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Original Task Specification 

Objective 

A theory part shall summarise technical approaches of automated line recon-

struction from maps and similar documents. It is in general completely legiti-

mate to confine the concept and the implementation of feature extraction in this 

thesis to one specific group of linear map elements (as rivers, roads, etc.). 

It is common knowledge that due to graphic conflicts (overlays and touching of 

elements) within a map face vector paths (streets, rivers, railways, etc.) are fre-

quently intermittent or not easily separable. Useful results (connected, well-

tailored geo-features) cannot be achieved by a simple vectorisation. A further 

task relates to a reduction of dual line signatures or graphically augmented lines 

(e.g. railway signatures) to their centre line, or, the contrary, a connection of 

dashed line signatures to contiguous lines. In order to find good reconstruction 

techniques, a concise scheme of cartographic lines in (historic) maps shall be 

sought. A comprehensive feature space embedding e.g. parameters of line shape, 

line width, line fillings and line colour may thus be offered in order to pinpoint 

processing of the scan onto a specific graphic expression. Especially in respect 

to colour space, variations due to imperfect print techniques, the aging of the 

document (e.g. stains), and the mixing of foreground/background signals (pixels) 

along feature edges have to be considered. The concept for an implementation 

may concentrate on modules taken from Open Source libraries. Python will be 

the preferred script language, both for the existence of specialised packages and 

compatibility with geo-software. Examples:  OpenCV for Python offers quite a 

range of image manipulation and computer vision functionality. For a vectorisa-

tion of original or pre-segmented images, modules   like “Potrace” 

(http://potrace.sourceforge.net/#description) or “mapseg” 

(http://wiki.openstreetmap. org/wiki/Mapseg) may be tested. The final choice 

of suitable software modules will, however, be completely a decision of the au-

thor. 

The thesis shall contribute to a proposed generic toolbox dedicated to selective 

computer-assisted map feature extraction. “Toolbox” indicates a preference for 

specialised, efficient, upgradable compact programme modules over a monolith-

ic programme solution tackling the complete extraction task.  Human interac-

tion is welcome and promising quicker results, which are crucial within a web 

service. Activities can be confined to the map face. Statistics specifying the ex-

traction quality and the performance shall accompany the implementation. A 

summarising chapter shall critically evaluate the achievements and name priori-

ties in further work in the context of map feature extraction.  
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1 Introduction 

In the age of digitisation and internet communication, an increasing number of 

historical maps has been scanned and archived as high-resolution digital images. 

This opens the door to view these documents, and to visually compare them to 

others (in order to compare the geographic knowledge of the time or the spatial 

focus of the authors), or to reveal changing spatial knowledge in a culture, or to 

detect historic spatial developments over time. However, all these scanned his-

toric sources will not enable a scholar to arrive at unambiguous quantitative 

measures in their descriptions and comparisons as long as the image of a map 

stays as an image and will not be transformed into structured and individually 

processable geo-features in the sense of historic GIS data. This transformation, 

however, is a giant task and will need a high degree of automation to show a 

substantial progress. This master thesis tries to contribute to this field of re-

search in concentrating on linear features within historic maps and in trying to 

find ways to arrive at structured vector features without the simple solution of 

manual digitising. 

A possible solution should be provided to implement computer-assisted line 

feature detection, extraction and reconstruction during the research. The work 

aims at a major contribution to a generic toolbox, which performs a complete 

process of detection, separating, extraction and vectorisation. Various functions 

should be embedded as modules of the toolbox, which are able to perform indi-

vidual steps in line feature extraction. The research should focus on a specific 

group of line feature (e.g. roads, streets, rivers, etc.), instead of an attempt of 

extracting line features from the scanned map in an unspecific way. 

This research could be of great interest to anyone who deals with feature vec-

torization of scanned maps, especially historical maps. 

2 Related Work 

Research in the field of feature recognition and extraction from paper maps has 

been going on for many years, in addition that nowadays the well-developed 

scanning technology allows paper maps to be scanned in higher resolution and 

quality, therefore, large amount of previous related works and publications 

could be found in this field of study. Generally speaking, a typical digital feature 

extraction procedure should include the following phases: (1) digitization of the 

original paper-based material; (2) filtering, or foreground and background sep-

aration; (3) thresholding; (4) thinning and trimming the features; (5) vectoriza-

tion. (Salvatore, Guitton, 2004) 

In this section, the related works will be spread into several related sections and 

introduced individually. 
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2.1 Layer Separation 

Layer separation is in respond to the second phase: filtering. As the quality of 

scanned maps usually vary greatly, especially historical maps, since the quality 

of the map itself could be affected by lots of external factors. For instance, im-

perfect archaic printing technique, different colouring method and style, or even 

stains on the map documents could largely affect the process of determining 

continuous line features. In order to have a clear view of the line features that 

need to be extracted, the negative influence of the noise and disturbance should 

be minimized. In the preliminary stages of processing, the foreground and back-

ground of the scanned image should be separated. The foreground indicates the 

features that are needed to be extracted, while the background is in represent of 

other needless features in the image. Zack et al. created a global search thresh-

old (THR) in the intensity histogram, using the normalized height and dynamic 

range of the histogram, which effectively contributed in foreground pixel seg-

mentation (1977). Besides, reducing the number of colours could also be used 

to help layer segmentation. Chiang and Knoblock used Mean-shift and K-means 

algorithms to merge colours and to limit the eventual number of the colours in 

the output image (2009). For some images that obtain wide variations in colour 

intensity, the K-means algorithm could be combined with a previous image en-

hancement to achieve better results (Dhar and Chanda, 2006). Cao and Tan pro-

posed an algorithm to recognize certain pixel as a black pixel and utilized a 

morphological method to remove the black layer in the pre-processing stage 

(2001). A binarization step could also be taken to first extract the foreground 

pixels. In some cases, the binarization step could be combined with a morpho-

logical closing in order to first classify the colour pixels and then remove small 

line features (Pouderoux et al., 2007). 

 

2.2 Line Feature Identification 

The third and fourth phases could be concluded into the process of line feature 

identification. In different cases of various kind of maps, corresponding meth-

ods should be taken to identify different kinds of line features from assorted 

backgrounds. Most common cases are normal topographic maps (however not 

necessarily historical maps). Usually a colour segmentation method is used to 

identify cartographic features according to certain mapping colour standards. 

Pouderoux et al. separate the image into five layers according the RGB value in 

each pixel. In the blue layer, which indicates rivers and other hydrological fea-

tures, a recognition procedure based on predefined decision criteria were com-

bined with the boundary extraction in order to extract the blue features (2007). 

In handling publishes with standard map keys, extracting certain colours could 

effectively remove one kind of features. Khotanzad et al. constructed a colour 
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key to overcome the problem of false colours and colour aliasing in extraction of 

contour lines from USGS topographical maps (Khotanzad, Zink, 2003). 

When dealing with colour extraction, the selection of colour space requires 

careful consideration. In the research of Salvatore and Guitton, the backwards of 

using RGB colour space was pointed out (2004). A colour space with improved 

perceptual uniformity and tractability was suggested, in their case, the HSV col-

our space. This separation between hue and other colour properties makes it 

easier for users to control the colour shade only by values. Besides topographic 

maps, other basic features that are included in various maps could also be re-

garded as clues to feature extraction or subtraction. For instance, detecting the 

possible Hough lines could emphasize benefits to recognizing road pixels 

(Chiang, Knoblock, 2009). This is less affected by the colour of the map but more 

concentrate on the line feature itself. Other methods include double-line format 

checking and parallel-pattern tracing (Chiang et al., 2005). These traditional but 

effective methods focus on the profile of line features. Considering either single 

or double line shape is popularly used to represent roads and streets even in 

historical maps, these methods could be potential candidates for road recogni-

tion in this project work. 

 

2.3 Feature Thinning Methods 

A pre-extracted foreground need to be trimmed before vectorization. Liu and 

Dov concluded several thinning based methods in the image based approach 

(1999), which is a process of applying morphological operations to the image. It 

is intended to return with a set of black pixels as the skeleton (Montanari, 1969), 

forming a clear topological structure of the input image, making the image much 

easier to analyse and operate in later stages.  

During the morphological stage, making use of a series of operations could help 

to remove the outer layer of the contour lines in order to enhance the main 

structure of the image, and remove small noise pixels as well. In the work of 

Chiang et al., a generalized dilation operator, a generalized erosion operator, 

and a thinning operator were applied in order (2005). The hit-or-miss trans-

formations was performed using 3-by-3 binary masks to scan the input image 

and measure whether the mask match the input image or not. This operation 

would return a result with either “hit” or “miss”, resulting in first an enhance-

ment and then a thinning effect of the line features. When extracting the contour 

lines from scanned topographic maps, Salvatore and Guitton also applied a thin-

ning procedure to reduce the width of the output line features (2004). In order 

to achieve better results and get rid of non-interested features, a smoothing 

process was applied after the thinning procedure.  
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There are different algorithms proposed for thinning operation, and could be 

used in various approaches such as OCR or line recognition (Liu, Dov, 1999). 

These include both complex algorithms and straightforward methods, even 

some built-in handy operations. In this project, some of the appropriate meth-

ods were tested and applied to the map image for line extraction. 
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3 Data and Environment 

The historical maps used in the extraction process were all taken from the Vir-

tuelles Kartenforum 2.0 (Virtual Map Forum 2.0), a crowdsourcing approach 

built for georeferencing of the historical maps taken from the main part of the 

SLUB collection. The map collection at SLUB focuses on maps of Saxony and 

topographical maps of Germany and Europe during the 17th to the 20th century, 

including both historical maps and their reproductions. It is one of the oldest 

and largest map collection in Germany. The total number of collection has al-

ready grown up to 177,000 within the past 10 years (“SLUB Dresden: Maps”, 

2016). As one of its portals, the Virtuelles Kartenforum 2.0 provides a platform 

for average users to contribute to the large amount of manual georeferencing 

for the old maps from the collection. So far, over 5,600 georeferenced historical 

maps could be found in high resolution, all of which are saved in tiff uncom-

pressed format (“SLUB Dresden: The Map Collection”, 2016). 

Maps in the SLUB collection are composed of various types such as geological 

maps, hydrographic maps, country maps, fortress plans, maps of residential ar-

eas, as well as Milestones of Saxony (Meilenblätter von Sachsen), the result of 

the topographical land survey of Saxony carried out between 1780 and 1806. 

The maps selected for this project work were published during the 18th to the 

middle 19th century from the collection. The scale of the test maps are mainly 

between 1: 12,000 to 1: 8,000, which indicate that the test maps are all large-

scale maps for towns and its surrounding area. The test maps include both 

topographic maps and detail plans. The cartographic techniques for making 

these historical maps could be divided into two categories, one of which is li-

thography and the other is hand painting and colouring.  

These test maps cover a variety of terrain representations and as well, a rela-

tively wide range of feature complexity. Being regarded as testing maps, these 

maps in the collection should share some basic features in common while hav-

ing individual characteristics. One of the most recognizable features of these 

historical maps should be the hachures. As an old technique of representing re-

lief, which was standardized in 1799, hachures account for a significant per-

centage of shading technique in these historical maps. On the other hand, the 

test maps are all manually water coloured, and as a result, the features are not 

evenly painted with a united saturation level, as well as the mixing of fore-

ground and background features. In addition to the uneven colouring quality, 

the colour in all these maps started to become yellowish as time goes by, ac-

companied with irregular stains. It is also problematic that the ancient fonts 

used in these historical maps are different from modern serif or sans-serif let-

ters. 
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The original downloaded map data are in tiff format, with a resolution of 72 dpi. 

In order to have batter control of the data volume, the test maps were resized 

before any processes. The sizes of the maps were adjusted into 4000*4000 pix-

els, without changing the original resolution, and saved in jpg format. 

  

a b 

Figure 3.1 Preview of test maps. 

Figure 3.1 a shows an example of the test maps that include basic line structures 

and limited cartographic features. The foreground is mainly composed of roads, 

cartographic icons, small clusters indicating buildings in residential area, and 

texts, which are mainly names of towns and rivers. The background includes the 

colour of the base map, the areal features, and hachure lines, which are indeed 

representative as cartographic features in historical maps during 18th to 19th 

century. The roads were sorted into three categories in this test map, namely 

main road, street, and walking paths, each with its corresponding road profile.  

While Figure 3.1 b represents a test map with rather abundant number of fea-

tures, with large percentage of background areal features and almost all kinds of 

foreground features. As it can be observed from the figure below, most of the 

map is covered by vegetation (grasslands or forests), in terms of dark and light 

green colouring and densely distributed small black icons. In addition, various 

foreground features are also included in this map example, especially with 

curved and sinuous line features, hence it could be regarded as a rather inte-

grated map example. 

This project work requires a Python working environment. The Python version 

used is 2.7.13. Besides, many extra packages are applied in this work, especially 

those benefit the image processing procedure. In addition, GIS software, third-

party packages, and graphic user interfaces that use other programming lan-

guage are also applied only if they are suitable for the case.   
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4 Workflow 

4.1 Image Properties 

Before actually diving into the extraction work, it is necessary to take a deep 

look into the properties of the test maps that we have. Figure 4.1 shows an im-

age matrix including several basic image properties such as the RGB, HSV, and 

grayscale histograms. Each channel in different colour spaces are displayed sep-

arately, making it more obvious to observe the distinctive features. For example, 

foreground features could be more recognizable in grayscale histogram than in 

RGB histograms, or in some other cases, certain colour could be more easily ob-

served in HSV colour space than in RGB colour space. 

 

Figure 4.1 Image property matrix of a test map. 

There are lots of choices of modules and libraries for producing these image 

properties matrices. In this case one called Matplotlib was applied to plot out 

both the histograms and the matrix. 

Matplotlib is a Python 2D plotting library, including histograms, various types of 

charts, or even 3D plots (“Matplotlib: Python plotting”, 2017). Especially for 

plotting diagrams, there are adequate existing plotting commands, making it 

possible to customize every single feature in the plot according to the user’s 

needs. 

The properties of each test image were obtained through OpenCV. It is the Py-

thon library for the famous library dedicated to algorithms related to Computer 

Vision and Machine Learning (“Introduction to OpenCV-Python Tutorials”, 
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2014). It provides new possibilities in the field of image processing with one of 

the most popular programming languages. Besides, OpenCV makes use of 

Numpy, which makes it easier to get started with and could better integrate 

with other libraries such as SciPy and Matplotlib (2014).  

Here some basic functions are applied. The function cv2.imread() reads the im-

age and provides access to the properties, such as image shape, data type, colour 

space. Then the images are displayed in Matplotlib instead of using the original 

OpenCV display window. This is due to a higher customizability in the Mat-

plotlib interface. Almost every single feature of the plotting interface could be 

adjusted using corresponding commands, as well as choosing different colour 

maps for the colouring of the image and the diagrams. For each image, a 3*4 

matrix was created, including the original image in RGB colour space, the image 

in HSV colour space and grayscale, and the corresponding histograms. 

 

4.2 Colour Separation 

Handling colour properly is essential in processing colour maps. For some of the 

test maps which include obvious large colour blocks, such as areal vegetation or 

hydrological features, using colour separation technique could separate them 

from the foreground effectively.  

In order to take control of the colour value more easily, a colour space with im-

proved perceptual uniformity is required (Salvatore & Guitton, 2004). Most of 

the scanned colour maps are in RGB colour space, which is the most prevalent 

colour space for displaying digital contacts. The reason for its popularity is that 

the RGB colour model which it uses works similar as the human visual system 

(“RGB color space - Wikipedia”, 2017). However, according to Salvatore & 

Guitton, a main limitation in the uniformity of RGB leads to perceptual draw-

backs, resulting in bins and holes in the colour space. Moreover, in most cases it 

is harder for a human then a machine to distinguish the colour only by the value 

of three chromaticities (red, green, and blue). 

On the other hand, another proposed colour space, HSV, was used in the colour 

separation procedure. HSV is in represent of Hue, Saturation, and Value. As what 

its name indicates, the colour hue is controlled by the value of Hue. The primary 

and secondary colours (red, yellow, green, cyan, blue, and magenta) are ar-

ranged from 0° to 360°, making it more perceptually straightforward to create 

connections between colour shades and number of the value. In addition, the 

Saturation value stands for the saturation of the colour, and Value adjusts the 

brightness of the colour. In Python, the value ranges differently from the defini-

tion, although the colour hue still follows a spectral order. Hue ranges from 0 to 

179, while Saturation and Value range from 0 to 255. 
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Figure 4.2 Functions for colour space conversion and colour separation. 

The function of converting the colour space to HSV and separating a certain col-

our are shown in Figure 4.2. The complete code could be found in ColourSepara-

tion.py. The former one makes use of a colour converting function in OpenCV. In 

the latter one, both upper and lower boundaries are set for a certain colour hue. 

For instance, a range of [30, 110] was used for Hue in order to subtract the blu-

ish green representing vegetations in the test map. Then, a mask should be 

formed containing the pixels which are in the colour range. At last, the pixels 

which are outside the given colour range are extracted with a logic operation 

between the input image and the mask. The result is shown in Figure 4.3. 

 

Figure 4.3 Colour separation results. 

From what is shown in Figure 4.3, it should be obviously to observe that the 

green pixels are subtracted from the original image. 

 

4.3 Binarization 

After getting rid of the affection of extra distinctive colours, or if the image itself 

contain few special colours, the map image could now be read as a grayscale 

image and ready for pre-processing.  
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At pre-processing stages, grayscale images need to be binarized. There are plen-

ty of modules available for image binarization, some of which were tested in this 

project: 

 Thresholding in OpenCV 

OpenCV provides a straight forward solution for image thresholding. There are 

two functions, cv2.threshold and cv2.adaptiveThreshold could be adapted. Both 

use a grayscale image as input, with a threshold value regarded as an indicator 

for classifying the pixels. Pixels in the input image will be classified and then 

assigned a new value depending on whether it is more (or sometimes less) then 

the threshold value. (“OpenCV: Image Thresholding”, 2016). Here all five 

thresholding methods performed are global. Part of the code for image thresh-

olding is shown in Figure 4.4 (Complete code in GlobalThreshold.py) a and the 

results could be reviewed in Figure 4.4 b. 

 

Figure 4.4 a Thresholding using OpenCV functions. 

 

Figure 4.4 b Thresholding results. 

In contrast to the global method, another one is adaptive thresholding. Instead 

of applying a single value to all the pixels in the input image, 

cv2.adaptiveThreshold breaks the image into small blocks and perform the 
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thresholding calculation. Usage of adaptive thresholding is similar to the global 

one (Complete code could be found in AdaptiveThreshold.py). Figure 4.5 shows 

a contrast between the global thresholding and an adaptive one. As it could be 

clearly observed from the figure, compared to the global thresholding, when 

applying a same thresholding method, more details could be preserved through 

local thresholding. Correspondingly, more background information was re-

mained after the local process. A main influence could be the clear enhancement 

of the hachures. Since the hachures should be removed as part of the back-

ground information, applying global threshold methods in this case could be 

more compatible. 

  

a Global Otsu’s thresholding b Local Otsu’s thresholding 

Figure 4.5 Comparison between global and local thresholding. 

 Thresholding in ImageJ(Fiji) 

ImageJ is an open source image processing interface based on Java. With plenty 

of plugins and packages, it is possible to solve different tasks by a few clicks 

(“ImageJ”, 2017). Fiji is one of the distributions of ImageJ, with easy installation 

but powerful function. Using ImageJ could also implement either a global or an 

adaptive threshold function. Both of them could be applied via the adjust func-

tion under the image menu. 
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Figure 4.6 a Results of thresholding in Fiji. 

 

Figure 4.6 b The thresholds in corresponding to the figure above. 

The result matrix and the corresponding threshold value could be found in Fig-

ure 4.6. The result gives out a vivid comparison within different thresholding 

algorithms, from which the user could judge which one could be the most suita-

ble for current input image. Here, two thresholding algorithms were applied for 

test maps. 

Otsu’s threshold: In situations when the histogram of the image appears to have 

an obvious bimodal property, Otsu’s threshold could be applied. This algorithm 

tends to maximize the separability of the grayscale classes (Nobuyuki, 1979). In 
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other words, an optimum value will be set as threshold if it could separate the 

two peeks in the histogram and reflect the intra-class variance as well. In Figure 

4.6, the result matrix also includes a result from Otsu’s algorithm.  

In OpenCV, there is also existing method for this algorithm, namely 

cv2.THRESH_OTSU, which could be used as a parameter in the threshold func-

tion. Results of this method is displayed in Figure 4.7. From what is shown in the 

histogram, the bimodal property of this test map is not obvious, but still a minor 

peek could be found in area of lower grayscale. Thus, the outcome could still be 

predictable after thresholding. The blurred and dotted background becomes 

clearer, and the hachures are weakened as well. On the other side, darker pixels 

such as the edge lines and the characters are enhanced with an obvious im-

provement of intern pixel unity. This could be useful to later work, such as filter-

ing and subtraction of clustered objectives (e.g. characters). 

 

Figure 4.7 Result of Otsu’s algorithm. 

Triangle method: According to Zack G. W. et al., in the triangle algorithm, the 

threshold should be determined by normalizing the height and the dynamic 

range of the intensity histogram (1977). For some images that appears to have 

their maximum near one of the extreme points in the histogram. 

 

4.4 Filtering 

After the binarization stage, part of the background pixels has been removed. To 

detect the exact line features in the remaining foreground features, correspond-

ing profile patterns need to be created and used for recognizing line features. 

As shown in Figure 4.8, there are in total three pattern types of the line features 

are concluded. Each pattern is taken from the binarized image and then pruned, 

later saved as an individual pattern image clip. The width and length of the pat-

tern are controlled as odd numbers, in order to set the centre of the pattern 

within exact one pixel. Figure 4.8 a represents the double-line roads in the test 

map, with one thicker line and one thinner line. Figure 4.8 b is the pattern for a 

single line road feature, while Figure 4.8 c is used to recognize the dash lines in 

the map image. 
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a Type 1 b Type 2 c Type 3 

Figure 4.8 Profile pattern of three road types. 

Then the patterns could be used for making a pattern matching. The test image 

will be traced by each pattern in four directions, horizontal, vertical, and both 

diagonal. There are already built-in functions in OpenCV for performing pattern 

matching, namely cv2.matchTemplate. This function provides access to search-

ing and finding the template in a larger image, with a simple action to slide the 

template over the input image and to trace pixel after pixel (“OpenCV: Template 

Matching”, 2016). Similar to thresholding, template matching in OpenCV also 

provides several methods to be chosen from. In addition, the output image size 

would become smaller than the input one. Both length and width will be sub-

tracted by the difference between the size of the input image and the pattern, 

and then plus one. Because of this difference, we need to cut the output image 

and take the minimum of both the length and the width. Figure 4.9 shows the 

functions for pattern matching and generating output (complete code in Pat-

ternMatch.py). 

 

Figure 4.9 Part of the functions during pattern matching. 

The pre-generated pattern images for each type of roads include both horizontal 

and vertical direction. As it is displayed in Figure 4.10, for two diagonal direc-

tions, a simple rotating function was performed with the help of some other 

basic OpenCV functions. 
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Figure 4.10 The rotation function. 

The results of individual output images could be found in Figure 4.11 a, in which 

a double-line pattern was used to trace in the four directions mentioned above. 

Reliable results show that the output image of each direction appears to obtain 

a strong tendency to the corresponding direction. Figure 4.11 b gives out the 

result when overlaying together all the output images of all types of pattern 

matching. Overlaying could be completed through the built-in logic operations 

in OpenCV (cv2.bitwise_and()). 

 

Figure 4.11 a Individual results of pattern matching. 
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Figure 4.11 b Overlaid result of pattern matching. 

At the end of this stage, a pruned foreground image could be generated, contain-

ing necessary features but also distractors. It is worth to keep in mind that it is 

normal for pattern matching to extract some noise pixels, since the length of the 

patterns must be short enough to detect small curves in the line features. Some 

of these noises could be filtered in later procedures. 

 

4.5 Line Feature Identification 

Now that the foreground features are already separated from the background, 

and the lines are filtered according to different road type patterns, however, 

there are still noises and unnecessary features, nor the line features are well 

identified. As the filtering result shows, the unnecessary features include edge of 

the characters, small clusters of buildings in residential area, and the hachure 

lines that are in the same directions which are used for sliding the patterns. 

A plugin called “Curve Tracing” could be found in ImageJ, which could provide a 

straightforward function to extract line features from the input image (“Curve 

Extraction Plugin”, 2015). It follows one of the basic but effective algorithm 

proposed by Steger (1996). 
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This plugin works as follows: 

The width and difference in angel are basic input parameters, being accompa-

nied with optional choices of the solutions to line ends and intersections. The 

settings are shown in Figure 4.12.  

 

Figure 4.12 Parameter setting in Curve Tracing. 

Before starting the extraction procedure, the plugin should return with a col-

ourmap and threshold settings are required. The colourmap is shown in Figure 

4.13 a. Blue lines in the image indicate the pixels that will be traced when the 

program runs, while the green part shows exactly where the tracing will start 

(“Curve Extraction Plugin”, 2015). These two parameters are intuitively con-

trolled by scroll bars in separated window (as shown in Figure 4.13 b).  

 

Figure 4.13 a Colourmap in Curve Tracing. 
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Figure 4.13 b Thresholding in Curve Tracing. 

The result of curve tracing is displayed as an overlay cyan (or other colours) line 

layer onto the original input image. A clip of the image is shown as Figure 4.14. 

It returns a satisfied result for tracing the pre-recognized three road types, as 

well as some meandering small curves in the image. At the meantime, it is also 

clear that the method avoided the distinct dash lines and small broken pixel 

clusters. This could be a double-edged sword, meaning that the method could 

skip the hachure lines and the dash line features at the same time, which will be 

discussed in the later part. 

 

Figure 4.14 Traced curved lines in Fiji. 

The traced lines were saved in ROIs, which could be examined in the ROI man-

ager. Then the coloured trace lines could be again flattened into the input image, 

in order to extract only the traced lines. Similarly, the extraction of traced lines 

could take use of the colour separation method, since image is composed of 

highlighted lines and a binarized background. The method returns with white 

lines on a black background. This is performed separately for different types of 

line, below in Figure 4.15 shows a comparison between the traced ROI lines, the 

flattened overlay image, and the extracted line features.  
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Figure 4.15 Compared results. 

 

4.6 Vectorization 

There are a few toolkits available for transforming raster images into vector file 

formats. Potrace, which is one of them, developed by Peter Selinger, is a quite 

well-developed project focusing on converting bitmaps into vector files (“Peter 

Selinger: Potrace”, 2017). In addition to the project itself, a considerable number 

of software, interfaces, and services are built based on Potrace, including both 

free and commercial ones. Here in this paper, one called CR8tracer is applied in 

the vectorization stage. It is a graphical user interface based on Potrace by Allan 

Murray (“CR8 Software Solution”, 2016). It takes bitmaps as input images and 

could export results in PS, EPS, SVG, or GFS vector formats. Some of the formats 

are also compatible with other font editing software. Tracing options are corre-
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sponded to those in Potrace. As shown in Figure 4.16, filter threshold decides 

the lowest gray value that will be converted. Despeckle size sets the largest size 

of the noises to be removed. Alphamax controls the threshold of the corners, 

with a default value of 1. Optitolerance is the tolerance for curve optimization, 

the default value of which is 0.2. Both tracing and type settings are available in 

the menu. While in vectorization stage, only tracing options are considered. Be-

cause the characters are already broken during in former stages and could not 

be recognized as fonts. 

 

Figure 4.16 Tracing settings. 

The result of an output SVG is shown in Figure 4.17. Noises could be further re-

moved by applying a despeckle size. However, due to the continuity in the ex-

tracted line features, part of the necessary line features will also be removed if 

the size value is too small. 
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Figure 4.17 SVG output. 

 

4.7 Building Referencing System 

It is always notable to pay special attention to the assessment of the overall 

quality of the vectorization results, for which purpose, a referencing system will 

be needed after the extraction work. 

Since the original map data are all in image format, extra work for building the 

raster references are needed. The manual vectorization of the line features has 

been done in GIS software. Vector features were saved in line feature classes in 

geodatabases. Figure 4.18 a displays the line feature added onto the original 

map and b represents the attribute table of the vectorized feature class, with 

four fields indicating necessary properties of the features, namely OBJECTID, 

SHAPE, SHAPE_Length, and TYPE. All the fields were generated automatically, 

except the last one, representing assorted types of the line features judged by 

the line type on the map. 
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Figure 4.18 a The vectorized line features in ArcGIS. 

 

Figure 4.18 b The attribute table of the line features. 

In order to make comparison between the extracted data and the pre-vectorized 

data, a format transformation need to be carried out for both sides. For the pre-

vectorized line feature, a built-in module called “Feature to Raster” in ArcGIS 

could be taken use of (“Feature to Raster - Conversion toolbox”, 2017). Point, 

line, and polygon features could be converted into raster datasets by using this 

module (Figure 4.19 a). 

The setting of cell size of the output raster dataset requires extra attention. The 

cell size option is in control of the resolution of the output raster dataset. In or-

der to keep the same resolution as the original map file, the cell size should be 

the same instead of using default value. By default, the cell size is always set as 
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the shortest of the width or the height of the input feature divided by 250 in the 

output spatial reference. In this case, the cell size need to be modified through 

changing the settings in the environment, which is displayed in Figure 4.19 b. 

The cell size of the original map file could be taken from the “Snap Raster” op-

tion, and the conversion result could be found in Figure 4.20. 

 

Figure 4.19 a Conversion from feature to raster dataset. 

 

Figure 4.19 b Adjustment on cell size. 
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Figure 4.20  The converted raster dataset for referencing. 

In order to investigate the effect of different pattern matching, individual images 

are generated according to different types of line feature. The process of con-

verting an SVG file into PNG format could be completed with some extra python 

packages. One of which is called Wand, an ImageMagick binding for Python 

(“Wand – Wand 0.4.4”, 2016). With some lines of simple code, it could complete 

the task of converting the input vector file into the assigned image format. Un-

fortunately, the script could only work in either an earlier version of Python 2.7 

or in Python 3. The LocalLibrary argument always met some trouble when 

working under Python 2.7 as it only accepts string instead of Unicode. 

Another attempt is CairoSVG, which is also reported to be a well-functioned Py-

thon package for conversion (“Cairosvg”, 2017). However, only Python 3 is sup-

ported and the Python 2 support has already been dropped.  

So here in this paper, PS format was used instead of SVG format to save the vec-

torized data. It could be processed in image processing software and then easily 

converted to PNG format. Now that we have both versions of the PNG images. 

The referencing procedure is as well quite straightforward. Another logical op-

eration is performed to those two images. The principle is that to add those two 

images together and make comparison to each pixel. Since the two images are 

all binary image, the comparison also acts as a hit-or-miss procedure. If the pixel 

position in both images are filled with black colour, then this pixel would be 

marked as a “blank” one, indicating the line feature in both images are matched. 

On the other hand, if the pixel remains black, it means that the line feature two 

images failed to match with each other. The reason will be discussed in the last 

chapter. Figure 4.21 shows a part of the result image representing a single line 

type in the test map. The colour map is adjusted for a better visual effect. 

  

Figure 4.21 Result of a reference for line type 2. 
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5 Conclusion 

In the last chapter, a complete workflow was discribed from accessing the image 

properties to the final logical operations. The result of the last opeartion 

returned with some facts that worth noting: 

First, the displacement between the two referencing images, to some extent, 

largely affected the logical operation result. Although both of the images are in a 

same size, the image content have experienced some slight shifting, the reson of 

which might be the pattern matching stage. When a pattern is applied and 

scanned through the input image, the size of the result image would be reduced. 

Besides, as it could be observed from Figure 4.21 a, obviously, it should be the 

same line being shown on both images, yet, the pixels couldn’t totally coincide 

with each other. Part of the pixels are subtracted, resulting in blank areas 

somewhere between the lines. Therefore the what the output image shows 

could be deviated from the actual results. However, the paradox is that changing 

cell size when using the “Feature to Raster” tool could slightly increase the 

performance, but it will greatly decrease the resolution as well. Thus, somehow 

a balance should be maintained, where the overlaying method could achieve the 

best effect and at the same time, the resolution shold be maintained within an 

acceptable torelance. Moreover, from what Figure 4.21 b reflected, the line in 

the middle suffers from worse extraction results compared to the other two 

lines in the screenshot. If we reflect back to the original map image, or the 

vectorized dataset, it is not hard to find out that the line type is dictinct from the 

other two, which is a dashed line with dense small pixel clusters surrounding 

the edge of the line (Type 3). Taking the colour properties of historical maps 

into consideration, simply performing a normal colour separation could be hard 

to reach a satisfied result. Therefore, using patterns for filtering was hoped to 

export reliable results. Meanwhile, extraction of this type of line features is 

much challenging than the other two types, as the line shape itself resemble 

hachure lines very much. In some area of the image, the dots of dash lines could 

be smaller than those of hachure lines, for instance foot paths in suburbs and 

forest area. Besides, in most historical maps which are hand-painted, pixel size 

of each dot also vary a lot. These were the main obstacle during the filtering 

work. Although later the adoption of curve tracing algorithm could ease the 

problem a little bit, the result of applying a dash line pattern individually is still 

quite far from satisfaction.  

Further work after this paper include finding a solution to the paradox between 

proper cell size and resolution, improving the methods of pattern matching and 

noise filtering. In addition, it is also worth to keep surveying for more useful 

open source tools, which could be either complex or handy. Many a little makes 

a mickle, and maybe new thoughts would enlightened during this process.  
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