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Abstract

Understanding taxi drivers’ route choice behavior is still a theoretical and
empirical challenge. For this end, tradition approaches construct rational
choice models and predict deterministically the outcome from a finite set of
choices. Although useful, this modeling approach omits a large proportion of
elements such as number of left turns, road type, travel distance and travel
time that can influence taxi drivers’ choices in real world. Under this con-
text, the case of Shanghai is of particular interest because it is composed of
an enormous amount of taxi drivers’ Floating Car Data and includes a large
area of traveling activities. In contrast with traditional formal modeling ap-
proach, this thesis empirically studies the influence of selected features on
the route choice behavior of taxi drivers with a case study in Shanghai. This
large-scale analysis uses more than 650 million GPS points and around 3.6
million valid routes from the Floating Car Data. The thesis resolves the ques-
tions about whether the shortest routes determine the choice of taxi drivers,
and to what extent other potential elements may impact decision making of
taxi drivers. Utilizing Floating Car Data in Shanghai, the analysis proceeds
first with data pre-processing step which reordered, cleaned and extracted
data of interest, as well as using map matching to integrate GPS points to
the road network for further analysis. Then an overall pattern of taxi service
activities is presented which includes travel areas, frequencies, durations, etc.
Thereafter, two types of analyses are conducted. The first type is compar-
ison analysis which compares the real and the shortest routes in terms of
both route-based features and segment-based features. The second type is
preference analysis that formulates scenarios and compares different features
in each scenario once at a time. While real routes to some extent overlap
with the shortest routes with an average value of 46%, the results show that
other features, especially the road type, road usage frequency, speed limit
and observed travel speed, have impacts on the route choices. In the general
situation, the best scenario in combination with travel distance and road
usage frequency predicts 53.56% of real routes compare to 46.61% in the
shortest routes. In long distant trips, the scenario with road type and travel
distance predicts 51.79% of real routes compared to 13.25% in the shortest
routes. What comes as surprise is the insignificance of number of turns in
the results in contrast to previous scholarly findings.

Keywords: taxi driver, route choice behavior, Floating Car Data, Shanghai
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1 Introduction

1.1 Context of study

Route choice is one of the fundamental features of human wayfinding (Golledge,
1995), and understanding route choice behavior of drivers is critical to adminis-
trative purposes such as urban planning, traffic management, and infrastructure
construction — and it is also of keen interest to the research and investigation on
epidemiology and social security. With the expansion of road network in recent
years, it increases the number of route alternatives from one place to another, and
thereby increases the complexity of route behavior analysis.

Following the shortest route is traditionally believed to be one of the major features
of human route choice behavior, because everything else equal, the shortest route
has the minimum travel time and induces the least cost with the lowest possibility
of congestion and traffic accidence (Golledge, 1995). Compared to ordinary drivers,
taxi drivers are more experienced in wayfinding, and are more familiar with road
conditions, possible alternative routes, and traffic situation, and therefore are more
likely to choose the route with the shortest distance (Yao et al., 2013). However,
Golledge (1995) also points out that besides the shortest routes, other criteria such
as fewest turns may also have an impact. However, it is not well established yet to
what extent taxi drivers follow the shortest route in presence of multiple factors.

1.2 Motivation and problem statement

In spite of the seemly simplicity when it is first addressed, the pooling and interac-
tion of individual taxi drivers within a huge traffic network adds to the complexity
of the problem. First of all, taxi drivers are humans whose decision making pro-
cess consists of both rational and irrational components (de Carvalho et al., 2016).
Therefore, it makes accurate prediction of route selection difficult. Second, while
theories predict that multiple equilibriums that result in choosing different routes
(Smith, 1979, 1983, 1984), it is hard to justify the theory prediction without large-
scale observable data. Finally, observable data of taxi drivers’ route choice is always
GPS-based point data. The data needs to be pre-processed and integrated with ex-
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isting road network in order to make valuable inference out of it (Guo and Huang,
2016).

Due to the availability of Floating Car Data (FCD), current technology enables
scholars to utilize large scale data with accurate temporal and positional informa-
tion to tackle the problem of taxi driver route choice behavior. Utilizing FCD,
this thesis aims to show to what extent real routes mimic the path of the short-
est routes and whether selected factors influence taxi drivers to deviate from the
shortest routes.

1.3 Research questions, approach and significance

The research questions in this thesis are as follows.

• To what extent do real routes overlap with the shortest routes, and how much
longer are real routes compared with the shortest routes?

• Are other factors such as speed limitation, road type, number of left turns,
number of intersections, road usage frequency impacting the deviation of real
routes from the shortest routes?

To systematically study the questions at hand, this thesis adopts an empirical ap-
proach by using massive FCD to examine the route choice behavior of taxi drivers.
Shanghai is of particular interest because it has a huge traffic flow of taxi drivers
and the activities of drivers are among the busiest around the world. There are
at least two reasons to use FCD to examine route choice behavior of taxi drivers.
First, compared to survey data, FCD reveals much more information such as travel
speed, real route choice and travel direction. Second, FCD stores information of
massive number of taxi drivers with relatively cheap costs. Thus, the data allows
to systematically examine the route choice behavior of taxi drivers.

The importance of this study is threefold: First, most of the existing studies focus
on the behavior of ordinary drivers, and there is relatively little information about
the driving behavior and choice pattern of taxi drivers. This thesis contributes to
the literature by adding additional examination of taxi driver route choice with
large scale data; Second, it will provide cross-validation for previous studies by
adding another sample from Shanghai; Finally, this study will help, in addition to
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scholars, both individual taxi drivers and taxi companies to better understand the
patterns of route choice.

1.4 Structure of the thesis

A literature review in the following chapter is given to examine the theoretical and
technical backgrounds of the existing explanations of route choice behavior. In the
third chapter, the data and study area will be presented including the area and pe-
riod of study, the number of recorded samples and the structure of the data. Real
routes will be extracted from observed Global Positioning System (GPS) points
through pre-processing, which includes origin-destination identification, filtering
of irrelevant and erroneous points and map matching in the chapter four. After
pre-processing, the chapter five will provide a preliminary overview of the pat-
terns comparing between real routes and shortest routes. Afterwards, a family of
comparison analysis will be conducted to investigate potential factors that may
influence taxi drivers’ route choice behavior. Based on the comparison analysis,
k-shortest-path-based preference analysis will be used to examine to what extent
do these factors impact the final choice and whether their impacts differ in cer-
tain type of trips. The last section concludes and provides an outlook for future
research. Figure 1 illustrates the main work flow in data processing and analysis.
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Figure 1. Work flow
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2 Theoretical and technical background

Investigation of route choice behavior has its long tradition. Through decades of
research, scientists have proposed both theories and methods to better understand
the factors influencing people’s route choice. The next sections introduce most rel-
evant theories and recently developed methods that paved the way for the following
analysis.

2.1 Route choice behavior

Existing literature has produced a rich source of information on the mechanism of
route choice and how multiple factors generate and constrain the possible choice
set. As a sub-branch of route choice study, research on drivers’ route choice be-
havior has also been widely investigated from both theoretical and methodological
perspectives. Theoretically, a family of formal models from a game-theoretical per-
spective to analyze individual risky choice and its collective implication have been
developed (Arnott et al., 1992; Wardrop, 1952; Smith, 1979, 1983, 1984). Method-
ologically, multiple approaches including simulation (Agrawal et al., 2016), survey
(Razo and Gao, 2013; Yang et al., 2015), and observed data analysis (Gan et al.,
2010; Papinski and Scott, 2011, 2013; Sun et al., 2014; Tang et al., 2016) have been
adopted in revealing drivers’ route choice patterns.

The following sections describe different factors influencing taxi drivers’ route
choice.

2.1.1 Rationality and bounded rationality

Rationality is the fundamental assumption in many models of drivers’ route choice
behavior (Miller-Hooks and Mahmassani, 2000; Razo and Gao, 2013; Smith, 1979,
1983, 1984). It assumes that a driver calculates costs and benefits given a set
of alternative routes, and will choose the route that gives him/her the highest
marginal utility. The idea can be traced back to Von Neumann and Morgenstern
(1944) who show that in face of several risky choices, a person will choose the one
that maximizes his/her expected utility. The pioneering work by Wardrop (1952)
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discusses some theoretical framework to include the aspects of rational choices
into analyzing traffic behavior. By developing further the concept to the analysis
of transportation network, Smith (1979, 1983, 1984) investigates the existence,
uniqueness and stability of traffic equilibriums based on collective route choice
behavior. More recent studies adopt the concept and apply it to drivers’ route
choice behavior (He and Peeta, 2016; Jiang et al., 2014; Yang and Zhang, 2009).
However, in these studies, the components of drivers’ utility function is predefined
by the researchers, and it is unclear to what extent these components affect drivers’
choices.

Irrationality component of drivers’ evaluation also adds to the complexity of the
problem. Following Smith’s works, refined versions of equilibrium analysis have
been proposed by recent scientists to account for bounded rationality (de Carvalho
et al., 2016; Guo and Huang, 2016). It is assumed that drivers are indifferent among
a set of alternatives when their differences are small. Therefore, the minimal-cost
route in theory may not be the actual route been chosen. This idea of bounded
rationality adds insights into analysis of taxi drivers’ route choice behavior and
indicates the variation of drivers’ real choices.

2.1.2 Travel distance

Indeed, there are multiple structural factors influencing drivers’ choices and the
extent of their influences varies from vehicles to vehicles. For taxi drivers, the most
prominent factor is probably the travel distance, since unlike other factors, it exerts
the most direct influence on the travel budget. In particular, the travel distance
is such an essential factor that it is the main component included in the early
static analysis (Wardrop, 1952). By investigating customer-searching behavior of
taxi drivers in Beijing, Tang et al. (2016) show in their empirical analysis of GPS-
based data that taxi drivers prefer routes with shorter distances and less travel
time. While it is largely unknown whether on-service taxi drivers have the same
preferences as those on searching, researchers generally include distance and time
into their analysis (Papinski and Scott, 2011, 2013; Ramaekers et al., 2013; Yang
et al., 2015). Using FCD from Shenzhen, Sun et al. (2014) show that drivers’ route
choice is influenced by multiple factors especially the travel distance. However,
recent research also shades doubt on the validity of shortest-route prediction. In
particular, GPS-based data show that there is high deviation of real routes from
the corresponding shortest routes (Ciscal-Terry et al., 2016; Manley et al., 2015).
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2.1.3 Travel time and congestion

Drivers are sensitive to travel time and also respond to congestions (Prato et al.,
2014; Prato and Rasmussen, 2016). Because congestion changes the accessibility
of the points along the congested route (Li et al., 2011), taxi drivers will try to
avoid the routes with high probability of congestion (Arnott et al., 1992; Palma and
Rochat, 1999; Tadic et al., 2007). And also because the traffic situation is time-
dependent and varies across hours within a day (Palma and Rochat, 1999), taxi
drivers have incentives to act differently in response to differences in the likelihood
of congestion and low speed traveling.

2.1.4 Road type

Road type is another important factor in influencing taxi drivers’ route choice
(Manley et al., 2015). Different road types have varying levels of quality and traffic
flows. Taxi drivers may prefer the road with high speed limit and low possibility of
congestion. With a case study on minicab routing in London, Manley et al. (2015)
find that route features such as direction, deviation and potentials for congestion
significantly determine the drivers’ final choices.

Existing theoretical framework lends much insights into studying taxi drivers’ route
choice behavior. In particular, formal analysis provides a theoretical framework
under which taxi drivers’ rational and irrational components together result in
the real route choices. However, current research lacks solid empirical evidence to
confirm the previous arguments especially on how and to what extent the structural
factors, including travel distance, timing, congestion and road types, influence the
real behavior of taxi drivers in route choice. Thus, to investigate in detail of taxi
drivers’ choices, it is necessary to gather and handle empirical evidence that may
either give support or go against the previous theoretical argument.

2.2 Floating Car Data

Even though simulation- and survey-based studies have output delightful results
to understand route choice behavior, it is still questionable whether they are able
to mimic the real world situation with great complexity. In addition, survey-based

7



techniques are often very expensive and time-consuming, and hard to apply in
large-scale studies. In contrast to survey data, GPS-based FCD is one of the
reliable traffic data sources (Paulin and Bessler, 2013) and it provides detailed
trip information such as origin and destination (OD), operation time, speed and
direction and offers the possibility to accurately observe the actual routes drivers
have chosen. Due to budget and coverage advantages, FCD allows for large-scale
analysis which helps to reduce the survey-based selection bias.

Increasing speed of vehicles and continuously expanding road networks requires
technologies that are able to gather and explore large scale information in a real-
time manner. GPS based FCD is regarded as a such a reliable and cost-effective way
to gather accurate traffic information from large scale road networks (De Fabritiis
et al., 2008). Unlike fixed-point sensors such as radars and cameras, the GPS
devices installed on floating cars are able to provide near-real time information
including position, speed, direction, and time, among other kinds of information.

In order to collect data from moving vehicles, the GPS receiver installed on-board
must be locked on to the signals from at least three satellites and a wireless com-
munication device will send and receive signals that will be transferred into inter-
pretable information (Hofmann-Wellenhof et al., 2012).

Since the availability of FCD, it has been used in a wide range of applications.
At the macro level, FCD is used to construct real time traffic information system
as well as inference of mobilities and congestions. Schafer et al. (2002) use FCD
to reconstruct the traffic information systems in Berlin, Nuremberg and Vienna,
so that the reconstructed system represents near-complete coverage of real road
network and is able to reflect the real time traffic conditions. Similar works also
include Kerner et al. (2005), Huber et al. (1999) and Gühnemann et al. (2004).
FCD is also used to infer accessibility and mobility of road networks so that trans-
portation planners are able to map the accessibility of certain points of interest
from the constrained network (Li et al., 2011).

At the micro level, FCD is used as a way to predict various information from
individual drivers. In the area of logistic planning, FCD is used to predict travel
time for both short- and long-range trips of logistic vehicles (Simroth and Zähle,
2011). It can also be used to explore individual driver behaviors. Ciscal-Terry et al.
(2016) use the low-frequency GPS-based FCD from Italy to study the drivers’ route
choice behavior in response to territory of the traveling area. Sun et al. (2014)
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use FCD of Shenzhen to analyze commuting driver behavior in urban areas. Using
FCD from Greater Copenhagen area, Prato et al. (2014) and Prato and Rasmussen
(2016) show that drivers are more responsive to travel time and congestion during
rush hours in a day and therefore are more likely to avoid the road with high
congestion probabilities during that time. Tang et al. (2016) use FCD of vacant
taxis in Beijing to investigate taxi customer searching behavior. And similarly,
based on FCD of taxi drivers in Beijing, Yao et al. (2013) find that taxi drivers are
more likely to choose the route with faster speed, less left turns and more express
ways. With a case study of London minicab, Manley et al. (2015) compare shortest
path and anchor-based route choice and show that anchors (route features) impact
minicab routing.

2.3 Map matching

Map matching is the process of integrating the GPS-based FCD with spatial road
network data to identify the location of a vehicle on the road network. For this
purpose, a variety of algorithms were developed to improve integrating accuracy
and processing efficiency. Quddus et al. (2007) provide an overview of state-of-the
art algorithms to deal with map matching:

The first and most frequently used algorithms, which include point-to-point match-
ing (Bentley and Maurer, 1980; Bernstein and Kornhauser, 1998), point-to-curve
matching (White et al., 2000) and curve-to-curve matching (Phuyal, 2002; White
et al., 2000), are based on the geometric distances between the GPS points and
the road network. However, these geometric-based algorithms are sensitive to road
network density and are unstable with presence of outliers (Quddus et al., 2007).

The second type of algorithms take into account of the topological features of road
networks such as connectivity, contiguity and curvature (Quddus et al., 2007).
In combination with geometric features, topological analysis commonly adopt a
weighted scheme that utilizing available information including road turn, travel
speed, travel direction, and similarity between the vehicle trajectory and the road
network (Greenfeld, 2002; Quddus et al., 2003; Yu, 2006). And therefore, the
weighted topological map-matching algorithms always have better performance
than those solely based on geometric features (Quddus et al., 2007).
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The third type of algorithms derive confidence intervals surround the GPS points
and match accordingly the road segments with the highest confidence level (Ochieng
et al., 2003; Zhao, 2010). However, this type of algorithm cumulates errors with
every construction of confidence interval and additional criteria are needed to com-
plement the accuracy loss (Quddus et al., 2007).

More advanced algorithms also incorporate researches on belief theory, fuzzy logic
and Bayesian analysis (El Najjar and Bonnifait, 2005; Krakiwsky et al., 1988; Kim,
1998; Newson and Krumm, 2009; Pyo et al., 2001), and are reported to perform
better than aforementioned algorithms (Quddus et al., 2007). The most recent de-
velopment of map-matching algorithms regards the GPS points as a serial revealing
of latent positions on the road network that transfer between different states from
previous to current time (Newson and Krumm, 2009). Therefore, the probability
of a set of GPS points located on certain combinations of road segments can be
calculated from a Hidden Markov Model where the current position only depends
on the nearest early position and a transferring probability matrix. This algorithm
regards the GPS records as a serial connected set instead of uncorrelated individual
points, and takes the connectivity between different points into account. Conse-
quently, the algorithm is able to derive locations on road network in a consistent
way that won’t be impacted too much by outliers.

2.4 Algorithms for finding the shortest route

Finding the shortest route poses another challenge to studying route behaviors
in large road network. In recent years, there have been rapid development of
algorithms for finding and comparing shortest routes with multiple criteria that
can be further added. The following explores existing algorithms from the simplest
shortest path algorithm to k-shortest path algorithm and to other refinements.

2.4.1 Shortest path

The problem to find the shortest path by constructing a tree with minimum total
length between n node was first proposed by Dijkstra (1959). And one of the initial
algorithms that was clearly stated for finding the shortest route was introduced by
Floyd (1962) who used recursive loops to identify the shortest path from node i
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to j. In detail, the algorithm initializes an storing array m[i, j] corresponding to
the length of a direct link between i and j. Then it loops through 1 to N—the
number of nodes in the network—to find the path that has the lowest cumulative
distances.

The algorithm provides the basis for finding the shortest route based on geometric
distances. However, the shortage of the algorithm is also apparent. It is unable
to handle calculation of shortest path that are based on other criteria except for
distances. Another limitation of this algorithm is that only a single route will be
produced instead of a set of them, which are commonly required for comparison
analysis.

A partial improvement was done by Ziliaskopoulos and Mahmassani (1993) who in-
troduced time-dependence into calculation of shortest routes so that the algorithm
is capable of handling real-time data from traffic records. Jonker and Volgenant
(1987) also demonstrate a new algorithm that implements new initialization rou-
tines for linear assignment problems.

2.4.2 K-shortest path

Given the need to compare a set of routes between two end nodes, the k-shortest
path algorithm was developed to find the specified number of shortest routes from
the road network in an order from 1 to k. Hoffman and Pavley (1959) propose a
looping solution to find the k shortest path, but the algorithm is computationally
intensive when the value of k is big and the scale of the network is large. Yen
(1971) presents an efficient algorithm that is able to calculate k loop-less paths
that have the shortest total length in a network. The algorithm is fast and its
computational time only increases linearly with the increasing value of k. Eppstein
(1998) achieves further computational improvement over the algorithm and Wilson
(1996) introduces the algorithm with additional weighting scheme.

The above theoretical and methodological introductions based on existing literature
provide an overview of factors influencing individual route choice behavior, as well
as the state-of-the-art methods for investigating the route choice problem. The
following chapter begins with an overview of the data and the study area after
which a series of analyses are conducted.
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2.5 State of the art and research gaps

While the above sections describe the relevant theories and technologies, this sec-
tion discusses in detail the most relevant research on taxi drivers’ route choice
behavior. Drivers’ route choice have been widely studied from different perspec-
tives. In particular, advanced technologies such as simulation (Agrawal et al.,
2016; Gelenbe and Sakellari, 2012; Shang et al., 2016; Yan et al., 2006), stated
preferences (Razo and Gao, 2013; Yang et al., 2015), complicated game theoretical
models (Smith, 1979, 1983, 1984; Wardrop, 1952) are used. However, till now there
is only a fraction of literature on route choice behavior focusing on taxi drivers. It
includes the works by Yao et al. (2013), Sun et al. (2014) and Manley et al. (2015).

Yao et al. (2013) investigate taxi drivers’ route choice with FCD in Beijing. They
study the influence of road network conditions and traffic status on the choice of
taxi drivers, and they find that taxi drivers tend to choose the route with faster
travel speed, less left turns and more proportion of highways. However, they only
use a very small subsample of taxi trips (in total 221 trips) that are randomly
chosen from the FCD. Such small number of trips limits the application of their
findings to the general situations with more trips and much larger networks. In
addition, because only a small number of factors are analyzed, their study cannot
rule out the influence of factors such as observed travel time.

Sun et al. (2014) utilize FCD in Shenzhen to study the taxi drivers’ route choice
behavior. They distinguish between the shortest route and the fastest routes,
and specify eight scenarios to quantify the influence of various potential factors.
Their results show that travel distance, travel time and road preference have high
influence on taxi drivers’ route choices. Even though they have much larger samples
than Yao et al. (2013), the total number of trips is around 4000, which is much
smaller than the number of trips in real-world operations.

Manley et al. (2015) study the minicab trips in London also with FCD. They in-
crease the number of trips under study to around 700,000 with about 3000 drivers,
and establish what they call anchor-based analysis that combine different road
features together in predicting the route choice. Compared to shortest path pre-
diction, their results show that anchors like travel time, turns and road category
have higher impacts on minicab drivers’ route choices. So far, their study is the
most sophisticated one on the taxi drivers’ route choice behavior. However, it also
has limitations: First, they are able to general only a single shortest route at a time
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to minimize the cost function, which is less desirable than general multiple routes
that connect between the origin and the destination. Second, instead of analyzing
the whole London network, the authors only select cases in smaller regions, which
may not be representing the whole city. Third, the number of trips in their study
is still small than real situations.

Borrowing insights from the above studies and considering the limitation of them as
well, this thesis addresses the problem of taxi drivers’ route choice with a large-scale
dataset that contains more than 3,600,000 valid taxi trips. A number of influencing
factors are identified and specified into scenarios to examine their relative influence
on the taxi drivers’ route choice. The details of the analysis will be described in
the following chapters.
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3 Data and study area

To give an overview, this chapter introduces the area and time of study, the number
of records as well as the data structure.

3.1 Area of study

Shanghai is of particular interest because as the economic center of China, it has
the busies traffic flows around the world. Among other traffic means, taxis are
frequently used by local residents and visitors for commuting between different
areas of the city. Therefore, it provides us a rich set of information of taxi drivers’
routine around the clock. In particular, the GPS-based FCD records the points
along the trajectories of taxi drivers collected by a fleet of vehicles. The data
provides valuable information for inferring the movement of taxi drivers in an
accurate and cheap manner. Figure 2 shows the area of study with the road
network, major districts and two airports.

Figure 2. Topological map of Shanghai with the road network districts, and
airports
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3.2 Time period of study and data

To present representative results, the period of study covers two weeks from June
15th (Tuesday) to June 28th (Monday), 2010. During this period, all records of
taxi FCD in Shanghai with passengers on board are used for analysis 1. The total
number of taxi drivers in the sample is 7168.

The data used in this study contains the information on the longitude and latitude
of points along the trajectory as well as other information such as time, directions,
and instant velocities. Table 1 summarizes the main attributes of the data from
the single day, and shows the examples extracted from the data. In addition to
spatial and temporal information, the taxi id and the passenger indicator help to
distinguish different operating taxis and identify the services status of taxi drivers.

Column Attributes Example
date Date of FCD Data 20100615
taxiid taxi id, consists 5 letters 10003
lon longitude of current location 121.529558
lat latitude of current location 31.23496
velocity instant speed 45.5
direction driving orientation 155

valid number from 0 to 359 degree
passenger if the taxi is with passenger or not 1

No - 0, Yes - 1
time exact time of current location 2010-06-15 00:00:07

Table 1. Data structure of FCD data in Shanghai

Table 2 shows the summary of the whole dataset including the information about
the numbers of FCD points and taxi driver routes over the 14 days. On average,
there are around 50 million GPS points and more than 250 thousands valid on-
service trips each day. On-service trips mean the routes chosen by taxi drivers
when there are passengers on board. In total, there are around 650 million GPS
points and around 3.6 million valid routes.

1The data was shared by Prof. Chun Liu from Tongji University.
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Date FCD Points Routes
20100615 55,083,889 275,958
20100616 56,300,003 268,583
20100617 51,978,838 272,594
20100618 47,390,204 278,074
20100619 50,444,522 290,734
20100620 51,259,864 258,392
20100622 47,272,895 271,188
20100623 48,146,691 280,074
20100624 48,267,510 283,901
20100625 48,598,111 295,160
20100626 49,348,793 296,208
20100627 50,001,994 273,538
20100628 44,335,553 273,417

SUM 648,428,867 3,617,821

Table 2. Valid number of points and routes for each day included in the analysis

After having the original data source, the next chapter will pre-process the data
to get rid of erroneous records, identify origin and destination pairs and match the
GPS points to the road network.
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4 Pre-processing

The pre-processing stage consists of identification of origin and destination pairs,
filtering of irrelevant points and map matching process. The following sections will
describe each of them in detail.

4.1 Identification of origin and destination pairs

FCD only records GPS points by time and the format of the data is not ready
for immediate analysis. Therefore, it is necessary to sort out the set of points
representing a complete route from the data. To do so, it is required to identify
the origin and destination (OD) pairs of on-service trips from original data.

To identify OD pairs from original FCD, a searching algorithm that vertically loops
through the data was adopted. Figure 3 shows the mechanism of the algorithm.
First of all, data for each day is sorted by taxi driver id and time to establish an
looping environment. Second, the passenger variable (1 for passenger on board and
0 for vacancy) is used as the index for identifying the change of status from 1 to
0 or from 0 to 1. If the status change is from 0 to 1, the beginning point with
passenger value of 1 is identified as the pick-up (origin) point, and vice versa to
identify the drop-off point. Only the records between the pick-up and the drop-off
point will be used as relevant data. In other words, the data without passengers
on board will be deleted from the original data.
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Figure 3. Searching alogrithm to identify OD pairs

4.2 Filtering of irrelevant points

After conducting the OD searching, the resulting data is still not clean enough for
map matching and the following analysis. There are four reasons for it. First, a
taxi driver may forget to turn off the passenger-on-board indicator or mistakenly
turn on it when the taxi is off service and not moving. Second, taxi drivers may
mistakenly turn off or turn on the passenger-on-board indicator in a very short
time. This results in the change of recorded service status within seconds even
though the real status does not change. Third, the taxi drivers may accidentally
or intendedly drive off the roads which results in unmatched routes in the sample.
Finally, the normal records of direction for each GPS point should lie between 0
and 360 degrees. However, the GPS data may produce errors when records of
directions are larger than 360 degrees.

In order to further filtering the irrelevant points due to the aforementioned reasons,
the following cleaning procedure was implemented. First, to eliminate points with
wrong status, the trips with average speed less than 1 km/h were deleted. Second,
to deal with immediate service status change, routes with length less than 1 km
were removed. Third, to cope with off-path drivings, the routes that cannot be
map-matched were deleted. Finally, the recordings with direction larger than 360
degrees were deleted.
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4.3 Map matching

Map matching forms the process of associating a point to a route segment and
constructing consecutive trajectories that are essential for assigning attributes such
as length and speed to the operating taxis. Because the recorded GPS data are
concrete points with random errors from factors like weather and satellite visibility,
for analyzing taxi drivers’ route choice behavior, it is necessary to perform map
matching before analyzing the route characteristics.

The map matching algorithm adopted in this study is based on Hidden Markov
Model (HMM) (Newson and Krumm, 2009). The idea behind the algorithm is
that: the most likely sequence of routes are chosen by taking into consideration of
both the distance between points and routes, and between the consecutive points.
In detail, HMM takes into account of both the recorded GPS locations, the time
stamp of recorded points and the connectivity of the road network. It smooths the
noisy data by calculating the path with the highest likelihood from time sequence
of the recorded GPS data.

In detail, the HMM map matching calculates the emission probability of an ob-
served point location given the real located segments, and the transition probabil-
ities from one stage to another. At time t, the emission probability of an observed
point location zt given the true located segment ri is given as

p(zt|ri) =
1√

2πσz
e
− 1

2

(
||zt−xt,i||greatcircle

σz

)2

which is a Gaussian distribution with standard deviation σz estimated directly from
the data.

And the transition probability is modeled as an exponential distribution

p(dt) =
1

β
e
−dt
β

in which dt = abs (||zt − zt+1|| − ||xt,i − xt+1,j||)
where i and j are the true route segments. The Viterbi algorithm was used to
calculate the optimal path by dynamic programming (Newson and Krumm, 2009).
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Figure 4 in addition illustrates an example of a taxi route connecting the pickup
and the drop-off locations. The panel (a) shows the whole matched route and the
panel (b) shows the details of the GPS points and the corresponding routes. The
dots represent the points recorded by GPS devices installed on the taxis, and the
lines connecting the dots represents the matched routes. From observation, the
routes are matched pretty good with the observed GPS points.

(a) Overview of the map-matched taxi route

(b) Details of the map-matched result

Figure 4. Example of a map-matched taxi route in Shanghai

The pre-processing stage delivers the cleaned data that are ready for exploration
and analysis. Before going into detailed analysis, the following chapter will first
examine the overall patterns .
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5 Overall patterns

Before going into details of analysis, this chapter summarizes overall patterns from
the pre-processing results to give an overview of the taxi service areas, regularity of
taxi activities, the distribution of real routes and the shape of the shortest routes.

5.1 Distribution of service areas

The taxi service areas covers large proportion of Shanghai. Figure 5 shows the
densities of pick-up and drop-off locations from the recoded FCD data. The more
dark the red color is on the map, the higher the density is in this area. It is of no
surprise that the largest proportion of both the pick-up and the drop-off locations
are centered around Pudong, Xuhui, Huangpu, Yangpu districts, which are the
economic and education center of the city. There are some dispersion around the
peripheral areas meaning that certain places of interest may attract traffic flows
from the center to these places as well as flows back from these areas.

It is also interesting to notice the connection between the main part of the city
and the island separated by the river. The density of dots on the island and the
other fraction of the city on the other side show frequent commutes between the
city center to these places. While it is hard to know exactly what these commuters
are based on available data, the spread of taxi activities points to the importance
of taxi service in the life of Shanghai.
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(a) Density of the pick-up locations

(b) Density of the drop-off locations

Figure 5. Density of the GPS data on pick-up and drop-off locations
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5.2 Taxi service activities

This section introduces the taxi drivers’ on-service activities across days, the du-
ration of services, and travel distances for different trips.

5.2.1 Regularity of taxi services

Taxi drivers may follow regular routines of their service activities. It is important
to know the regularity of taxi services across hours.

Figure 6 summarizes the distribution of pick-up activities across days. The dots
in the plot represent the number of pick-up activities at certain hour of the day
(1:00 to 24:00), and the lines represents the flow of the time. In general, the figure
indicates a strong pattern of taxi drivers’ service operations: the most active period
is between around 9:00 in the morning and 24:00 in the evening. For the rest of
the day, the number of activities drops dramatically and there is less need for taxi
services.
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Figure 6. Event plot of pick-up activities across days
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Figure 7 illustrates in detail the distribution of taxi pick-up times. It is clear
from the figure that the most activities occur between 6:00 and 22:00 when people
commute during working hours or experience night life. A small group of people
also take taxi at mid-night around 1:00 as the peaked curve shows.

Figure 7. Distribution of pick-up time around the clock

Overall, the taxi services reach its peak in the day time and reduces significantly
during mid-night.

5.2.2 Service duration

In addition to pick-up times, the time spent on road also provides important in-
formation on regular patterns of taxi services in Shanghai. The average duration
is 14.54 minutes with the standard deviation of 16.85 minutes. As Figure 8 shows,
most trips take around 0 to 30 minutes while there is variation in different periods
of the day (x-axis is the index of travel routes, and the y-axis is the travel dura-
tion in minutes). Distributions of service duration over different periods show no
differing patterns with each other.
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Figure 8. Distribution of travel duration

5.2.3 Travel distances

In addition, Figure 9 shows the distribution of traveled distances of on-service taxis.
The average distance is 7.27 km with the standard deviation of 8.05 km. The
majority of customers using taxi for short distance traveling. The long right-tail of
the density curve till the value around 50 km also means that a small proportion
of customers use taxi for long-distance traveling. It shows little variation of travel
distances in different hours of the day.
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Figure 9. Distribution of travel distance of on-service taxi drivers

5.3 Real routes

Map matching produced satisfying results. To give an overview of map-matched
real routes, the following figures show the results of the map matching process.

The left panel of Figure 10 shows the map-matched real taxi routes with passengers
on boarder against the Openstreetmap as the source of route networks. To illustrate
the usage of different routes, the right panel of Figure 10 in addition visualizes
the density of the map-matched routes. The figure shows that while the most
frequently-used routes are located around the city center as depicted by yellow and
red, there are also some routes travel beyond the city center but used frequently,
in particular the route between the city center and the airport.
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(a) Map-matched real routes

(b) Density of the routes

Figure 10. Map-matched real taxi routes in Shanghai
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5.4 Shortest routes

In addition to the real routes, the shortest routes are also identified and presented.
Dijkstra’s algorithm was used to calculate the shortest path from the origin to the
destination Dijkstra (1959). The algorithm iteratively compares the distance of
all the nodes on the paths connecting the origin node and the detonation node,
and calculates the shortest route as the collection of nodes that has the shortest
distance connecting Origin and Destination (OD).

The following three figures show the examples extracted from the computed dataset.
Figure 11 shows a taxi driving route (red line) and its corresponding shortest route
(blue line) with relatively short travel distance between 0km and 5km. While there
is no overlapping segments between them, the two routes are quite parallel to each
other and the taxi driver is likely choose the more straight route.

Figure 11. Example 1: the real route and the shortest route

28



Figure 12 shows a taxi driving route with a long travel distance (longer than 10km)
and its computed shortest route. From the origin, two routes diverge with each
other, but after around the half of the distance, the real route overlaps with the
shortest route. This observed pattern indicates that while other factors may influ-
ence the driving behavior of the taxi driver, taxi drivers are more likely to choose
the shortest route when possible.

Figure 12. Example 2: the real route and the shortest route

Figure 13 illustrates a route with middle distance (between 5km and 10km) and
shows in addition that the travel distance of the shortest route and the real route
may not differ so much.
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Figure 13. Example 3: the real route and the shortest route

The revealed pattern offers the first impression of both the real and the short-
est routes. In general, despite some deviations, the shortest routes have similar
distribution with the real routes. However, the extent of match of the shortest
routes with the real routes may depends on the travel distances. The next chapter
then conducts comparison analysis to find the differences between the real and the
shortest routes.
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6 Comparison analysis

Comparison analysis is a preliminary step to examine the influence of selected
features individually in order to compare the differences between the real and the
shortest routes. To compare between real and the shortest routes, a number of
elements are considered and are categorized into route-based and segment-based
analysis.

To investigate the extent of similarity between the real and the shortest routes,
how much longer are the real routes to the shortest routes, and how circuitous the
routes are, route-based analysis compares the percentage of shared length (PSL),
percentage of length difference (PLD), and route circuity between the real and the
shortest routes. Because traffic conditions may differ in different periods of a day
and between weekdays and weekends, the variances of PSL, PLD and route circuity
are also calculated against different time. In addition, because travel distance may
also impact the similarity between the real and the shortest routes due to increasing
likelihood of exogenous influences, the PSL, PLD and route circuity are calculated
in different groups of travel distances.

In addition to route-based analysis, segment-based analysis takes into account of
the features of each segment and how the real and the shortest routes differs in terms
of these features. It considers the influence of road type, number of intersections
and number of left turns. Table 3 summarizes the variables used in the comparison
analysis.

Variables Route-based analysis Segment-based analysis

PSL YES
PLD YES
Route circuity YES
Road type YES
Intersection YES
Number of left turns YES

Table 3. Overview of variables in comparison analysis
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6.1 Route-based analysis

Route-based analysis consists of comparing the PSL, PLD and route circuity be-
tween the shortest and the real routes. The details of the results are introduced in
the following subsections.

6.1.1 Percentage of shared length

PSL illustrates the extent to which the real routes are similar to the shortest one.
Higher value of PSL indicates that taxi drivers are more likely to follow shortest
routes. As aforementioned, due to bounded rationality and impact of a bunch
of exogenous factors, the actual routes taxi drivers chosen may deviate from the
predicted shortest routes. Taking into account of this fact, calculating the PSL
between real routes and the shortest routes is appropriate for analyzing to what
extent the real routes follow the prediction of the shortest routes.

The PSL is calculated by first identifying the overlapped segments of real routes
and the shortest routes and then dividing the overlapped length by real total length.
In formula,

PSL =

∑
i∈Φ ri∑
j∈Θ rj

where Φ and Θ denote the set of overlapped segments and the segments contained
in real routes, i denotes individual segments, and ri denotes the segment length.

6.1.1.1 Overall result

Overall, it is expected that the real routes deviates from the shortest but not too
much. Table 4 summarizes the distribution of PSL from the whole data. On
average, there are around 46% of route segments that are overlapped with the
shortest routes. The completely matched routes account for 16.7% of the total
routes. There are also poor matches that have PSL values lower than 20%, which
account for 31.4% of the total routes. There are 41.9% of routes that have more
than 50% overlap with the their corresponding shortest routes.
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PSL Percentage (%) Cumulative percentage(%)

1 16.66727 16.66727
0.8 -1 5.54906 22.21633
0.5 - 0.8 19.64954 41.86587
0.2 - 0.5 26.71682 68.58269
0 -0.2 31.41731 100

Average: 0.4565

Table 4. Distribution of PSL

6.1.1.2 Variance between different time periods

The PSL values may differ between different time periods because during rush hours
the taxi drivers may prefer to choose relatively longer routes to avoid congestion.
And the traffic situation between weekdays an weekends may also differ.

However, from the Figure 14 which shows the distribution of PSL grouped by
different time slots in a day (0:00-6:00, 6:00-10:00, 10:00-16:00, 16:00-19:00, 19:00-
24:00), the PSL values do not vary much over different time periods .

Figure 14. PSL grouped by time slots
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In addition, Figure 15 distinguishes the distribution of PSL between weekdays and
weekends. Again, the figure shows no distinguishable patterns as two cumulative
percentage lines almost overlap with each other.

Figure 15. PSL grouped by weekdays and weekends

While time impacts little on the difference of PSL between the real and the shortest
routes, travel distance may have impacts on the PSL values. The following analysis
introduces the results by comparing between different travel distances.

6.1.1.3 Variance between different travel distances

When the PSL is grouped by the distances of real routes, as shown in Figure 16, it
is clear that with the increase of route length, taxi drivers tends to deviate more
from the shortest path. For trips less than 5 km as shown in blue line, more than
50% of routes have PSL values larger than 0.5; but for trips longer than 10 km, the
percentage decreases to less than 20%. One of the possible reasons is that shortest
travel distances would reduce the number of possible connections between the OD.
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Figure 16. PSL grouped by lengths of real routes

And indeed, the correlation between OD distance and the PSL shows a negative
value of -0.32, which was calculated by rxy = sxy

sxsy
, where sxy is the sample covari-

ance and sx and sy are sample standard deviations. Therefore, the longer the travel
distances, the more diverse are the real routes compared to the shortest routes.

6.1.2 Percentage of length difference

Because the lengths of different segments differ and PSL only calculates the over-
lapped lengths, it is also important to know the length difference between the real
and the shortest routes. PLD compares the total length between the real and the
shortest routes to show how much longer is the actual route to the shortest routes.
In formula,

PLD =

∑
i∈Γ ri −

∑
j∈∆ rj∑

i∈Γ ri

where Γ and ∆ denote respectively the set of real route segments and the shortest
route segments, i denotes an individual segment, and ri and rj denotes the length
of the segment. Or in short: PLD = L1−L2

L1
, which means the value is calculated

by subtracting the length of the shortest route (L2) from the real route (L1) and
then divided by the length of the real route.
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6.1.2.1 Overall result

Even though real routes deviate from the shortest routes to some extent, it is
unlikely that the real routes have a very large proportion of extra length compared
to the shortest routes. From the distribution of PLD values as shown in Table
5. The mean value of PLD is around 16%. The majority of the routes have PLD
values lie between 0 to 0.2, meaning that most of real routes are only slightly longer
than the shortest routes. Routes with PLD values larger than 0.5 only account for
less than 5% of total routes. Overall, the majority of real routes has a mild addition
of distances to the shortest routes.

PLD Percentage (%) Cumulative percentage(%)

1 0 0
0.8 -1 0.6421462 0.6421462
0.5 - 0.8 4.2816988 4.923845
0.2 - 0.5 26.540425 31.46427
0 -0.2 68.53573 100

Average: 0.1609

Table 5. Distribution of PLD

6.1.2.2 Variance between different time periods

Similar to PSL, it is possible that the values of PLD differs between different time
periods. Figure 17 shows that the distribution of PLD across hours with different
lines representing different time slots. Again, as the lines largely overlap with each
other, the values of PLD are quite similar in different periods of a day.
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Figure 17. PLD grouped by time slots

Like PSL, Figure 18 shows that PLD is similar between weekdays and weekends.

Figure 18. PLD grouped by weekdays and weekends

Therefore, time also impacts little on the difference of PLD between the real and
the shortest routes.
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6.1.2.3 Variance between different travel lengths

Between different travel distances, the distribution of PLD differs. As Figure 19
shows, when the travel distances increase, real routes grow longer than the shortest
routes. As shown with the red line, with travel distances larger than 10 km, the
routes with PLD values larger than 0.2 account for around 50% of total routes.
When the trip distances are smaller (less than 5 km), the routes with PLD values
larger than 0.2 only represent around 20% of total routes (blue line).

Figure 19. PLD grouped by lengths of real routes

From the above comparisons, it is clear that the real routes have some deviation
to the shortest routes, and the real routes are relatively longer. The deviation
between the real and the shortest routes differs in terms of travel distances but not
so much between different time periods.

6.1.3 Route circuity

Route circuity is also an important feature to compare between the real and the
shortest routes. In essence, drivers might prefer straight routes than circuitous
routes.

Route Directness Index (RDI) was generated to measure route circuities and com-
pare them between the real and the shortest routes (Papinski and Scott, 2011).
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For each OD pair a, b, the route circuity is calculated as follows,

rcr =
lab − dab
lab

, where lab refers to the route distance, and dab refers to the geometric distance
between point a and point b, and

dab = arccos(sin θa ∗ sin θb + cos θa ∗ cos θb ∗ cos ∆λ) ∗R

where θ refers to latitude, λ refers to longitude, R refers to the radius of the earth.

The range of circuity values is between 0 and 1. The closer the value is to 0, the
more straight is the route; and the closer the value is to 1, the more circuitous is
the route.

6.1.3.1 Overall results

Overall, the shortest routes have lower circuity than the real routes. The average
value of circuity of the real routes is about 0.32 but the value for the shortest routes
is only 0.19. The majority of the real routes have circuity values between 0.2 and
0.5 while the circuities of the majority of the shortest routes lie between 0 and 0.2.
The circuities of both the real and the shortest routes are not equal to 0. The
results make sense because the shortest routes tend to choose short and straight
route segments than circuitous segments.

Route Circuity Percentage in Cumulative Percentage in Cumulative
real routes (%) percentage(%) shortest routes (%) percentage(%)

1 0 0 0 0
0.8 -1 1.1759 1.1759 0.09560 0.0956
0.5 - 0.8 12.1467 13.3225 1.3021 1.3977
0.2 - 0.5 62.7011 76.0236 37.6061 39.0037
0 -0.2 23.9764 100 60.9963 100

Average Real routes: 0.3154
Shortest routes: 0.1862

Table 6. Distribution of Route Circuity of real routes and shortest routes
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6.1.3.2 Variance between different time periods

Because time may also impact taxi drivers’ choices, it is also helpful to compare
the route circuity between different time periods. Similar to the results from PSL
and PLD, the route circuity differ little across time slots. As shown in Figure 20,
lines in different colors representing different time periods mostly overlap with each
other.

Figure 20. Route circuity grouped by time slots

The same is true for comparing between weekdays and weekends. As shown in
Figure 21, the difference between the route circuity during weekdays and weekends
are ignorable.
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Figure 21. Route circuity grouped by weekdays and weekends

In sum, the difference between the real and the shortest routes is insignificant across
different time periods.

6.1.3.3 Variance between different travel distances

As mentioned before, circuity values of different routes are also compare across
travel distances. Figure 22 shows that the longer the travel distances, the more
circuitous are the routes. Around 90% of routes have circuity values larger than
0.2 when the travel distances are larger than 10 km. When the travel distances are
short, that is less than 5 km, only about 70% of routes have circuity values larger
than 0.2. It is therefore clear that the travel distances significantly influence route
circuity.
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Figure 22. Route circuity grouped by length of real routes

The above comparison analysis on route-based features show the derivation of
the real routes from the shortest routes. The difference between the real and
the shortest routes becomes more significant if the travel distances are taken into
account. Overall, most real routes have overlaps with the shortest routes (46% on
average) and have larger length (16% on average), and they are more circuitous
than the shortest routes.

6.2 Route segment-based analysis

Segment-based analysis will examine the effects of road type, number of intersec-
tions and turns on the taxi drivers’ route choice.

6.2.1 Road type

A complete travel route consists of multiple segments. The combination of segments
in a chosen route also reveals the preference of the driver. In particular, the road
type of each segment may influence the choice of taxi drivers. Thus, percentage
of each road type in each route was computed to find the most preferable type of
roads by taxi drivers.
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Road types play important roles in influencing drivers’ route choice behavior. Be-
cause different types of roads have different speed limits, individual drivers may
prefer to choose high level roads with high speed limit to shorten travel time. For
taxi drivers, however, their route choices are also influenced by customer demands
which may reduce the flexibility in choosing the type of roads that have the highest
speed limit. From the taxi driver data in Shanghai, it is able to derive and compare
features of the original chosen routes and the shortest routes in terms of road type.

As traditionally categorized, five types of road based on Open Street Map data are
analyzed: motorway, primary, secondary, tertiary and residential roads. Motorway
has the highest speed limit up to 120 kilometers pro hour in Shanghai. Primary,
secondary and tertiary roads respectively have speed limits of 70, 60 and 40 kilo-
meters pro hour. Residential roads are located within residential areas and have a
speed limit of 40 kilometers pro hour as the same with the tertiary roads.

Figure 23 shows the share of different types of roads in both the real and the
shortest routes. In real routes, primary ways take the largest proportion while the
secondary ways have the second largest proportion. And the resiential roads have
the smallest share compared to other four types of roads. However, in the shortest
routes, the secondary roads have the highest share and the primary ways only have
the second largest share. And the motorway in the real routes have the smallest
proportion compared to other types of roads.

Figure 23. Share of different types of roads in the real and shortest routes
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In addition to average values, Figure 24 show the percentage usages of different
types of roads in different travel distances. On average, taxi drivers prefer primary
roads more than other types of roads. Because primary roads have relatively high
speed limit and can accommodate huge flows of traffics, and thus they are a major
type of roads in urban areas. However, the usage of primary roads differs across
travel distances. In short-distance trips that shorter than 5 km, the primary roads
share lower percentage compared to the mid- and long-distance trips. That holds
true for both the real and the shortest routes.

Figure 24. Share of different types of roads across travel distances

Even though motorways have highest speed limits, they are on average less used
by taxi drivers because most trips are short distant. It is of no surprise because
most of the trips are around the city center and there is no need to use motorways
which are usually used to travel across or outside the city. And indeed, in long
trips that are larger than 10 km, the usage of motorway increases significantly to
37% as shown in the figure.

On average, the secondary ways have the second highest usage in real trips. How-
ever, compared to primary and secondary roads, percent usage of tertiary roads in
original routes are lower. This result follows the logic that taxi drivers are more
likely choose the roads with high speed limit than those with low limit.
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The result also shows that compared to the shortest routes, the real routes have
higher share of the primary roads and the motorways. This is an indicator showing
that taxi drivers have preferences for the types of roads that have high speed limit.

Figure 25 also shows the share of different types of roads in different time periods
within a day. Actually, time difference on shares of different road types is hardly
distinguishable. Across hours, the primary ways have the highest share while the
residential roads have the lowest. But in the shortest routes, the secondary ways
instead have the highest share.

Figure 25. Share of different types of roads across time slots

Figure 26 show in addition the share of different road types in both weekdays
and weekends. Again the difference is ignorable between the weekdays and the
weekends. The same results hold for the share of different types of roads in both
the real and the shortest routes.
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Figure 26. Share of different types of roads in weekdays and weekends

In a nutshell, the difference between the real and the shortest routes in terms
of road types reveals the preferences of taxi drivers. They prefer to choose the
roads with high speed limit instead of choosing directly the those with the shortest
connection. In particular, when the travel distances increase, taxi drivers prefer
more the motorways that have the highest speed limit.

6.2.2 Intersections and number of turns

Besides road types, other features like (complex) intersections and number of turns
may also influence the choice of taxi drivers. The following results shows the
difference between the real and the shortest routes in terms of these features.
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As shown in Figure 27, over different travel distances, the distributions of numbers
of straight ways between the real and the shortest routes are quite similar 2. Thus,
straight ways may not be an important consideration for taxi drivers.

Figure 27. Comparison of numbers of straight ways in the real and the shortest
routes

Because Chinese regulations requires right-hand traffic, drivers are also commonly
assumed to avoid left turns (Yao et al., 2013). However, Figure 28 shows that in
comparison to shortest routes, taxi drivers actually chose the routes with relatively
more left turns. When even taking into account of the number of sharp left turns
as shown in Figure 29, real routes have more sharp left turns on average than the
shortest routes 3.

2The straight ways are the ways whose nodes are nether the left- nor the right-turns, or the
ways that only connect with two nodes. The left turns are identified when the degree of direction
is between 210 and 330; and the right turns are identified when the degree of direction is between
30 and 150.

3Sharp left turns are identified when the degree of direction is between 210 and 270
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Figure 28. Comparison of numbers of left turns in the real and the shortest routes

Figure 29. Comparison of numbers of sharp left turns in the real and the shortest
routes

Finally, the impact of number of intersections on taxi drivers’ route choices was
considered. Figure 30 shows that real routes and the shortest routes are actually
very similar in terms of number of intersections. In other words, taxi drivers will
not deliberately choose a longer route in order to avoid intersections.
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Figure 30. Comparison of numbers of intersections in the real and the shortest
routes

In sum, the above analysis compare both the route- and the segment-based factors
in influencing taxi drivers’ choices. In expectation, real routes deviate from the
shortest routes and are longer than shortest routes by 60% on average. The longer
taxi drivers travel, the higher the deviation of real routes from the shortest routes.
Time periods and whether the travel date is in weekdays or on weekends seem to
influence little on the route choices. In contrast, taxi drivers prefer certain road
types than others. In particular, the primary roads are the most frequently used
type of roads compared to secondary, tertiary, residential and motorways. But the
comparison analysis show that almost no influence in terms of straight ways, left
turns, sharp left turns and intersection exist when comparing real routes and the
shortest routes.
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7 Preference analysis

Comparison analysis considers only a single factor once at a time as described in
the previous chapter. And insignificance of some factors may due to the existence of
interaction effects that is hard to be detected with simple comparison. Therefore,
a more sophisticated way to analyze the preferences of taxi drivers need to be
conducted.

The most thorough way to compare multiple factors is to identify all alternative
routes and find the factors of significance by conducting a regression analysis.
However, calculating all alternative routes and compare their relevant features is
computationally demanding. To get rid of complexity to find all alternative routes
in a network, the K shortest path algorithm was introduced by imposing constrains
on route choices and limiting the number of alternative routes.

The idea originates from the seminar paper by Dijkstra (1959) in which he proposed
the problem of constructing the shortest path from n node. Later on, the algorithm
was developed further to allow the calculation of multiple routes with a given
set of ODs (Hoffman and Pavley, 1959; Ishii, 1978; Yen, 1971). The core of the
later algorithm lies in the construction of scenarios or weights by which the routes
are chosen to minimize the weighted costs. From identifying the shortest routes
with specified weights, the resulting analysis is able to compare between different
scenarios and find the order of factors by their influence on the final choices.

7.1 Scenarios and their application to general routes

In this study, 10 scenarios have been specified to detect the extent of influence by
multiple factors. The basic scenario (scenario 0) contains only the weights of travel
distances. And the resulting routes correspond to the shortest routes by length as
previously discussed. The rest of the scenarios are as follows.

• Scenario 1: The first scenario in comparison adds traffic free flow to the
weights to account for the influence of travel time. The free flow is calculated
as the shortest possible time ti at the maximum speed of road segment i,
assuming that there is no congestion in the whole traffic network. C1 is used
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as the cost to calculate the fastest route in this scenario.

C1 = ti

• Scenario 2: Due to the fear of congestion and delay, taxi drivers may prefer
the route with the time-dependent travel time. The time-dependent travel
time in each road segment i is calculated as the average travel time Ti by
all on-service taxis passing through that segment i of a single day. The
travel time is divided into five time period α as mentioned in the previous
sections, from 00:00-06:00, 06:00-10:00, 10:00-16:00, 16:00-19:00, 19:00-24:00.
And the route with the lowest cumulative observed travel time is identified
as the least-observed travel-time route. C2 is used as the cost to calculate
the weighted fastest route in this scenario.

C2 = Ti|α

• Scenario 3: The third scenario combines travel distance with road types. It
corresponds to the route choice behavior that mainly concerns about shortest
and high quality routes. In this case, li represents the length of road segment
i, factors wi are assigned based on the category of each road segment i.
”Motorways” are given a weight of 1; ”Primary roads” are given a weight of
2; ”Secondary roads” are given a weight of 3; ”Tertiary roads” are given a
weight of 4; ”Residential roads” are given a weight of 5. C3 is used as the
cost to calculate the weighted shortest route in this scenario.

C3 = li ∗ wi

• Scenario 4: The fourth scenario takes the effect of free flow and road types
into account. C4 is used as the cost to calculate the weighted fastest route in
this scenario.

C4 = ti ∗ wi

• Scenario 5: The fifth scenario combines travel distances with road usage
frequency as suggested by Dijkstra (1959). In this scenario, road usage fre-
quency fi is based on the frequency of road segment i used from all observed
taxi trips during the whole study period, the 14 consecutive days. Because
road usage frequency has high standard deviations, the calculation may suffer
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from numerical instability. Thus, the logged usage frequency is used instead
of the original values. C5 is used as the cost to calculate the weighted shortest
route in this scenario.

C5 = li / log(fi)

• Scenario 6: The sixth scenario considers the effect of free flow in addition to
road usage frequency, which can be obtained the same in Scenario 5. C6 is
used as the cost to calculate the weighted fastest route in this scenario.

C6 = ti / log(fi)

• Scenario 7: In addition to travel distances, Scenario 7 also considers the ef-
fects of numbers of left turns. Due to the right hand rule in the regulation
of China’s traffic, taking left turns means more waiting time in face of traffic
lights, and might be more time consuming. By using K shortest path algo-
rithm, for each OD pairs, trips with top ten shortest distances are generated,
then the numbers of left turns are calculated for each trip. Trips with mini-
mal number of left turns are chosen as the final results in this scenario. C7 is
used as the criteria to calculate the weighted shortest route in this scenario.

C7 : li considering min(Nleftturns)

• Scenario 8: Similar to Scenario 7, trips with top ten minimal time are gen-
erated, and for each OD pairs, trips with minimal number of left turns are
chosen as the final results in this scenario. C8 is used as the criteria to
calculate the weighted fastest route in this scenario.

C8 : ti considering min(Nleftturns)

• Scenario 9, 10: In addition to left turns, Scenario 9 and 10 considers that
taxi drivers might prefer taking straight roads instead of taking turns. Trips
with top ten shortest distance of minimal time are generated in these two
scenarios. And the sum of numbers of left turns or right turns of each trips
are calculated from these trips. Trips with minimal number of all turns are
chosen as the final results, which are also seen as the most straight ways. C9

and C10 are used as the criteria to calculate the weighted route.

C9 : li considering min(Nturns)

C10 : ti considering min(Nturns)
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Table 7 summarizes the factors used in each scenarios.

Scenarios
Factors S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Length
Free flow
Observed travel time
Road type
Road use frequency
Left turns
Turns

Table 7. Scenarios: the gray cells indicate the inclusion of the factor into the
corresponding scenario.

To calculate the prediction accuracy of different scenarios and thereby determine
the extent of influence by varying factors, 10000 routes were sampled from the
original data, and PSL was computed against real routes. Table 8 summarizes the
results from the predictions of different scenarios.

Scenario Weighted Criteria Mean(%) Over 75% Improve-
match ment

0 Minimal distance 46.61 25.69
1 Least freeflow travel time 51.30 30.77 YES
2 Least observed travel time 51.75 30.92 YES
3 Minimal (road category * distance) 48.79 29.39 YES
4 Minimal (road category * time) 45.80 26.72 NO
5 Minimal (road usage frequency * distance) 53.56 32.52 NO
6 Minimal (road usage frequency * time) 52.48 31.94 YES
7 Minimal (left turns * distance) 46.61 25.60 NO
8 Minimal (left turns * time) 51.06 30.50 YES
9 Minimal (turns * distance) 36.23 14.52 NO
10 Minimal (turns * time) 38.46 16.53 NO

Table 8. Prediction accuracy of different scenarios (cells show the cumulative
percentage of cases within specified accuracy category)
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Scenario 1, 2, 3, 5, 6 and 8 show improvement over the basic travel-distance scenario
(scenario 0). In particular, scenario 5 which considers the effects of travel distances
and logged usage frequency has the highest prediction accuracy. This means that
taxi drivers prefer to choose the routes that are used more frequently by other taxi
drivers.

Scenario 1 consider the impact of the speed limits on the taxi drivers’ route choices.
It shows that taxi drivers prefer roads with high speed limits and lower free-flow
travel time compared to minimal-distance routes. The least observed travel time
in Scenario 2 was calculated based the average speed of all taxi drivers on each
route segment. The improvement of prediction in this scenario indicates that taxi
drivers care about the real travel time in choosing the routes.

Scenario 3 shows the scenario in combination with travel distance and road cate-
gory. The improvement over the basic scenario indicates that preference over road
types are also important in addition to real travel distances. Scenario 4 shows that
the impact of road category and freeflow travel time together is almost identical
to the impact of travel distances. That means the travel distance is still a major
concern for taxi drivers’ route choice.

Scenario 5 and 6 consider the impact of logged road usage frequency on route
choices. Both considering in addition the distance (Scenario 5) and the time (Sce-
nario 6), the road usage frequency contributes to the improvement of prediction
accuracy on the real routes.

In Scenario 7 and 8, the number of left turns are considered. The prediction routes
are identified by minimize the number of left turns given a set of shortest routes
(Scenario 7) or fastest routes (Scenario 8). The results show that the number of
left turns has little effect in both situations considering either travel distance or
travel time.

The last two scenarios—Scenario 9 and 10—consider the effect of the number of
turns. However, the results show very poor prediction from the number of turns.
That means taxi drivers consider little about the number of turns in choosing their
routes.

To sum up, taxi drivers in general concern about travel distance, travel time, free
flow, road type, the number of left turns and road usage frequency. However, taxi
drivers care little about the number of turns. Overall, the travel distance has the
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highest prediction power which means that it is still the most important factor in
drivers’ route choice compared to other factors like travel time, free flow, road type
considered in this thesis.

7.2 Scenarios applied to airport-city center routes

By now, a general route choice pattern of taxi drivers has been provided. However,
it is still unclear whether this general pattern holds for specific cases. To answer
this question, the following section make clusters of the study area and pick out
the routes from the airport to the city center as a specific study. The following
subsections describe in detail the clustering algorithm and how it is applied to
select the area and the cases for this specific study.

7.2.1 DBSCAN

Because of heterogeneity of different travel ODs, it is possible that the above ag-
gregate analysis may underestimate the effects of certain factors under some types
of travels. In order to find representative cases confirming the above analysis, it is
necessary to find places with high visiting frequencies and then extract routes from
these places. One solution is to cluster the drop-off and pick-up locations of taxi
drivers.

In order to find the representative places, Density-Based Spatial Clustering of Ap-
plications with Noise (DBSCAN) was adopted here to identify the clusters of points
(Ester et al., 1996). The DBSCAN algorithm takes in two parameters: the min-
imum number of points (minpts), and the range of clustering (ε). Because the
clustering results largely depends on the settings of the two parameters, various
combinations of the two parameter were explored to find a good set of parameter
values.

Table 9 shows the number of cluster for different combinations of parameters. As
the darkness of the colors in the cells indicates, the number of cluster decreases
with the increasing of both minpts and ε. When the values of minpts and ε are
low, for example minpts < 400% and ε < 300, the numbers of clusters are high.
Such high number of clusters is less helpful for identifying taxi pick-up patterns
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than a mild number of clusters. On the contrary, when both of the values are low,
the algorithm is only able to identify a very small number of factors that makes
various features of clusters indistinguishable.

ε
N 100 200 300 400 500 600 700 800 900 1000

100% 4227 1822 558 147 53 36 27 18 12 12
200% 3204 1291 400 99 44 36 27 19 15 12
300% 2585 929 296 77 36 20 18 15 10 9
400% 2107 735 236 59 27 18 12 10 10 8
500% 1746 594 206 70 24 11 10 8 7 6
600% 1455 487 180 68 24 15 10 7 6 5
700% 1227 409 154 66 28 15 7 9 6 5

m 800% 1050 345 145 66 22 18 11 7 5 4
i 900% 889 302 125 61 28 13 7 5 3 4
n 1000% 774 267 103 59 26 15 10 6 3 3
p 1100% 693 228 93 51 29 16 10 8 4 3
t 1200% 606 203 86 51 24 15 9 8 5 3
s 1300% 518 186 87 43 22 11 11 7 5 4

1400% 453 158 77 41 29 13 11 9 7 6
1500% 391 145 81 34 29 12 11 10 5 7
1600% 352 130 79 35 25 11 11 9 7 5
1700% 322 124 76 38 19 15 9 5 4 5
1800% 282 104 68 29 19 15 8 8 4 2
1900% 259 88 61 26 18 15 7 7 5 1
2000% 229 83 58 30 16 14 8 5 4 2

Table 9. Number of cluster with different combinations of parameters (minpts in
the first column and ε in the first row)

If too many clustered are included, it is hard to find the general patterns. In
contrast, if only a few clusters are chosen, it is likely to omit a lot of informa-
tion. Finally, by balancing between identifiability of patterns and availability of
information, ε value of 500 and the minpts value of 600% (3000) were chosen to
produce the final clusters. As shown in Figure 31, there are in total 24 places
that were clustered. The largest cluster, as indexed with number 1, corresponds
to the city center with busiest commercial, travel and financial activities. Cluster
2 corresponds to Lujiazui which is the financial center of Shanghai. Cluster 3, 6,
8, 17, 19, 20 and 24 are major residential areas. Cluster 4 surround the Shang-
hai Children Median Center where there are high demand for taxi services due to
children’s health emergencies. Cluster 5, 10, 12 and 22 center around universities
and high schools. Cluster 7 and 9 are exhibition and park areas. Cluster 11 is
the location of the city zoo. Cluster 13, 15 and 18 are shopping malls or shopping
streets. Cluster 14 and 23 are airports. Cluster 16 is near the location of the city
theater, and cluster 21 is the bank zone. Overall, clustered places represent a vast
of purposes ranging from education to entertainment, from shopping to working in
financial business. While most of the clusters are located within the city center, the
only exception is the cluster 23, the location of the Pudong International Airport.
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Therefore, the travel routes from the Pudong International Airport provides the
opportunity to test whether the aggregate analysis is commonly hold for all types
of travels with different ODs.

Figure 31. Clusters of most frequently visited places

7.2.2 Results

To examine the results of scenarios in applying to specific travel routes, the routes
between the city center and the Pudong International Airport were chosen as a
typical example.

By restricting the origins from the airport, it is possible to identify the clusters
within the city center. And applying the DBSCAN algorithm again to the restricted
dataset, the analysis results in the following clusters as shown in Figure 32. Cluster
A is around the Nanjing Road, the most famous shopping street in Shanghai.
Cluster B is the location of Lujiazui financial district. Cluster C is the hotel area.
And cluster D points to Xujiahui, the commerce and cultural center of Shanghai.
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Figure 32. Clusters of most frequently visited places by routes from the Pudong
International Airport

By extracting routes from the cluster of airport to the cluster of the center center,
Figure 33 is able to visualize real routes from the airport to the city center. The
transparency and darkness the the route color indicate the usage frequency. The
darker the color, the more frequently are the routes used by taxi drivers. While
several routes are used more frequently by taxi drivers traveling from the airport
to the city center, there are some detours that travel around the city.

Figure 33. Routes from the Pudong International Airport to city center

58



By applying all the scenarios to the case of airport traffic, the following results were
achieved and summarized by Table 10. The overall accuracy dropped dramatically
in airport traffics, indicating more uncertainty of taxi drivers route choices when
the travel distances increase. This is because with longer travel distance, taxi
drivers face more choices, and therefore the proportion of overlap between the real
and the shortest routes accordingly decreases.

Scenario Weighted Criteria Mean Over 75% Improve-
(%) match ment

0 Minimal distance 13.25 0.00
1 Least freeflow travel time 24.22 4.67 YES
2 Least observed travel time 48.00 12.62 YES
3 Minimal (road category * distance) 51.79 17.76 YES
4 Minimal (road category * time) 30.78 9.35 YES
5 Minimal (road usage frequency * distance) 32.34 0.00 YES
6 Minimal (road usage frequency * time) 25.84 5.14 YES
7 Minimal (turns * distance) 10.68 0.00 NO
8 Minimal (turns * time) 20.52 4.67 YES
9 Minimal (left turns * distance) 13.26 0.00 NO
10 Minimal (left turns * time) 24.20 4.66 YES

Table 10. Prediction accuracy of different scenarios to the routes from Pudong
International Airport to the city center

For the trips from the airport to the city center, the freeflow travel time and the
observed travel time play a more important role than in general trips as illustrated
in the previous section. In particular, the prediction accuracy increases dramat-
ically from 13% to 48% when taking into account of observed travel time. Road
type is also important as shown in Scenario 3 and 4. Considering road types, the
improvement of average prediction accuracy and the high-level matches (over 75%
match) are significantly high. Road usage frequency also influence taxi drivers’
choices but are less important in such case than travel time. Number of turns and
number of left turns become even less significant as shown in Scenario 7 and 9.
Even though in combined with travel time, they help to improve the prediction
accuracy as in Scenario 8 and 10.
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Overall, the improvement of prediction accuracy is mainly due to travel distance,
travel time, road type and usage frequencies as quite similar to the general analysis
in the previous section. Compared to the general analysis, the travel time between
the airport and the city center plays a more important role.

Concluding from the above general and specific preference analyses, travel distance
and travel time have the highest influence on taxi drivers’ route choices, and the
their relative impacts depend on how far the real routes are. When the real routes
are long as in the case from the airport to the city center, travel time outplays
travel distance and becomes the most important factor in drivers’ choice. The
impact of road type also increases with the increasing travel distances. Other
factors including road usage frequency, number of turns and number of left turns
have some impact on taxi drivers’ route choice.
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8 Conclusion, limitations and outlook

Tradition wisdom explaining drivers’ route choice behavior focuses on simple fac-
tors such as the shortest routes or the fastest routes. The intuition behind such
explanation is that drivers may enjoy high utilities when the costs of the travel,
either in terms of time or distance, are low. However, the real chosen routes al-
ways deviate from the prediction using these simple factors. The reasons for the
deviation from the prediction are multi-faceted. And one of the reasons is lack-
ing sufficient data and efficient analytical tools to explore the relations between
multiple factors and the final chosen routes.

Do taxi drivers choose the shortest routes? The answer from the above analyses
using large-scale FCD is a partial YES. However, there are also other elements
that a taxi driver concerns about when deciding the routes between the OD. From
preference analysis, road type, travel speed limit, observed travel speed, frequency
of road usage have impacts on the taxi drivers’ route choice.

Map matching results show that taxi drivers are most active near the city center
where there is a huge demand for taxi services from residents, tourists, office com-
muters, and public officers. There is also a high demand for taxi services in the
airport where customers always expect punctuate travels and try to avoid delays.
The concentration of taxi service activities in city center and around the airport
provides valuable opportunity to study both the general and specific patterns of
taxi drivers’ route choice behavior.

Comparison analysis identifies several relations on different features between real
routes and the shortest routes. In particular, calculation of PSL show that even
though there is a large proportion of overlaps between real routes and the shortest
routes (on average 46%), the actual deviations from the two are high as well. Real
routes are on average longer than the shortest routes by 16% and are more cir-
cuitous. The difference between the real and the shortest routes difference between
different travel distances: the longer the travel distance, the larger the difference
between the two routes. Segment-based analysis also shows that real routes and
the shortest routes differ in terms of road type, intersections and number of left
turns.
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Going a step further from comparison analysis, preference analysis identifies a set
of scenarios to explore the extent to which different factors impact the final route
choices of taxi drivers. Compared to the shortest-distance scenario with an average
of 46.61% prediction accuracy, the scenario in combination with travel distance and
road usage frequency improves the prediction accuracy to 53.56%. While, in the
general situation travel distance still plays the major role, with the increase of travel
distances, travel time becomes more important. As the trips from the airport to city
center shows, observed travel time improves the prediction accuracy of real routes
from 13.25% in shortest-distance scenario to 48%. Furthermore, the results also
indicate that taxi drivers prefer to choose the most frequently used routes by other
taxi drivers. In addition, compared to the original shortest distance prediction, the
addition of road type to the shortest path algorithm also significantly improve the
prediction results.

There are at least three limitations in this thesis. First, due to computational
constraints, only the top 10 routes to predict the best matches in Scenario 7,8, 9
and 10 could be calculated for each real routes. Therefore, further work needs to
be done to optimize the efficiency of the k-shortest-path algorithm so that it is
computable with large-scale road networks. Second, the period of study include
two weeks. However, it is possible to adapt the study period and include also other
external events such as ceremonies and typhoon. Future research may extend the
period of study and examine the impact of such events on the taxi drivers’ behavior.
Finally, this thesis doesn’t consider the impact of context, such as weather and
external events, on taxi drivers’ choice. Future study may also extend the analysis
to examine the taxi drivers’ context awareness.
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