
 

 

 

 

 

 

Technische Universität München 

Department of Civil, Geo and  

Environmental Engineering 

Chair of Cartography 

                  

 

 

 

 

 

 

Universidad Politécnica de Valencia 

Department of Cartographic Engineering, 

Geodesy and Photogrammetry 

 

 

 

 

APPLICATION OF MULTI-TEMPORAL 

FRAGMENTATION INDICES IN THE 

CHARACTERISATION OF URBAN DEVELOPMENT 

MASTER’S THESIS 

 

Katalin Joó 

 

  Submitted:  31.08.2017 

  Study Course:  Cartography M.Sc. 

  Supervisors:  Luis Ángel Ruiz Fernández (UPV) 

   Marta Sapena Moll (UPV) 

   Juliane Cron (TUM) 

  



 

 

 

 



DECLARATION OF AUTHORSHIP  

i 

 

 

DECLARATION OF 

AUTHORSHIP 

I hereby declare that the submitted master thesis entitled “Application of multi-

temporal fragmentation indices in the characterisation of urban development” is my 

own work and that, to the best of my knowledge, it contains no material previously 

published, or substantially overlapping with material submitted for the award of any 

other degree at any institution, except where acknowledgement is made in the text.  

 

 

Valencia, 31 August 2017  Katalin Joó 

 

  



ACKNOWLEDGMENTS  

ii 

 

 

ACKNOWLEDGMENTS 

Hereby, I would like to take the opportunity to express my gratitude to every 

professor, classmate and friend who accompanied and supported me in this long 

academic journey starting from Hungary through Norway, Germany, Austria and finally 

finishing in Spain.  

My deepest gratitude goes to my supervisors Luis Ángel Ruiz and Marta Sapena at 

Universidad Politécnica de Valencia (UPV) for their constant guidance, availability, 

ideas and kindness during all these months. I had never expected to receive so much 

support. Equally, special thanks to Juliane Cron, my supervisor at Technische 

Universität München (TUM), for her support, patience and valuable feedback on my 

work.  

In addition, the biggest thank you to my family, who has always been there for me.  

   



ABSTRACT  

iii 

 

 

ABSTRACT 

Urbanisation, encouraged by population growth and fast industrial and economic 

development, is changing the face of the Earth day by day. The newly urbanised areas 

appear and spread at the cost of the extension and unity of green areas and their 

ecosystem. To be able to reduce the negative effects of urbanisation, it is important to 

monitor, analyse and understand urban growth. Many studies have been conducted on 

the topic to help urban planners realise more sustainable development. This thesis also 

aims to contribute to a better understanding of urban growth. Fragmentation indices 

were used in the characterisation of urban development, but not only considering the 

changes in historical datasets as in other studies but simulated data for the future was 

also included. For the study area of Valencia historical data was gathered to create land 

use maps and simulate future scenarios demonstrating the characteristics of isolated, 

compact, combined and road based growth. These served as the input data for multi-

temporal fragmentation analysis with the IndiFrag tool. Based on the calculated metrics, 

the scenarios were classified into the four growth types. The results of the classification 

and the original growth types of the scenarios were compared with statistical methods to 

evaluate the accuracy of the classification based on the metrics. The results show that 

multi-temporal fragmentation indices can contribute to urban development 

characterisation by describing the growth type in the area. 
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 INTRODUCTION 1

1.1 Context and Relevance of the Topic 

Urbanization is inevitable due to industrial and economic development and rapid 

population growth, but cities, especially the suburban regions are also expanding 

because of the spatial change in population and the shift to low density development in 

these regions (Shalaby et al., 2004). The tendency of living in suburban areas 

surrounding big cities and commute on a daily bases gave a boost to the expansion of 

suburban habitats (Theobald, 2005; Yuan et al., 2005). 

According to the United Nations’ data, the total population of the world in the 

last 64 years has almost tripled (data until 2014), and surpassed 7 billion by 2014. Not 

only the population is increasing constantly, but many people find the potentials offered 

by cities attractive, such as more and better paying job opportunities, better 

infrastructure, better health service and access to other social benefits and services. In 

the hope of better living standards people leave the rural areas for the city. In 1950 only 

less than 30 percent of the population lived in urban areas, while by 2014 more than half 

of the population of the world lived in cities and the tendency does not seem to stop 

(UN, 2017). 

Urban land accounts for only a small portion of the Earth’s surface. Still, 

urbanization is a critical factor in land use change converting green areas into 

residential, industrial and commercial use (Fang et al., 2005; Luck and Wu, 2002). The 

shift to suburban areas form city centres leads to low density development of large areas 

of land scattered around big cities, for single use. This results in a large urban footprint 

even without high increase in population (Theobald, 2005). Rapid population growth 

and unplanned urbanization bring risks of pollution, increase of traffic, deforestation, 

overpopulation, climate change, loss of biodiversity and fragmentation of non-urban 

habitats (Foley et al., 2005; Hannah, 2011).  
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The abundance of already existing literature written about urbanization, urban 

sprawl, monitoring cities, urban growth modelling and land use land cover change 

demonstrates the importance of the phenomenon. Scientist and experts have been 

monitoring the development of cities and the changes in land use cover in order to 

simulate spatiotemporal patterns of urban growth with the help of which, future growth 

of cities and the changes in land use can be predicted (Weber, 2003). The importance of 

an accurate and updated database of land cover change is to be able to understand and 

evaluate the environmental consequences, as well as to improve decision making when 

it comes to designing sustainable urban habitats (Arsanjani et al., 2013). 

1.2 Problem Definition and Motivation 

The most intricate land use change is urban sprawl due to the number and 

complexity of its driving forces, their own processes and their interactions and influence 

on each other. These drivers that define the rate and spatial expansion of urban growth 

are economical, physical, political and environmental (Ligtenberg et al., 2001). Various 

methods have been developed in order to describe and simulate the dynamics of urban 

sprawl, each model considering different factors. However, because of the complexity 

of the system it is difficult to capture all the drivers at once and to find the appropriate 

weight for each when combining them (Fang et al., 2005). These urban sprawl 

simulating models are among others agent based models, cellular automata, fractals, 

neural networks, regression models, decision trees and their combinations 

(Triantakonstantis and Mountrakis, 2012).  

One side effect of urbanisation and other human activities, such as deforestation 

and agriculture, is the fragmentation of the landscape which has been examined and 

described by several studies (Kamusoko and Aniya, 2007; Nagendra et al., 2004). On 

the one hand, fragmentation can be observed in a global level of the landscape to 

monitor deforestation and the fragmentation of habitats. However, on the other hand, it 

can be examined within the urbanised areas as well, to help the understanding and 

interpretation of the structure and characteristics of the cities (Linh et al., 2012; Yin et 

al., 2010). The fragmentation of the landscape is measured by metrics that describe 

features, such as area, perimeter and average size of the objects, while the changes in 

the fragmentation are examined by multi-temporal indices or the comparison of 
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temporal metrics (Liu et al., 2010; Sapena and Ruiz, 2015a). It is important to monitor 

and simulate urban development so that urban planners can work on more sustainable 

form of urbanisation. Multi-temporal fragmentation metrics can be a useful tool for 

them to analyse urban sprawl and the changes within the urban area. It is interesting to 

see whether the metrics can give useful information about the growth type of the urban 

area. 

1.3 Research Objective and Research Question 

The objective of the thesis is to determine the applicability of multi-temporal 

fragmentation indices to urban development characterization. In order to accomplish 

this, Land Use and Land Cover (LULC) maps from previous years need to be collected 

and predicted LULC maps need to be created. The fragmentation indices are applied to 

these past and predicted LULC data using the IndiFrag tool (the tool is described in 

Chapter 3.6). The resulting metrics are then examined with the help of statistical 

analyses in order to answer the research question: Can multi-temporal fragmentation 

metrics contribute to the characterisation of urban development? 

1.4 Outline of the Thesis 

The thesis is organized into five main sections. Following the introduction, 

Chapter 2 is a brief overview of the available literature on land use modelling and 

simulation from which a suitable model had to be selected for the case study. Chapter 3 

discusses the methodology of the thesis starting from the study area, data sources and 

preparation, then describing the preparation of the scenarios and the application of the 

fragmentation metrics on them and finally the analyses conducted on the metrics were 

introduced. The results of the analyses are presented and explained in Chapter 4, which 

is followed by the conclusion focusing on the interpretation and importance of the 

outcomes and possible future research on the subject.
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 LITERATURE OVERVIEW 2

This chapter gives an overview of the available models used for urban growth 

modelling. The short descriptions introduce the methods in order to be able to select the 

most appropriate one for the current study. There already exist a wide variety of 

methods to predict urban growth and land use change. A retrospective summary of 

existing literature on urban growth prediction models was created by Triantakonstantis 

and Mountrakis in 2012 identifying more than 1400 records. After removing unrelated 

records, models not spatially explicit, manuscripts with only theoretical component and 

applications of previously published work, the remaining 156 studies were included in a 

qualitative synthesis. The articles introduced seven different types of urban growth 

prediction models as follows: 1) Cellular Automata (CA), 2) Logistic Regression, 3) 

Artificial Neural Networks (ANN), 4) Fractals, 5) Agent Based Models (ABM), 6) 

Linear Regression and 7) Decision Trees. Cellular Automata stands out significantly 

among the algorithms in respect of popularity as it is included in more than 80 % of the 

analysed papers. The models work with different methods and incorporate different 

driving factors such as environmental, social and economic. In the following paragraphs 

the most widely used models (1-5) are briefly introduced to get an overview of the 

currently available options for urban growth modelling.  

The concept of Cellular Automata (1) was discovered by Stanislaw Ulam and 

John von Neumann in the 1940s. Four decades later Wolfram (1984) used CA to 

describe the nature and generation of complex systems whose complexity was generated 

by fundamental components that are very simple. The first applications of the technique 

to geographic modelling also appeared in the 1980s using artificial cases to develop 

theoretical models, which finally led to the first operational urban CA models applied to 

real-world urban system in the 1990s (Santé et al., 2010). The basic unit in the model is 

the cell. The discrete space is divided into regular cells. Each of them has a state which 

can change by following predefined transition rules that consider the state of the cell 



2 LITERATURE OVERVIEW   

5 

 

and its neighbourhood (the cells adjacent or close to the cell in particular). The 

interactions occur on a local level at each time step in the discrete time, and the 

combined actions of these local transitions conclude the overall performance of the 

system (Arsanjani et al., 2013). These are the characteristics of the conventional CA 

where the model can be adopted to the selected study area by different transition rules. 

However, by modifying the structures of the standard CA the model can be used to 

describe more complex geographical phenomena: introducing irregular, non-uniform 

cell space; extended, non-stationary neighbourhood; more complex, non-stationary 

transition rules, growth constants and irregular time steps (Couclelis, 1985, 1997; Santé 

et al., 2010).  

An already widely used CA model is the SLEUTH model, written in the C 

programming language. The first article was published in 1997 introducing the model 

with a case study on the San Francisco Bay area (Clarke et al., 1997). Ever since then 

several reviews have been written and case studies have been conducted all over the 

world proving, challenging and improving the use of the method (Clarke and Gaydos, 

1998; Dietzel and Clarke, 2007; Silva and Clarke, 2002; Terando et al., 2014, etc.). 

According to (Chaudhuri and Clarke, 2013) SLEUTH has been successfully applied in 

18 countries in the world to more than 35 regions until 2012. The model aims to predict 

scenarios of future land transformation based on several different types of historical 

data, such as transportation network, topography, existing urban distribution, land use 

coverage and restricted areas. The data are gathered from more than one time period, 

which makes the calibration possible by monitoring the modifications over time. The 

model works with raster data, more specifically with grayscale GIF images. Based on 

the historical data, the five coefficients the model works with are calibrated in three 

steps: coarse, fine and final calibration or manually by the user. The five variables are 

the diffusion, breed, spread, slope and road gravity. After each calibration the user sets 

the value range for each coefficient more and more precisely based on the result of the 

previous calibration. The model works with four types of urban growth rules that are 

controlled by the coefficients: spontaneous growth, new spreading centres, edge growth 

and road influenced growth. The uncertainty is included in the model with the help of 

Monte Carlo iterations, which is an algorithm that rely on repeated random sampling to 

obtain numerical results such as the distribution of an unknown probabilistic entity 
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(Hussain and Ivanović, 2015).  Control parameters let the system modify itself and this 

way adopts to periods of high and low growth in urbanisation. The output images are 

the same format and size as the input layers. Besides predicting the urban extent or land 

use cover for each year until the selected year, there are other output options as well: 

images showing the urbanised areas according to which type of growth rule occurred 

and statistical data. 

The Logistic Regression Model (2) developed by Cox (1958) is an empirical 

estimation model used in statistics. A commonly used logit regression model in urban 

change modelling is the binary, which calculates the probability for an observation (the 

dependent variable) to be 0 or 1 based on one or more categorical or continuous 

independent variables. It was applied in urban growth prediction for example by Hu and 

Lu (2007). They considered demographic, economic and biophysical driving forces as 

categorical and continuous independent variables to define whether a cell is urbanised 

or not, assuming that the logistic curve of the logistic function gives the probability of 

urbanisation in a cell. Multivariate logit regression models can also be applied to urban 

sprawl monitoring (Alsharif and Pradhan, 2013), as this statistical method is useful in 

analysing the relation of the driving forces to urbanisation. It helps to select the most 

important variables in urban sprawl monitoring (Allen and Lu, 2003; Park et al., 2011). 

It is often integrated with other urban simulation methods, such as cellular automata 

(Arsanjani et al., 2013). 

Artificial Neural Networks (3) are powerful computing systems in the 

recognition of complex patterns in data due to their ability to learn by trial and error 

method (Tayyebi et al., 2011). The model is inspired by the brain of animals, which can 

process multiple signals, and has been used in a great variety of scientific fields for 

pattern recognition: economics, medicine, mechanical engineering, landscape 

recognition and remote sensing (Pijanowski et al., 2002). An advantage of the model in 

urban growth simulation is that it is capable of solving highly nonlinear problems which 

are common in the complex phenomena of urbanisation. The basic units of the network 

are the neurons. They are arranged in layers where they work in parallel. The neurons 

are connected only to the neurons of the next layer (neither to other layers, nor neurons 

form the same layer) (Maithani, 2009). The weights that define the output are carried in 

the connections between the neurons. In multilayer perceptron, between the input and 
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output layers there is one (or more) hidden layer(s), which processes the weighted data 

received from the input layer and forwards it for further processing to the output layer. 

The input neurons represent the input data sources, the neurons of the hidden layers 

have to be calculated and the output neurons stand for the classes being mapped 

(Kanungo et al., 2006). A commonly used learning procedure is the back-propagation 

introduced by Rumelhart et al. (1986), where a training set is introduced to the model as 

the input layer and using random weights the output is calculated. Then the calculated 

output is compared to the expected output and to eliminate the error, the weights are 

adjusted. It is repeated until the results are adequate. The training results are tried on a 

testing dataset as well to evaluate the performance.  

Fractal modelling (4) gained popularity in various sciences after the publication 

of Mandelbrot (1983), which is a revised and extended version of the writer’s previous 

works. He named ‘fractal’ the shape that can describe irregular forms and rough 

surfaces, something that the previously used Euclidean geometry was not able to. From 

the 80s it was applied to describe urban structure and development as well (Batty and 

Longley, 1986, 1987; Fotheringham et al., 1989) since the irregularity and scale 

independence of urbanisation shows the characteristics of fractals (Shen, 2002). The 

ability of the fractals to give more detail at every scale level is due to the generator rule. 

The initial shape is given by a Euclidian figure called initiator and the generator 

transforms the evolving figure at each iteration following self-similarity rules 

(Mandelbrot, 1983). For example some simple self-similarity rules from Frankhauser 

(2008):  

“1. The size of the initiator, e.g. a square, is reduced by a certain factor r  

  2. N of these little replicates are generated 

  3. These N replicates are placed in a defined way, respecting the following 

restrictions: they must be placed within space occupied by the initial figure, i.e. they 

must be subsets of the initiator; they are not allowed to intersect.” 

Frankhauser  also explains that the number of possible iterations is endless. Usually the 

procedure is stopped when the size of the elements correspond to that of a building. The 

elements that make up the fractal can be detached or interconnected. One example of a 

fractal consisting of unconnected elements is the so called Fournier dust, while in the 
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Sierpinski carpet the elements are interconnected and this way form a single cluster 

(Tannier et al., 2011). The initial form does not have to be two dimensional it can also 

be a line segment showing the boundary of urban areas. This fractal is called teragon. 

As the urban pattern does not follow a symmetrical order random fractals can resemble 

them more accurately. Certain parameters of the fractals can be calculated for the 

urbanised areas and used for the characterisation of urban pattern, for example fractal 

dimension  and fractal order. The majority of the literature on fractals describing 

urbanisation aims to define the form, structure and features of urban patterns and 

characterise urban growth and morphology. On the other hand, for example 

Triantakonstantis (2012) used the Sierpinski carpet to find the most suitable areas for 

urban development. 

Agent Based Models (5) bring the impact of human behaviour in urban growth 

simulation with the help of agents governing urban growth (Zhang et al., 2010). The 

agents can represent several environmental, social and economic features. Arsanjani et 

al. (2013) introduced three agents: resident, developer and government, behaving as the 

main actors of land use change in each pixel. Resident agents are the people relocating 

in the city from elsewhere or locals relocating within the city. Their preferences are 

mostly influenced by environmental and socio-economic driving forces, such as the 

steepness of the landscape and accessibility to transportation. A probability surface was 

created based on a multi-criteria analysis that presents the cells suitable for development 

according to the residents. Housing companies belong to the developer agents, who 

facilitate the construction for urbanisation. Their decisions are guided by the maximum 

profit, which can be reached considering the need of the potential residents and the 

government policies. In the probability surface of developers the investment profit is 

calculated for each pixel based on housing, land prices and development cost. The 

government agent represents the restrictions introduced by policy makers. They prohibit 

the urbanisation of certain areas, for example parks, water, certain buffer zone along 

transportation networks etc. These were converted into a Boolean image where the cells 

are either allowed or not to be urbanised. Later the actual simulation of growth is 

simulated with the help of Markov chain and CA model. The three agents represent 

individual decisions influenced by biophysical, social and economic factors and 

together result in a collective outcome. The model can work with different agents 
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representing different urban growth drivers. For example Zhang et al. (2010) work with 

a similar concept of three agents too, but besides resident and government agents 

instead of the developer agents they considered peasants. They represent an important 

part of the population in China, who lives from agriculture and wants to stay close to 

their land but also close to the city. Magliocca et al. (2012) examines the interaction 

between developer, costumer and landowner who decides whether or not to sell their 

parcel. 

Markov chain is a stochastic progression that has been used in urban growth 

modelling combined with other approaches as a supplement (Arsanjani 2013). It 

calculates the probability of change between states. The two tables generated by the 

model (transition probability matrix and transition area matrix) determine the amount of 

change between the classes. However, since the exact spatial location for the change is 

not considered, a further method is required to localise the change. Arsanjani, (2011) 

used a CA, for example.  

Beside the Markov chain other models can also be combined with each other to 

integrate their advantages and complete each other. ANN is commonly used together 

with CA (Yang et al., (2015); Li and Yeh, (2010)), where ANN functions as the data 

mining tool to find the transition rules and the CA provides the framework for the 

spatio-temporal changes in the landscape. Tian at al. (2016) combined CA with agents 

and logistic regression. The human system was represented by two agents. The authority 

agent determines the location priorities of urban development and the resident agent 

represents the urban residential location decisions. The landscape is described by a two 

dimensional cellular space, where each cell has its coordinates and an attribute referring 

to the land use type. The changes of the dynamic landscape system are driven by 

biophysical driving factors following the rules of cell transition. Logistic regression was 

used to calculate the probability of urban expansion by self-organisation of the 

landscape system.  

The overview of the urban growth simulating methods has importance in the 

selection of a model for the scenario simulations. After the introduction to the most 

commonly used models, it is clear that although, each of them computes possible future 

scenarios they are all slightly different, which can lead to very different outcomes. This 
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diversity is due to the complexity of urban growth and land use change and it provides 

more options to choose from when selecting a model for urban growth analysis. Their 

main differences lay in the necessary input data, the type of output, the applied urban 

growth drivers, the required computational power and how much control the user have 

over the settings. These were considered in the selection of the model described in 

Chapter 3.4. 
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 METHODOLOGY 3

The third chapter starts with the declaration of the research approach and the 

introduction to the growth types to be examined andto  the selected study area. Then, 

the complete workflow of creating the scenarios for the fragmentation analysis with the 

SLEUTH model is explained, followed by the description of the fragmentation analysis 

with the IndiFrag tool. Finally, the methodology of the classification and the validation 

is outlined before revealing the results in the next chapter. 

3.1 Research approach 

The research objective was examined with the help of a case study conducted on 

Valencia. A database of simulated scenarios was created on the study area with the help 

of an urban growth prediction model to analyse the use of multi-temporal fragmentation 

metrics in the characterisation of urban growth. The results were computed and 

evaluated with the help of statistical analyses using the statistical software 

STATGRAPHICS. 

3.2 Growth types 

The urban development in the study area was characterised by examining the type 

of growth occurring in the area. Wilson et al. (2003) and Camagni et al. (2002) 

distinguished five different urban expansion types in a similar way. Wilson et al. 

identified three main types: infill, expansion and outlying that was further divided into 

three more growth (isolated, linear branch and cluster branch). Camagni et al. used 

different names for the growth types but followed the same division: infilling, 

extension, sprawl, linear development and large-scale projects. They additionally also 

identified the combinations of these expansion types and selected the five most 

prevalent from the combinations of two main growth types: linear / sprawl, extension / 

sprawl, extension / linear, infilling / sprawl and infilling / extension. Yue et al., (2013) 
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used the three main growth types in their study: infilling, edge-expansion and leapfrog 

development and Sun et al. (2013) also followed the same division as suggested by 

Wilson: infilling, edge-expansion and outlying. Table 3.1 summarises the different 

categorisations. 

Wilson et al. Camagni et al. Yue et al. Sun et al. 
This 

study 

infill infilling infilling infilling 

compact 
expansion extension 

edge-

expansion 

edge-

expansion 

outlying 

isolated sprawl 

leapfrog 

development 
outlying 

isolated 

  
cluster branch 

large-scale 

projects 

linear branch 
linear 

development 

road-

based 

    combinations     combined 

Table 3.1 Comparison of the growth types in the current and other studies 

In this study the infilling and extension growth was combined into compact 

growth, since they similarly occur near already existing urban areas, as opposed to the 

outlying growth, which develops separately from the existing centres. The outlying 

growth was named isolated. From the three outlying subclasses of growth only to the 

linear branch was given significance. It was introduced as road based growth, because 

it appears near the linear line of the transportation systems. Following the combination 

of growth types by Camagni et al. (2002) a combined growth was introduced by 

joining the compact and isolated growth.  

In the analysis of the development of the city not always all four types of growth 

were examined. Three cases were introduced based on the growth types considered in 

the analysis. Case 1 discriminates two types: isolated and compact; Case 2 three types: 

isolated, compact and combined; while Case 3 four types of growth: isolated, compact, 

combined and road based. 

3.3 Study Area 

The study was conducted on the metropolitan area of Valencia, Spain, located on 

the eastern side of the Iberian Peninsula, on the cost of the Mediterranean see. The 
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centre of the study area is located at a latitude and longitude of 39°27’44.5” and 

0°23’0.3”, respectively.  It is based on the alluvial plain of the Júcar and Turia rivers, as 

a result of which the area is quite flat (Piqueras Haba, 1999). This makes the 

urbanisation of the city relatively easy without the limitations of high mountain areas. 

The lake of Albufera and the national park surrounding it prevent the city from growing 

on the south along the cost (Figure 3.1, District 16).  

 

Figure 3.1 Study Area of Valencia (Data: INE (2017)) 

According to the National Statistics Institute it is third among the most 

populated cities  in Spain after Madrid and Barcelona, holding at present a total 

population of 790 201 (INE, 2016). The metropolitan area was previously called the 

county of Huerta. Today it consists of the city of Valencia and three other counties on 

the northern, southern and western side of the city named Huerta Norte, Huerta Sur, 

Huerta Oeste respectively. The city of Valencia is divided into 19 districts, and the three 
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counties consist of 44 municipalities surrounding the city. Administratively they belong 

to the capital province of the Valencian Community (INE, 2017). 

For the purpose of the study the areas showing strong residential growth in the 

last 20 years were selected, as the aim was to monitor and analyse these changes and 

use this information to simulate future scenarios. The study area covers an approximate 

area of 185 square kilometres, which includes 18 districts of the city and 8 

municipalities on its northern and western side (Figure 3.1). The national park of 

Albufera in the district of Pobles del Sud (District 16) was not considered, because it is 

a protected area with no changes in land use. The terrain mainly features plains and a 

few hills in the western corner of the municipality of Torrent. The average slope is less 

than 3 degrees (CNIG, 2017). 

3.4 The selected model for the study 

For the characterisation of urban development an urban growth model had to be 

selected. The scenarios of the four growth types were created using environmental 

driving forces. In the scenarios not only urban growth was simulated, but also land use 

changes were to be detected. As a result, it was important that the model can not only 

predict urban change, but is able to incorporate more than one land use type in the 

simulation, such as CA and ANNs. Moreover, to be able to examine the accuracy of 

urban development characterisation by fragmentation metrics, it was necessary to 

understand and be able to control the transition rules of the simulation. One 

disadvantage of ANNs is that the calculations are not visible to the user and has no 

control over them (Maithani, 2009). The CA also works with a trial and error method 

like the ANN, but the transition rules can be modified by the user, as a result the rules 

are transparent (Arsanjani at al., 2013). From the models introduced in Chapter 2, CA 

proved to be the most suitable for this study since it meets all the most important 

requirements for the simulation. The operation of CA models are computation intensive 

(Hu and Lo, 2007), but since the study was conducted on a relatively small area the 

computation time was not extremely high. 

A huge advantage of the selected SLEUTH model is that it is freely available at 

the Project Gigalopolis website with a short introduction to the model and explanation 
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of the use form downloading through calibration and prediction until interpretation of 

the results (Project Gigalopolis, 2017). As an illustration a demo city was created with 

the help of which the model’s structure and functions can easily be understood. There is 

a forum for further discussions in case of questions or problems. 

3.5 Application of the SLEUTH model 

This chapter describes the creation of the scenarios with the SLUTH model from 

the raw input data to the simulated scenarios ready for the fragmentation analysis. 

Besides, the operation of the model is explained briefly for better understanding of the 

procedure.  

3.5.1 Input requirements and data description 

In the SLEUTH model the future changes in land use are predicted based on the 

tendencies of previous land use change. The model is named after the abbreviation of 

the first letters of its six input data types: Slope, Land use, Excluded, Urban extent, 

Transportation and Hill shade. These are essential to compute the calibration and 

prediction of data. These data were gathered for the study area of Valencia from three 

sources (Table 3.2): Urban Atlas by Copernicus (Copernicus, 2017), Digital Terrain 

Model provided by Instituto Geográfico Nacional (IGN) (CNIG, 2017) and cadaster 

maps supplied by the Dirección General del Catastro (Sede Electrónica del Catastro , 

2017). The administrative boundaries for excluding the areas outside of the study area 

were provided by the Instituto Nacional de Estadística (INE, 2017).  

SOURCE PROVIDER YEAR INPUT 

URBAN 

ATLAS 
Copernicus 

2006 
land use 

road 

2012 

land use 

road 

excluded 

CADASTER 
Dirección General 

del Catastro 

1994 urban 

2000 urban 

2006 urban 

2012 urban 

DTM 
Instituti Nacional de 

Estadística 
  

slope 

hillshade 

Table 3.2 Data sources for the input layers 
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The model requires at least two land cover layers from different years as land use 

input, from which the last year has to correspond to that of the urban extent. Two 

options were considered: Urban Atlas data for 2006 and 2012 and the Official 

cartography of the Valencian Community supplied by ICV (Instituto Cartográfico 

Valenciano) for the years 2000 and 2008. The later source has differences in reference 

datum and scale between the two years. In order to be able to compare the changes that 

occurred between the two dates in land use cover, the datum and scale need to be 

transformed to be the same. This transformation can lead to differences in the x, y 

values and cause changes in land use cover that did not occur in reality. This proved the 

Urban Atlas data to be more reliable in regards of comparison. In the Urban Atlas there 

are also small differences between the land use maps of the two years, but only in the 

categorization of land use types. Table 3.3 demonstrates the categories or decision rules 

of the 2012 version with its five main categories: artificial surfaces, agricultural, natural 

and semi-natural areas, wetlands and water. In the 2006 version, agricultural land use is 

in the same group with semi-natural areas and wetlands, while forests have a separate 

category. This did not influence further calculations with the two databases. The 

artificial surfaces are divided into several more classes and sub-classes. Table 3.3 shows 

which Urban Atlas land use classes were merged to create the four land use types of this 

study: urban, agricultural, road and green area and the excluded mask. 

It is important to include transportation in the predication to see how much 

influence they have on urban development in the particular area. Transportation 

networks provide accessibility, for this reason urban development has a tendency of 

demonstrating higher growth near road network centres. At least data from two years 

are needed to see how the transportation changes with urban development. The first 

road layer is used for initialisation and the next ones are read in when their year is 

reached as growth cycles pass. The road networks were retrieved form the Urban Atlas 

as well the same way as before. As a result the two input dates are the same as in case of 

the land use (2006, 2012).  
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The slope layer demonstrates the elevation of the area, which is an important 

factor in urbanisation, since the steeper and higher the hills are, the more difficult it is to 

construct upon them. The Digital Terrain Model was supplied by the Instituto 

Geográfico Nacional (IGN). MDT05 is a digital elevation model with 5 meter resolution 

in the Geodetic Reference System ETRS89 and its corresponding UTM projections. The 

data are obtained by the PNOA (National Aerial Orthophotography Plan) by either the 

correlation of photographic flights with 25 or 50 cm pixel size or by interpolation of 

LIDAR flights (Centro de Descargas del CNIG, 2017). The cartographic grids covering 

the study area are 696, 721 and 722. These were merged to get the total coverage of the 

area. From this digital elevation model the slopes were calculated in percentage. Hill 

shades were also retrieved from the same DEM serving as the background for the urban 

extent prediction to give spatial context. The topological information is obtained from 

the slope layer. The hill shades only help spatial orientation. It is only used for urban 

extent as the land use classes cover the whole area. 

U
R

B
A

N
 A

T
L

A
S

 

1. Artificial 

surfaces 

1.1 Urban Fabric 

1.1.1 Continuous urban fabric  

1.1.2 Discontinuous dense urban fabric  

1.1.3 Isolated structures 

1.2 Industrial, 

commercial, public, 

military, private and 

transport units 

1.2.1 Industrial, commercial, public, 

military, private units 

1.2.2 Road and rail network and 

associated land 

1.2.3 Port areas 

1.2.4 Airports 

1.3 Mine, dump and construction sites 

1.4 Artificial non-

agricultural 

vegetated areas 

1.4.1 Green urban areas 

1.4.2 Sports and leisure facilities 

2. Agricultural 

3. Natural 

and semi-

natural 

areas 

3.1 Forests 

3.2 Herbaceous vegetation association 

3.3 Open spaces with little or no vegetation 

4. Wetlands 

5. Water 

Table 3.3 Urban Atlas classes divided into land use and excluded layers 
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The input layers of urban extent show the changes in urbanisation, for this reason 

images from several years are needed. The earliest urban extent layer is the so called 

seed, from where the calibration starts. Urban extent layers from at least three more 

years are needed for the calibration, used to calculate best fit values. The Urban Atlas 

could not be used as source for the urban layers since it provided data for only two 

years. The cadastre maps of the Dirección General del Catastro provided sufficient data 

for four years: 1994, 2000, 2006 and 2012. The time period that the historical data 

covers can be chosen by the user depending on data availability or of interest. The four 

years were chosen following the time slots of six years in the Urban Atlas and later 

years could not be selected since the most recent year has to agree to that of the land use 

layers. The cadastral information can be downloaded by municipality with permission 

from the directorate. The urban cover was obtained from the fields marked as rural areas 

selecting urban plots and constructions. The plots were distributed in the four urban 

masks based on the cadastre attribute files, which contain the earliest date the plots 

appear in the database.  

The model allows excluding areas that have high resistance to urbanisation. For 

example water surface, wetland or protected areas. In this study additionally the river 

park Turia, the river bed of the river Turia, roads, a cemetery and the port area were 

excluded due to low probability of being urbanised in the near future. The selection of 

areas was based on the Urban Atlas data (Table 3.3). The surrounding area was also 

excluded because it is not considered in the current study. The administrative units from 

INE were used to select the 18 districts and 8 municipalities and cut the surrounding 

areas.  

3.5.2 Preparation of Input for the SLEUTH model 

After having collected all the necessary input data, further processing was 

conducted with the help of the geographical information system ArcGIS. Figure 3.2 

shows the work flow of converting the raw data into the input data. The first step was to 

eliminate the parts outside of the study area. The administrative boundaries provided by 

the Instituto Nacional de Estadistica (INE) were used to cut the areas surrounding the 

selected municipalities.  
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Figure 3.2 The work flow from raw data to the input data 

The model differentiates between the classes within the layers with the help of 

differences in grayscale values. In all the layers 0 is a null value and integers greater 

than 0 and smaller than 255 are existing values. In binary layers such as urban extent 

and transportation, the pixels with value of 0 stand for non-urban/no road areas. Any 

other value means that the area is urbanised/with transportation. In the excluded mask 

the area can be divided into three levels of resistance: available for development 

(indicated by value of 0), low resistance for development (indicated by a value between 

0 and 100) and high resistance or development is impossible (indicated by a value of 

100 or greater). The excluded areas were all marked with high resistant to prevent any 

possible urbanisation in the simulation. The slopes are not given in degrees, but in 

percentage. This means that the pixel values range from 0 till 100, each representing a 
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slope percentage. When the slopes surpassed the 100 percentage, they were converted to 

the max value of 100. In case of the land use masks, to each grayscale value a class of 

land use is added, so that the model can differentiate between the types. In order to 

visualise the classes for the user, in the output images for each class an RGB colour 

value is set. The four urban use classes were marked from one to four in grayscale: 1 – 

urban, 2 – agricultural, 3 – road and 4 – green area. 

The input file format is raster. All the images are required to have the same map 

extent and cell size, which means equal number of rows and columns, over the same 

area, in the same projection and coordinate system so that the model can examine the 

changes between the data. The coordinate system used for the input layers was the 

European Terrestrial Reference System 1989 (UTM Zone 30N) in Transverse Mercator 

projection. The cell size was determined based on trials and examples from previous 

applications of CA models. In the review of Santé (2010) the cell space ranges between 

10 m and 1 km, depending on data availability and whether the studies are conducted on 

local or regional level. The chosen cell size was 30 m, because the changes simulated at 

this scale were realistic enough for the study. This results in an image size of 911 x 516 

pixels, which is small enough to be able to conduct the calibration steps within a 

reasonable time period. The size of the pixel affected the display of the roads (both the 

road and land use masks). The road network in the Urban Atlas is very detailed, 

including small streets and pavement as well. The isolated pixels of the road class in the 

land use layers were removed by applying a majority filter sized 3x3 and were replaced 

by the most frequent land use type in the neighbourhood. In case of the road data, to 

keep only the main roads, a series of negative and positive buffers were applied. The 

roads that did not reach the width of six meters were eliminated and to the rest 

generalisation was applied, because otherwise they would not be visible due to their 

small size. The vector layers were converted to raster by applying the maximum area 

criteria. The input images have to follow a predefined naming format given in the 

scenario file, otherwise the model does not recognise them. Figure 3.3 gives an example 

of all six input layers. It is important to note that the images are for illustration, not in 

the original above described grayscale colours.  
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Figure 3.3 Examples of the six input layers for SLEUTH (a) land use 2012, (b) urban 2012, (c) road 

2012, (d) excluded, (e) slope, (f) hill shade (images not in the grayscale values used for the model) 

3.5.3 The rules of the SLEUTH model 

Once all the inputs are ready the calibration and the prediction can start with the 

help of the scenario file. The variables and settings are adjusted in this file: path names, 

file names, coefficients, output settings, etc. The program runs in Linux and the most 

important commands are provided in the Project Gigalopolis website (Project 

Gigalopolis, 2017). An example scenario can be found in Appendix 1. In order to be 

able to conduct simulations with the SLEUTH model it is important to understand how 

it works. The following five sections explain how the model works, starting with the 

growth cycle, which is the basic unit of the urban growth simulation. Then, the three 

steps of this cycle are described and finally the land use change simulation is 
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characterised. The below described information is based on the website, Clarke (1997) 

and Clarke and Gaydos (1998). 

1 ) The growth cycle 

The growth cycle is the basic unit of the SLEUTH execution. It has three steps: 

in the first one the five growth coefficient values are set. These values control the four 

growth rules that are applied in the next step. In the final self-modification step the 

parameters are slightly modified according to the growth rate presented in the cycle. If it 

is higher or lower than a previously set value (values of “critical high” and “critical 

low”), the parameters are increased or reduced respectively. One cycle represents the 

urban growth of one year between the chosen start and stop date. After all the three 

steps have been executed the model starts the new growth cycle of the following year 

with the updated urban input layer and modified coefficients. Figure 3.4 shows the three 

steps of the growth cycle and four steps of the growth rules determined by the five 

growth coefficients. In the following sections the components of the growth cycle is 

explained in more detail: growth rules and coefficients, the self-modification rules and 

the deltatrons. 
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Figure 3.4 The three step growth cycle in SLEUTH: growth coefficients and the growth rules that are 

controlled by the coefficients 

2) Growth Rules 

The four growth rules of the SLEUTH model simulate the urban change driven 

land cover change by randomly selecting the cells suitable for urbanisation and 

calculating their probability to become urbanised. They belong to the second step of the 

three step growth cycle and are controlled by the five growth parameters.  

Spontaneous growth selects pixels randomly and examines their availability for 

urbanisation. Available means that they are not yet urbanised, not excluded and their 

slope percentage is suitable. If all the criteria are met urbanisation will occur in this cell. 

This growth rule assures that any not yet urbanised pixel can be urbanised at any time 

step with the probability set by the diffusion coefficient. 

The second step is called the new spreading centre growth. In this phase the 

newly urbanised cells are examined, more exactly the pixels in their neighbourhood, to 

see if they can become a new spreading centres (minimum three neighbouring urbanised 

cells). If at least two cells are available in this 9x9 square surrounding the selected pixel, 
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it has the probability defined by the breed coefficient to become urbanised as well. If the 

cell is found to be suitable to become a new spreading centre two cells next to it will be 

urbanised. 

These spreading centers are important because the third step, the edge growth 

can only occur adjacent to these new centers or already existing centers, but not around 

single urbanised cells. The spread coefficient determines the probability of urbanisation 

in this step. In this case the criterion, besides the pixel not being urbanised, neither 

excluded and nor too steep, is that there has to be at least three adjacent urbanised cells 

around the selected non-urbanised cell. 

The road-influenced growth is the most complex from the four rules. It has 

four steps itself and is controlled by four of the growth coefficients. Urbanisation tends 

to be higher near transportation networks, and this growth type aims to realise this 

tendency in the model. The recently (in this cycle or year) urbanised cells are selected 

with the probability defined by the breed coefficient, and a road is searched in their 

neighbourhoods within the radius determined by the road gravity coefficient. From this 

cell a so called “random walk“ is conducted on the road, where the maximum number of 

steps is determined by the diffusion coefficient. When a cell is finally urbanised, if there 

are neighbouring cells also available for urbanisation on the road, one or two of them 

will also be urbanised randomly picked from the available cells.  

3) Growth Coefficients 

The growth rules are controlled by the five growth coefficients: diffusion, breed, 

spread, slope and road gravity. All of them have a value range of 1 to 100. They are 

calibrated based on the historical input data by analysing the changes throughout the 

years or can be set manually. Each of them has different characteristics and influence on 

the growth rules: 

The diffusion coefficient (also referred to as dispersion coefficient) controls two 

growth rules: the spontaneous growth and the road influenced growth. It determines 

how many times pixels are included in the random selection in order to be urbanised. 

This random factor controls the creation of new single urban cells separately form the 

already existing urban seed. Furthermore it also effects the road influenced growth. The 
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higher the value, the more possibility there is to find a pixel suitable for urbanisation 

along the transportation network. 

The breed coefficient has influence on two growth rules as well. By controlling 

the new spreading centre growth, it determines whether the previously randomly 

urbanised cells become new spreading centres. Besides, similarly to the diffusion 

coefficient, it affects the road influenced growth. It determines the number of times of 

possible urbanisation.  

The spread coefficient allows already existing spreading centres (more than two 

urbanised cells in a 3x3 pixel area) to grow by controlling the spread growth. It does not 

affect non-urbanised and single cells. 

The topology of an area is an important factor in urbanisation, because with the 

increase of the terrain’s steepness, construction becomes more and more difficult. For 

this reason it is included as the slope parameter in the model and is considered by all 

the growth rules. The areas with higher than a certain percentage of slope (21% by 

default) are excluded from urbanisation. For the parts not excluded this coefficient acts 

as a multiplier: the higher value it has the smaller probability steeper slopes have to be 

urbanised. On the other hand when the value is small the percent of the slopes has less 

effect on the probability of urbanisation.  

The road gravity coefficient is the fourth parameter that controls the road 

influenced growth. It determines the maximum search distance to find a road near a 

selected pixel. With the maximum value of 100 this distance is 1/16
 
of the image 

dimensions (the sum of the rows and columns). By reducing the parameter the search 

distance will be reduced proportionally. 

4) Self-Modification  

The model is allowed to alter its coefficients after each growth cycle, based on 

the growth rate of that year in order to show rapid and depressed growth rate trends. 

This is possible due to a second level of growth rules and four parameters that can be set 

by the user: critical high, critical law, boom and bust parameter. When the growth rate is 

high and the urbanised area is expanding the diffusion, breed and spread coefficients are 
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increased to allow more rapid growth. When the growth rate is reduced the same 

coefficient values are cut to show the depression. 

The growth rate is calculated for each year as the percent of the newly urbanised 

pixels out of the total number of urbanised pixels. Examining this rate we can categorise 

the growth into three types: rapid, normal and little growth. The range of the growth rate 

for the different types is defined by the critical high and critical low values. When the 

rate is higher than the critical high the diffusion, spread and breed coefficients are 

multiplied by the boom, which is a multiplier greater than one set by the user. When the 

rate drops below the critical low value, by multiplying the same three coefficients by the 

bust (value less than 1) the growth will drop even more. Between the two critical values 

is the normal growth. In this case the road gravity is increased by the percent of the road 

network, the slope resistance is increased by 0.2 percent of the urban land available and 

if the average slope is greater than 10 percent the spread coefficient is increased. 

5) Deltatrons 

Besides urban growth modelling, the SLEUTH model is also able to predict land 

use change with the help of deltatrons. The driver of land use change is urbanisation. 

Changes in land use depend on the number of newly urbanised pixels at each growth 

cycle. Urbanised pixels cannot change to any other class, as well as the pixels of the 

excluded layer and the ones already marked with a deltatron are ignored. Deltatrons are 

created when a change occurs to prevent the pixel from further changes in their life 

cycle and to encourage similar transitions in its neighbourhood. 

The probability of change between classes is calculated with the help of a two-

dimensional matrix. This matrix includes the number of cells per year that were changed 

from one land use class to another. When a pixel is selected for change, a class with a 

similar average slope value with that of the selected pixel has preference.  

Land use transition takes places in two phases in the model. In the first phase 

random cells are selected (number equals to that of the newly urbanised cells of that 

cycle) and are examined whether they are available for land cover change. In case an 

available pixel is found two land use classes are chosen randomly and their average 

slope is compared to the selected pixel’s slope. The class with more similar slope is 

chosen and the probability of change from the pixel’s class to the new class is examined 



3 METHODOLOGY  Application of the SLEUTH model 

27 

 

with the help of the transition matrix. The transition occurs only if the transition 

probability is greater than a randomly drawn number. If it is not the case, another pixel 

is selected for the process. After phase one, the changed pixels are marked as deltatron 

with a value of 1, which refers to the lifecycle age. 

In phase two the neighbourhoods of recently changed pixels are encouraged to 

transform as well. If a pixel has at least two deltatron neighbours, transition will be 

attempted to the land use class of the neighbours. The probability is tested the same way 

as in phase one. If the random number is smaller than the transition probability, 

transition will be implemented. At the end of the phase, all new transitions are added to 

the deltaspace as deltatrons with the age of one and the previous deltatrons’ age 

increases by 1. Deltatrons decay after a set number of years and they became available 

for transition again. (Candau and Clarke, 2000) 

3.5.4 Creation of the scenarios 

After the calibration of the SLEUTH model, the growth coefficients were 

analysed to find a way of creating the four types of scenarios. The increase in the 

diffusion coefficient results in more isolated scenarios due to the increase in single 

urbanised cells, while the spread coefficient controls the compactness of the scenarios. 

It can only initiate growth around already existing urban centres. The breed coefficient 

controls the urban growth around the new spreading centres. Without the breed 

coefficient the new urbanised cells cannot start growing. By choosing a set breed 

variable for all the scenarios and changing the diffusion and spread variables in a 

predefined order, a series of scenarios were created demonstrating isolated and compact 

characteristics depending on the greatness of the two variables. The combination of the 

two growth types is the combined growth, which demonstrates characteristics of both 

two types with equal diffusion and spread values. The breed variable was set to 75 so 

that some new urban cells can become spreading centres and not only single cells 

appear in case of the isolated scenarios. The other two variables were changed between 

the minimum and maximum values with a step of 25 in all 25 possible combinations. In 

addition to this, eight more scenarios were created in a way that the sum of the two 

variables is always 100. Figure 3.5 shows all 33 scenarios in a Diffusion-Spread 

coordinate system. 
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Figure 3.5 Scenarios in a diffusion-spread coordinate system 

The road based scenarios were the most difficult to simulate, as they are effected 

by four of the coefficients. Table 3.4 demonstrates the effects induced by the diffusion, 

breed and spread coefficients on the road influenced growth. It was measured by 

comparing the road influences urban growth in the scenarios with the variables set to 1, 

50 and 100. The smaller the diffusion and spread variables are, the higher the urban 

growth is. The decrease in the spread coefficient simulates great increase in road 

influenced urban growth: by changing from 100 to 50 the spread variable, the road 

growth doubles, and the road growth simulated by spread of 1 is more than 10 times 

greater than by spread of 50. To ensure high road influenced urban growth, the spread 

coefficient was kept 1 in all road based scenarios. The breed variable simulates more 

road influenced growth when greater. However, since the difference between using the 

maximum and 75 is not significant, the five road based scenarios were conducted with 

constant breed of 75 following the settings of the previous scenarios. Keeping the breed, 

spread and road coefficients constant the only changing variable was the diffusion, 

varying between 1 and 100 by steps of 25. These five scenarios only differ from the 

isolated-compact scenarios in the road coefficient, which is increased to the maximum 

from 1 to emphasise road gravity. Due to this similarity it cannot be marked separately 

on the diffusion-spread graph. It does not show differences in these two coefficients. 
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Urban area of 98000 pixels, breed 75, road 100 

diff 100 50 1 

spread years 
road 

growth 

% of all 

growth 
years 

road 

growth 

% of all 

growth 
years 

road 

growth 

% of all 

growth 

100 6 248,6 0,64 7 257,45 0,62 7 205,93 0,53 

50 10 421,09 1,08 11 445,23 1,14 13 448,65 1,12 

1 53 4807,99 18,14 82 6566,56 23,24 270 10703,13 29,56 

          
Urban area of 98000 pixels, spread 1, road 100 

diff 100 50 1 

breed years 
road 

growth 

% of all 

growth 
years 

road 

growth 

% of all 

growth 
years 

road 

growth 

% of all 

growth 

100 43 5188,41 20,57 69 7230,81 26,21 241 12035,92 33,81 

75 53 4807,99 18,14 82 6566,56 23,24 270 10703,13 29,56 

50 66 4090,86 15,05 103 5670,26 19,14 314 8929,34 24,01 

1 142 378,47 1,22 225 551,87 1,62 does not reach area till 2500 

Table 3.4 The influence of the diffusion, breed and spread coefficients on the road influenced urban 

growth (road influenced urban growth in pixels, and the percent of this growth compared to all the 

urbanised pixels) 

The influence of the topology was omitted by setting the slope coefficient to a 

constant 1, since the average slope is less than 3%. The slopes were only considered by 

the exclusion of areas with steeper than 21 slope percent. The only hilly area reaching 

this criterion is in the North-West corner of the study area as it is visible in the slope and 

hill shade inputs (Figure 3.3  e, f). 

The self-modifying capability of the model was also deactivated to avoid 

changes in the manually set coefficients. The self-modifying parameters let the model 

adjust the coefficients based on the amount of growth measured after each life cycle.  

Without the exclusion the road and slope coefficients demonstrated especially great 

changes, which caused difficulties in creating road based scenarios. Setting all six 

parameters (critical low and high, boom and bust, road and slope sensitivity) to 0 

prevented the set coefficients from changing at the end of each growth cycle depending 

on the amount of growth. They remained constant throughout the whole process. 

The spread coefficient initiates a more rapid growth than the diffusion. This 

results in differences in the amount of urban growth between compact and isolated 

scenarios within a set number of years.  
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Since the aim was to compare the fragmentation of the scenarios, it was 

important to omit these differences. This was possible by calculating the amount of 

urban growth that should occur in 50 years and simulate each scenario so that this level 

of urbanisation is reached, instead of computing each scenario in 50 years. The latter 

method would have resulted in differences in the amount of urbanised area, while the 

former gives similar urban growth suitable for more accurate comparison. The 

calculations were based on the urban class of the land use cover, assuming that the 

average growth per year would remain similar in 50 years as it was between 2006 and 

2012. Terando et al. (2014) explains this as the business as usual growth (BAU), 

indicating that the growth in the future is considered equal to the growth rate observed 

in the past. The difference between the two UA dates (2006 and 2012) in urban growth 

is 2.315 km
2
 (2573 pixel) which means a 0,386 km

2
 (428.83 pixel) growth per year. The 

urban area covers 68.845 km
2
 (76494 pixels) in 2012 so assuming the same average 

growth, 50 years later in 2062 the urbanised area will be approximately 88.142 km
2
 

(97935.67 pixels).   

The prediction mode of the SLEUTH model works similarly as the calibration. 

However, here not a range of values are assigned to each coefficient, but one selected 

number. The prediction was conducted for all 38 scenarios with a number of iterations 

so that for each scenario the iteration with the most similar area could be selected. The 

model generates image and statistical output in prediction mode. The statistical data 

includes the total number of urbanised pixels in each year. With the help of this 

information the simulated land use cover output with the proper amount of urbanised 

area was selected for each scenario. These 38 images were used in the analysis. There is 

an example scenario at the end of this chapter (Figure 3.6) and one scenario of each 

growth type can be found in APPENDIX 2. 

The output scenarios were named according to the coefficients applied in 

prediction. Since the slope is always 1, the breed is 75 and the road is also 1 in all but 5 

scenarios, to keep the names simple, only the diffusion and spread coefficients were 

used in the label. To differentiate the road based scenarios they were given a sign (*). 

For example the name of the compact scenario with max spread and minimum diffusion 

is 1-100 (diff:1, breed:75, spread: 100, slope:1, road:1) and an example road based 

scenario looks like: 100-1* (diff: 100, breed: 75, spread: 1, slope:1, road: 100).  
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Figure 3.6 Output scenario of the SLEUTH model: combined growth type (70-30) 

3.6 Application of fragmentation indices 

IndiFrag is a processing tool written in the programming language Python for 

ArcGIS. It was developed to characterize landscape fragmentation based on LULC data 

(Sapena and Ruiz, 2015a). The tool works with georeferenced vector data as a result 

both the reference and simulated maps had to be adapted to these conditions. Figure 3.5 

illustrates the steps of the preparation of the SLEUTH output data for IndiFrag and of 

the calculation of the metrics. In the first step the simulated maps in raster format were 

georeferenced with the help of the reference maps of 2012. As they were originally 

created from georeferenced vector data, they have a coordinate system. Their projection 

files were simply added to the SLEUTH model scenarios. Next, both the reference and 

simulated maps were converted to vector format to meet the requirements of the 

IndiFrag tool. The tool can be accessed from ArcMap and requires only a shapefile of 

the objects in polygon format with their classification in order to operate. The only 

metric that requires an additional point feature is the Radius Dimension (DimR). It 

measures the centrality of land use patterns with the help of a central point. In this case 

it is an approximated centroid of the urban class extracted from Corine Land Cover 

2000 (Eurostat, 2017).  
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Figure 3.7 Work flow of the application of fragmentation and multi-temporal 

indices to SLEUTH output data 

The indices can function at three different hierarchical levels from lowest to 

highest: object, class and super-object (Sapena and Ruiz, 2015a). The lowest level was 

not considered, since at this level only the size and shape of the spots are characterized 

by the metrics, which was not interesting to be analysed in this study. The class level 

describes the characteristics of the objects within the same class, in this case the urban 

class (U). The highest level is the super-object (SO) level, where the relation between 

classes is observed within the boundaries of super-objects. In this study the super-object 

covers the whole study area, because urban growth was not examined at district level.  
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The 31 fragmentation indices (FI), from which 24 can be applied to super-object 

level and 23 to class level, describe a variety of properties: area, perimeter, shape, 

aggregation, diversity and contrast. These metrics examine the state of fragmentation at 

a certain point in time. In order to be able to measure changes, the indices have to be 

first calculated separately for the simulated and historical scenarios and then compute 

the difference between them. In addition there exist also multi-temporal fragmentation 

indices (MI), which directly analyse changes of the land use pattern (Sapena and Ruiz, 

2015b). This multi-temporal module of IndiFrag contains 15 metrics. As the last step 

these were conducted for each scenario. Appendix 3contains the list of metrics with 

their names used in the study. 

In the end the calculated metrics for each scenario were extracted from the 

attribute table of each shapefile into one common table (Appendix 4). This includes the 

fragmentation change of the whole study area (24) and of urban class (23) and multi-

temporal metrics for urban class (12). 

3.7 Selection of indices 

From the 59 metrics applied to the scenarios many shows similarities, as they 

describe similar properties. To prevent redundancy the metrics not providing new 

information on the characteristics were eliminated. All the scenarios were created in a 

way that the areas are close to equal in order to be able to compare the growth types 

accurately. As a result the metrics informing about the area did not show significant 

change between the scenarios. If they did, it is due to the small differences in the areas 

that could not be avoided. These were eliminated from further analyses, for example: 

Area, Perim, DU, Area_U, DC_U, DD_U, CP, RC, Ac, At and Ar all depend on urban 

area. Other metrics eliminated are RAMPA, IF, DF due to the lack of information they 

provide at SO level. They characterize the shape of objects of every class. Some metrics 

were eliminated, because there are other metrics providing very similar information. For 

example CU is the same as CC; USHAN and SIMP resemble to DSHAN; GC_U, IS_U 

and COHE to TEM and IF_U, DF_U to RMPA and DFP. Finally only 33 metrics 

remained all together: 13 fragmentation metrics of the super objects, 15 of urban class 

and 5 multi-temporal. 
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Figure 3.8 Correlation coefficients of the fragmentation metrics. Red: very 

high (|ρ|>0.9), yellow: high (0.7<|ρ|<0.9), green: medium and low (|ρ|<0.7) 

As a second step the high number of indices and redundant information still 

present in the database were reduced by applying correlation analysis to the complete 

set of 33 elements (Figure 3.8). “Correlation measures the direction and strength of the 

linear relationship between two quantitative variables.” (Moore et al., 2014) The 

correlation can range between -1 and 1. The negative values show negative correlation 

and the positive values positive correlation. Correlation close to 0 indicates a weak 

relation between the variables. The closer the correlation is to 1 or -1, the stronger the 

relationship is. There are 7 metrics that did not show high correlation with any other 

metric: DSHAN, DD, LPF_U, DFP_U, DO_U, DEP_U and DimR_U. These were kept. 

The highly correlating metrics, with a correlation coefficient greater than 0.9, were 

examined. From each group of correlating metrics one was kept for further analysis and 

the rest were omitted to prevent the influence of redundant data. For example DEP, 

TEM, GC, IS and COHE show high correlation between themselves but not with other 
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metrics. Except for TEM, all the other metrics from the group were eliminated. The 

remaining metrics are: TEM, DSHAN, DD, LPF_U, DFP_U, DO_U, DEP_U, 

DimB_U, DimR_U and AEdg_U.  

3.8 Classification and validation 

The methodology of the classification of the scenarios into the growth types based 

on the previously calculated fragmentation indices is explained here together with the 

method of validation of these classifications. First the discriminant analysis is 

introduced, which is followed by the cluster analysis. Their results are evaluated by 

cross validation and regression analysis, respectively. 

3.8.1 Discriminant analysis with cross validation 

The previously selected 10 metrics were used in the classification procedure. 

Discriminant analysis is a commonly used supervised classification method, thus 

requires a set of seed observations with known characteristics. It distinguishes between 

the classes using discriminant functions, which are linear equations of the variables. The 

functions calculate the probabilities of belonging to each growth type for each scenario. 

The 38 scenarios were classified to the growth type with the highest probability. In case 

of stepwise selection only the most important metrics are selected for the classification 

with the help of the F-to-enter variable. It starts the model with only one variable and at 

each step the statistically most significant variable is added. The statistical significance 

is defined by the F-value. When for a certain metric it is greater than the F-to-enter 

variable, it will be added to the model. The metrics later can be removed if their F value 

falls below the F-to-remove criterion. Discriminant analysis was applied to all three 

cases, which means that in each case the growth types set as classification factor were 

changed according to the cases (Case 1: isolated, compact, Case 2: isolated, compact, 

combined, Case 3: isolated, combined, road based). To see how each additional metric 

influence the accuracy of the classification, the stepwise forward analysis was applied 

with 0 F-to-enter level, so that one by one all the metrics will be included in the end. 

Although the maximum overall accuracy can be reached with more metrics, considering 

the small sample size of the database only fewer variables were selected for further 

analysis. This way over-fitting is avoided and redundancy in the variables is reduced. 
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The variables with a greater F value than 4 were selected, which means the first three 

steps of the forward selection. The rest of the variables demonstrate very low 

significance in classification thus they were omitted. 

The results were validated using cross-validation technique because of the 

reduced number of scenarios. This method does not require the separation of the already 

small data set into separate training and test sets, instead divides the data into subsets 

and conducts the analysis on one set (as training set) and validates this on another subset 

(as testing set). This can be performed multiple times by changing the testing and 

training sets and at the end the average of the accuracy for the rounds is calculated. The 

38 scenarios were randomly divided into four sets (two of 10 and two of 9 scenarios). 

During the validation always three different sets were used in the discriminant analysis 

as training set and the fourth as testing. The average accuracy of the 4 analysis on the 

testing set estimates the goodness of fit of the metrics.  

3.8.2 Cluster analysis and coefficient of determination 

The scenarios were also classified into two groups using unsupervised 

classification. Because of the small size of the database, to avoid overfitting, only the 

most significant metrics were used to conduct this analysis. The three metrics selected 

by the stepwise forward selection of the discriminant analysis were used (Case 1). In 

cluster analysis there are no samples given for each class to help the algorithm 

distinguish between groups of observations. “Cluster analysis groups data objects 

based only on information found in the data that describes the objects and their 

relationship. The goal is that the objects within a group be similar (or related) to one 

another and different from (or unrelated to) the objects in other groups” (Tan et al., 

2015). The objects are clustered by calculating distances between them based on the 

variables. There is a great diversity of cluster analysing algorithms available and 

depending on the dataset different methods can work more successfully (Estivill-Castro, 

2002). From the 7 methods that STATGRAPHICS offers k-means proved to be the 

most efficient algorithm. In this algorithm a scenario is selected for each cluster as a 

seed and the rest of the scenarios are matched to the closest cluster using the Squared 

Euclidian distance: 
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 𝑑(𝑥, 𝑦) = ∑ (𝑥𝑖 − 𝑦𝑖)
2𝑝

𝑖=1 ,  (1) 

where p is the number of metrics (p=3). 

When all the objects are assigned to a cluster, the centroids are calculated and each 

scenario is examined one by one to see whether it is closer to a centroid of another 

cluster than its own. If so, it is assigned to the other cluster and the centroids are 

recalculated before starting the supervision of the other scenarios.  

After determining a cluster for each scenario, their distance was calculated from 

the two centroids to evaluate the accuracy of the analysis. This value was compared to 

the compactness of the scenarios. The degree of compactness (DoC) was calculated 

based on the diffusion (D) and spread (S) coefficients of the SLEUTH model. Figure 3.9 

explains the conversion of the scenarios from the diffusion-spread coordinate system to 

the degree of compactness. The distance of the scenarios to the red line can be 

calculated for each point as the height of an isosceles right triangle ((S-D)/√2). The 

scenario with the lowest degree of compactness is 100-1, thus the red line of 0 

compactness was shifted here. This means that to all the calculated distances to the red 

line 70,0036 has to be added (distance between 0 compactness and red line) in order to 

get the degree of compactness ranging between 0 and 140 and not -70 and 70. The 

following equation shows the calculations: 

 DoC =
S − D

√2
+ |(𝑆𝑙𝑜𝑤𝑒𝑠𝑡 −𝐷ℎ𝑖𝑔ℎ𝑒𝑠𝑡)/√2| (2) 

where 

 |(𝑆𝑙𝑜𝑤𝑒𝑠𝑡 − 𝐷ℎ𝑖𝑔ℎ𝑒𝑠𝑡)/√2| = |(1 − 100)/√2| = 70.0036 (3) 

The maximum spread with minimum diffusion value is the highest level of compactness 

(140) and spread of 1 and diffusion of 100 is the lowest (0). All the other scenarios are 

assigned a value between them. The combined scenarios are in the middle with 

compactness of 70. The compactness of the road based scenarios equals to that of the 

scenarios with equivalent diffusion and spread values. 
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Figure 3.9 Conversion from diffusion-spread coordinate system to the degree of compactness 

Finally, as an evaluation of the cluster analysis, the relation between the 

compactness and the distances to the two centroids were explored by regression 

analysis. “Regression analysis is a statistical technique for modelling and investigating 

the relationship between two or more variables” (Montgomery and Runger, 1999). The 

simple linear regression analysis is suitable for two variables showing linear 

relationship in a way that the dependent variables are normally distributed over the 

independent variables. In the single regression analysis computed on the two variables 

the cause is the distance to the centroid serving as the independent variable and the 

effect (dependent variable) is the degree of compactness. The regression coefficients 

were estimated by the method of least squares. “The least-squares regression line of y 

height=(S-D)/√2 
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on x is the line that makes the sum of the squares of the vertical distances of the data 

points from the line as small as possible. (…) It looks at the distances of the data points 

from the line only in the y direction. So the two variables x and y play different roles in 

regression” (Moore at al., 2014). The goodness of fit was computed by the coefficient 

of determination, an output of the regression analysis used commonly to examine the 

accuracy of a regression model. “It is the square of the correlation, the fraction of the 

variation in the values of y that is explained by the least-squares regression of y on x” 

The squared correlation gives 1 when all the variation in one variable can be described 

by the linear relationship with the other variable. The decrease in the coefficient of 

determination shows the decrease in the accuracy of the regression line describing the 

relation between the two variables.  
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 RESULTS AND DISCUSSION 4

The aim of this chapter is to demonstrate and explain the results of the 

classification of the scenarios into the growth types, including the results of the 

validation as well. These were calculated following the methodology described at the 

end of the previous chapter.  

4.1 Results of the classifications 

The results of the stepwise forward discrimination analysis applied to the three 

cases are shown in Figure 4.1 and Table 4.1. Figure 4.1 presents how the overall and 

class accuracies of the supervised classification are changing while introducing new 

variables. Table 4.1 contains the outcome of the analyses on the three cases (MP) after 

adding all ten metrics compared to the real classification (R). The scenarios are 

classified into the growth type to which the model assigns the highest probability (%).  

In Case 1 the two groups are discriminated with an overall accuracy of 93.75% 

already after introducing the first variable and to improve that five more variables have 

to be added, reaching the maximum accuracy of 1 with seven metrics. The accuracy of 

the combined scenarios in Case 2, the transition between the isolated and compact 

classes, hardly surpasses 50%. The combined scenarios with lower coefficients (1-1, 25-

25 and 50-50) are correctly classified, but with high spread and diffusion variables the 

scenarios are assigned to the compact class (75-75, 100-100). The spread coefficient, 

which defines the compactness of the scenarios, shows greater growth per year than the 

diffusion coefficients. As a result the high spread values let the scenarios reach the 

required area before the diffusion coefficients could create isolated urbanised areas and 

represent evenly the isolated characteristics of the combined scenarios. Since the 

discrimination of the other two scenarios remains highly accurate, the overall accuracy 

stays as high as 70-90%. In Case 3, the 5 road based scenarios (1-1*, 25-1*, 50-1*, 75-

1*, 100-1*) cannot be distinguished from the isolated and compact scenarios with the 
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same spread and diffusion values (1-1, 25-1, 50-1, 75-1, 100-1). Although Figure 4.1 

demonstrates high accuracy for the road based scenarios (80-100%), Table 4.1 proves 

that it is at the cost of the accuracy of the other growth types. The classification of 4 of 

the 5 road based scenarios correspond to the 4 scenarios with the same spread and 

diffusion values, but 0 road coefficient: 25-1, 25-1* classified as isolated and 50-1, 50-

1*, 75-1, 75-1*, 100-1 and 100-1* are classified as road based. A reason for this might 

be that the SLEUTH model does not allow changing the influence of the road enough to 

make a notable difference. Another explanation might be that the road influenced 

growth has too similar growth pattern to the isolated growth, similarly expanding from 

several spreading centres. As a result in fragmentation the difference is too small to be 

recognised by the metrics.  
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Figure 4.1 The accuracy and F-to-enter value of the Stepwise Discriminant Analysis with Forward 

Selection at each step adding one more metric (a) Case 1 (b) Case 2 (c) Case 3 
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SLEUTH 
Case 1 Case 2 Case 3     

R MP % R MP % R MP %     

100_1 I  I 1 I  I 1 I *R 0.768     

75_1 I  I 1 I  I 0.99 I *R 0.974     

50_1 I  I 1 I  I 1 I *R 0.564     

25_1 I  I 1 I  I 0.999 I  I 0.591     

1_1    I 1 X  X 1 X  X 0.999     

90_10 I  I 1 I  I 1 I  I 0.852     

80_20 I  I 0.997 I  I 0.98 I  I 0.895     

100_25 I  I 1 I  I 0.994 I  I 0.977     

75_25 I  I 1 I  I 1 I  I 0.99     

50_25 I  I 0.997 I  I 0.725 I  I 0.805     

25_25    C 0.914 X  X 0.894 X  X 0.892   R 

1_25 C  C 0.983 C  C 0.928 C  C 0.889   Real classification 

70_30 I  I 0.996 I  I 0.973 I  I 0.914   MP 

60_40 I  I 1 I  I 0.986 I  I 0.956   Most probable class 

100_50 I  I 0.982 I  I 0.994 I  I 0.923   % 

75_50 I  I 0.791 I  I 0.789 I  I 0.801   Probability of MP 

50_50    I 0.656 X  X 0.49 X *I 0.497   I 

25_50 C  C 0.706 C *X 0.79 C *X 0.807   isolated 

1_50 C  C 1 C  C 0.917 C  C 0.815   C 

40_60 C  C 0.985 C  C 0.788 C  C 0.673   compact 

30_70 C  C 0.997 C  C 0.794 C  C 0.687   X 

100_75 I  I 0.835 I  I 0.446 I  I 0.543   combined 

75_75    C 1 X *C 0.85 X *C 0.646   R 

50_75 C  C 0.999 C  C 0.671 C  C 0.611   road 

25_75 C  C 0.999 C  C 0.944 C  C 0.937   Global Ac. 

1_75 C  C 1 C  C 0.993 C  C 0.991   Global Accuracy 

20_80 C  C 1 C  C 0.993 C  C 0.99     

10_90 C  C 1 C  C 0.995 C  C 0.992     

100_100    C 0.997 X *C 0.609 X  X 0.54     

75_100 C  C 1 C  C 0.942 C  C 0.817     

50_100 C  C 1 C  C 0.853 C  C 0.778     

25_100 C  C 1 C  C 0.949 C  C 0.933     

1_100 C  C 1 C  C 0.938 C  C 0.911     

100_1* I  I 1 I  I 1 R  R 0.996     

75_1* I  I 1 I  I 1 R  R 0.658     

50_1* I  I 1 I  I 1 R  R 0.888     

25_1* I  I 1 I  I 0.95 R *I 0.532     

1_1*    I 0.996 X  X 0.999 R  R 0.996     

Global Ac. 100 92.11 81.58 

  
Table 4.1 Outcomes of the discriminant analysis using 10 metrics (Case 1-3) 
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It is visible that the more growth types there are included in the classification, the 

lower the accuracy of the overall classification is. In other words, it is more difficult to 

assign the scenarios according to the real classification of more growth types. The 

fragmentation metrics distinguish between the two classes of growth of the first case the 

most accurately. In the following analyses the accuracy of the classification into these 

two classes is examined. Based on the stepwise forward selection on Case 1 (Figure 

4.1), the three metrics with the highest F value (greater than 4) were DEP_U, DimB_U 

and DO_U, which were kept for further classification and analysis, since they 

demonstrate high significance in classification. The results of the discriminant analysis 

applied on Case 1 using three metrics can be seen in Figure 4.2. 

 

 

Figure 4.2 Results of the classification in a diffusion-spread coordinate system identifying two growth 

types using three metrics (a) Discriminant analysis (b) Cluster analysis 

Comparing the results of the classification by discriminant and cluster analysis 

discriminating two classes (Case 1) in Figure 4.2, it is visible that cluster analysis 

without the seed scenarios’ help recognises less isolated scenarios than the discriminant 

analysis: only the scenarios with less than 20 spread coefficient.  

Table 4.2 contains the results of the cluster analysis: the classification and the 

centroids of the clusters. Figure 4.3 demonstrates the spread of the scenarios in the three 
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dimensional coordinate system of the three metrics and locates the two centroids based 

on which the classification depends. Half of the isolated scenarios are very near the 

centroid of this cluster while four are located further (group 1 and 5), but still visibly 

closer to this centroid than to the compact centroid. The compact cluster contains the 

majority of the scenarios, most of them closely surrounding the centroid, while one 

group is further spread opposite direction of the isolated cluster (group 2) and two 

groups of compact scenarios are between the two clusters (group 3 and 4). Group 2 is 

the furthest from the isolated centroid containing scenarios with high spread and low 

diffusion coefficients: 25-75, 20-80, 1-75 and 1-100. Group 4 includes the two scenarios 

with minimum spread and diffusion coefficients, located between the two centroids, but 

closer to the compact cluster. Group 3 includes the originally isolated scenarios that 

were assigned to the compact cluster, located very close to the isolated centroid, almost 

halfway between the two centres. The graph demonstrates the strong similarity between 

the road based scenarios and their non-road-based equivalent always closely located: 1-

1 and 1-1*, 25-1 and 25-1*, 50-1 and 50-1*, 75-1 and 75-1*, 100-1 and 100-1*. This 

similarity in the metrics prevents them from being classified separately. The rest of the 

combined scenarios not included in group 4 (25-25, 50-50, 75-75, 100-100) are located 

right next to the compact centroid surrounding it by every side, some closer, some 

further from the isolated cluster making it difficult to be separately clustered form the 

rest of the compact scenarios surrounding them.  

 

Figure 4.3 Results of cluster analysis in STATGRAPHICS 
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SLEUTH DEP_U DimB_U DO_U CLUSTER 

100_1 440,73 0,02747 21,212 1 

75_1 439,39 0,02858 20,1433 1 

50_1 455,85 0,02554 18,1924 1 

25_1 374,09 0,02809 14,7354 1 

90_10 466,62 0,01289 11,7423 1 

100_1* 476,43 0,0254 20,5588 1 

75_1* 454,39 0,02369 19,9233 1 

50_1* 442,19 0,0242 17,6354 1 

25_1* 404,34 0,02769 14,7407 1 

1_1 338,75 0,02123 3,39864 2 

80_20 430,88 -0,00133 8,014 2 

100_25 407,61 0,00302 7,2401 2 

75_25 425,88 -0,00088 6,0791 2 

50_25 436,37 -0,00104 4,8301 2 

25_25 385,65 -0,00759 2,86616 2 

1_25 374,17 -0,01972 0,91947 2 

70_30 410,46 -0,00329 5,8529 2 

60_40 396,57 -0,00795 4,3214 2 

100_50 397,53 -0,01218 5,4478 2 

75_50 363,75 -0,01129 4,01614 2 

50_50 369,69 -0,01051 3,109 2 

25_50 363,93 -0,01421 1,9364 2 

1_50 358,79 -0,02446 0,61354 2 

40_60 377,8 -0,01945 2,54278 2 

30_70 381,51 -0,01822 1,90145 2 

100_75 414,68 -0,01333 4,1429 2 

75_75 384,28 -0,02029 3,66398 2 

50_75 379,61 -0,01598 2,79085 2 

25_75 326,57 -0,01613 1,84951 2 

1_75 330,9 -0,02462 0,58483 2 

20_80 320,25 -0,02307 1,27178 2 

10_90 361,63 -0,02574 0,95966 2 

100_100 371,05 -0,01771 3,13727 2 

75_100 359,83 -0,02281 2,9699 2 

50_100 357,32 -0,02174 1,87225 2 

25_100 354,5 -0,02201 1,27767 2 

1_100 327,39 -0,02566 0,45154 2 

1_1* 330,3 0,02257 3,67573 2 
 

CENTROID 

CLUSTER DEP_U DimB_U DO_U 

1 439,337 0,024839 17,6537 

2 373,712 -0,01222 3,16334 

Table 4.2 Outcome of the cluster analysis using three metrics 
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4.2  Accuracy of the classifications 

The result of the cross validation on the classification of the discriminant 

analysis, in each of the four combinations of three training sets was the same: accuracy 

of 94.7%. The scenarios not assigned according to the predefined growth type were 

100-50 and 75-50 and the “combined scenarios” as a consequence of being ignored in 

Case 1. It seems that in scenarios with medium spread coefficient and high diffusion 

even if the later one is higher the metrics recognise the characteristics rather of a 

compact scenario than an isolated. Table 4.3 summarises the groups of 9-10 scenarios, 

their real classification and in which growth type they were classified by discriminant 

analysis. In each set up of three groups of training and 1 group of testing the outcome 

was the same. 
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Group SLEUTH GT DEP_U DimB_U DO_U CL ACC 

1 

50_1 I 455,8500061 0,02554 18,19239998 I true 

1_1 
 

338,75 0,021229999 3,398639917 I false 

80_20 I 430,8800049 -0,00133002 8,013999939 I true 

50_25 I 436,3699951 -0,0010401 4,83010006 I true 

70_30 I 410,459992 -0,0032901 5,8529 I true 

75_50 I 363,75 -0,0112901 4,016139984 C false 

20_80 C 320,25 -0,023070101 1,271780014 C true 

50_100 C 357,3200073 -0,021740099 1,872249961 C true 

1_100 C 327,3900146 -0,025660001 0,451539993 C true 

25_1* I 404,3399963 0,0276899 14,74069977 I true 

2 

90_10 I 466,6199951 0,01289 11,74230003 I true 

100_25 I 407,6099854 0,00301993 7,240099907 I true 

25_25 
 

385,6499939 -0,00759006 2,866159916 I false 

1_25 C 374,1700134 -0,0197201 0,919470012 C true 

60_40 I 396,570007 -0,0079501 4,3214002 I true 

100_50 I 397,5299988 -0,0121801 5,447800159 C false 

50_50 
 

369,6900024 -0,0105101 3,108999968 C false 

1_75 C 330,8999939 -0,024620101 0,584829986 C true 

10_90 C 361,6300049 -0,025739999 0,959659994 C true 

100_1* I 476,4299927 0,025399899 20,55879974 I true 

3 

75_25 I 425,8800049 -0,000880003 6,079100132 I true 

25_50 C 363,9299927 -0,0142101 1,936400056 C true 

1_50 C 358,7900085 -0,0244601 0,613539994 C true 

40_60 C 377,7999878 -0,0194501 2,542779922 C true 

100_75 I 414,6799927 -0,0133301 4,14289999 I true 

50_75 C 379,6099854 -0,01598 2,790849924 C true 

25_75 C 326,5700073 -0,016130099 1,849509954 C true 

100_100 
 

371,0499878 -0,017710101 3,137269974 C false 

1_1* 
 

330,2999878 0,0225699 3,67572999 I false 

4 

100_1 I 440,730011 0,02747 21,21199989 I true 

75_1 I 439,3900146 0,028580001 20,1432991 I true 

25_1 I 374,0899963 0,02809 14,7354002 I true 

30_70 C 381,5100098 -0,018220101 1,901450038 C true 

75_75 
 

384,2799988 -0,02029 3,663980007 C false 

75_100 C 359,8299866 -0,0228101 2,969899893 C true 

25_100 C 354,5 -0,022010099 1,277670026 C true 

75_1* I 454,3900146 0,02369 19,92329979 I true 

50_1* I 442,1900024 0,0242 17,63540077 I true 

GT – Real growth type; CL – Classification; ACC – Accuracy 

Table 4.3 Cross validation analysis: scenarios divided into four sets for the four discriminant analysis 
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The classification of the cluster analysis was evaluated with the help of a 

regression analysis, in which the relation between the degree of compactness and the 

distance to the two centroids were examined. In Figure 4.4 the degree of compactness 

stands for the probability of being compact (high compactness) or isolated (low 

compactness) based on the growth coefficients and that is compared to the probability 

of belonging to the two clusters based on the metrics (distance to the centroids). The 

compactness is compared separately to the distance to both centroids shown in the two 

graphs. The same groups identified in Figure 4.3 can be identified in these graphs as 

well.  

For example, group 2 containing the scenarios showing strong compact 

characteristics can be found on graph 1 with the longest distance to centroid one (around 

120) and high compactness (120-140) at the right end of the regression line. This exact 

group however, on the second graph seems to be a group of outliers far located from the 

regression line. It is because even though based on the SLEUTH coefficients they show 

high compactness, based on the metrics although they are close to the compact centroid, 

and much closer than to the isolated centroid, they are not the closest scenarios to the 

compact centroid. This significantly reduces the value of the coefficient of 

determination calculated on the second graph. The scenarios 10-90 and 25-100 have the 

same level of compactness (120) but the shorter distance to the isolated centroid without 

the reduction in compactness results in a further location from the regression line in the 

first graph. All the combined scenarios have the same compactness level (70). They 

only differ in the distance to the centroids. In the graph of the isolated centre, the 

combined scenarios (except for 1-11, 1-1*) are located in mid-distance to the centre, on 

the two sides, close to the regression line. 1-1 and 1-1* are further from the centroid 1 

but with the same compactness level which results in greater distance from the 

regression line. In the second graph, with medium compactness level the combined 

scenarios have very low distance from centroid 2: 25-25, 50-50, 75-75 and 100-100 are 

closer than 20, while the distance to centroid 2 from 1-1 any 1-1* is around 40. As 

opposed to the distance from centroid one, in the graph of centroid 2 they are located 

closer to the regression line showing a stronger linear relation. Only half of the isolated 

scenarios were identified by the cluster analysis as isolated, the rest is considered 

compact. In the second graph the isolated scenarios identified by the analysis are more 
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separable from the rest of the isolated scenarios identified as compact, since this group 

is the furthest located from centroid 2. 25-1 and 25-1* are mixed with the incorrectly 

classified isolated scenarios (isolated-compact scenarios, group 3). On the first graph 

the separation of the isolated and isolated-compact scenarios is more difficult. Based on 

both the distance and compactness, many scenarios from the two clusters show similar 

values.  

Overall, looking at the two regression lines, it is visible that on the first graph the 

lone fits better to the scenarios, separating them in the middle, while in the second graph 

some of the combined scenarios are very far above the line (group 2) along with other 

compact scenarios located on this side of the line. The isolated and isolated-compact 

scenarios can be found on the other side of the line, a bit further spread. The coefficient 

of determination describes the goodness of fit in numbers. The difference is extensive 

between the models of the two centroids. While in case of the compact centroid 

(centroid 2) the observations are far spread from the regression line and R
2
 does not 

reach 0.5, the distance to the isolated centroid (centroid 1) shows a stronger linear 

relation with the compactness (R
2
=0,7). This is mainly due to the scenarios in group 2 

as explained before.  
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Figure 4.4 Relation between the degree of compactness and the distance to the centroids (1) Centroid 1 

(Isolated) (2) Centroid 2 (Compact)
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 CONCLUSION AND 5

RECOMMENDATION 
 

This study presents an application of temporal and multi-temporal fragmentation 

metrics in the characterisation of urban growth types using simulated data. Valencia has 

shown dynamic urban growth in the last 30 years and the availability and consistence of 

the historic datasets provided a suitable database for simulation of land use change. 

After examining the current modelling trends of LULC change it is visible that LULC 

and its main driving force urbanisation is such a complex phenomenon that it is difficult 

to incorporate into one model all driving factors with the correct weighting. Although 

the SLEUTH model ignores socio-economic factors that also affect urbanisation, for the 

purpose of the this project it was found to be a useful instrument, predicting the changes 

in land use incorporating environmental drivers, such as previous changes in land use, 

transportation, topology and restricted areas. Besides the fact that it is freely available 

the most important factor was that it allows the users setting the coefficients during 

calibration to a certain extent. This way the scenarios could be created emphasizing 

certain characteristics of growth types that later could be examined with the help of the 

fragmentation indices. 

The assessment of the metrics’ suitability was conducted by applying several 

statistical analyses on the datasets: discriminant and cluster analysis, cross validation 

and regression analysis with the coefficient of determination. Looking at the results the 

fragmentation metrics prove to have potential in the simulated urban growth 

characterisation. The less growth types are distinguished the more accurate is the 

classification. Based on the current database the discrimination between isolated and 

compact growth is the most successful as they represent urban patterns with strong 

differences. The limitation in the classification of more growth types is a result of the 

similarities in the simulation of the urban pattern. The combined scenarios are a 

transition between two other growth types as a result they show the characteristics of 
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both of them, which makes it difficult to recognise them as a separate class. The metrics 

tend to detect the stronger influence of the spread coefficient over the diffusion when 

both the variables are high. The isolated and compact scenarios’ classification remains 

highly accurate even with the third class introduced, which means that the two growth 

types are clearly separable from the mixed class. The coefficients used in the simulation 

of the road based scenarios are very similar to that of the isolated ones. This causes the 

confusion in the classification. Meanwhile the road based scenarios are classified with 

high accuracy, it reduces that of the isolated scenarios, because they show similar 

characteristics due to the similar SLEUTH variables used to create the scenarios. The 

classification using cluster analysis is more difficult, since there are no seed objects 

given for each cluster to help the analysis in clustering, but still it recognises the 

isolated scenarios showing strong isolated characteristics. The distances of the scenarios 

to the cluster centroids can give useful information about the compactness. The closer 

the scenarios are to the compact centroid and the further to the isolated their 

compactness is higher. The distance from the isolated scenarios characterises the 

compactness of the scenarios more successfully since the relation between the 

compactness of the scenarios and the distance to the isolated centroid is more linear than 

to the compact centroid. 

The proposed method of including multi-temporal fragmentation indices in the 

characterisation and analysis of future growth can provide useful information for urban 

planners and enable a clearer identification of the type of growth occurring in a region 

in urban planning. The significance of the method lays in the capability of fast detection 

and categorisation of growth patterns using only LULC information, and its simple and 

straightforward application. However, it is important to note that the analyses were 

conducted on a small set of observations. A larger number of simulated scenarios are 

recommended to be examined to increase the accuracy of analysis and also provide 

scenarios for testing. Other types of urban growth could be explored and included in the 

study to see if more successful classification can be achieved. It could be interesting to 

involve other cities as well in the project to see how the metrics work in areas with 

different circumstances, for example more restricted areas, greater differences in 

topology and different size of cities.  
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APPENDIX 1 

Example scenario file from the SLEUTH model used for the prediction step of the road 

based scenario 75-1* (Project Gigalopolis, 2017) 
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# FILE: 'scenario file' for SLEUTH land cover transition model  

#       (UGM  v3.0)  

#       Comments start with #  

#  

#   I. Path Name Variables  

#  II. Running Status (Echo)  

# III. Output ASCII Files  

#  IV. Log File Preferences  

#   V. Working Grids  

#  VI. Random Number Seed  

# VII. Monte Carlo Iteration  

#VIII. Coefficients  

#      A. Coefficients and Growth Types  

#      B. Modes and Coefficient Settings  

#  IX. Prediction Date Range  

#   X. Input Images  

#  XI. Output Images  

# XII. Colortable Settings  

#      A. Date_Color  

#      B. Non-Landuse Colortable  

#      C. Land Cover Colortable  

#      D. Growth Type Images  

#      E. Deltatron Images 

#XIII. Self Modification Parameters  

 

# I.PATH NAME VARIABLES  

#   INPUT_DIR: relative or absolute path where input image files and  

#              (if modeling land cover) 'landuse.classes' file are  

#              located.  

#   OUTPUT_DIR: relative or absolute path where all output files will  

#               be located.  

#   WHIRLGIF_BINARY: relative path to 'whirlgif' gif animation program.  

#                    These must be compiled before execution.  

INPUT_DIR=../Input/vlc30new/  

OUTPUT_DIR=../Output/vlc30/prediction/maxvalue/roadslope0/75-75-1-1-100/ 

WHIRLGIF_BINARY=../Whirlgif/whirlgif  

 

# II. RUNNING STATUS (ECHO)  

#  Status of model run, monte carlo iteration, and year will be  

#  printed to the screen during model execution.  

ECHO(YES/NO)=yes  

 

# III. Output Files  

# INDICATE TYPES OF ASCII DATA FILES TO BE WRITTEN TO OUTPUT_DIRECTORY.  

#  

#   COEFF_FILE: contains coefficient values for every run, monte carlo  

#               iteration and year.  

#   AVG_FILE: contains measured values of simulated data averaged over  

#             monte carlo iterations for every run and control year.  

#   STD_DEV_FILE: contains standard diviation of averaged values  

#                 in the AVG_FILE.  

#   MEMORY_MAP: logs memory map to file 'memory.log'  

#   LOGGING: will create a 'LOG_#' file where # signifies the processor  

#            number that created the file if running code in parallel.  

#            Otherwise, # will be 0. Contents of the LOG file may be  

#            described below.  

WRITE_COEFF_FILE(YES/NO)=yes 

WRITE_AVG_FILE(YES/NO)=yes 

WRITE_STD_DEV_FILE(YES/NO)=yes  

WRITE_MEMORY_MAP(YES/NO)=YES 

LOGGING(YES/NO)=YES 

 

# IV. Log File Preferences  

# INDICATE CONTENT OF LOG_# FILE (IF LOGGING == ON).  

#   LANDCLASS_SUMMARY: (if landuse is being modeled) summary of input  

#                      from 'landuse.classes' file  

#   SLOPE_WEIGHTS(YES/NO): annual slope weight values as effected  

#                          by slope_coeff  

#   READS(YES/NO)= notes if a file is read in  

#   WRITES(YES/NO)= notes if a file is written  

#   COLORTABLES(YES/NO)= rgb lookup tables for all colortables generated  

#   PROCESSING_STATUS(0:off/1:low verbosity/2:high verbosity)=  

#   TRANSITION_MATRIX(YES/NO)= pixel count and annual probability of  

#                              land class transitions  
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#   URBANIZATION_ATTEMPTS(YES/NO)= number of times an attempt to urbanize  

#                                  a pixel occurred  

#   INITIAL_COEFFICIENTS(YES/NO)= initial coefficient values for  

#                                 each monte carlo  

#   BASE_STATISTICS(YES/NO)= measurements of urban control year data  

#   DEBUG(YES/NO)= data dump of igrid object and grid pointers  

#   TIMINGS(0:off/1:low verbosity/2:high verbosity)= time spent within  

#     each module. If running in parallel, LOG_0 will contain timing for  

#     complete job.  

LOG_LANDCLASS_SUMMARY(YES/NO)=yes  

LOG_SLOPE_WEIGHTS(YES/NO)=no  

LOG_READS(YES/NO)=no 

LOG_WRITES(YES/NO)=no 

LOG_COLORTABLES(YES/NO)=no 

LOG_PROCESSING_STATUS(0:off/1:low verbosity/2:high verbosity)=1  

LOG_TRANSITION_MATRIX(YES/NO)=yes 

LOG_URBANIZATION_ATTEMPTS(YES/NO)=yes  

LOG_INITIAL_COEFFICIENTS(YES/NO)=no  

LOG_BASE_STATISTICS(YES/NO)=yes  

LOG_DEBUG(YES/NO)= yes 

LOG_TIMINGS(0:off/1:low verbosity/2:high verbosity)=1 

 

# V. WORKING GRIDS  

# The number of working grids needed from memory during model execution is 

 

# designated up front. This number may change depending upon modes. If  

# NUM_WORKING_GRIDS needs to be increased, the execution will be exited 

# and an error message will be written to the screen and to 'ERROR_LOG' 

# in the OUTPUT_DIRECTORY. If the number may be decreased an optimal   

# number will be written to the end of the LOG_0 file.  

NUM_WORKING_GRIDS=5 

 

# VI. RANDOM NUMBER SEED  

# This number initializes the random number generator. This seed will be 

# used to initialize each model run.  

RANDOM_SEED=1 

 

# VII. MONTE CARLO ITERATIONS  

# Each model run may be completed in a monte carlo fashion.  

#  For CALIBRATION or TEST mode measurements of simulated data will be 

#  taken for years of known data, and averaged over the number of monte   

#  carlo iterations. These averages are written to the AVG_FILE, and   

#  the associated standard diviation is written to the STD_DEV_FILE.   

#  The averaged values are compared to the known data, and a Pearson 

#  correlation coefficient measure is calculated and written to the   

#  control_stats.log file. The input per run may be associated across  

#  files using the 'index' number in the files' first column.  

#  

MONTE_CARLO_ITERATIONS=100 

 

# VIII. COEFFICIENTS  

# The coefficients effect how the growth rules are applied to the data. 

# Setting requirements: 

#    *_START values >= *_STOP values 

#    *_STEP values > 0 

#   if no coefficient increment is desired: 

#    *_START == *_STOP 

#    *_STEP == 1  

# For additional information about how these values affect simulated 

# land cover change see our publications and PROJECT GIGALOPOLIS 

#  site: (www.ncgia.ucsb.edu/project/gig/About/abGrowth.htm).  

#  A. COEFFICIENTS AND GROWTH TYPES  

#     DIFFUSION: affects SPONTANEOUS GROWTH and search distance along the  

#                road network as part of ROAD INFLUENCED GROWTH.  

#     BREED: NEW SPREADING CENTER probability and affects number of ROAD  

#            INFLUENCED GROWTH attempts.  

#     SPREAD: the probabilty of ORGANIC GROWTH from established urban 

#             pixels occuring.               

#     SLOPE_RESISTANCE: affects the influence of slope to urbanization. As 

#                       value increases, the ability to urbanize 

#                       ever steepening slopes decreases.  

#     ROAD_GRAVITY: affects the outward distance from a selected pixel for 

#                   which a road pixel will be searched for as part of 

#                   ROAD INFLUENCED GROWTH.  
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# 

#  B. MODES AND COEFFICIENT SETTINGS  

#     TEST: TEST mode will perform a single run through the historical  

#           data using the CALIBRATION_*_START values to initialize  

#           growth, complete the MONTE_CARLO_ITERATIONS, and then conclude 

#           execution. GIF images of the simulated urban growth will be  

#           written to the OUTPUT_DIRECTORY.  

#     CALIBRATE: CALIBRATE will perform monte carlo runs through the  

#                historical data using every combination of the 

#                coefficient values indicated. The CALIBRATION_*_START   

#                coefficient values will initialize the first run. A   

#                coefficient will then be increased by its *_STEP value,   

#                and another run performed. This will be repeated for all 

#                possible permutations of given ranges and increments.  

#     PREDICTION: PREDICTION will perform a single run, in monte carlo  

#                 fashion, using the PREDICTION_*_BEST_FIT values  

#                 for initialization. 

 

CALIBRATION_DIFFUSION_START= 0  

CALIBRATION_DIFFUSION_STEP=  1  

CALIBRATION_DIFFUSION_STOP=  0  

 

CALIBRATION_BREED_START=     0  

CALIBRATION_BREED_STEP=      1  

CALIBRATION_BREED_STOP=      0 

 

CALIBRATION_SPREAD_START=    6  

CALIBRATION_SPREAD_STEP=     1  

CALIBRATION_SPREAD_STOP=     6  

 

CALIBRATION_SLOPE_START=     0  

CALIBRATION_SLOPE_STEP=      1  

CALIBRATION_SLOPE_STOP=      0  

 

CALIBRATION_ROAD_START=      0  

CALIBRATION_ROAD_STEP=       1  

CALIBRATION_ROAD_STOP=       0  

 

PREDICTION_DIFFUSION_BEST_FIT= 75  

PREDICTION_BREED_BEST_FIT= 75  

PREDICTION_SPREAD_BEST_FIT= 1  

PREDICTION_SLOPE_BEST_FIT=  1  

PREDICTION_ROAD_BEST_FIT=  100  

 

# IX. PREDICTION DATE RANGE  

# The urban and road images used to initialize growth during  

# prediction are those with dates equal to, or greater than,  

# the PREDICTION_START_DATE. If the PREDICTION_START_DATE is greater  

# than any of the urban dates, the last urban file on the list will be  

# used. Similarly, if the PREDICTION_START_DATE is greater  

# than any of the road dates, the last road file on the list will be  

# used. The prediction run will terminate at PREDICTION_STOP_DATE.  

#  

PREDICTION_START_DATE=2012  

PREDICTION_STOP_DATE=2100 

 

# X. INPUT IMAGES  

# The model expects grayscale, GIF image files with file name  

# format as described below. For more information see our  

# PROJECT GIGALOPOLIS web site:  

# (www.ncgia.ucsb.edu/project/gig/About/dtInput.htm).  

#  

# IF LAND COVER IS NOT BEING MODELED: Remove or comment out  

# the LANDUSE_DATA data input flags below.  

#  

#    <  >  = user selected fields  

#   [<  >] = optional fields  

#  

# Urban data GIFs  

#  format:  <location>.urban.<date>.[<user info>].gif  

#  

#  

URBAN_DATA= vlc30.urban.1994.gif  

URBAN_DATA= vlc30.urban.2000.gif  
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URBAN_DATA= vlc30.urban.2006.gif  

URBAN_DATA= vlc30.urban.2012.gif  

#  

# Road data GIFs  

#  format:  <location>.roads.<date>.[<user info>].gif  

#  

ROAD_DATA= vlc30.roads.2006.gif  

ROAD_DATA= vlc30.roads.2012.gif  

#  

# Landuse data GIFs  

#  format:  <location>.landuse.<date>.[<user info>].gif  

#  

LANDUSE_DATA=vlc30.landuse.2006.gif  

LANDUSE_DATA= vlc30.landuse.2012.gif  

#  

# Excluded data GIF  

#  format:  <location>.excluded.[<user info>].gif  

#  

EXCLUDED_DATA=vlc30.excluded.gif  

#  

# Slope data GIF  

#  format:  <location>.slope.[<user info>].gif  

#  

SLOPE_DATA= vlc30.slope.gif  

#  

# Background data GIF  

#  format:   <location>.hillshade.[<user info>].gif  

#  

#BACKGROUND_DATA= demo200.hillshade.gif  

BACKGROUND_DATA= vlc30.hillshade.gif  

 

# XI. OUTPUT IMAGES  

#   WRITE_COLOR_KEY_IMAGES: Creates image maps of each colortable.  

#                           File name format: 'key_[type]_COLORMAP'  

#                           where [type] represents the colortable.  

#   ECHO_IMAGE_FILES: Creates GIF of each input file used in that job.  

#                     File names format: 'echo_of_[input_filename]'  

#                     where [input_filename] represents the input name.  

#   ANIMATION: if whirlgif has been compiled, and the WHIRLGIF_BINARY  

#              path has been defined, animated gifs begining with the  

#              file name 'animated' will be created in PREDICT mode.  

WRITE_COLOR_KEY_IMAGES(YES/NO)=yes  

ECHO_IMAGE_FILES(YES/NO)=yes 

ANIMATION(YES/NO)= yes  

 

# XII. COLORTABLE SETTINGS  

#  A. DATE COLOR SETTING  

#     The date will automatically be placed in the lower left corner  

#     of output images. DATE_COLOR may be designated in with red, green,  

#     and blue values (format: <red_value, green_value, blue_value> )  

#     or with hexadecimal begining with '0X' (format: <0X######> ).  

#default DATE_COLOR= 0XFFFFFF white  

DATE_COLOR=     0XFFFFFF #white  

 

#  B. URBAN (NON-LANDUSE) COLORTABLE SETTINGS  

#     1. URBAN MODE OUTPUTS  

#         TEST mode: Annual images of simulated urban growth will be  

#                    created using SEED_COLOR to indicate urbanized areas. 

 

#         CALIBRATE mode: Images will not be created.  

#         PREDICT mode: Annual probability images of simulated urban  

#                       growth will be created using the PROBABILITY  

#                       _COLORTABLE. The initializing urban data will be  

#                       indicated by SEED_COLOR.  

#  

#     2. COLORTABLE SETTINGS  

#          SEED_COLOR: initializing and extrapolated historic urban extent 

 

#          WATER_COLOR: BACKGROUND_DATA is used as a backdrop for 

  

#                       simulated urban growth. If pixels in this file   

#                       contain the value zero (0), they will be filled  

#                       with the color value in WATER_COLOR. In this way,  

#                       major water bodies in a study area may be included  
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#                       in output images.  

#SEED_COLOR= 0XFFFF00 #yellow  

SEED_COLOR=  249, 209, 110 #pale yellow  

#WATER_COLOR=  0X0000FF # blue  

WATER_COLOR=  20, 52, 214 # royal blue 

 

#     3. PROBABILITY COLORTABLE FOR URBAN GROWTH  

#        For PREDICTION, annual probability images of urban growth  

#        will be created using the monte carlo iterations. In these  

#        images, the higher the value the more likely urbanizaion is.  

#        In order to interpret these 'continuous' values more easily  

#        they may be color classified by range.  

#  

#        If 'hex' is not present then the range is transparent.  

#        The transparent range must be the first on the list.  

#        The max number of entries is 100.  

#          PROBABILITY_COLOR: a color value in hexadecimal that indicates 

#                             a probability range.  

#            low/upper: indicate the boundaries of the range.  

#  

#                  low,  upper,   hex,  (Optional Name)  

PROBABILITY_COLOR=   0,    50,         , #transparent  

PROBABILITY_COLOR=   50,   60, 0X005A00, #0, 90,0 dark green 

PROBABILITY_COLOR=   60,   70, 0X008200, #0,130,0  

PROBABILITY_COLOR=   70,   80, 0X00AA00, #0,170,0  

PROBABILITY_COLOR=   80,   90, 0X00D200, #0,210,0  

PROBABILITY_COLOR=   90,   95, 0X00FF00, #0,255,0 light green 

PROBABILITY_COLOR=   95,  100, 0X8B0000, #dark red  

 

#  C. LAND COVER COLORTABLE  

#  Land cover input images should be in grayscale GIF image format.  

#  The 'pix' value indicates a land class grayscale pixel value in  

#  the image. If desired, the model will create color classified  

#  land cover output. The output colortable is designated by the  

#  'hex/rgb' values.  

#    pix: input land class pixel value  

#    name: text string indicating land class  

#    flag: special case land classes  

#          URB - urban class (area is included in urban input data  

#                and will not be transitioned by deltatron)  

#          UNC - unclass (NODATA areas in image)  

#          EXC - excluded (land class will be ignored by deltatron)  

#    hex/rgb: hexidecimal or rgb (red, green, blue) output colors  

#  

#              pix, name,     flag,   hex/rgb, #comment  

LANDUSE_CLASS=  0,  Unclass , UNC   , 0X000000  

LANDUSE_CLASS=  1,  Urban   , URB   , 0X8b2323 #dark red 

LANDUSE_CLASS=  2,  Agric   ,       , 0Xffec8b #pale yellow  

LANDUSE_CLASS=  3,  Range   ,       , 0Xee9a49 #tan  

LANDUSE_CLASS=  4,  Forest  , EXC   , 0X006400  

LANDUSE_CLASS=  5,  Water   ,       , 0X104e8b  

LANDUSE_CLASS=  6,  Wetland ,       , 0X483d8b  

LANDUSE_CLASS=  7,  Barren  ,       , 0Xeec591  

 

#  D. GROWTH TYPE IMAGE OUTPUT CONTROL AND COLORTABLE  

#  

#  From here you can control the output of the Z grid  

#  (urban growth) just after it is returned from the spr_spread()  

#  function. In this way it is possible to see the different types  

#  of growth that have occured for a particular growth cycle.  

#  

#  VIEW_GROWTH_TYPES(YES/NO) provides an on/off  

#  toggle to control whether the images are generated.  

#  

#  GROWTH_TYPE_PRINT_WINDOW provides a print window  

#  to control the amount of images created.  

#  format:  <start_run>,<end_run>,<start_monte_carlo>,  

#           <end_monte_carlo>,<start_year>,<end_year>  

#  for example:  

#  GROWTH_TYPE_PRINT_WINDOW=run1,run2,mc1,mc2,year1,year2  

#  so images are only created when  

#  run1<= current run <=run2 AND  

#  mc1 <= current monte carlo <= mc2 AND  

#  year1 <= currrent year <= year2  
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#  

#  0 == first  

VIEW_GROWTH_TYPES(YES/NO)=yes  

GROWTH_TYPE_PRINT_WINDOW=0,0,0,0,2012,2100  

PHASE0G_GROWTH_COLOR=  0xff0000 # seed urban area  

PHASE1G_GROWTH_COLOR=  0X00ff00 # diffusion growth  

PHASE2G_GROWTH_COLOR=  0X0000ff # NOT USED  

PHASE3G_GROWTH_COLOR=  0Xffff00 # breed growth  

PHASE4G_GROWTH_COLOR=  0Xffffff # spread growth  

PHASE5G_GROWTH_COLOR=  0X00ffff # road influenced growth  

 

#************************************************************  

#  

#  E. DELTATRON AGING SECTION  

#  

#  From here you can control the output of the deltatron grid  

#  just before they are aged  

#  

#  VIEW_DELTATRON_AGING(YES/NO) provides an on/off  

#  toggle to control whether the images are generated.  

#  

#  DELTATRON_PRINT_WINDOW provides a print window  

#  to control the amount of images created.  

#  format:  <start_run>,<end_run>,<start_monte_carlo>,  

#           <end_monte_carlo>,<start_year>,<end_year>  

#  for example:  

#  DELTATRON_PRINT_WINDOW=run1,run2,mc1,mc2,year1,year2  

#  so images are only created when  

#  run1<= current run <=run2 AND  

#  mc1 <= current monte carlo <= mc2 AND  

#  year1 <= currrent year <= year2  

#  

#  0 == first  

VIEW_DELTATRON_AGING(YES/NO)=NO  

DELTATRON_PRINT_WINDOW=0,0,0,0,1930,2020  

DELTATRON_COLOR=  0x000000 # index 0 No or dead deltatron  

DELTATRON_COLOR=  0X00FF00 # index 1 age = 1 year  

DELTATRON_COLOR=  0X00D200 # index 2 age = 2 year  

DELTATRON_COLOR=  0X00AA00 # index 3 age = 3 year  

DELTATRON_COLOR=  0X008200 # index 4 age = 4 year  

DELTATRON_COLOR=  0X005A00 # index 5 age = 5 year  

 

# XIII. SELF-MODIFICATION PARAMETERS  

#       SLEUTH is a self-modifying cellular automata. For more   

#       information see our PROJECT GIGALOPOLIS web site 

#       (www.ncgia.ucsb.edu/project/gig/About/abGrowth.htm)  

#       and publications (and/or grep 'self modification' in code).  

ROAD_GRAV_SENSITIVITY=0.0001  

SLOPE_SENSITIVITY=0.0001  

CRITICAL_LOW=1  

CRITICAL_HIGH=1  

CRITICAL_SLOPE=21.0  

BOOM=1  

BUST=1  
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APPENDIX 2 

Examples of output scenarios of the SLEUTH model from each growth type: 

Isolated (50-1) 

Compact (1-50) 

Combined (50-50) 

Road based (50-1*) 
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Isolated (50-1) 

 
 

Compact (1-50) 

 

 
 

Urban Agricultural Green area Road 

 

 

 

 



7 APPENDICES  

72 

 

Combined (50-50) 

 

 
 

Road based (50-1*) 

 

 

Urban Agricultural Green area Road 
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APPENDIX 3 

List of all temporal and multi-temporal fragmentation metrics with the hierarchical 

levels and the elimination step 
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 Metrics 
Hierarchy 

 

 SO Cl 

T
em

p
o

ra
l 

A
re

a 
an

d
 P

er
im

et
er

 DB Edge Density 1 1 

DC Class Density   0 

DU Urban Density 0   

TM Object Mean Size 1 1 

DimB Boundary Dimension   3 

LPF Leapfrog   2 

Area Area 0 0 

Perim Perimeter 0 1 

PerimT Total Perimeter 1   

A
g
g
re

g
at

io
n

 

DO Object Density 1 3 

DEP Weighted Standard Distance 1 3 

TEM Effective Mesh Size 2 1 

GC Coherence Degree 1 0 

IS Splitting Index 1 0 

COHE Cohesion 1 0 

DEM Euclidean Nearest Neighbour Mean   1 

CU Urban Compactness 0   

CC Class Compactness   1 

DimR Radius Dimension   2 

Nob Number of Objects 1 1 

Contrast RCB Contrast Ratio 1 1 

D
iv

er
si

ty
 

DSHAN Shannon's Diversity 2   

USHAN Shannon's Evenness 0   

IFFR Relative Functional Fragmentation 0   

IFFA Absolute Functional Fragmentation 0   

DD Density-Diversity 2 0 

SIMP Simpson Diversity 0   

NCl Number of Classes 0   

S
h
ap

e 

DFP Area Weighted Mean Fractal Dimension   2 

DF Fractal Dimension 0 0 

IF Shape Index 0 0 

RMPA Perimeter-Area Mean Ratio 0 1 

M
u
lt

i-
te

m
p

o
ra

l 

Ainf Infilling Area   1 

RC Change Rate of Urban Expansion   0 

MEI Mean Expansion Index   1 

At1  Area of  class in the first time   0 

At2 Area of a class in the second time   0 

Anew  Area new   0 

Aedg  Area Edge Expansion   2 

Aout  Area outlying   1 

AWM  Area Weighted Mean   1 

CP Change Proportion   0 

Ac  Change area   0 

Ar  Change area ratio   0 
Hierarchy: SO – Super object; Cl – Class 

Elimination of metrics: 

0 – All metrics applied to the scenarios 

1 – After first elimination of redundant metrics 

2 – After elimination of correlating metrics 

3 – Metrics used for the final analyses 
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APPENDIX 4 

The fragmentation and multi-temporal indices calculated with IndiFrag for each 

scenario  

 



 

 

 

SLEUTH Area Perim RCB PerimT NCl Nob DU TM DB RMPA IF DF 

1_1 0,283004999 0,779999018 0,011846 229,8899994 0 1885 0,110771 -18594,5 0,00131225 0,020179201 -0,099749997 -0,0155699 

1_25 0,305999994 -1,019999981 0,00275099 36,21009827 0 1071 0,111515999 -12480,7002 0,00019214 0,0185192 -0,097669996 -0,0148799 

1_50 0,300002992 -0,540009022 0,00121003 14,76000023 0 956 0,110632002 -11432,2998 6,855E-05 0,0178992 -0,091820002 -0,01412 

1_75 0,296005011 0,119994998 0,000560045 10,4701004 0 869 0,107359998 -10601,2002 4,40199E-05 0,017531199 -0,088969901 -0,01368 

1_100 0,307007015 -0,480010986 0,000325024 0,600098014 0 887 0,106468 -10773,40039 -1,36495E-05 0,0177272 -0,093500003 -0,01428 

25_1 0,261992991 3,539989948 0,028654 708,2700195 0 4200 0,111110002 -28762,59961 0,00407755 0,0207962 -0,1052 -0,01539 

50_1 0,246994004 4,379990101 0,031668998 823,6199951 0 4725 0,111111 -30258 0,00474515 0,0206472 -0,109250002 -0,0155699 

75_1 0,261992991 3,659990072 0,033647001 886,0200195 0 5063 0,111146003 -31119 0,00510445 0,020769199 -0,109959997 -0,01548 

100_1 0,261992991 4,139999866 0,034290999 917,8499756 0 5294 0,110062003 -31669,69922 0,00528835 0,0209282 -0,111220002 -0,015699999 

1_1* 0,287003011 1,259989977 0,011963 237,7799988 0 1881 0,110724002 -18568,40039 0,00135765 0,0198722 -0,099160001 -0,01534 

25_1* 0,266005993 3,239989996 0,028674001 704,789978 0 4131 0,111294001 -28550,09961 0,00405705 0,020791201 -0,108280003 -0,015769999 

50_1* 0,264007986 3,839999914 0,031518999 810,4799805 0 4650 0,110930003 -30054,5 0,00466785 0,020968201 -0,110600002 -0,015860001 

75_1* 0,264007986 3,420000076 0,033443999 874,7999878 0 5047 0,110633999 -31079,40039 0,00503945 0,0208032 -0,109679997 -0,01554 

100_1* 0,264007986 3,480000019 0,034584001 919,3200073 0 5096 0,111714996 -31199,19922 0,00529665 0,0206642 -0,107009999 -0,01509 

100_100 0,309998006 -0,540009022 0,00854599 147,9900055 0 1415 0,108393997 -15316,7998 0,00083755 0,0182922 -0,092910103 -0,01425 

100_25 0,28500399 1,319990039 0,018832 397,5599976 0 2439 0,113182999 -21767,80078 0,00228075 0,019691201 -0,095199898 -0,01457 

100_50 0,307007015 -0,360000998 0,014453 273,7799988 0 2024 0,113032997 -19447,80078 0,00156425 0,019251199 -0,099880002 -0,0150499 

100_75 0,298996001 0 0,011572 215,3699951 0 1756 0,118298002 -17753,30078 0,00122735 0,019119199 -0,097170003 -0,01482 

25_100 0,304001004 -1,260010004 0,003627 49,04999924 0 1042 0,113517001 -12221,59961 0,00026641 0,017740199 -0,090599999 -0,01389 

25_25 0,302994013 -0,720000982 0,00926805 160,2899933 0 1527 0,112204999 -16155,40039 0,00090905 0,019189199 -0,098949999 -0,01515 

25_50 0,298996001 -0,120010003 0,006154 106,7099991 0 1355 0,112946004 -14854,2998 0,00059975 0,0190532 -0,097889997 -0,015 

25_75 0,304001004 -0,360000998 0,00481004 79,4701004 0 1226 0,101758003 -13812,2998 0,00044215 0,018195201 -0,094589897 -0,01447 

50_100 0,311996013 -0,66000402 0,00530404 85,35009766 0 1190 0,118775003 -13509,5 0,000475651 0,018514199 -0,093529902 -0,01448 

50_25 0,302994013 0,959990978 0,013988 278,6099854 0 1968 0,109002002 -19108,40039 0,00159245 0,0194482 -0,09708 -0,0148699 

50_50 0,298996001 -0,300002992 0,00989699 177,5099945 0 1607 0,111120999 -16731,09961 0,00100875 0,0190992 -0,096139997 -0,01475 

50_75 0,307007015 0,0599976 0,00726604 129,6600037 0 1423 0,106936 -15378,40039 0,00073185 0,018808199 -0,09606 -0,01472 

75_100 0,307007015 -0,120010003 0,00744003 131,0700073 0 1439 0,104075998 -15500 0,000739951 0,018476199 -0,096779898 -0,01465 

75_25 0,283004999 0,83999598 0,016851 343,2900085 0 2300 0,111331999 -21030,40039 0,00196735 0,019651201 -0,101350002 -0,01537 

75_50 0,29400599 0,599991024 0,010854 207,0599976 0 1687 0,105259001 -17288,5 0,00117975 0,018390199 -0,093549997 -0,01419 

75_75 0,289992988 0,720000982 0,00892001 169,0500031 0 1610 0,111233003 -16753,90039 0,00096035 0,0190922 -0,099069998 -0,01493 

10_90 0,311996013 -0,840012014 0,00158203 18,03000069 0 1006 0,114335001 -11892,7998 8,67806E-05 0,018793199 -0,09623 -0,01484 

20_80 0,307007015 -1,080000043 0,00373 52,71009827 0 1081 0,106158003 -12569,2002 0,00028739 0,0182152 -0,092589997 -0,0141799 

30_70 0,305007994 -0,540009022 0,00545901 89,43009949 0 1250 0,111117996 -14010,2002 0,00049955 0,0182862 -0,094439998 -0,01442 

40_60 0,300994992 0,539992988 0,00656003 121,3199997 0 1393 0,111014001 -15149,59961 0,00068405 0,018654199 -0,097120002 -0,01477 

60_40 0,307999015 -0,41999799 0,012695 234,5099945 0 1849 0,112843998 -18360 0,00133735 0,019026199 -0,096199997 -0,01456 

70_30 0,296997011 -0,120010003 0,015554 301,5599976 0 2158 0,108792 -20235,90039 0,00172545 0,0198342 -0,10001 -0,01529 

80_20 0,287993997 1,019989967 0,018906999 395,7900085 0 2570 0,109837003 -22430,90039 0,00227035 0,0200592 -0,102839999 -0,01552 

90_10 0,264999002 2,279999971 0,025519 593,0100098 0 3436 0,111291997 -26175,30078 0,00341135 0,0209492 -0,104900002 -0,015699999 



 

 

 

SLEUTH DO DEP TEM GC IS COHE CU DSHAN USHAN IFFR IFFA DD 

1_1 10,85770035 57,06010056 -2989730 -0,0173508 11 -0,005 -0,0031927 -0,037505001 -0,027053 0 -0,0065284 -0,078900002 

1_25 6,15199995 29,32029915 -1082850 -0,0063405 3,1 0,0006 0,000526201 -0,034805998 -0,025106 0 -0,0015234 -0,0817701 

1_50 5,488500118 31,66020012 -1171350 -0,0068504 3,4 -4E-04 0,0008313 -0,035571001 -0,025658 0 -0,0006705 -0,078370102 

1_75 4,986599922 20,11039925 -798450 -0,0046953 2,2 0,0013 0,0009341 -0,033762001 -0,024352999 0 -0,000310298 -0,06566 

1_100 5,088900089 23,49020004 -861630 -0,0050632 2,4 0,001 0,001069 -0,033481002 -0,024150001 0 -0,0001802 -0,06216 

25_1 24,23660088 60,36040115 -2743950 -0,0159269 10 -0,008 -0,0080116 -0,034596998 -0,024955999 0 -0,0156541 -0,080210097 

50_1 27,27370071 45,59030151 -2129930 -0,0123763 7,1 -0,004 -0,0088026 -0,033753999 -0,024347 0 -0,0172743 -0,080210097 

75_1 29,22260094 41,34030151 -2284480 -0,0132723 7,8 -0,004 -0,009233 -0,033131 -0,023898 0 -0,0183345 -0,080349997 

100_1 30,55699921 50,06010056 -2424930 -0,0140839 8,4 -0,005 -0,0094222 -0,032862 -0,023703 0 -0,018679099 -0,076170102 

1_1* 10,83399963 32,45999908 -1427330 -0,0083258 4,3 -0,001 -0,0033227 -0,037117001 -0,026773 0 -0,0065926 -0,0787201 

25_1* 23,83679962 41,20999908 -2161890 -0,0125649 7,2 -0,004 -0,0079508 -0,035328999 -0,025482999 0 -0,015665101 -0,080920003 

50_1* 26,83580017 46,17039871 -2156520 -0,0125335 7,2 -0,004 -0,0086921 -0,032650001 -0,023553001 0 -0,017193999 -0,079520002 

75_1* 29,12940025 65,13040161 -3085530 -0,0179009 12 -0,007 -0,0091351 -0,031860001 -0,022978 0 -0,0182258 -0,078380004 

100_1* 29,41250038 48,64009857 -2358450 -0,0137002 8,1 -0,004 -0,0093655 -0,03101 -0,022369999 0 -0,0188361 -0,082539998 

100_100 8,138299942 29,09029961 -1228130 -0,0071807 3,6 0 -0,0014422 -0,033339001 -0,024048001 0 -0,0047179 -0,069689997 

100_25 14,05770016 35,16019821 -1665180 -0,0096994 5,1 -0,001 -0,004687 -0,035069998 -0,025296999 0 -0,0103412 -0,088170096 

100_50 11,65629959 35,99020004 -1411130 -0,0082371 4,2 -7E-04 -0,0031765 -0,034122001 -0,024613 0 -0,0079545 -0,087590002 

100_75 10,1097002 39,74020004 -1564490 -0,0091211 4,8 -0,001 -0,0022329 -0,035725001 -0,025769001 0 -0,0063786 -0,107519999 

25_100 5,984799862 27,20019913 -1095040 -0,0064105 3,1 0,0004 0,000208801 -0,035174001 -0,025371 0 -0,0020078 -0,089440003 

25_25 8,786299706 25,74020004 -1164540 -0,0068117 3,4 0,0007 -0,0016015 -0,035158999 -0,025361 0 -0,0051145 -0,0844201 

25_50 7,793499947 25,74020004 -1146620 -0,0067071 3,3 1E-04 -0,0006713 -0,035904001 -0,025898 0 -0,0034015 -0,08726 

25_75 7,047599792 33,92039871 -1133880 -0,0066348 3,3 -5E-04 -0,0003882 -0,03187 -0,022985 0 -0,0026605 -0,043510102 

50_100 6,838399887 27,28030014 -1062790 -0,0062262 3 0,0003 -0,0003344 -0,037308 -0,026911 0 -0,0029335 -0,109300002 

50_25 11,33370018 37,15039825 -1521120 -0,0088714 4,6 -2E-04 -0,0032721 -0,033185001 -0,023937 0 -0,0077006 -0,072059996 

50_50 9,249199867 28,95999908 -1212880 -0,0070898 3,5 -2E-04 -0,0018542 -0,035238001 -0,025418 0 -0,0054601 -0,080250002 

50_75 8,184900284 34,8003006 -1291670 -0,0075471 3,8 -4E-04 -0,0011289 -0,032639999 -0,023544 0 -0,0040143 -0,064000003 

75_100 8,277299881 29,83009911 -1171400 -0,0068524 3,4 1E-04 -0,0011868 -0,031479999 -0,022709001 0 -0,0041101 -0,052730098 

75_25 13,25510025 38,25 -1621010 -0,0094439 5 -1E-03 -0,00403 -0,032910999 -0,023739001 0 -0,0092627 -0,081070103 

75_50 9,712100029 35,61040115 -1326310 -0,007744 3,9 -5E-04 -0,0023129 -0,032269999 -0,023279 0 -0,0059852 -0,057410002 

75_75 9,267900467 31,97999954 -1311580 -0,0076581 3,9 1E-04 -0,0016406 -0,034060001 -0,024568001 0 -0,0049236 -0,080689996 

10_90 5,775599957 24,42040062 -999150 -0,0058586 2,8 0,0005 0,0008051 -0,036531001 -0,026350999 0 -0,000876699 -0,092560098 

20_80 6,209599972 24,11039925 -931620 -0,0054672 2,6 0,0005 0,000187501 -0,032710001 -0,023598 0 -0,0020645 -0,06095 

30_70 7,186100006 34,93019867 -1302450 -0,0076087 3,8 -2E-04 -0,0003931 -0,034242999 -0,024700001 0 -0,0030185 -0,080239996 

40_60 8,012599945 33,72019958 -1219290 -0,0071275 3,5 -2E-04 -0,0009745 -0,034871001 -0,025153 0 -0,0036252 -0,079840101 

60_40 10,64540005 38,58010101 -1505550 -0,0087827 4,6 -0,001 -0,0026483 -0,033976998 -0,024507999 0 -0,0069933 -0,086870097 

70_30 12,43229961 40,09030151 -1629760 -0,0094975 5 -0,002 -0,0035983 -0,033156 -0,023916001 0 -0,0085554 -0,071240097 

80_20 14,81400013 40,75 -1715970 -0,0099934 5,3 -0,001 -0,0047317 -0,033431001 -0,024114 0 -0,010382 -0,075300001 

90_10 19,82169914 44,06010056 -1947530 -0,0113263 6,3 -0,002 -0,0067076 -0,03241 -0,023378 0 -0,0139645 -0,080910102 



 

 

 

SLEUTH SIMP Area_U Perim_U Nob_U LPF_U TM_U DB_U RMPA_U IF_U DF_U DFP_U DC_U 

1_1 -0,015144 19,28790092 366,3599854 590 -0 -12594 0,00210494 0,032471899 -0,099830002 -0,0185901 0,032919999 0,110771 

1_25 -0,014235 19,42830086 131,1600037 161 -0 7263,6 0,00074522 0,027541099 -0,097460002 -0,0180501 0,019200001 0,111515999 

1_50 -0,014356 19,27260017 113,6999969 108 -0 10608 0,00064461 0,02647 -0,090930097 -0,01721 0,01904 0,110632002 

1_75 -0,013287 18,7038002 104,0400009 103 -0 10448 0,000589 0,025679899 -0,088940002 -0,0166 0,0195299 0,107359998 

1_100 -0,013055 18,55529976 95,94010162 80 -0 11929 0,0005417 0,0250639 -0,089310102 -0,0168301 0,01859 0,106468 

25_1 -0,014245 19,3355999 833,5800171 2552 -0 -42514 0,00480544 0,037793402 -0,155330002 -0,02195 0,0211899 0,111110002 

50_1 -0,013973 19,32839966 937,8599854 3150 -0 -46046 0,00540904 0,0387544 -0,166449994 -0,02282 0,0159899 0,111111 

75_1 -0,013751 19,34189987 999,4199829 3488 -0 -47625 0,00576364 0,039138399 -0,170619994 -0,02302 0,0169599 0,111146003 

100_1 -0,013463 19,15469933 1025,160034 3673 -0 -48434 0,00591224 0,039680399 -0,174339995 -0,02356 0,0130899 0,110062003 

1_1* -0,014977 19,28160095 376,0799866 638 -0 -14173 0,00216091 0,032956202 -0,104029998 -0,0190101 0,03449 0,110724002 

25_1* -0,014498 19,36980057 826,3800049 2553 -0 -42511 0,00476354 0,038071401 -0,158659995 -0,0224301 0,0233899 0,111294001 

50_1* -0,013574 19,30590057 922,3800049 3054 -0 -45555 0,00531834 0,038643401 -0,165130004 -0,02265 0,017319901 0,110930003 

75_1* -0,013286 19,25460052 984,0599976 3450 -0 -47479 0,00567474 0,0388094 -0,168410003 -0,02276 0,00987995 0,110633999 

100_1* -0,013141 19,44179916 1020,299988 3560 -0 -47910 0,00588404 0,038652401 -0,167359993 -0,0223 0,01078 0,111714996 

100_100 -0,013305 18,89010048 242,2799988 545 -0 -11284 0,00138684 0,0307645 -0,1149 -0,0190101 0,016580001 0,108393997 

100_25 -0,014582 19,70639992 490,5599976 1255 -0 -28327 0,00282233 0,035253402 -0,130040005 -0,02018 0,020029901 0,113182999 

100_50 -0,014254 19,69199944 368,7600098 945 -0 -22223 0,00211753 0,0334372 -0,132049993 -0,02064 0,0166 0,113032997 

100_75 -0,015647 20,5991993 308,9400024 719 -0 -15879 0,00177241 0,032547802 -0,12274 -0,0198101 0,01613 0,118298002 

25_100 -0,014692 19,77389908 151,1999969 223 -0 3842,9 0,00086105 0,0279854 -0,09956 -0,0178801 0,019699899 0,113517001 

25_25 -0,014473 19,5461998 257,9400024 498 -0 -9128 0,00147765 0,032043502 -0,11609 -0,0199001 0,025679899 0,112204999 

25_50 -0,0148 19,67219925 201,1199951 337 -0 -2175 0,00114965 0,029146999 -0,101559997 -0,01792 0,021899899 0,112946004 

25_75 -0,011928 17,73810005 169,0800018 322 -0 -2887 0,00096433 0,0293958 -0,104369998 -0,0185601 0,017769899 0,101758003 

50_100 -0,016198 20,68829918 189,2400055 326 -0 -893,9 0,0010804 0,029155901 -0,10531 -0,0182301 0,019689901 0,118775003 

50_25 -0,013382 18,99180031 369,6600037 838 -0 -20018 0,00212296 0,032731399 -0,117919996 -0,01921 0,0210099 0,109002002 

50_50 -0,01432 19,35630035 272,8800049 540 -0 -10807 0,00156417 0,0304754 -0,104139999 -0,01775 0,019400001 0,111120999 

50_75 -0,012882 18,63629913 220,5599976 485 -0 -9231 0,00126152 0,030918799 -0,1127 -0,01917 0,01578 0,106936 

75_100 -0,012142 18,1413002 220,0800018 516 -0 -10718 0,00125874 0,0296837 -0,118450001 -0,01907 0,0179199 0,104075998 

75_25 -0,013635 19,38509941 432,4200134 1054 -0 -24727 0,00248656 0,033599701 -0,126780003 -0,0200601 0,019589899 0,111331999 

75_50 -0,012508 18,33930016 295,0799866 697 -0 -16536 0,00169263 0,031116201 -0,114139996 -0,0184101 0,01605 0,105259001 

75_75 -0,013958 19,3715992 259,019989 636 -0 -14055 0,0014845 0,031520799 -0,123360001 -0,01958 0,0169899 0,111233003 

10_90 -0,015215 19,91970062 119,9400024 168 -0 7238,8 0,00068013 0,0281379 -0,101340003 -0,01842 0,01809 0,114335001 

20_80 -0,01279 18,50130081 142,5599976 222 -0 2879,3 0,00081102 0,027772101 -0,097060099 -0,0172601 0,019069901 0,106158003 

30_70 -0,013998 19,35899925 182,2200012 331 -0 -2119 0,00104019 0,028672099 -0,103880003 -0,0181201 0,017960001 0,111117996 

40_60 -0,014175 19,33919907 216,7799988 442 -0 -7054 0,00123998 0,029792299 -0,109180003 -0,01851 0,015769999 0,111014001 

60_40 -0,014187 19,33919907 216,7799988 442 -0 -7054 1585,98999 0,029792299 -0,109180003 -0,01851 0,015769999 97981,60156 

70_30 -0,01331 19,33919907 216,7799988 442 -0 -7054 1585,98999 0,029792299 -0,109180003 -0,01851 0,015769999 97981,60156 

80_20 -0,013596 19,12859917 488,8800049 1389 -0 -30723 0,00281247 0,035800401 -0,143739998 -0,0217501 0,017079899 0,109837003 

90_10 -0,013436 19,3689003 682,3800049 2034 -0 -38328 0,00393164 0,037701402 -0,149379998 -0,0218201 0,0182699 0,111291997 

 



 

 

 

 

SLEUTH C_U DO_U DEP_U DEM_U TEM_U GC_U IS_U COHE_U DD_U RCB_U DimB_U DimR_U 

1_1 -0,0031927 3,398639917 338,75 -28,7677002 1403980 0,00809452 -46,00880051 0,0187988 0,186139002 0,00394505 0,021229999 0,068429902 

1_25 0,000526201 0,919470012 374,1700134 -19,8586998 1497530 0,00863252 -47,63629913 0,024299599 0,186139002 -0,00456995 -0,0197201 0,069209903 

1_50 0,0008313 0,613539994 358,7900085 -18,74220085 1625530 0,00937242 -49,7254982 0,025993301 0,186139002 -0,005633 -0,0244601 0,067670003 

1_75 0,0009341 0,584829986 330,8999939 -19,44639969 1696030 0,00978022 -50,80939865 0,0266953 0,186139002 -0,00604296 -0,024620101 0,065669999 

1_100 0,001069 0,451539993 327,3900146 -18,33799934 1616940 0,00932212 -49,58840179 0,026298501 0,186139002 -0,006805 -0,025660001 0,065259904 

25_1 -0,0080116 14,7354002 374,0899963 -33,89649963 1099920 0,00634002 -39,94860077 -0,00880432 0,186139002 0,012323 0,02809 0,074620001 

50_1 -0,0088026 18,19239998 455,8500061 -34,93500137 1031000 0,00594312 -38,39070129 -0,0172043 0,186139002 0,014107 0,02554 0,074089997 

75_1 -0,009233 20,1432991 439,3900146 -35,58760071 1117000 0,00643872 -40,32429886 -0,017601 0,186139002 0,014774 0,028580001 0,07401 

100_1 -0,0094222 21,21199989 440,730011 -35,73839951 999600 0,00576032 -37,64640045 -0,023101799 0,186139002 0,014672 0,02747 0,074340001 

1_1* -0,0033227 3,67572999 330,2999878 -27,35440063 1531430 0,00883032 -48,21110153 0,0196991 0,186139002 0,00300002 0,0225699 0,06961 

25_1* -0,0079508 14,74069977 404,3399963 -33,86349869 1211410 0,00698372 -42,31909943 -0,00559998 0,186139002 0,013072 0,0276899 0,073810004 

50_1* -0,0086921 17,63540077 442,1900024 -34,34970093 1053750 0,00607302 -38,90909958 -0,0146027 0,186139002 0,013929 0,0242 0,073899999 

75_1* -0,0091351 19,92329979 454,3900146 -35,48690033 875620 0,00504392 -34,5530014 -0,024803201 0,186139002 0,015277 0,02369 0,0736899 

100_1* -0,0093655 20,55879974 476,4299927 -35,66270065 872230 0,00502422 -34,46409988 -0,025802599 0,186139002 0,015563 0,025399899 0,074989997 

100_100 -0,0014422 3,137269974 371,0499878 -23,02129936 1459420 0,00841192 -46,98059845 0,017593401 0,186139002 -0,00114298 -0,017710101 0,067610003 

100_25 -0,004687 7,240099907 407,6099854 -29,62269974 1359070 0,00783492 -45,18790054 0,00799561 0,186139002 0,00580806 0,00301993 0,072979897 

100_50 -0,0031765 5,447800159 397,5299988 -27,73690033 1332700 0,00768032 -44,68759918 0,0114975 0,186139002 0,00295204 -0,0121801 0,072439998 

100_75 -0,0022329 4,14289999 414,6799927 -26,03420067 1390970 0,00801772 -45,76850128 0,0147934 0,186139002 0,000755012 -0,0133301 0,073949903 

25_100 0,000208801 1,277670026 354,5 -21,81809998 1629710 0,00939622 -49,78990173 0,024498001 0,186139002 -0,00431496 -0,022010099 0,06972 

25_25 -0,0016015 2,866159916 385,6499939 -23,80940056 1672900 0,00964582 -50,4571991 0,0226974 0,186139002 -0,000390947 -0,00759006 0,070419997 

25_50 -0,000671299 1,936400056 363,9299927 -23,54509926 1637400 0,00944122 -49,91149902 0,0233994 0,186139002 -0,00236499 -0,0142101 0,070819996 

25_75 -0,000388199 1,849509954 326,5700073 -21,98870087 1378560 0,00794552 -45,54079819 0,020095799 0,186139002 -0,00284696 -0,016130099 0,062830001 

50_100 -0,000334399 1,872249961 357,3200073 -22,79529953 1704980 0,00983012 -50,93889999 0,023696899 0,186139002 -0,00409698 -0,021740099 0,074320003 

50_25 -0,0032721 4,83010006 436,3699951 -26,49920082 1346090 0,00775802 -44,94039917 0,0129929 0,186139002 0,00239003 -0,0010401 0,068400003 

50_50 -0,0018542 3,108999968 369,6900024 -25,45560074 1509740 0,00870382 -47,84500122 0,0183945 0,186139002 0,000240028 -0,0105101 0,069750004 

50_75 -0,0011289 2,790849924 379,6099854 -24,63129997 1367280 0,00788002 -45,33240128 0,0172958 0,186139002 -0,00156599 -0,01598 0,065959901 

75_100 -0,0011868 2,969899893 359,8299866 -22,88969994 1503170 0,00866492 -47,73130035 0,0195999 0,186139002 -0,00210798 -0,0228101 0,063979998 

75_25 -0,00403 6,079100132 425,8800049 -29,05170059 1260220 0,00726402 -43,29539871 0,00930023 0,186139002 0,00500304 -0,000880003 0,071759902 

75_50 -0,0023129 4,016139984 363,75 -24,89520073 1308020 0,00753902 -44,22280121 0,0135956 0,186139002 0,00141603 -0,0112901 0,066699997 

75_75 -0,0016406 3,663980007 384,2799988 -25,8906002 1508850 0,00869962 -47,83250046 0,017898601 0,186139002 -0,000639975 -0,02029 0,069049999 

10_90 0,0008051 0,959659994 361,6300049 -20,49539948 1720510 0,00991982 -51,17010117 0,025993301 0,186139002 -0,00591195 -0,025739999 0,070160002 

20_80 0,000187501 1,271780014 320,25 -20,06999969 1642440 0,00946942 -49,98749924 0,0246964 0,186139002 -0,00370997 -0,023070101 0,065499999 

30_70 -0,0003931 1,901450038 381,5100098 -22,27389908 1454850 0,00838612 -46,90269852 0,020996099 0,186139002 -0,00331497 -0,018220101 0,06876 

40_60 -0,000974499 2,542779922 377,7999878 -23,29640007 1411340 0,00813512 -46,1352005 0,0183945 0,186139002 -0,00241798 -0,0194501 0,069179997 

60_40 -0,000974499 1629990 377,7999878 -23,29640007 5,97946E+11 664387008 -101,8280029 0,0183945 0,186139002 -0,00241798 -0,0194501 0,069179997 

70_30 -0,000974499 1629990 377,7999878 -23,29640007 5,97946E+11 664387008 -101,8280029 0,0183945 0,186139002 -0,00241798 -0,0194501 0,069179997 

80_20 -0,0047317 8,013999939 430,8800049 -30,80220032 1239460 0,00714362 -42,88010025 0,00499725 0,186139002 0,00542903 -0,00133002 0,069649898 

90_10 -0,0067076 11,74230003 466,6199951 -32,98649979 1191800 0,00687052 -41,91529846 -0,00270081 0,186139002 0,010214 0,01289 0,072809897 



 

 

 

 

SLEUTH At1_Cl1 At2_Cl1 ANew_Cl1 AInf_Cl1 AEdg_Cl1 AOut_Cl1 MEI_Cl1 AWM_Cl1 CP_Cl1 RC_Cl1 Ac_Cl1 Ar_Cl1 

1_1 68,84459686 88,13249969 19,28790092 3,528000116 13,28040028 2,47950006 34,38290024 33,40430069 11,14239979 0,493979007 19,28790092 0,385758013 

1_25 68,84459686 88,27290344 19,42830086 6,600599766 11,78999996 1,03770006 40,46509933 44,35179901 11,22200012 0,497162998 19,42830086 0,388565987 

1_50 68,84459686 88,11720276 19,27260017 6,039899826 12,37769985 0,85500002 41,66749954 44,98149872 11,13239956 0,493631989 19,27260017 0,385452002 

1_75 68,84459686 87,54840088 18,7038002 6,242400169 11,5685997 0,89279997 41,43970108 45,57440186 10,80420017 0,480679989 18,7038002 0,374076009 

1_100 68,84459686 87,39990234 18,55529976 5,610599995 12,23190022 0,71280003 42,39609909 45,68230057 10,71759987 0,477284998 18,55529976 0,371105999 

25_1 68,84459686 88,18019867 19,3355999 1,758599997 10,41569996 7,16130018 22,5814991 20,76849937 11,17129993 0,49506101 19,3355999 0,386712015 

50_1 68,84459686 88,17299652 19,32839966 1,58220005 9,673199654 8,07299995 20,38529968 18,91640091 11,16810036 0,494897991 19,32839966 0,38656801 

75_1 68,84459686 88,18650055 19,34189987 1,541700006 9,179100037 8,62110043 19,15509987 18,10740089 11,17500019 0,495204002 19,34189987 0,386837989 

100_1 68,84459686 87,9992981 19,15469933 1,559700012 8,528400421 9,06659985 18,61989975 17,46839905 11,06669998 0,490954012 19,15469933 0,383094013 

1_1* 68,84459686 88,12619781 19,28160095 3,890700102 12,7656002 2,62529993 33,604599 33,07699966 11,13850021 0,493835986 19,28160095 0,385632008 

25_1* 68,84459686 88,21440125 19,36980057 1,898100019 10,48050022 6,99119997 22,31559944 21,00530052 11,19079971 0,495837003 19,36980057 0,387396008 

50_1* 68,84459686 88,15049744 19,30590057 1,664999962 9,644399643 7,99650002 20,43009949 19,3416996 11,15400028 0,494388014 19,30590057 0,386117995 

75_1* 68,84459686 88,09919739 19,25460052 1,638900042 8,775899887 8,83979988 19,58749962 18,09959984 11,1243 0,493223011 19,25460052 0,38509199 

100_1* 68,84459686 88,28639984 19,44179916 1,58039999 8,581500053 9,2798996 19,05719948 17,70669937 11,23250008 0,497469008 19,44179916 0,388835996 

100_100 68,84459686 87,73470306 18,89010048 4,879799843 11,93939972 2,07089996 35,332901 40,34339905 10,91090012 0,484932005 18,89010048 0,377802014 

100_25 68,84459686 88,5510025 19,70639992 3,47939992 12,03569984 4,19129992 29,32649994 31,76959991 11,38399982 0,50345403 19,70639992 0,394127995 

100_50 68,84459686 88,53659821 19,69199944 4,536900043 11,79179955 3,36330009 31,51939964 35,78340149 11,37419987 0,503129005 19,69199944 0,393839985 

100_75 68,84459686 89,44380188 20,5991993 5,453999996 12,28680038 2,85840011 33,00740051 38,38840103 11,8987999 0,523518026 20,5991993 0,411983997 

25_100 68,84459686 88,61849976 19,77389908 6,263100147 12,13560009 1,37520003 39,17699814 43,73130035 11,42179966 0,504978001 19,77389908 0,39547801 

25_25 68,84459686 88,39080048 19,5461998 4,887899876 12,53339958 2,1249001 35,73070145 39,20610046 11,29030037 0,499832004 19,5461998 0,390924007 

25_50 68,84459686 88,51679993 19,67219925 5,138999939 12,93570042 1,59749997 37,63410187 41,49449921 11,36340046 0,502681017 19,67219925 0,393444002 

25_75 68,84459686 86,58270264 17,73810005 5,185800076 11,09700012 1,45529997 38,02719879 42,88150024 10,24580002 0,458496988 17,73810005 0,354761988 

50_100 68,84459686 89,53289795 20,68829918 5,923799992 13,04459953 1,71990001 37,38119888 42,47779846 11,94939995 0,525509 20,68829918 0,413765997 

50_25 68,84459686 87,83640289 18,99180031 4,17509985 11,8125 3,00419998 32,29219818 35,29539871 10,9701004 0,487248987 18,99180031 0,379835993 

50_50 68,84459686 88,20089722 19,35630035 4,932899952 12,06630039 2,35710001 35,12360001 38,82839966 11,18089962 0,495530993 19,35630035 0,387125999 

50_75 68,84459686 87,48090363 18,63629913 5,128200054 11,54880047 1,95930004 36,21969986 41,02669907 10,76439953 0,479137987 18,63629913 0,372725993 

75_100 68,84459686 86,98590088 18,1413002 4,853700161 11,23019981 2,05739999 36,07400131 41,07490158 10,47850037 0,467788994 18,1413002 0,36282599 

75_25 68,84459686 88,22969818 19,38509941 3,59100008 12,01410007 3,77999997 30,62649918 33,2655983 11,19849968 0,496183991 19,38509941 0,387701988 

75_50 68,84459686 87,18389893 18,33930016 4,588200092 11,08440018 2,66669989 33,79449844 38,06399918 10,59370041 0,472335994 18,33930016 0,366786003 

75_75 68,84459686 88,21620178 19,3715992 5,133600235 11,82509995 2,41289997 34,26169968 40,17739868 11,19029999 0,495878011 19,3715992 0,387432009 

10_90 68,84459686 88,76429749 19,91970062 7,026299953 11,86830044 1,02509999 39,7677002 45,41600037 11,5053997 0,508265972 19,91970062 0,398393989 

20_80 68,84459686 87,34590149 18,50130081 5,975999832 11,24100018 1,28429997 39,43859863 43,85739899 10,6864996 0,476049006 18,50130081 0,370025992 

30_70 68,84459686 88,20359802 19,35899925 5,785200119 11,92140007 1,65240002 37,77460098 42,64199829 11,18200016 0,495591998 19,35899925 0,387180001 

40_60 68,84459686 88,18379974 19,33919907 5,468400002 12,02760029 1,84319997 36,44900131 40,98149872 11,17080021 0,495142996 19,33919907 0,386783987 

60_40 68,84459686 88,5042038 19,6595993 4,604400158 12,1157999 2,93939996 33,06309891 37,14730072 11,35540009 0,502397001 19,6595993 0,393191993 

70_30 68,84459686 87,79679871 18,95219994 4,184100151 11,33100033 3,43709993 30,97990036 34,63880157 10,94760036 0,48634699 18,95219994 0,379043996 

80_20 68,84459686 87,97319794 19,12859917 3,715199947 10,93050003 4,48290014 28,80319977 31,73259926 11,05010033 0,490361005 19,12859917 0,382571995 

90_10 68,84459686 88,21350098 19,3689003 2,774699926 10,49040031 6,10379982 25,20689964 25,94070053 11,19029999 0,495817006 19,3689003 0,387378007 



 

 

 

 

 


