OBJECT-BASED CLASSIFICATION FOR ESTIMATION OF BUILT-UP DENSITY WITHIN URBAN ENVIRONMENT

Master thesis defence

Author: Juraj Murcko, MSc. Cartography

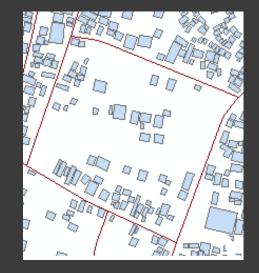
Supervisors: Prof.Dr.habil. Elmar Csaplovics Dr. Mustafa Mahmoud El-Abbas

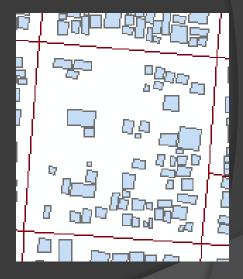
Consultant: Mgr. Tomáš Bartaloš (GISAT s.r.o.)

Agenda

- Introduction
- Background
- Thesis objective
- Data, study area, pre-processing
- Process (Rule Set) development
- Results, discussion
- Conclusion

Introduction

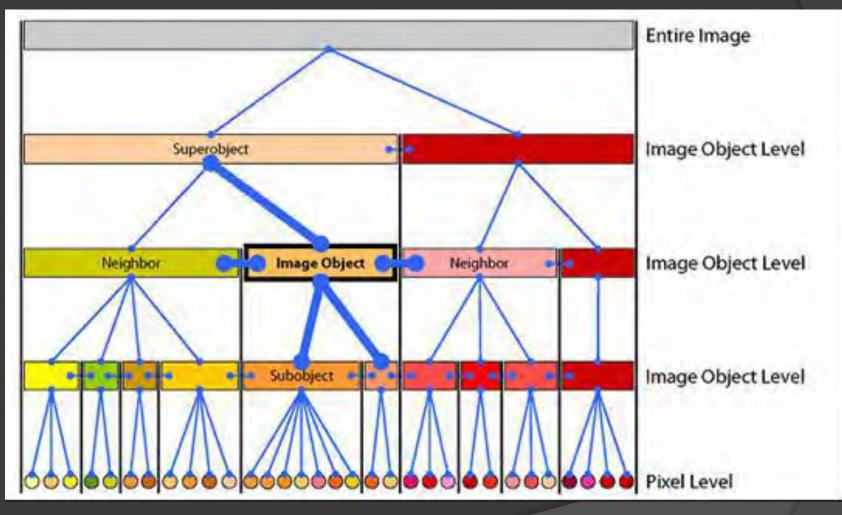

- Remote Sensing data important source of information for studying urban environments
- Satellite, aerial imagery
- Image analysis
- Classification, land use / land cover (LULC)
- Quantitative (e.g. vegetation) analysis, spectral indices, hyperspectral analysis
- Spatial indicators, land statistics (e.g. greeness, imperviousness, built-up density)
- Spatial data extraction (image classification, OBIA)


Background

- Built-up density: proportion of built-up surface on the total surface of an area
 - Indicator of urban growth
 - Often related to population density
 - Can be calculated on a regular grid, administrative units, parcels, other area units
 - 1 value not representative, if the area is not homogeneus

Various spatial distribution of built-up structures within an area unit (road enclosed segments)

Master Thesis Objective


- To develop, implement and describe a semi-automated object-based image classification approach for mapping builtup areas from VHR imagery and classification of built-up density within blocks of broader built-up areas that are homogeneous in their urban fabric.
- These blocks are not a priori defined, but instead should be created based on the remote sensing image data itself.

Object-based Image Analysis

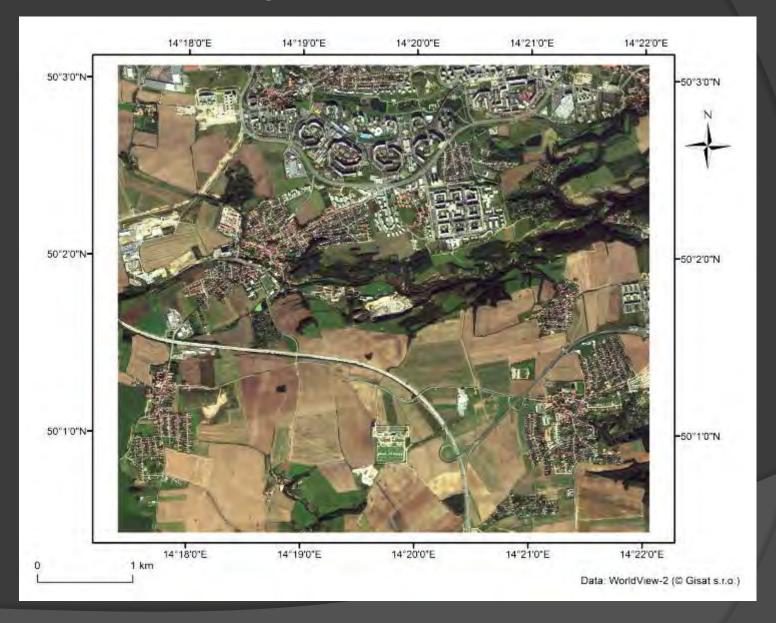
OBIA – object-based image analysis

- Image segmentation + image analysis + image classification
- Analysis of image objects (vs pixels)
- Image object features (spectral, textural, spatial) and relationships
- Image object level hierarchy (sub-objects, neighboring objects, super-objects)
- OBIA classification supervised vs. Rule-based
- Rule Set development
 - potentialy transferable to other images

Image Object Level Hierarchy

Source: eCognition Reference Book

Study area and DATA


O 2 different urban areas

- different urban morphology, surfaces, materials
- testing Rule Set transferability

Prague, Czech Republic

- suburban / rural area built-up, parks, forests, lakes, agricultural land
- Mandalay, Myanmar
 - central urban area –dense, perpendicular roads

Prague, Czech Republic

Mandalay, Myanmar

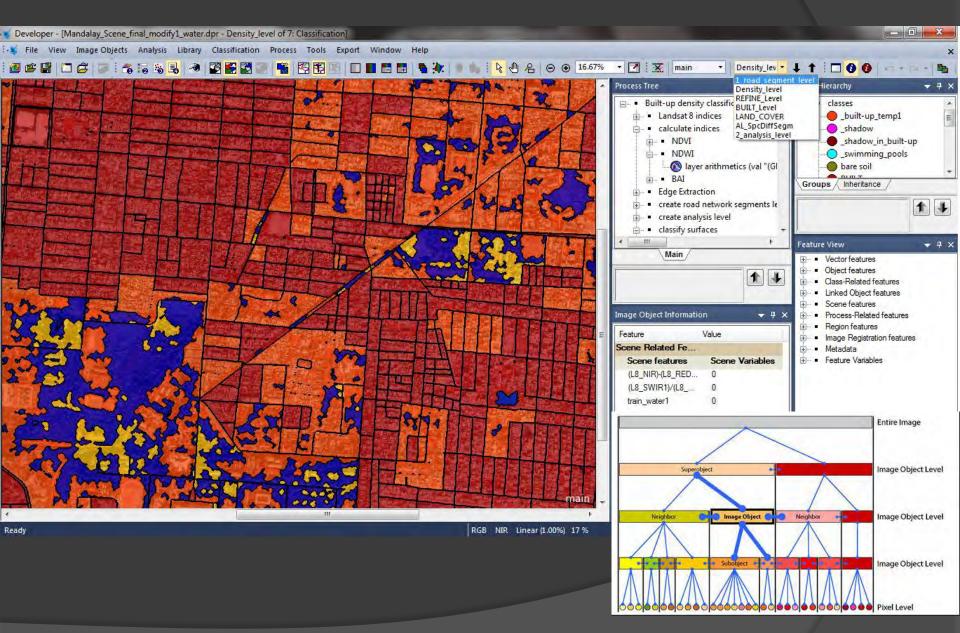
Input DATA

• VHR Image WorldView-2 - Prague

Info	Band	Wavelengths	Resolution (m)
Sensor: WorldView-2	BLUE	450-510 nm	0.5
Location: Prague	GREEN	510-580 nm	0.5
Acquisition: 10.9.2010	RED	630-690 nm	0.5
Original resolution	NIR	770-895 nm	0.5
Panchromatic: 0.5m			
Multispectral: 2m			

• VHR Image Pléiades - Mandalay

Info	Band	Wavelengths	Resolution (m)
Sensor: Pléiades-2	BLUE	430-550 nm	0.5
Location: Mandalay	GREEN	500-620 nm	0.5
Acquisition: 7.1.2014	RED	590-710 nm	0.5
Original resolution	NIR	740-940 nm	0.5
Panchromatic: 0.5m			
Multispectral: 2m			

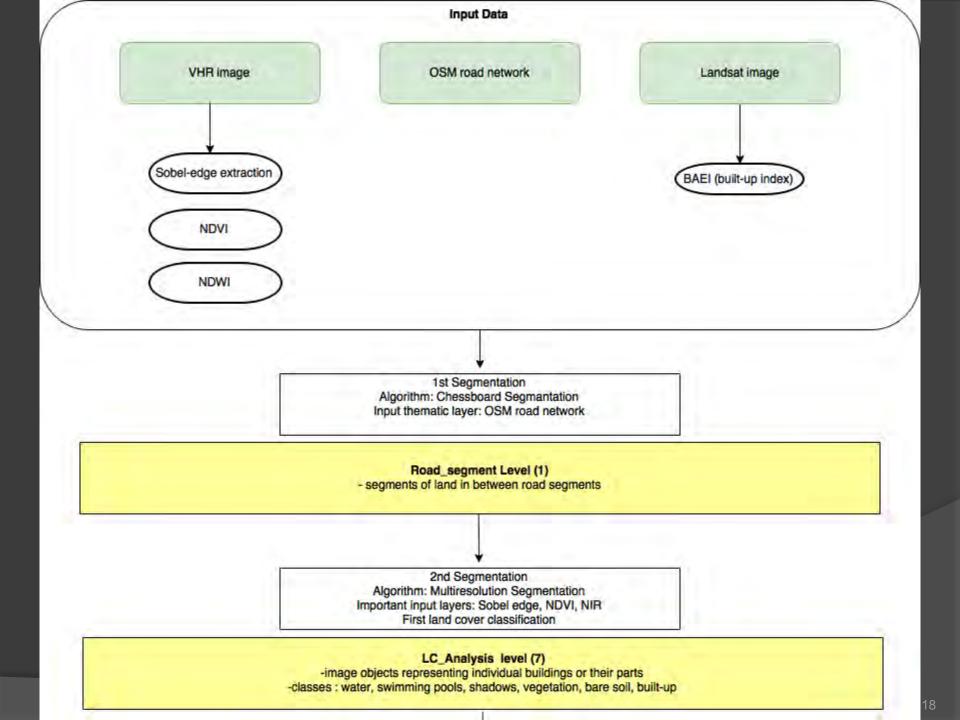

OpenStreetMap road network

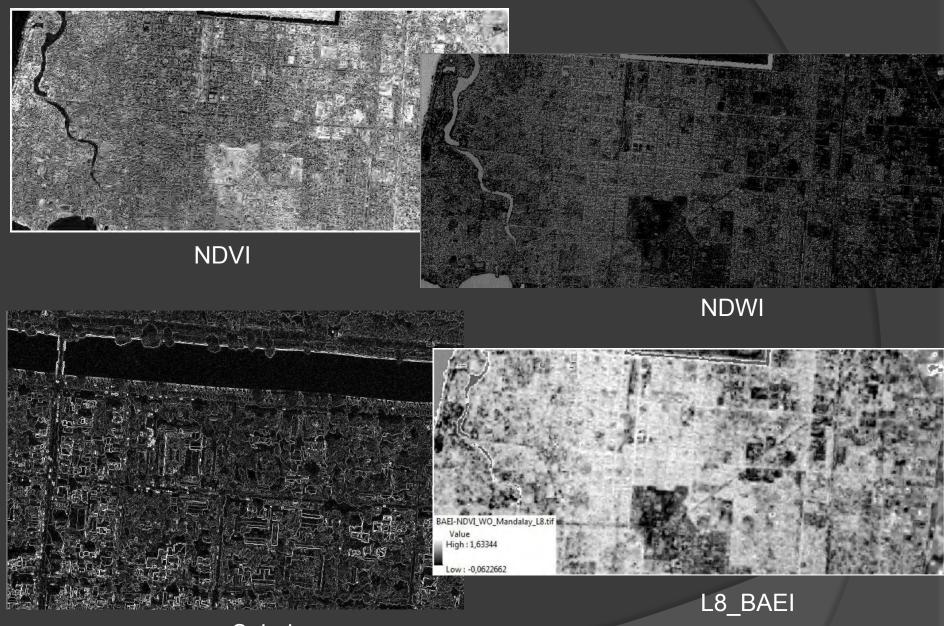
- for the respective areas (Prague, Mandalay subsets)
- Used in segmentation
- Landsat 8 scene
 - for the respective areas (Prague, Mandalay subsets)

Software

- eCognition Developer OBIA Rule Set development
- ArcMap Data management, visualisation
- ENVI Atmospheric correction (QUAC), Accuracy assessment

eCognition Developer

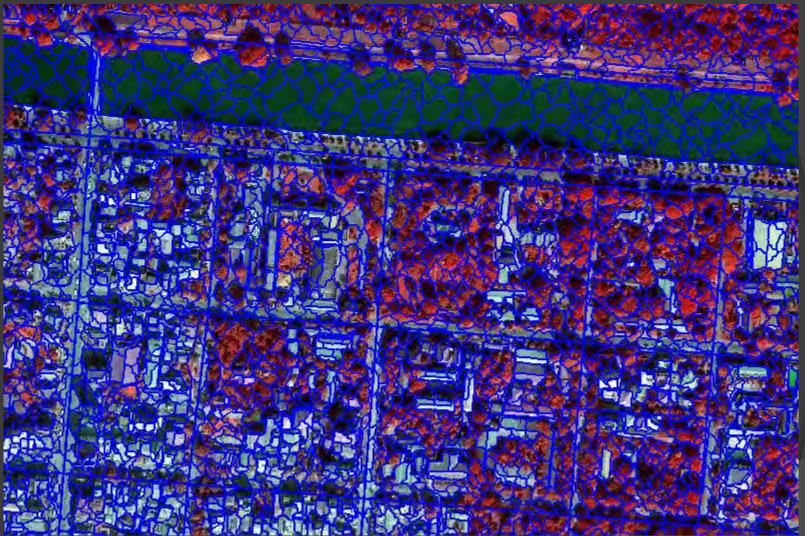



Pre-processing

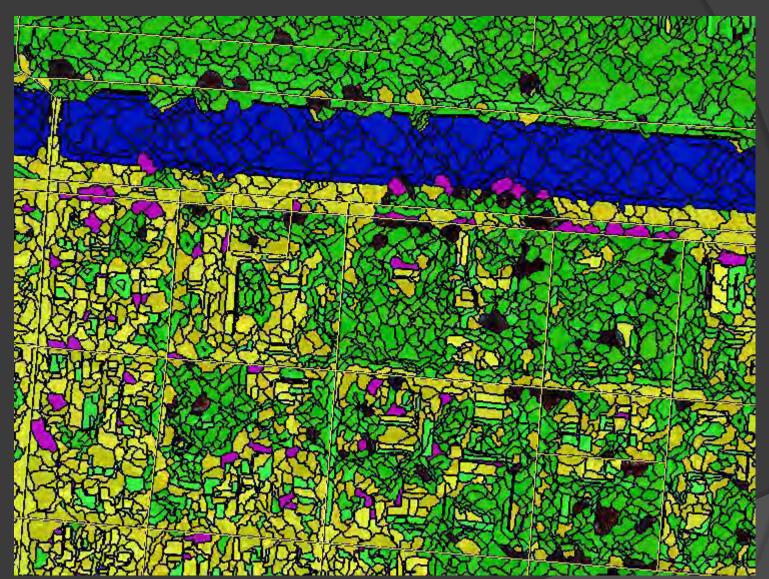
- Atmospheric correction of the VHR images
 - QUick Atmospheric Correction QUAC (ENVI)
- Bit-depth conversion
 - from 16bit to 8bit
- Geometric corrections
 - georeferencing, co-registration, spatial adjustment
- Olipping
 - to area of interest extent

Rule Set development

- Developing image processing workflow for built-up density analysis
- Using algorithms, segmentation, image analysis, classicication, refinement, postprocessing, export
- Implemented in Cognition Network Language within eCognition Developer software

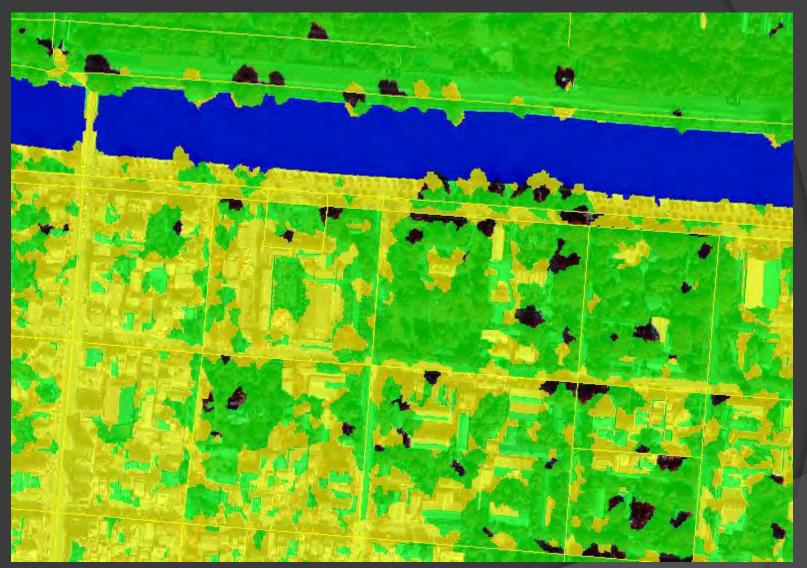

Sobel

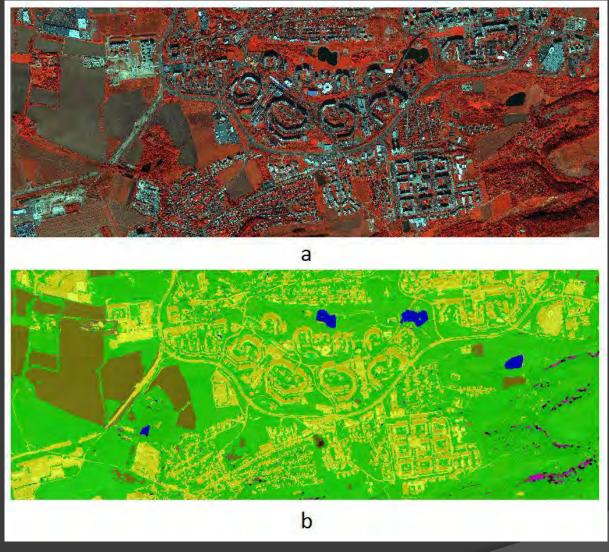
Segmentation by road network (Chessboard segmentation)



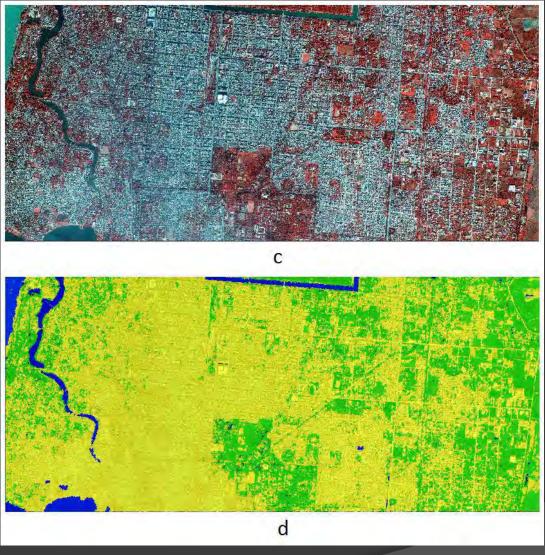
Result of first segmentation – Chessboard Segmentation on pixel level using OSM road network – creation of ROAD_SEGMENT level

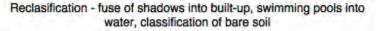
Multiresolution segmentation – Parameters: Scale : 20, Shape 0.8, Compacstness: 0.2

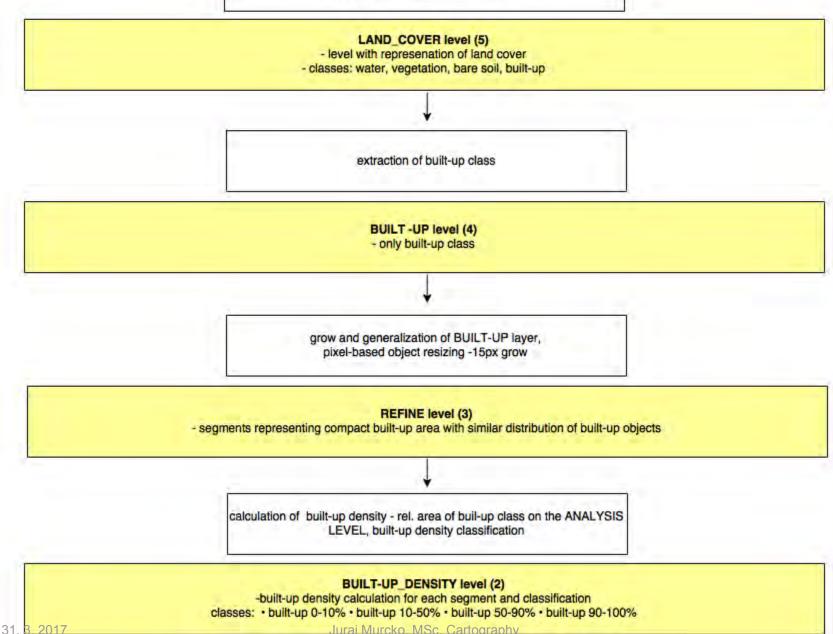

Result of Multiresolution Segmentation and creation of LC_ANALYSIS level


Classified image objects at the LC_ANALYSIS level (yellow=built-up, green=vegetation, blue=water, purple=shadow, no color=unclassified)

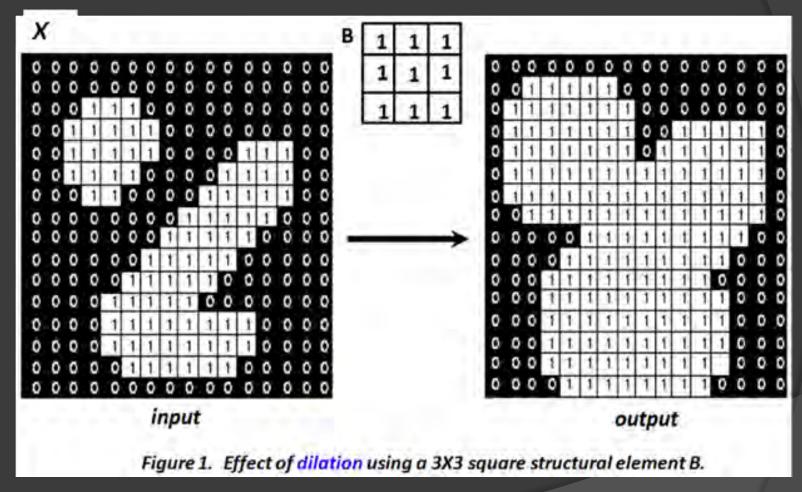
Class	Image object features used		
	Prague	Mandalay	
Built-Up	 NDVI < 0 RED > 70 	 NDVI < 0.15 RED > 100 mean Sobel edge > 4 	
Vegetation	 NDVI > -0.25 NIR > 40 	 NDVI > -0.15 RED < 110 	
Water	 NIR < 35.5 NDVI < -0.37 NDWI > 0.4 mean Sobel edge < 4 	 NIR < 60 NDVI < -0.2 NDWI > 0.3 mean Sobel edge < 8 Std. NIR < 8 	
_Swimming pools	 Area < 3000px -0.65 < NDVI < -0.55 0.55 < NDWI < 0.6 	 Area < 3000 px -0.65 < NDVI < -0.55 0.55 < NDWI < 0.62 	
Bare soil	 -0.28 < NDVI < -0.2 Area > 10000 px Std. NIR < 12 	• N/A	
_Shadows	 NIR < 35 Std. NIR > 4 	 NIR < 35 Std. NIR > 4 Brightness < 100 	


Image object features used to classify different surfaces ("_" prefix indicates temporary class)

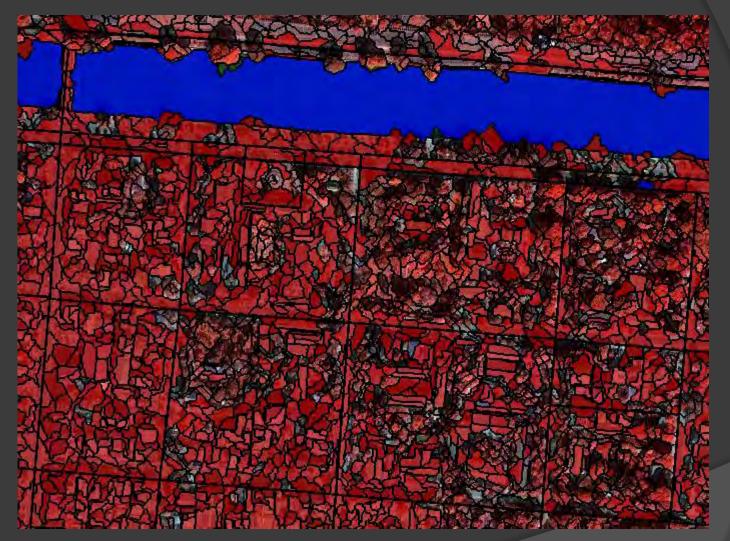

land cover classification on LAND_COVER image object level



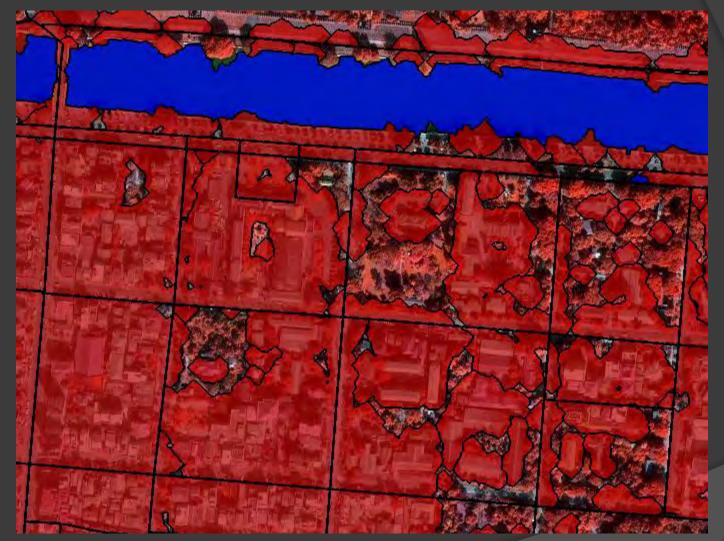
a) Prague – false color composite b) Prague - LC classification



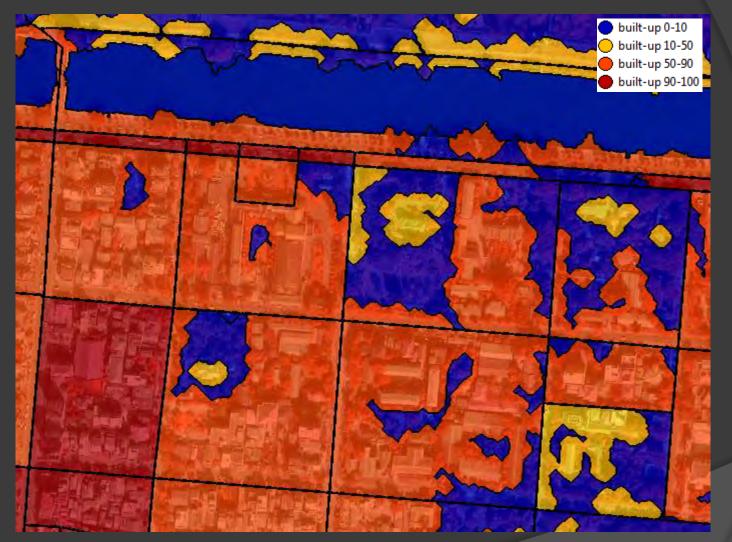
c) Mandalay - false color composite d) Mandalay - LC classification



Pixel-based image object grow (dilation)


Source: http://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm

BUILT-UP surface


BUILT–UP level – only built-up surfaces

15 px grow

REFINE level - result of pixel-based object grow

Built-up density classification

Built-up density classification on the refined extended built-up area- BUILT-UP_DENSITY level

Image Object Level	Description
1. ROAD_SEGMENT level	Image segmented into blocks created by road network
2. BUILT-UP_DENSITY level	Level closely representing the overall shape of compact built-up area used for built-up density classification
3. REFINE level	15px buffer on built-up level – grow, generalisation, smoothing
4. BUILT-UP level	Only built- up layer
5. LAND_COVER level	Abstracted land cover – built-up, vegetation, water, bare soil
6. SPECTRAL_DIFFERENCE level	Segments representing objects with high spectral homogeneity
7. LC_ANALYSIS level	Segments closely representing individual buildings and distinct features, scale level 20

Description of the created image object level hierarchy

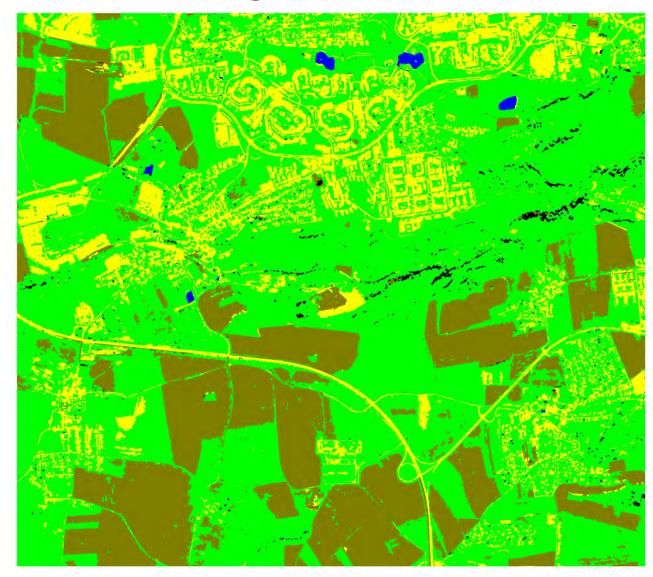
Results

- Rule Set
- Land Cover map
 - 4 classes: built-up, vegetation, water, bare soil
- Suilt-up density blocks broader built-up area
- Suilt-up density classification on 2 levels:
 - 1. ROAD_SEGMENT level (road enclosed segments)
 - 2. BUILT-UP_DENSITY level (refined extended built-up area)

- □··· Built-up density classification
 - 🗄 🗉 🔹 Landsat 8 indices
 - indices
 - Edge Extraction
 - . create road network segments level
 - . create analysis level
 - classify surfaces
 - · remove previous classifications
 - im Classify built-up surface
 - . classify water
 - classify vegetation
 - refine image object to represent urban typology
 - spectral difference merge and copy IO
 - im recalssify cleanup
 - Land Cover Classification View
 - . Create BUILT_Level

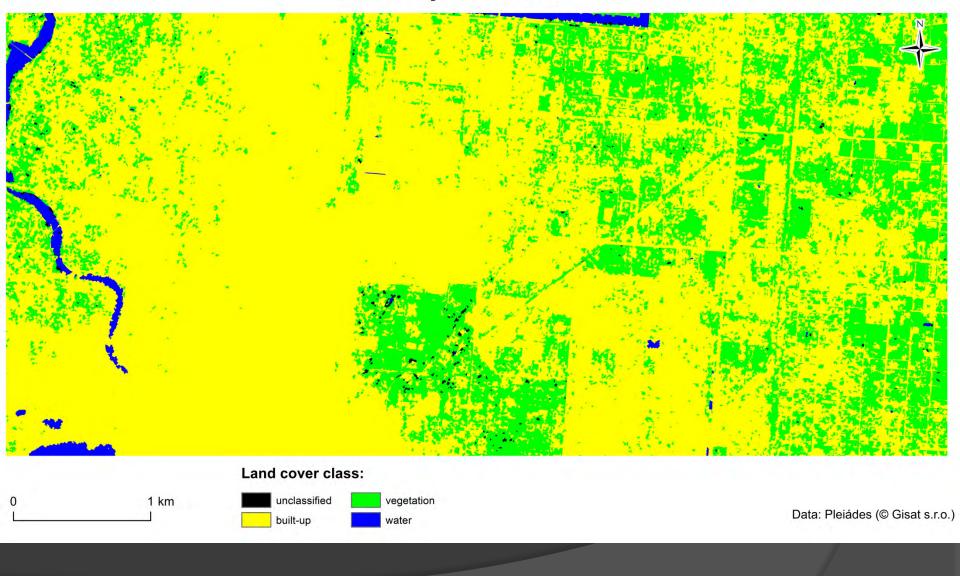
 - 📲 _shadow_in_built-up, _shadow, bare soil, vegetation at _BUILT_Level: unclassified
 - 📲 built-up at BUILT_Level: BUILT
 - · create REFINE_Level
 - im refine shape of BUILT segments
 - 15x: BUILT at REFINE_Level: grow into unclassified where rel. area of object pixels in (5 x 5) >=0.2
 - create built-up densityy analysis level

 - 🛶 🙀 unclassified with Rel. border to BUILT > 0.5 and Area < 1000 Pxl at Density_level: remove objects into BUILT (merge by shape)
 - BUILT at Density_level: merge region


Rule Set

Prague - land cover

Land cover class:



1 km

0

Data: WorldView-2 (© Gisat s.r.o.)

Mandalay - land cover

Land cover accuracy assessment

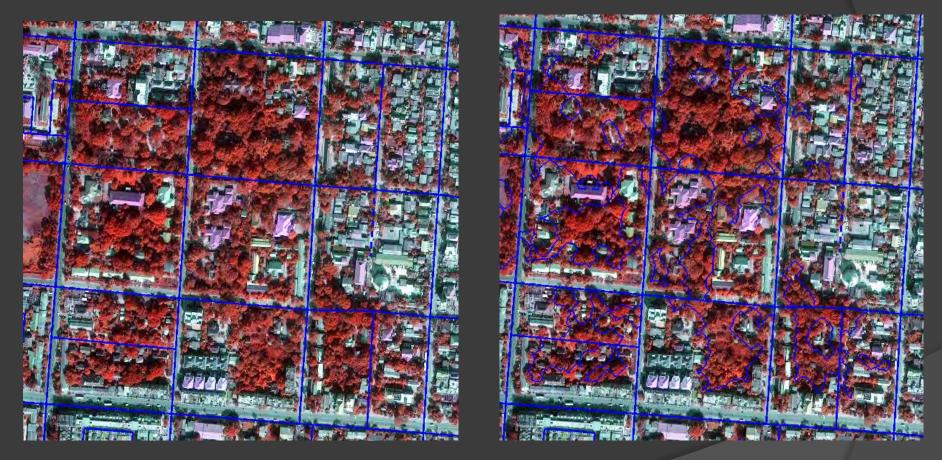
- Reference points from visual interpretation
- Confusion matrix

Prague – land cover reference points

Mandalay- land cover reference points

Prague – land cover statistics							
Class	Area (ha)	Area (%)					
Built-up	439.358725	16.12					
Vegetation	1669.98735	61.28					
Water	7.278375	0.27					
Bare soil	588.877525	21.61					
unclassified	19.611625	0.72					
Total	2725.1136	100.00					

Class	Area (ha)	Area (%)
Built-up	1920.438175	70.02
Vegetation	741.952975	27.05
Water	72.7274	2.65
Bare soil	0	0.00
unclassified	7.7713	0.28
Total	2742.88985	100.00

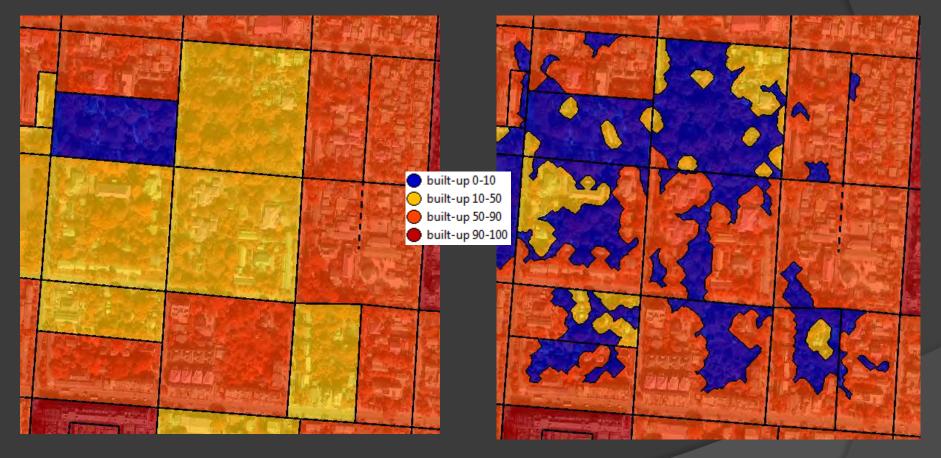

Prague land cover classification - confusion matrix									
Reference (px)									
Classification	built-up vegetation water bare soil Tota								
built-up	89	0	4	3	96				
vegetation	7	99	0	15	121				
water	0	0	46	0	46				
bare soil	4	1	0	82	87				
Total	100	100	50	100	350				

Overall Accuracy = (316/350) 90.2857% Kappa Coefficient = 0.8675

Mandalay land cover classification								
	Reference (px)							
Classification	cation built-up vegetation water Tota							
built-up	99	9	12	120				
vegetation	1	91	1	93				
water	0	0	32	32				
Total	100	100	50	250				

Overall Accuracy = (222/250) 88.8000% Kappa Coefficient = 0.8232

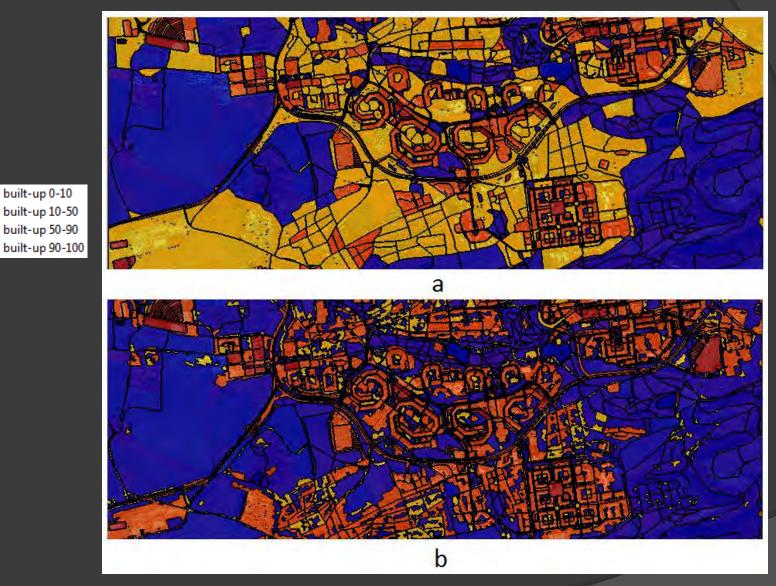
Built-up density classification



VS

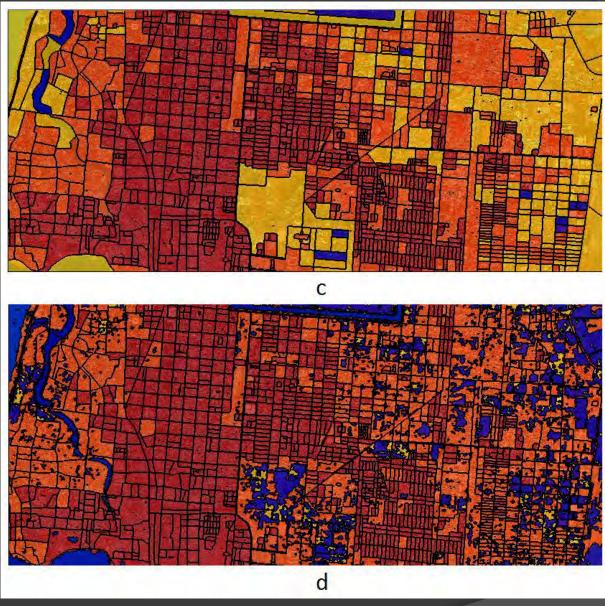
BUILT-UP_DENSITY level

ROAD SEGMENT level


Built-up density classification

ROAD_SEGMENT level

VS


BUILT-UP_DENSITY level

a)Prague subset - built-up density at ROAD_SEGMENT LEVEL b) built-up density at BUILT-UP DENSITY level

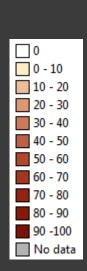
built-up 0-10 😑 built-up 10-50 built-up 50-90

c) Mandalay - built-up density at ROAD_SEGMENT LEVEL d) built-up density at BUILT-UP DENSITY level

Built-up density accuracy assessment

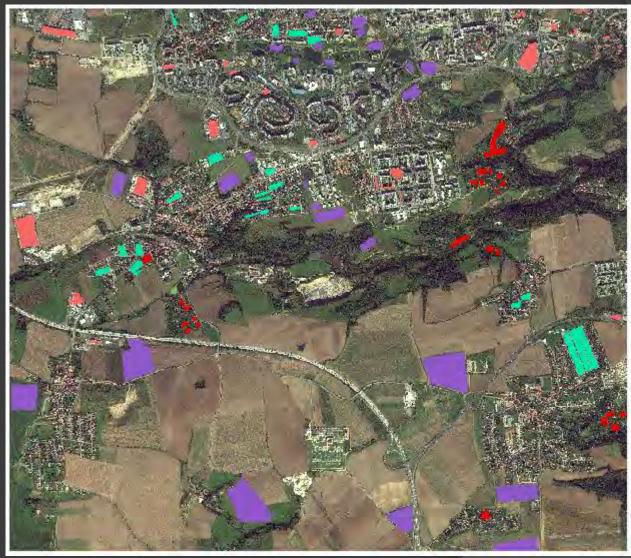
- Digitizing reference polygons by visual interpretation from VHR image
- Comparing to the result of classification
- Built-up density accuracy assessment reference polygons

guiding reference (only Prague):


- Urban Atlas urban fabric (European Environment Agency)
- HRL Imperviousness (Copernicus land monitoring service)

Continuous urban fabric (S.L. : > 80%)

- Discontinuous dense urban fabric (S.L. : 50% 80%)
 - Discontinuous low density urban fabric (S.L.: 10% 30%)
- Discontinuous medium density urban fabric (S.L. : 30% 50%)
- Discontinuous very low density urban fabric (S.L. : < 10%)


Urban Atlas – urban fabric (European Environment Agency)

HRL Imperviousness (Copernicus land monitoring service)

Prague – Built-up density reference polygons

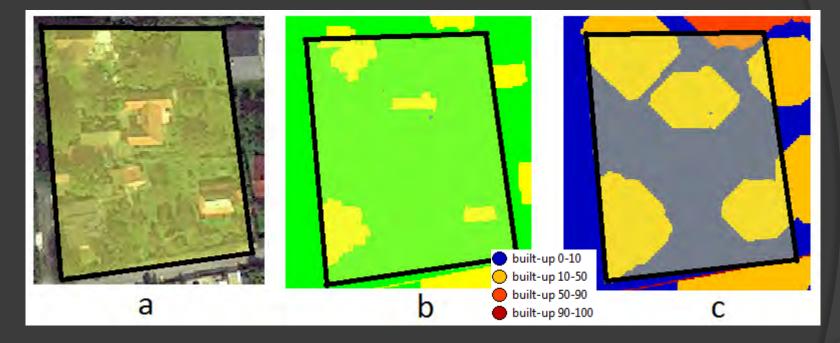
Mandalay– Built-up density reference polygons

Prague – BUILT-UP_DENSITY level- built-up density classification - confusion matrix									
Reference polygon built-up density class									
0-10		10-50		50-90		90-100		Total	
рх	%	рх	%	рх	%	рх	%	рх	%
2416965	99.3	292281	81.62	162039	23.31	13844	1.99	2885129	69
12919	0.53	51187	14.29	278772	40.11	1183	0.17	344061	8.23
3804	0.16	14311	4	248586	35.76	380925	54.87	647626	15.49
282	0.01	316	0.09	5671	0.82	298246	42.96	304515	7.28
2433970	100	358095	100	695068	100	694198	100	4181331	100
	0-10 px 2416965 12919 3804 282	D-10 px % 2416965 99.3 12919 0.53 3804 0.16 282 0.01	Reference point 0-10 10-5 px % px 2416965 99.3 292281 12919 0.53 51187 3804 0.16 14311 282 0.01 316	Reference polygon 0-10 10-50 px % px % 2416965 99.3 292281 81.62 12919 0.53 51187 14.29 3804 0.16 14311 4 282 0.01 316 0.09	Reference polygon built-up of 0-10 10-50 50-9 px % px % px 2416965 99.3 292281 81.62 162039 12919 0.53 51187 14.29 278772 3804 0.16 14311 4 248586 282 0.01 316 0.09 5671	Reference polygon built-up density 0-10 10-50 50-90 px % px % px % 2416965 99.3 292281 81.62 162039 23.31 12919 0.53 51187 14.29 278772 40.11 3804 0.16 14311 4 248586 35.76 282 0.01 316 0.09 5671 0.82	Reference polygon built-up density class 0-10 10-50 50-90 90-10 px % px % px % px 2416965 99.3 292281 81.62 162039 23.31 13844 12919 0.53 51187 14.29 278772 40.11 1183 3804 0.16 14311 4 248586 35.76 380925 282 0.01 316 0.09 5671 0.82 298246	Reference polygon built-up density class 0-10 10-50 50-90 90-100 px % px % px % px % 2416965 99.3 292281 81.62 162039 23.31 13844 1.99 12919 0.53 51187 14.29 278772 40.11 1183 0.17 3804 0.16 14311 4 248586 35.76 380925 54.87 282 0.01 316 0.09 5671 0.82 298246 42.96	Reference polygon built-up density class 0-10 10-50 50-90 90-100 Tota px % % % % % % % % % %

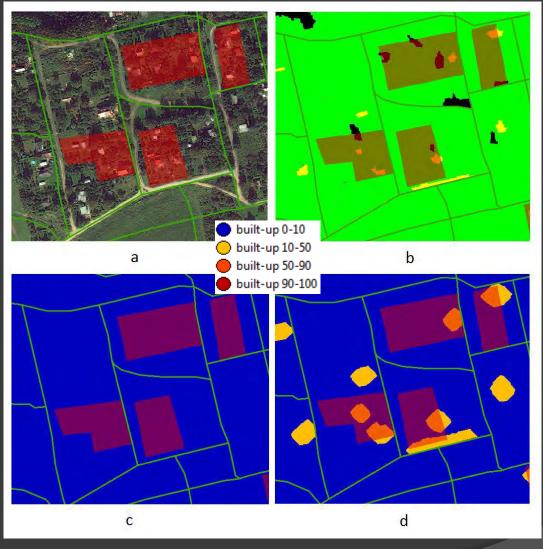
Overall Accuracy = (3014984/4181331) 72.1058%

Kappa Coefficient = 0.4960

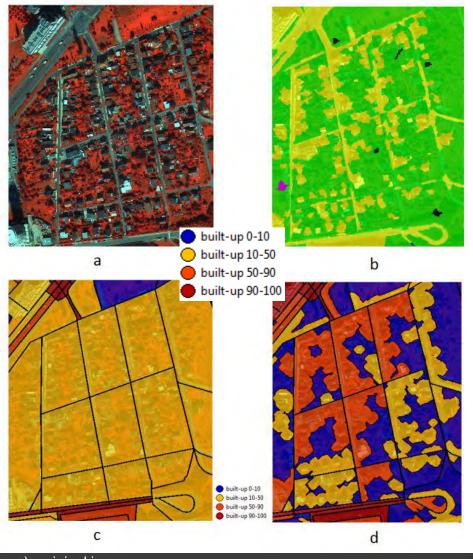
confusion matrix for built-up density classification on the BUILT-UP_DENSITY level - Prague

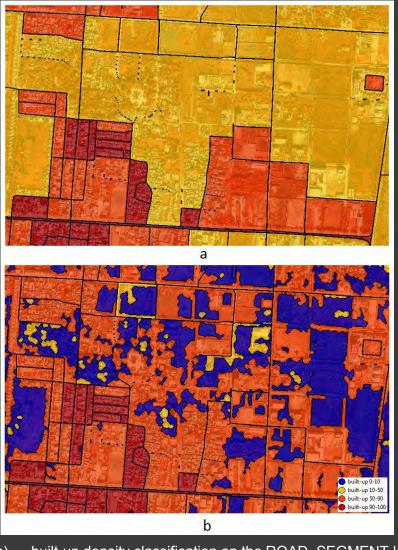

Mandalay – BUILT-UP_DENSITY level - built-up density classification - confusion matrix										
Reference polygon built-up density class										
	0-1	0-10 10-50		·50	50 50-90		90-100		Total	
Classification	рх	%	рх	%	рх	%	рх	%	рх	%
built-up 0-10	2210533	77.47	1160026	43.59	95894	3.77	1356	0.06	3467809	33.53
built-up 10-50	119011	4.17	459305	17.26	35671	1.4	0	0	613987	5.94
built-up 50-90	522978	18.33	996602	37.45	1467921	57.76	124645	5.45	3112146	30.09
built-up 90-					1	1	1			
100	921	0.03	45259	1.7	941980	37.06	2160821	94.49	3148981	30.45
Total	2853443	100	2661192	100	2541466	100	2286822	100	10342923	100

Overall Accuracy = (6298580/10342923) 60.8975%


Kappa Coefficient = 0.4793

confusion matrix for built-up density classification on the BUILT-UP_DENSITY level - Mandalay


Issue 1 - unsuccessful broader delineation of sparsely built up areas (10-50%)


- a) original image (Yellow transparent box with black borders = built-up density reference polygon)
- b) land cover classification (yellow = built-up)
- c) built-up density classification (yellow = built-up 10-50%) on BUILT-UP_DENSITY level

a) original VHR image: red polygon = 10-50% reference polygon, green lines=road network
b) land cover classification: yellow=built-up, green=vegetation, black=unclassified
c) built-up density classification on ROAD_SEGMENT level
d) built-up density classification on BUILT-UP_DENSITY level

- original image a)
- b) land cover classification
- c) built-up density at ROAD_SEGMENT leveld) built-up density at refined BUILT-UP_DENSITY level

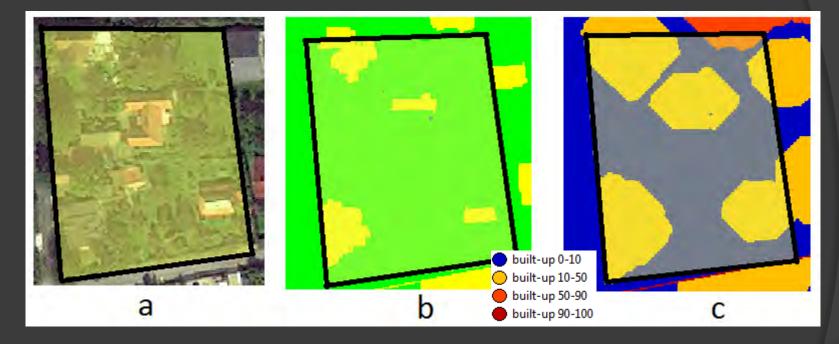
a)

built-up density classification on the ROAD_SEGMENT level built-up density classification on the BUILT-UP_DENSITY level b)

Transferability

- Rule Set was developed on a subset of Mandalay image, later tested on Prague image
- The classification part of the Rule Set was optimized for each image
- Image object refinement was uniform for both images
- The results are comparable in both images

Conclusion


- Image processing workflow was implemented
- Segmentation results were refined to represent broader built-up area – pixel based grow, shape refinement
- Suilt-up density was calculated
- Segments were classified into 4 built-up density classes
- Transferability was tested classification optimization needed

Possible improvements and future work

- Using ancillary data (DSM, SAR, vector data) to increase the accuracy of LC classification
- Obtain realiable reference data
- Implement rules for restriction of the grow algorithm only towards densely built-up areas

 also deliniation of sparsely built-up areas
- Consider size, shape or color of the buildings to estimate functional use of the built-up area segment
- Classify urban typology

Issue 1 - unsuccessful broader delineation of sparsely built up areas (10-50%)

- a) original image (Yellow transparent box with black borders = built-up density reference polygon)
- b) land cover classification (yellow = built-up)
- c) built-up density classification (yellow = built-up 10-50%) on BUILT-UP_DENSITY level

References

- Benz, U., Hofmann, P., Willhauck, G., Lingenfelder, I., and Heynen, M., 2004. "Multiresolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information". ISPRS Journal of Photogrammetry and Remote Sensing, vol. 58, pp. 239–258.
- Blaschke, T., Lang, S., Lorup, E., Strobl, J., and Zeil, P., 2000. "Objectoriented image processing in an integrated GIS/remote sensing environment and perspectives for environmental applications". In: Cremers, A., and Greve, K., eds. Environmental Information for Planning, Politics and the Public, vol. 2, Marburg, Metropolis.
- Divyani Kohli, Pankaj Warwadekar, Norman Kerle, Richard Sliuzas, and Alfred Stein., 2013. "Transferability of Object-Oriented Image Analysis Methods for Slum Identification." MDPI.
- eCognition Reference Book, 2014. Trimble eCognition® Reference Book (Munich, Germany: Trimble Germany GmbH).
- Hamedianfar, Alireza, and Helmi Zulhaidi Mohd Shafri, 2015. "Detailed Intra-Urban Mapping through Transferable OBIA Rule Sets Using WorldView-2 Very-High- Resolution Satellite Images." International Journal of Remote Sensing, vol. 36, no. 13, pp. 3380–3396.

References

- Herold, M., 2002. "Object-oriented mapping and analysis of urban land use/cover using IKONOS data". In: Proceedings of 22nd EARSEL Symposium 'Geoinformation for Europeanwide Integration', Rotterdam, Millpress.
- Jalan, S., 2011. "Exploring the Potential of Object Based Image Analysis for Mapping Urban Land Cover." Journal of the Indian Society of Remote Sensing, vol. 40, no., pp. 507–518. doi:10.1007/s12524-011-0182-3.
- Karathanassi, V., Iossifidis, C.H., and Rokos, D., 2000. "A texture-based classification method for classifying built areas according to their density". International Journal of Remote Sensing, 21, 1807–1823.
- Paul, Obade Vincent De., 2007. "Remote Sensing: New Applications for Urban Areas." Proceedings of the IEEE 2267-268.
- Walker, J. S., and T. Blaschke., 2008. "Object-Based Land-Cover Classification for the Phoenix Metropolitan Area: Optimization vs. Transportability." International Journal of Remote Sensing, vol. 29, no. 7, pp. 2021–2040.

Thank you

Juraj Murcko, MSc. Cartography murcko.juraj@gmail.com