-

plotlib interface. Almost every single feature of the plotting interface could be

adjusted using corresponding commands, as well as choosing different colour

maps for the colouring of the image and the diagrams. For each image, a 3*4

matrix was created, including the original image in RGB colour space, the image

in HSV colour space and grayscale, and the corresponding histograms.

4.2 Colour Separation

Handling colour properly is essential in processing colour maps. For some of the

test maps which include obvious large colour blocks, such as areal vegetation or

hydrological features, using colour separation technique could separate them

from the foreground effectively.

In order to take control of the colour value more easily, a colour space with im-

proved perceptual uniformity is required (Salvatore & Guitton, 2004). Most of

the scanned colour maps are in RGB colour space, which is the most prevalent

colour space for displaying digital contacts. The reason for its popularity is that

the RGB colour model which it uses works similar as the human visual system

(“RGB color space - Wikipedia”, 2017). However, according to Salvatore &

Guitton, a main limitation in the uniformity of RGB leads to perceptual draw-

backs, resulting in bins and holes in the colour space. Moreover, in most cases it

is harder for a human then a machine to distinguish the colour only by the value

of three chromaticities (red, green, and blue).

On the other hand, another proposed colour space, HSV, was used in the colour

separation procedure. HSV is in represent of Hue, Saturation, and Value. As what

its name indicates, the colour hue is controlled by the value of Hue. The primary

and secondary colours (red, yellow, green, cyan, blue, and magenta) are ar-

ranged from 0° to 360°, making it more perceptually straightforward to create

connections between colour shades and number of the value. In addition, the

Saturation value stands for the saturation of the colour, and Value adjusts the

brightness of the colour. In Python, the value ranges differently from the defini-

tion, although the colour hue still follows a spectral order. Hue ranges from 0 to

179, while Saturation and Value range from 0 to 255.

Workflow 12

Figure 4.2 Functions for colour space conversion and colour separation.

The function of converting the colour space to HSV and separating a certain col-

our are shown in Figure 4.2. The complete code could be found in ColourSepara-

tion.py. The former one makes use of a colour converting function in OpenCV. In

the latter one, both upper and lower boundaries are set for a certain colour hue.

For instance, a range of [30, 110] was used for Hue in order to subtract the blu-

ish green representing vegetations in the test map. Then, a mask should be

formed containing the pixels which are in the colour range. At last, the pixels

which are outside the given colour range are extracted with a logic operation

between the input image and the mask. The result is shown in Figure 4.3.

Figure 4.3 Colour separation results.

From what is shown in Figure 4.3, it should be obviously to observe that the

green pixels are subtracted from the original image.

4.3 Binarization

After getting rid of the affection of extra distinctive colours, or if the image itself

contain few special colours, the map image could now be read as a grayscale

image and ready for pre-processing.

Workflow 13

At pre-processing stages, grayscale images need to be binarized. There are plen-

ty of modules available for image binarization, some of which were tested in this

project:

 Thresholding in OpenCV

OpenCV provides a straight forward solution for image thresholding. There are

two functions, cv2.threshold and cv2.adaptiveThreshold could be adapted. Both

use a grayscale image as input, with a threshold value regarded as an indicator

for classifying the pixels. Pixels in the input image will be classified and then

assigned a new value depending on whether it is more (or sometimes less) then

the threshold value. (“OpenCV: Image Thresholding”, 2016). Here all five

thresholding methods performed are global. Part of the code for image thresh-

olding is shown in Figure 4.4 (Complete code in GlobalThreshold.py) a and the

results could be reviewed in Figure 4.4 b.

Figure 4.4 a Thresholding using OpenCV functions.

Figure 4.4 b Thresholding results.

In contrast to the global method, another one is adaptive thresholding. Instead

of applying a single value to all the pixels in the input image,

cv2.adaptiveThreshold breaks the image into small blocks and perform the

Workflow 14

thresholding calculation. Usage of adaptive thresholding is similar to the global

one (Complete code could be found in AdaptiveThreshold.py). Figure 4.5 shows

a contrast between the global thresholding and an adaptive one. As it could be

clearly observed from the figure, compared to the global thresholding, when

applying a same thresholding method, more details could be preserved through

local thresholding. Correspondingly, more background information was re-

mained after the local process. A main influence could be the clear enhancement

of the hachures. Since the hachures should be removed as part of the back-

ground information, applying global threshold methods in this case could be

more compatible.

a Global Otsu’s thresholding b Local Otsu’s thresholding

Figure 4.5 Comparison between global and local thresholding.

 Thresholding in ImageJ(Fiji)

ImageJ is an open source image processing interface based on Java. With plenty

of plugins and packages, it is possible to solve different tasks by a few clicks

(“ImageJ”, 2017). Fiji is one of the distributions of ImageJ, with easy installation

but powerful function. Using ImageJ could also implement either a global or an

adaptive threshold function. Both of them could be applied via the adjust func-

tion under the image menu.

Workflow 15

Figure 4.6 a Results of thresholding in Fiji.

Figure 4.6 b The thresholds in corresponding to the figure above.

The result matrix and the corresponding threshold value could be found in Fig-

ure 4.6. The result gives out a vivid comparison within different thresholding

algorithms, from which the user could judge which one could be the most suita-

ble for current input image. Here, two thresholding algorithms were applied for

test maps.

Otsu’s threshold: In situations when the histogram of the image appears to have

an obvious bimodal property, Otsu’s threshold could be applied. This algorithm

tends to maximize the separability of the grayscale classes (Nobuyuki, 1979). In

Workflow 16

other words, an optimum value will be set as threshold if it could separate the

two peeks in the histogram and reflect the intra-class variance as well. In Figure

4.6, the result matrix also includes a result from Otsu’s algorithm.

In OpenCV, there is also existing method for this algorithm, namely

cv2.THRESH_OTSU, which could be used as a parameter in the threshold func-

tion. Results of this method is displayed in Figure 4.7. From what is shown in the

histogram, the bimodal property of this test map is not obvious, but still a minor

peek could be found in area of lower grayscale. Thus, the outcome could still be

predictable after thresholding. The blurred and dotted background becomes

clearer, and the hachures are weakened as well. On the other side, darker pixels

such as the edge lines and the characters are enhanced with an obvious im-

provement of intern pixel unity. This could be useful to later work, such as filter-

ing and subtraction of clustered objectives (e.g. characters).

Figure 4.7 Result of Otsu’s algorithm.

Triangle method: According to Zack G. W. et al., in the triangle algorithm, the

threshold should be determined by normalizing the height and the dynamic

range of the intensity histogram (1977). For some images that appears to have

their maximum near one of the extreme points in the histogram.

4.4 Filtering

After the binarization stage, part of the background pixels has been removed. To

detect the exact line features in the remaining foreground features, correspond-

ing profile patterns need to be created and used for recognizing line features.

As shown in Figure 4.8, there are in total three pattern types of the line features

are concluded. Each pattern is taken from the binarized image and then pruned,

later saved as an individual pattern image clip. The width and length of the pat-

tern are controlled as odd numbers, in order to set the centre of the pattern

within exact one pixel. Figure 4.8 a represents the double-line roads in the test

map, with one thicker line and one thinner line. Figure 4.8 b is the pattern for a

single line road feature, while Figure 4.8 c is used to recognize the dash lines in

the map image.

Workflow 17

a Type 1 b Type 2 c Type 3

Figure 4.8 Profile pattern of three road types.

Then the patterns could be used for making a pattern matching. The test image

will be traced by each pattern in four directions, horizontal, vertical, and both

diagonal. There are already built-in functions in OpenCV for performing pattern

matching, namely cv2.matchTemplate. This function provides access to search-

ing and finding the template in a larger image, with a simple action to slide the

template over the input image and to trace pixel after pixel (“OpenCV: Template

Matching”, 2016). Similar to thresholding, template matching in OpenCV also

provides several methods to be chosen from. In addition, the output image size

would become smaller than the input one. Both length and width will be sub-

tracted by the difference between the size of the input image and the pattern,

and then plus one. Because of this difference, we need to cut the output image

and take the minimum of both the length and the width. Figure 4.9 shows the

functions for pattern matching and generating output (complete code in Pat-

ternMatch.py).

Figure 4.9 Part of the functions during pattern matching.

The pre-generated pattern images for each type of roads include both horizontal

and vertical direction. As it is displayed in Figure 4.10, for two diagonal direc-

tions, a simple rotating function was performed with the help of some other

basic OpenCV functions.

Workflow 18

Figure 4.10 The rotation function.

The results of individual output images could be found in Figure 4.11 a, in which

a double-line pattern was used to trace in the four directions mentioned above.

Reliable results show that the output image of each direction appears to obtain

a strong tendency to the corresponding direction. Figure 4.11 b gives out the

result when overlaying together all the output images of all types of pattern

matching. Overlaying could be completed through the built-in logic operations

in OpenCV (cv2.bitwise_and()).

Figure 4.11 a Individual results of pattern matching.

Workflow 19

Figure 4.11 b Overlaid result of pattern matching.

At the end of this stage, a pruned foreground image could be generated, contain-

ing necessary features but also distractors. It is worth to keep in mind that it is

normal for pattern matching to extract some noise pixels, since the length of the

patterns must be short enough to detect small curves in the line features. Some

of these noises could be filtered in later procedures.

4.5 Line Feature Identification

Now that the foreground features are already separated from the background,

and the lines are filtered according to different road type patterns, however,

there are still noises and unnecessary features, nor the line features are well

identified. As the filtering result shows, the unnecessary features include edge of

the characters, small clusters of buildings in residential area, and the hachure

lines that are in the same directions which are used for sliding the patterns.

A plugin called “Curve Tracing” could be found in ImageJ, which could provide a

straightforward function to extract line features from the input image (“Curve

Extraction Plugin”, 2015). It follows one of the basic but effective algorithm

proposed by Steger (1996).

Workflow 20

This plugin works as follows:

The width and difference in angel are basic input parameters, being accompa-

nied with optional choices of the solutions to line ends and intersections. The

settings are shown in Figure 4.12.

Figure 4.12 Parameter setting in Curve Tracing.

Before starting the extraction procedure, the plugin should return with a col-

ourmap and threshold settings are required. The colourmap is shown in Figure

4.13 a. Blue lines in the image indicate the pixels that will be traced when the

program runs, while the green part shows exactly where the tracing will start

(“Curve Extraction Plugin”, 2015). These two parameters are intuitively con-

trolled by scroll bars in separated window (as shown in Figure 4.13 b).

Figure 4.13 a Colourmap in Curve Tracing.

Workflow 21

Figure 4.13 b Thresholding in Curve Tracing.

The result of curve tracing is displayed as an overlay cyan (or other colours) line

layer onto the original input image. A clip of the image is shown as Figure 4.14.

It returns a satisfied result for tracing the pre-recognized three road types, as

well as some meandering small curves in the image. At the meantime, it is also

clear that the method avoided the distinct dash lines and small broken pixel

clusters. This could be a double-edged sword, meaning that the method could

skip the hachure lines and the dash line features at the same time, which will be

discussed in the later part.

Figure 4.14 Traced curved lines in Fiji.

The traced lines were saved in ROIs, which could be examined in the ROI man-

ager. Then the coloured trace lines could be again flattened into the input image,

in order to extract only the traced lines. Similarly, the extraction of traced lines

could take use of the colour separation method, since image is composed of

highlighted lines and a binarized background. The method returns with white

lines on a black background. This is performed separately for different types of

line, below in Figure 4.15 shows a comparison between the traced ROI lines, the

flattened overlay image, and the extracted line features.

Workflow 22

Figure 4.15 Compared results.

4.6 Vectorization

There are a few toolkits available for transforming raster images into vector file

formats. Potrace, which is one of them, developed by Peter Selinger, is a quite

well-developed project focusing on converting bitmaps into vector files (“Peter

Selinger: Potrace”, 2017). In addition to the project itself, a considerable number

of software, interfaces, and services are built based on Potrace, including both

free and commercial ones. Here in this paper, one called CR8tracer is applied in

the vectorization stage. It is a graphical user interface based on Potrace by Allan

Murray (“CR8 Software Solution”, 2016). It takes bitmaps as input images and

could export results in PS, EPS, SVG, or GFS vector formats. Some of the formats

are also compatible with other font editing software. Tracing options are corre-

Workflow 23

sponded to those in Potrace. As shown in Figure 4.16, filter threshold decides

the lowest gray value that will be converted. Despeckle size sets the largest size

of the noises to be removed. Alphamax controls the threshold of the corners,

with a default value of 1. Optitolerance is the tolerance for curve optimization,

the default value of which is 0.2. Both tracing and type settings are available in

the menu. While in vectorization stage, only tracing options are considered. Be-

cause the characters are already broken during in former stages and could not

be recognized as fonts.

Figure 4.16 Tracing settings.

The result of an output SVG is shown in Figure 4.17. Noises could be further re-

moved by applying a despeckle size. However, due to the continuity in the ex-

tracted line features, part of the necessary line features will also be removed if

the size value is too small.

Workflow 24

Figure 4.17 SVG output.

4.7 Building Referencing System

It is always notable to pay special attention to the assessment of the overall

quality of the vectorization results, for which purpose, a referencing system will

be needed after the extraction work.

Since the original map data are all in image format, extra work for building the

raster references are needed. The manual vectorization of the line features has

been done in GIS software. Vector features were saved in line feature classes in

geodatabases. Figure 4.18 a displays the line feature added onto the original

map and b represents the attribute table of the vectorized feature class, with

four fields indicating necessary properties of the features, namely OBJECTID,

SHAPE, SHAPE_Length, and TYPE. All the fields were generated automatically,

except the last one, representing assorted types of the line features judged by

the line type on the map.

Workflow 25

Figure 4.18 a The vectorized line features in ArcGIS.

Figure 4.18 b The attribute table of the line features.

In order to make comparison between the extracted data and the pre-vectorized

data, a format transformation need to be carried out for both sides. For the pre-

vectorized line feature, a built-in module called “Feature to Raster” in ArcGIS

could be taken use of (“Feature to Raster - Conversion toolbox”, 2017). Point,

line, and polygon features could be converted into raster datasets by using this

module (Figure 4.19 a).

The setting of cell size of the output raster dataset requires extra attention. The

cell size option is in control of the resolution of the output raster dataset. In or-

der to keep the same resolution as the original map file, the cell size should be

the same instead of using default value. By default, the cell size is always set as

Workflow 26

the shortest of the width or the height of the input feature divided by 250 in the

output spatial reference. In this case, the cell size need to be modified through

changing the settings in the environment, which is displayed in Figure 4.19 b.

The cell size of the original map file could be taken from the “Snap Raster” op-

tion, and the conversion result could be found in Figure 4.20.

Figure 4.19 a Conversion from feature to raster dataset.

Figure 4.19 b Adjustment on cell size.

Workflow 27

Figure 4.20 The converted raster dataset for referencing.

In order to investigate the effect of different pattern matching, individual images

are generated according to different types of line feature. The process of con-

verting an SVG file into PNG format could be completed with some extra python

packages. One of which is called Wand, an ImageMagick binding for Python

(“Wand – Wand 0.4.4”, 2016). With some lines of simple code, it could complete

the task of converting the input vector file into the assigned image format. Un-

fortunately, the script could only work in either an earlier version of Python 2.7

or in Python 3. The LocalLibrary argument always met some trouble when

working under Python 2.7 as it only accepts string instead of Unicode.

Another attempt is CairoSVG, which is also reported to be a well-functioned Py-

thon package for conversion (“Cairosvg”, 2017). However, only Python 3 is sup-

ported and the Python 2 support has already been dropped.

So here in this paper, PS format was used instead of SVG format to save the vec-

torized data. It could be processed in image processing software and then easily

converted to PNG format. Now that we have both versions of the PNG images.

The referencing procedure is as well quite straightforward. Another logical op-

eration is performed to those two images. The principle is that to add those two

images together and make comparison to each pixel. Since the two images are

all binary image, the comparison also acts as a hit-or-miss procedure. If the pixel

position in both images are filled with black colour, then this pixel would be

marked as a “blank” one, indicating the line feature in both images are matched.

On the other hand, if the pixel remains black, it means that the line feature two

images failed to match with each other. The reason will be discussed in the last

chapter. Figure 4.21 shows a part of the result image representing a single line

type in the test map. The colour map is adjusted for a better visual effect.

Figure 4.21 Result of a reference for line type 2.

Conclusion 28

5 Conclusion

In the last chapter, a complete workflow was discribed from accessing the image

properties to the final logical operations. The result of the last opeartion

returned with some facts that worth noting:

First, the displacement between the two referencing images, to some extent,

largely affected the logical operation result. Although both of the images are in a

same size, the image content have experienced some slight shifting, the reson of

which might be the pattern matching stage. When a pattern is applied and

scanned through the input image, the size of the result image would be reduced.

Besides, as it could be observed from Figure 4.21 a, obviously, it should be the

same line being shown on both images, yet, the pixels couldn’t totally coincide

with each other. Part of the pixels are subtracted, resulting in blank areas

somewhere between the lines. Therefore the what the output image shows

could be deviated from the actual results. However, the paradox is that changing

cell size when using the “Feature to Raster” tool could slightly increase the

performance, but it will greatly decrease the resolution as well. Thus, somehow

a balance should be maintained, where the overlaying method could achieve the

best effect and at the same time, the resolution shold be maintained within an

acceptable torelance. Moreover, from what Figure 4.21 b reflected, the line in

the middle suffers from worse extraction results compared to the other two

lines in the screenshot. If we reflect back to the original map image, or the

vectorized dataset, it is not hard to find out that the line type is dictinct from the

other two, which is a dashed line with dense small pixel clusters surrounding

the edge of the line (Type 3). Taking the colour properties of historical maps

into consideration, simply performing a normal colour separation could be hard

to reach a satisfied result. Therefore, using patterns for filtering was hoped to

export reliable results. Meanwhile, extraction of this type of line features is

much challenging than the other two types, as the line shape itself resemble

hachure lines very much. In some area of the image, the dots of dash lines could

be smaller than those of hachure lines, for instance foot paths in suburbs and

forest area. Besides, in most historical maps which are hand-painted, pixel size

of each dot also vary a lot. These were the main obstacle during the filtering

work. Although later the adoption of curve tracing algorithm could ease the

problem a little bit, the result of applying a dash line pattern individually is still

quite far from satisfaction.

Further work after this paper include finding a solution to the paradox between

proper cell size and resolution, improving the methods of pattern matching and

noise filtering. In addition, it is also worth to keep surveying for more useful

open source tools, which could be either complex or handy. Many a little makes

a mickle, and maybe new thoughts would enlightened during this process.

References 29

References
Cairosvg. (2017). Retrieved from http://cairosvg.org/

Cao, R., & Tan, C. L. (2001). Text/graphics separation in maps. In International Work-

shop on Graphics Recognition (pp. 167-177). Springer Berlin Heidelberg.

Chiang, Y. Y., Knoblock, C. A., & Chen, C. C. (2005). Automatic extraction of road inter-

sections from raster maps. In Proceedings of the 13th annual ACM international work-

shop on Geographic information systems (pp. 267-276). ACM.

Chiang, Y. Y. & Knoblock, C. A. (2009). A method for automatically extracting road lay-

ers from raster maps. In Document Analysis and Recognition, 2009. ICDAR'09. 10th In-

ternational Conference on (pp. 838-842). IEEE.

CR8 Software Solution. (2016). Retrieved from

http://www.cr8software.net/tracer.html

Curve Extraction Plugin. (2015). Retrieved from

http://katpyxa.info/feedbacks/?p=154

Dhar, D. B., & Chanda, B. (2006). Extraction and recognition of geographical features

from paper maps. International Journal of Document Analysis and Recognition (IJDAR),

8(4), 232-245.

Feature to Raster - Conversion toolbox. (2017). Retrieved from

http://pro.arcgis.com/en/pro-app/tool-reference/conversion/feature-to-raster.htm

ImageJ - ImageJ. (2017). Retrieved from http://imagej.net/ImageJ

Introduction to OpenCV-Python Tutorials. (2014). Retrieved from

http://docs.opencv.org/3.0-

beta/doc/py_tutorials/py_setup/py_intro/py_intro.html#intro

Khotanzad, A., & Zink, E. (2003). Contour line and geographic feature extraction from

USGS color topographical paper maps. IEEE transactions on pattern analysis and ma-

chine intelligence, 25(1), 18-31.

Matplotlib: Python plotting. (2017). Retrieved from https://matplotlib.org/

Montanari, U. (1969). Continuous skeletons from digitized images. Journal of the ACM

(JACM), 16(4), 534-549.

OpenCV: Image Thresholding. (2016). Retrieved from

http://docs.opencv.org/3.2.0/d7/d4d/tutorial_py_thresholding.html

OpenCV: Template Matching. (2016). Retrieved from

http://docs.opencv.org/3.2.0/d4/dc6/tutorial_py_template_matching.html

References 30

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE trans-

actions on systems, man, and cybernetics, 9(1), 62-66.

Peter Selinger: Potrace. (2017). Retrieved from

http://potrace.sourceforge.net/#description

Pouderoux, J., Gonzato, J. C., Pereira, A., & Guitton, P. (2007). Toponym recognition in

scanned color topographic maps. In Document Analysis and Recognition, 2007. ICDAR

2007. Ninth International Conference on (Vol. 1, pp. 531-535). IEEE.

RGB color space - Wikipedia. (2017). Retrieved from

https://en.wikipedia.org/wiki/RGB_color_space

Salvatore, S., & Guitton, P. (2004). Contour line recognition from scanned topographic

maps. In Proceedings of the Winter School of Computer Graphics (pp. 1-3).

SLUB Dresden: Maps. (2016). Retrieved from https://www.slub-

dresden.de/en/collections/maps/

SLUB Dresden: The Map Collection. (2016). Retrieved from https://www.slub-

dresden.de/en/collections/maps/the-map-collection/

Steger, C. (1996, August). Extraction of curved lines from images. In Pattern Recognition,

1996., Proceedings of the 13th International Conference on (Vol. 2, pp. 251-255). IEEE.

Wand – Wand 0.4.4. (2016). Retrieved from http://docs.wand-py.org/en/0.4.4/

Wenyin, L., & Dori, D. (1999). From raster to vectors: extracting visual information from

line drawings. Pattern Analysis & Applications, 2(1), 10-21.

Zack, G. W., Rogers, W. E., & Latt, S. A. (1977). Automatic measurement of sister chro-

matid exchange frequency. Journal of Histochemistry & Cytochemistry, 25(7), 741-753.

