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ABSTRACT

Forest fires are an important part of the environment as they cause ecological and economical

damage, apart from claiming numerous lives. Support Vector Machines (SVMs) coupled with

satellite images and sensor information have been proven to aid in the prediction of forest fires

and the extent of burnt areas. The National Aeronautics and Space Administration’s (NASA)

moderate resolution imaging spectroradiometer (MODIS) provides an active fire product in the

form of spatial hotspots using an enhanced Collection 6 algorithm since 2015, which basically

consists of active fires. This study proposes a one-class SVM based approach to identify the

hotspots that are more likely to be a part of large forest fires. For this, Hotspots in Portugal in

the time period 2000-2016 were analysed. 38 known large forest fire events across Portugal

were used to train the SVM model. As expected, it was observed that these forest fires generally

occurred in spatio-temporal clusters when compared to the overall hotspot population. The

input parameters for the model were based on spatial and temporal clustering behaviour of the

hotspots, external factors such as land cover, temperature, elevation etc. and attributes from the

Collection 6 data such as latitude, fire detection confidence, fire radiative power and brightness

temperatures. Leave-one-out cross-validation and hold-out validation techniques were used

to validate the model. As a result, 79.8 % of the overall hotspots from 2000 to 2017 were

classified as ”true” forest fires. These ”true” detections were analysed over time. This led to

the identification of other forest fire events that were not included in the training or the test

dataset for the model. The results also showed that the model was more sensitive to land cover,

temperature, FRP and cluster parameters when compared to other parameters. This proves that

the model is responsive to active fires occurring on forest areas and also to spatio-temporal

clustering. It is assumed that this approach could be successfully adapted to other study areas as

there are no study area dependent input parameters used, except for the latitude, which needs to

be taken into consideration. The model can be extended by using other input parameters such as

humidity, slope etc. In addition, assigning higher weightage to the more influential parameters

such as land cover and spatio-temporal clustering could lead to better results.

Keywords: One-Class Support Vector Machines, MODIS Collection 6 Active Fire Product,

MOD14, MYD14, Spatio-Temporal Clustering
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1 INTRODUCTION

1.1 Forest Fires and the MODIS Fire Detection Service

Forest fires are an important part of the ecosystem and they affect multiple levels of the

ecosystem. A significant section of the living population is constantly being influenced by forest

fires directly or indirectly all around the world. A large amount of carbon is emitted by these

fires, which result in an increase of atmospheric CO2, and therefore contributes to climate change

[14] [34]. Additionally, forest fires affect the vegetation structure and composition and in some

cases, are also a cause of landcover change [14] [31] [13].There are numerous cases of loss of

human lives and property due to forest fires over the past. Despite their high influence on all parts

of the earth system and their potentially hazardous characteristics, there is a continuous lack of

understanding of these high temperature events in the context of future effects of global warming

and population growth [12]. Even though they have some shortcomings, satellite imagery and

related algorithms have proved to be a huge step towards the successful detection of these events

[32].

National Aeronautics and Space Administration (NASA) launched the Terra and Aqua satellites

in 1999 and 2002, respectively. Moderate Resolution Imaging Spectroradiometer (MODIS) is

a key instrument aboard these satellites. The orbits of these satellites are timed such that Terra

passes from north to south across the equator in the morning, while Aqua passes south to north

over the equator in the afternoon. This enables the satellites to view the entire Earth’s surface

every 1-2 days, acquiring data in 36 spectral bands, which are groups of wavelengths [8]. Both

satellites have a 1km resolution middle and long-wave infrared bands, which are used to detect

actively burning fires. The Collection 6 (C6) MODIS active fire product is available on NASA’s

Fire Information for Resource Management System (FIRMS) since September 2015 [6].The data

is available in the form of spatial points, which are the centers of 1km fire pixels burning at the

time of satellite overpass. The data product consists of a number of attributes, calculated using

the C6 MODIS active fire detection algorithm [21].

The Deutsches Fernerkundungsdatenzentrum / German Remote Sensing Data Center (DFD) is

an institute of the Deutsches Zentrum für Luft und Raumfahrt / German Aerospace Center (DLR)

with facilities in Oberpfaffenhofen near Munich, Germany. In cooperation with the Institut für
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Methodik der Fernerkundung / Remote Sensing Technology Institute (IMF), DFD is responsible

for the development and operation of Zentrum für Satellitengestützte Kriseninformation / Center

for Satellite Based Crisis Information (ZKI). ZKI provides a 24/7 service for the rapid provision,

processing and analysis of satellite imagery during natural disasters, worldwide. The main goal

is to provide relief organisations and public authorities with information products in the form of

maps, GIS data etc [10]. The ZKI MODIS fire service for Europe is a fire detection service which

operates based on the MODIS sensors on board the Aqua-1 and Terra-1 satellites [1]. It applies

the MOD14 algorithm proposed by Giglio et. al. on the images acquired by DLR in Germany

(Oberpfaffenhofen and Neustrelitz) [20]. A Graphical User Interface is provided online for the

users to access the information through interactive maps. In addition, recent satellite overpasses

with metadata are also made available for download.

1.2 Machine Learning and Support Vector Machines

The field of study interested in the development of computer algorithms for transforming data

into intelligent action is known as machine learning[28]. It basically aids in learning and

predicting situations, objects, processes and any dependent entity using data and artifically

intelligent algorithms. Today, everybody uses machine learning algorithms daily activities

without knowing it, for example in social networking sites, web search engines etc. In Machine

Learning, Support Vector Machine (SVM) are classifiers that use hyper planes to establish

classification boundaries within the sample space [28]. One-class SVM is an extension to the

support vector algorithm, used for novelty detection [38]. In this thesis, one-class SVMs are

used to classify the MODIS active fire pixels based on their data attributes. In doing so, the

significance of true fire pixels should be improved.

1.3 Motivation and Problem Statement

Fire fighting and relief operations involve massive financial and manpower. Therefore,

firefighting resource management is very critical. It is very important that these resources are

used in the right direction in order to save lives, property and nature. The MODIS Active

Fire data is a rich source of information that can help us understand the spatial and temporal

variations of fire activity on a large scale. This data can reaveal fire patterns when analysed over

time and combined with clustering behavior and secondary external information such as weather

conditions and relief [32] [22]. However, there are always cases where the detected fires may be
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false alarms. The MODIS C6 algorithm addresses the issue of false alarms to an extent, resulting

in higher validation accuracy than the previous collection 5 Algorithm [21]. Integrating these

Spatio-Temporal (ST) analyses and influence of external factors with one-class SVMs could lead

us to models that could be used for judging the MODIS fire pixels, which is the main motivation

of this master’s thesis.

1.4 Research Questions and Objectives

In order to reach out to the above mentioned problem, the following research questions have to

be answered:

• How do the weather conditions and the elevation above sea level affect forest fire detections

?

• Do the fire detections occur in ST clusters ? If yes, what is the size of these clusters in terms

of space and time ?

• How would the above mentioned input parameters affect the results of the one-class SVM

model ?

To answer the research questions, the following objectives were set for this master’s thesis:

• To analyse the influence of external weather factors and elevation on forest fire detections.

• To analyse the spatial and temporal characteristics of forest fire detections.

• To combine the above parameters with one-class SVMs to enhance the occurrences of forest

fire detections.

• To validate the approach by using the SVM model to detect forest fires over the past and

verifying through historical research.

3



1.5 Thesis Structure

The thesis consists of 6 chapters. The first chapter gives a general overview of the topics involved

in the thesis, establishes the the research obejectives, explains the thesis structure and describes

the study area used in this thesis. In the second chapter, a literature review of related research

studies has been presented, followed by a theoretical background of the technical concepts

invloved in this thesis. This thesis consists of two main parts in terms of work flow. The first

Figure 1: Thesis workflow
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part focusses on data collection and preparation (chapter 3 ) and the second on one-class SVM

analysis (chapter 4). Figure 1 shows the workflow involved in the thesis. The first step is data

collection (temperature, elevation etc), explained in 3.1. Then, known large fire detections, also

referred to as labeled sampels, were digititzed in the sub-chapter 3.2.1. An outlier analysis is

performed on these fire detections to filter the data in section 3.2.3. Then, the fire detections

are analysed over space and time to get the spatial and temporal parameters in 3.3. In 3.4, the

input table is derived which will be the input for the SVM model. Hold-out and leave-one-out

Cross-Validation (CV) approaches are used to test the model for over fitting in 4.3. This model

is used to detect large fires from the rest of the hotspots in chapter 5, which is basically a set of

unlabeled fire detections. Finally, the results are validated by using the model to detect fires over

the past and verifying these fires through historical research.

1.6 Study Area

Portugal has a forest cover of around 3.3 million ha, which is more than one third of the total area

[11]. Most of the area is composed of woodland, grass shrubs and other light vegetation that is

very prone to fire. Due to its Mediterranean climate, Portugal experiences long dry summers.

These factors make the forests highly susceptible to wildfires. 2003 and 2005 were two of the

worst years in the country’s history in terms of forest fire damage [46] [44]. More than 430,000

hectares were burnt in 2003 and around 300,000 in 2005. Portugal is one of Euope’s most forest

fire affected countries in recent times. The number of fires and the burned area per year has

increased significantly in the last decade. Most of the known fires in the time period 2000-

2016 were identified in continental Portugal (part of the Iberian peninsula) through historical

research. Therefore, continental Portugal was selected as the study area for this thesis (Figure

2). The Azores and Madeira islands were not included in the study area. MODIS active fire data

was downloaded for this area in the time period 2000-2016, which is explained in more detail in

the next chapter.
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Figure 2: Study area

6



2 THEORETICAL BACKGROUND

The first sub-chapter of this chapter gives an overview of previous research studies. These studies

have described and validated the MODIS C6 algorithm, analysed external factors influencing the

MODIS hotspots and used machine learning techniques to predict forest fires. The second sub-

chapter describes the geo statistical techniques that are used to analyse spatial point distributions.

The third sub-chapter explains the MODIS hotspot data attributes that have been used in this

study. The fourth sub-chapter describes the machine learning models and techniques used in

this thesis.

2.1 Literature Review

Various research works have been studying MODIS Active Fire Detection algorithms, validating

them and analysing the factors that influence them. The relation between Modis hotspots’

accuracy and landcover has been discussed in [23] by Stijn et. al. They use Landsat Burned Area

maps as reference. The commission errors were generally low and connected to agricultural

land cover. The omission errors were high in areas dominated by small burned areas which

means that small fires were neglected. In [41], the relationship of the hotspots with burnt area

is investigated by Tansey et. al.. It is concluded that validation of the hotspots using global

burnt area inventories could lead to better results. Louis et. al. describe the C6 algorithm in

detail, presenting it’s improved false alarm rate over the Collection 5 alogithm and also the the

processiing techniques behind it [21].

It has been proved that forest fires occur in clusters over both space and time by regarding them

as ST point patterns and applying statistical techniques [35]. Cluster recognition in ST forest

fire squences in Canton Ticino (Switzerland) has revealed clusters over time with varying sizes,

which also means that the size of fires depends on external factors and is not constant [33].

Fire data from 1997 to 2003 in Tuscany region, central Italy was investigated for clustering

behaviour to conclude that the clustering degree undergoes a significant increment before the

largest fire events, so the time period just before a big fire is the most informative for us to define

the credibility of the fire [42]. Time series datasets of Normalized Difference Vegetation Index

(NDVI) imagery obtained from Advanced Very High Resolution Radiometer (AVHRR) have

been used to analyze the fire disturbance (land cover alteration in this case), mainly examining
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the trend in NDVI values to identify the affected areas in Canada [22]. The results indicate

that the fire disturbance was distinct when compared with the unburnt areas, and with temporal

variability of NDVI values within the unburnt areas helped to define the recovery times to pre

burn levels.

The influence of topographic factors such as elevation and slope have been analysed in North

America [36]. The study area was classified as high or low vulnerable zones defined by the month

of fire occurence, slope and elevation. Weather conditions (rainfall, remperature, humidity,

wind speed), land cover and human activity have been introduced as factors affecting forest

fires [30] . A decision making framework is defined that depends on the weather conditions, soil

characteristics, land cover and human activity as factors that contribute to forest fire occurrences.

On the contrary, studies in the forest regions of Mount Carmel, Israel indicated that the number

of forest fires are not correlated to precipitaion in any manner [47]. The increased number of

large fires was associated with human activities such as deforestation and also, the location of

fires were significantly closer to roadsides.

A Data mining approach was employed in the northeast region of Portugal to predict the burned

area of forest fires [16]. Five different data mining approaches, namely multiple regression,

decision trees, random forest, neural networ and SVM were tested in this region. The best

configuration consisted of an SVM and 4 meteorological inputs (temperature, relative humidity,

rain and wind) along with the month of the year and day of the week of fire occurence. Studies

in three different regions of Slovenia used other data mining techniques (logistic regression and

decision trees) to predict forest fires [40]. The best results in terms of predictive accuracy,

precision and kappa statistics were given by bagging of decision trees, which is a meta algorithm

to improve the stability and accuracy of machine learning algorithms. It is usually applied to

decision tree methods to reduce variance and avoid overfitting.

From all the above mentioned research studies, the following conclusions can be made:

• Forest fire occurences definitely depend on land cover types [23] [30].

• Forest fires occur in clusters over both space and time and the clustering peaks as the fire

grows to its full potential[33][35] [42].

• Temperature, wind, rainfall and elevation are the main external factors that influence the
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fires[36] [30].

• Machine learning techniques have proven useful to descibe these fires, provided they are

used with the right parameters and data attributes [16] [40].

2.2 Spatial and Statistical Analyses

In this sub-chapter, the tools from the field of spatial point pattern analysis that are used to

analyse the hotpots (spatial points) are described.

2.2.1 Nearest Neighbour Index

The Nearest Neighbour Index (NNI) is a simple yet effective tool to differentiate a random spatial

point distribution from a clustered or an evenly spaced distribution. It compares the Average

Nearest Neighbour (ANN) distance of the given distribution to that of a hypothetical random

distribution. If the ANN distance is less than that of a random distribution, the distribution

under analysis is considered clustered. If the ANN distance is greater, the point features are

considered dispersed [27]. It is calculated as shown in equation 1.

NNI =
d0

de
(1)

where de =
1

2
√
n/A

(2)

where d0 is the observed ANN, de is the expected ANN for a random distribution, n is the

number of point features in the distribution and A is the area under study (usually the bounding

box that contains the distribution). Equation 2 is used to calculate de. NNI can range from 0,

when a distribution is clustered to 2.15, when it is completely regular via 1, when it is random.

Figure 3 illustrates these three cases.

However, there are some important points that need to be considered while using this

approach. The NNI is very sensitive to the value of A. It is important that the area and the

distances have same units (for example, m and m2). The area can be measured either using

a bounding box or a convex hull, but needs to be constant when two distributions are being

compared. The sample size should be at least 30 to obtain a meaningful NNI.
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Figure 3: NNI interpretation. Source: [9]

2.2.2 Outlier Analysis

An outlier in statistics can be defined as an observation which deviates so much from other

observations as to arouse suspicions that it was generated by a different mechanism [24]. The

causes of outliers in a spatial point distribution can be due to human errors, noise etc. An

inspection of a sample containing outliers would show us characteristic differences within the

data in the form of large gaps between the outliers and the “inlying” observations.

Figure 4: Box plot. Source: [17]

The box plot, also known as the box and whiskers plot, is a well known simple display of the
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five-number summary (minimum, lower quartile, median, upper quartile, maximum), as shown

in the Figure 4 [17]. As shown in the figure, the upper fence and the lower fence define the

boundaries for a data point to be labeled as an outlier. Any value greater than the upper fence or

smaller than the lower fence is labeled as an outlier. The Interquartile Region (IQR) consists of

50 % of the data and the line that splits the IQR is synonymous to the median of the data. The

whiskers are extended to the minimum and the maximum values before the lower and the upper

fence respectively. The difference between the maximum and the minimum is the range of the

data, which can be used to filter the data by removing outliers. This is done in 3.2.3.

2.3 MODIS Collection 6 Active Fire Product

FIRMS’s Fire Archive Download Tool provides the MODIS C6 data for this thesis. Data

processed in Near Real Time (MCD14DL) is replaced with standard science quality data

(MCD14ML) as it becomes available, usually with a 2-3 month lag. Both MCD14DL and

MCD14ML are processed using the MOD14/MYD14 (Aqua/Terra) Fire and Thermal Anomalies

product. This data can be downloaded as ESRI shapefiles or csv files. This sub-chapter gives an

overview of the hotspot attributes that have been used in the study. The detailed description of

the C6 algorithm and the following attributes has been explained by Giglio et. al in [21].

2.3.1 Brightness Temperatures

Brightness Temperature (BT) is actually a measure of the photons at a particular wavelength

received by the spacecraft [6]. It is presented in units of Temperature (Kelvin). BT is a measure

of brightness and not the state of the surface (hot or cold). It should also be noted that the BTs

measured by the satellites are generally less than those that are measured at the ground. The

C6 algorithm uses the BTs derived from the 4- (channel 21 and 22),11-(channel 31) and 12-

micrometer(channel 32) MODIS channels which are denoted by T4, T11 and T12 respectively

[21].

MODIS has two 4- µm channels, numbered 21 and 22, both of which are used by the algorithm.

Channel 21 saturates at nearly 500 K and channel 22 at 331 K. The low saturation channel (22) is

less noisy and has a small quantization error. Therefore T4 is derived from this channel whenever

possible. However, when channel 22 saturates or has missing data, it is replaced with channel

21 BT. T11 is computed from channel 31, which saturates at 400 K for the Terra MODIS and
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340 K for the Aqua MODIS. T12 is derived from Channel 32 and used for cloud masking [20].

For daytime observations, 0.65-, 0.86- and 2.1-micrometer (Channels 1,2 and 7) reflectances are

used to reject false alarms and cloud masking. Table 1 gives an overview of the channels used

in the algorithm.

Channel number Central wavelength (µm) Purpose
1 0.65 Sunglint and coastal false alarm rejection; cloud masking.

2 0.86 Brightsurface, sun glint, and coastal false alarm rejection;
cloud masking.

7 2.1 Sunglint and coastal false alarm rejection.
21 4.0 High-range channel for active fire detection.
22 4.0 Low-rangechannel for active fire detection.
31 11.0 Activefire detection, cloud masking.
32 12.0 Cloud masking.

Table 1: MODIS channels used in the detection algorithm. Source : [21]

T4 and T11 are used to identify potential fire pixels and are included as attributes with names

“BRIGHTNESS” and “Bright T31” in the hotspot data.

2.3.2 Confidence

The detection confidence estimates range between 0 and 100%. It intends to help users judge

the fire pixels in terms of quality. It is used to assign one of the three classes (low-confidence

fire, nominal-confidence fire or high-confidence fire) to all fire pixels within the fire mask. It is

calculated as the geometric mean of five sub-confidence parameters which are defined in terms

of T4, the number of adjacent water pixels (Naw), the number of adjacent cloud pixels (Nac),

the standardized variables z4 and z∆T. The ramp function S(x;α,β) is used to derive the sub-

confidence parameters. It is defined in the equation 3.

S(x;α, β) =


0; x ≤ α

(x− α)/(β − α); α < x < β

1; x ≥ β

(3)

z4 = (T4 − T̄4)/δ4 (4)

z∆T = (∆T − ∆̄T )/δ∆T (5)

Equations 4 and 5 are used to calculate z4 and z∆T. Here, T̄4 is the Mean 4-µm BT, δ4 is
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the 4-µm BT Mean Absolute Deviation (MAD), ∆̄T is the Mean BT difference, ∆T is the BT

difference (T4 - T11) and δ∆T is the BT difference MAD. The sub-confidence paraneters are

derived using the following equations:

C1 = S(T4;T4
∗, 360K) (6)

C2 = S(z4; 3.0, 6) (7)

C3 = S(z∆T ; 3.5, 6) (8)

C4 = 1− S(Nac; 0, 4) (9)

C5 = 1− S(Naw; 0, 4) (10)

Some adjustments are made to the sub-confidence parameters, for daytime and nighttime fire

pixels, on both land and water, which can be found in [21].

2.3.3 Fire Radiative Power

The Fire Radiative Power (FRP) is a measure of the rate of radiant heat output from a fire [37].

The pixel-integrated FRP in MW(megawatts) is an attribute available in the active fire data. In

C6, the FRP is approximated as

FRP ≈ Apixσ

aτ4

(L4 − L̄4) (11)

where L4 is the 4-µm radiance of the fire pixel, L̄4 is the 4-µm background radiance, Apix is

the area of the MODIS pixel, σ is the Stefan-Boltzmann constant (5.6704× 10−8 Wm−2 K−4),

τ4 is the atmospheric transmittance of the 4-µm channel and a is a sensor-specific empirical

constant [21]. Compared to Collection 5, there was a consistent decrease in FRP for the vast

majority of fire pixels, but with occasional slight increases for small fractions of comparatively

high intensity fire pixels.
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2.4 Machine Learning

SVMs are machine learning based classifiers which are very useful in complex classification

problems. In this thesis, one-class SVMs, a special case of SVMs, are used to increase to detect

large forest fires.

2.4.1 Support Vector Machines and One-Class Support Vector Machines

SVMs rely on automated learning of known (labelled) data, to model the data’s characteristics

and behaviour. This input data, which are vectors in the sample space, are linearly or non-

linearly projected to a high dimensional feature space [15]. The non-linear projection of vectors

is done using kernels, which will be explained later in this chapter (Figure 6). In this feature

space, a linear decision surface or a hyperplane is constructed to classify the input vectors. The

dimension of the feature space depends on the number of labelled classes in the input data. The

input data is usually split into training and test datasets. The training dataset is used to learn

the labeled classes. The goal of the SVM is to produce a model that could predict the classes

(labels) of the vector instances of the test dataset given only the test data attributes [25]. Figure

5 illustrates the simple case of a two-group classification problem in feature space. Note that the

vectors are linearly seperable on the feature space, not the sample space.

Figure 5: Example of a seperable classification problem in a 2-dimensional feature space. Source: [15]

The grey squares represent the support vectors and the dotted line represents the hyperplane.

The support vectors are the outer most vectors of a class which decide the classification boundary.
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The optimal hyperplane is defined as a linear decision function with maximal margin between

the two classes as shown above.

Figure 6: Procedure for generation of a non linear decision function by SVM. Source: [19]

Figure 6 shows the general principle of a non-linear SVM [19]. Dataset with two classes,

denoted by red and blue dots, are inseperable in sample space χ [Figure 6(a)]. These dots

(vectors) are mapped to a higher dimensionality, where a linear seperation becomes possible

with the help of a hyperplane [Figure 6(b,c)]. This corresponds to a nonlinear decision function

in χ [Figure 6(d)].

A modification of the maximal margin hyperplane was proposed in [15] where the objective was

to find a function f(x) that permits errors as long as they are less than ε, but will not accept any

longer deviation than this. At the same time, the function has to be as flat as possible, since it is

a hyperplane. This problem leads to the formulation as shown in equation 12 [15] [39]:
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minimize
1

2
‖w‖2 + C

l∑
i=1

(ξi + ξi
∗)

subject to


yi − 〈w, xi〉 − b ≤ ε+ ξi

〈w, xi〉+ b− yi ≤ ε+ ξi
∗

ξi, ξi
∗ ≥ 0

(12)

(xi, yi) are the coordinates of the vectors of the labeled data. w represents a vector

perpendicular to the hyperplane. ξi and ξi
∗ are slack variables introduced to cope with the

constraints of the optimization problem. The constant C (Cost) is the trade-off between the

flatness of f and the extent to which the deviations larger than ε are tolerated. To extend the

SVM to nonlinear functions, a Lagrange function is first constructed from 12. This enables the

introduction of kernels, which basically preprocess the input vectors before applying the support

vector algorithm. In this thesis, the Radial Basis Function (RBF) kernel is used because it is

the most reasonable choice for mapping sample vectors in a non-linear way, which is required

for the non-linear data involved in this study. Furthermore, it is also a relatively simple kernel

when compared to the polynomial kernel in terms of number of hyperparameters [25]. The

mathematical form of an RBF kernel is shown in equation 13

K(xi, xj) = exp(−γ ‖xi − xj‖2), γ > 0 (13)

γ is a kernel parameter.

A general tutorial to the mathematical concepts behind the support vector algorithm is given

by the authors of [39]. The concepts have been explained in detail by Vapnik, who is the co-

inventor of the support vector machine method, in 2013 in [43].

One-Class SVM is an extension to the support vector algorithm proposed by Schölkopf et. al.

in [38] for the case of unlabelled data where the input dataset has only one class. The algorithm

returns a function f which is equal to +1 in a small input dataset S, by mapping most of the

points in S and -1 elsewhere. In simple words, any vector in an unlabeled dataset that is similar

to the vectors in S would produce a value of +1 for the function f and any vector that is not, will

produce -1. The strategy is mostly similar to SVM : using Lagrange multipliers and a kernel to
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map the data into a feature space, and seperate them from the origin with maximum margin. For

a vector in the unlabeled dataset, the function evaluates the side of the hyperplane that the vector

falls on, to determine its class (+1 or -1). To seperate the dataset from the origin, the following

quadratic equation is solved :

minimize
1

2
‖w‖2 +

1

νl

∑
ξi − ρ

subject to 〈w, φ(xi)〉 ≥ ρ− ξi, ξi ≥ 0

(14)

Here, ρ is the distance to the origin. The parameter ν ∈(0,1) , also known as nu, is actually a

trade off between the upper fraction of training margin errors and the lower fraction of number

of support vectors. A large number of support vectors would result in a rigid classification

boundary, resulting in more misclassification errors. For example, if the ν is 0.1, it means

that atmost 10 % of the training dataset is allowed to be misclassified and at least 10 % of the

training dataset need to be included as support vectors for the classification boundary. Having

a lower limit of 10 % for the number support vectors might lead the model to use too many

support vectors. Therefore, the second condition with a cap on the misclassification error margin

prevents the model from using too many support vectors.

In this thesis, one-class SVM is used to learn the labeled dataset containing vectors belonging to

large forest fires and then detect similar vectors (fire pixels) from an unlabeled dataset (explained

in detail in chapter 4.1).

2.4.2 Overfitting and Underfitting

Overfitting and Underfitting are the two common problems encountered in machine learning

caused by the level of model complexity. Overfitting occurs when a model includes

idiosyncrasies based on the labeled/input data which might not be reliable generalizations for the

purpose of predictions involving other unlabeled data [18]. In short, it is the case when the model

is too perfect for the labeled samples resulting in errors in predictions for the unlabled ones.

Underfitting is the opposite case, when the model is too simple ie. when too many generalizations

are made for the labeled data resulting in both training errors and validation errors. This is

illustrated in Figure 7. It can be seen that the underfit case has too many misclassifications

caused by a fairly simple classification boundary. The overfit case has no missclassifications in

the training data but has a very complex boundary.
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Figure 7: Overfitting and Underfitting. Source: [7]

The optimal fit is achieved with the right level of model complexity. Figure 8 illustrates the

three cases graphically as a function of model complexity [29]. Underfitting results in both

training and validation errors, as shown in Figure 8. Overfitting is more of a validation problem

in terms of error rate.

Figure 8: Overfitting and Underfitting in terms of model complexity. Source: [29]

In this thesis, CV techniques are used to prevent over and underfitting which are described in

detail in 4.2 and 4.3.

2.4.3 Sensitivity and Specificity

For decision systems like SVM, a false alarm is not as important as a missed correct alarm,

which is analogous to the objective of this thesis. The focus is to increase the significance of the

true fire pixels, by making sure that no true pixel is classified as false. For this, it is essential to
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control the trade off between the so called false positives and false negatives [45]. The confusion

matrix shown below categorizes a test point into one of the four categories : True Positives (TP),

True Negatives (TN), False Positives (FP) and False Negatives (FN).

M
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e

Expected outcome
P N

P True
Positive

False
Positive

N False
Negative

True
Negative

Sensitivity and specificity are given by the formulae [45]:

sensitivity =
TP

TP + FN
(15)

specificity =
TN

TN + FP
(16)

In respective to this thesis, sensitivity gives the fraction of correctly classified test data that

are true large fires and the specificity gives the fraction of correctly classified non-fire pixels that

are not large fires. This analysis is used to estimate the influence of each input parameter on the

one-class SVM model.
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3 DATA COLLECTION AND PREPARATION

The first sub-chapter describes the processes involved for collection of different input parameters

and data required for the one-class SVM model. The second sub-chapter explains the techniques

used to collect and filter the data for known forest fires (labeled data). The processes involved in

computing the ST input parameters for the model are introduced in the third sub-chapter. These

input parameters are used by the one-class SVM model in the next chapter to detect large forest

fires.

R programming language was used for all the data processing, analysis and modelling tasks

in this thesis. The R packages that were used in the thesis are given below along with the load

statements:
1 l i b r a r y ( r a s t e r ) # f o r r a s t e r i z i n g images
2 l i b r a r y ( sp ) # f o r u s i n g s p a t i a l o b j e c t s : f i r e p i x e l s a s p o i n t s
3 l i b r a r y ( s t a t s ) # f o r p l o t t i n g t h e f i r e s ove r t ime
4 l i b r a r y ( r g eo s ) # f o r N e a r e s t n e i ghbou r i n t e r p o l a t i o n
5 l i b r a r y ( r g d a l ) # r e a d i n g and w r i t i n g shape f i l e s
6 l i b r a r y ( c a r ) # f o r t h e r e code f u n c t i o n t o r e p a i r d a t a
7 l i b r a r y ( p l y r ) # f o r d a t a wr ang l i ng f u n c t i o n s
8 l i b r a r y ( g g p l o t 2 ) # P l o t t i n g
9 l i b r a r y ( d p l y r ) # f o r d a t a wr ang l i ng f u n c t i o n s

10 l i b r a r y ( s p a t s t a t ) # f o r p o i n t p a t t e r n a n a l y s i s
11 l i b r a r y ( e1071 ) # f o r SVM f u n c t i o n s

The R code included hereon, has to be followed in the given order in combination with the

required input data, for successful application of the consecutive steps invloved in this thesis.

3.1 Collection of Input Data Sets and Parameters

3.1.1 MODIS Collection 6 Data

The MODIS C6 data attributes that have been used in this thesis are described in section 2.3.

The data was downloaded as an ESRI shapefile for the time period 2000-2016, reason being that

the data was made available starting from November, 2000 [6]. As mentioned earlier, the fire

locations are the centers of 1 km pixels that are detected by the C6 algorithm as containing one

or more fires within the pixel. Figure 9 shows the distribution of fire pixels in Portugal.

Around 53,300 fire pixels were detected in 2000-2016 in Portugal. More than 70 % of these

pixels were located in northern and central Portugal. The points shapefile was projected to the

coordinate system WGS 1984 UTM Zone 29N using QGIS, because of Portugal’s location

and the unit of measurement is meters which is the standard unit of distance measurement in

this thesis. Note that all the shapefiles and rasters used in this thesis are projected to the same
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Figure 9: MODIS fire pixels in Portugal in the time period 2000-2016.

coordinate system. FRP, channel 21 and 31 BTs and fire detection confidence are the attributes

acquired from this data as input parameters for the one class-SVM model. Because the FRP is an

important characteristic of a fire and BTs are an integral part of the algorithm. The confidence

gives a measure of the quality of the fire pixels, which might aid in the outlier analysis to remove

the unreliable pixels in the sub-chapter 3.2.3.

3.1.2 Land Cover

Since the goal is to highlight the fire pixels that occur in forest areas, Land Cover (LC) data for

Potugal is used to create an input parameter for the SVM model. European Union’s Coordination

of information on the environment (CORINE) LC 2012 data was used. The data is freely

available at [2]. The temporal extent of this data is 2011/2012 and it was published in 2016.

Figure 10 shows the distribution of land cover in Portugal. The green areas depict different

types of vegetation cover, mostly dominated by forests. The extent of the forest cover in Portugal

can be seen, which is very high. The LC data was downloaded as raster, with a spatial resolution

of 250 meters and 44 standardized LC classes.

21



Figure 10: Land cover distribution in Portugal.

The following R code was used to extract the LC classes lying beneath the fire pixels:
1 # t h e p o i n t s h a p e f i l e
2 pa t h <− ” Modis F i r e P i x e l s p a t h ”
3 # t h i s o b j e c t ” shp ” w i l l be used t h r o u g h o u t t h e t h e s i s
4 shp <− readOGR ( dsn = path , l a y e r = ”name of shape f i l e ” )
5

6 # impo r t LC d a t a
7 Por t uga lLandCove r <− ”LC f i l e p a t h ”
8

9 # c r e a t e r a s t e r l u l c
10 l u l c L a y e r <− r a s t e r ( Po r t uga lLandCove r )
11

12 # E x t r a c t t h e r a s t e r v a l u e s u n d e r l y i n g t h e f i r e p o i n t s
13 shp@data $LULC v a l <− e x t r a c t ( l u l c L a y e r , shp )

The percentage distribution of the LC classes is given in Appendix A (A.1).

3.1.3 Elevation

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital

Elevation Model (GDEM) version 2 data was used to obtain the elevation values for the fire

pixels. ASTER GDEM is a product of Japan’s Ministry of Economy Trade and Industry (METI)

and NASA [26]. The elevation is available in units of vertical meters. Individual granules were

downloaded for the area of interest and mosaiced together using QGIS to form the final raster,

as shown in Figure 11.
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Figure 11: Elevation raster from ASTER GDEM for the study area.

The following R code was used to extract the elevation values from the raster image:
1 # impo r t E l e v a t i o n r a s t e r
2 E l e v a t i o n <− ” E l e v a t i o n R a s t e r Pa th ”
3

4 # c r e a t e r a s t e r f o r e l e v a t i o n
5 e l e v a t i o n L a y e r <− r a s t e r ( E l e v a t i o n )
6

7 # E x t r a c t t h e e l e v a t i o n r a s t e r v a l u e s u n d e r l y i n g t h e f i r e p o i n t s
8 shp@data $ e l e v a t i o n V a l u e s <− e x t r a c t ( e l e v a t i o n L a y e r , shp )

3.1.4 Meteorological Data : Temperature, Windspeed, Precipitation

The Agri4Cast system, also known as the Monitoring Agricultural Resources (MARS) Crop

Yield Forecasting System is centered on the European commission’s Joint Research Centre

(JRC). It provides the above mentioned meteorological data as CSV files. The data is obtained

from many different weather stations across Europe. It is interpolated on a 25×25 km temporal

grid (daily) ie. the data consists of a 25×25 km grid for every single day in the 16-year period.

The mean air temperature, mean daily wind speed and the sum of precipitation values are

available in Celsius, meters per second and millimeters per day respectively. The values from the

the temporal gridded data were matched with the fire pixels using the nearest neighbour method

and the following R code (example for precipitation):
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1 # Reading t h e csv f i l e
2 p r e c i p i t a t i o n D a t a <− r e ad . t a b l e ( ”CSV f i l e p a t h ” , sep = ” ; ” , h e ade r = TRUE)
3

4 # Conve r s i on o f d a t e v a l u e s . For example , c o n v e r t i n g i n t e g e r 20000101 t o d a t e 2000−01−01
5 p r e c i p i t a t i o n D a t a $ Date <− as . Date ( a s . c h a r a c t e r ( p r e c i p i t a t i o n D a t a $DAY) , f o rma t = ’%Y%m%d ’ )
6

7 #AddÃŋng P r e c i p i t a i o n v a l u e f o r each p o i n t
8 f o r ( j i n 1 : nrow ( shp@data ) ) {
9

10 # t h e v a l u e s f o r t h e d a t e o f t h e f i r e p i x e l
11 t e s t <− s u b s e t ( p r e c i p i t a t i o n D a t a , Date == shp@data [ j , ] $DATE)
12

13 #making i t a s p a t i a l p o i n t d a t a f rame wi th 4326 p r o j e c t i o n (WGS 84)
14 c o o r d i n a t e s ( t e s t ) <− c ( ”LONGITUDE” , ”LATITUDE” )
15 p r o j 4 s t r i n g ( t e s t ) =CRS( ”+ i n i t =epsg :4326 ” ) # s e t i t t o l a t−l ong
16

17 # t r a n s f o r m i n g i t t o utm
18 t e s t = spTrans fo rm ( t e s t , p r o j 4 s t r i n g ( shp ) )
19

20 #The f i r e p i x e l unde r o b s e r v a t i o n
21 t h i s P o i n t <− shp [ j , ]
22

23 # which measurement i s t h e n e a r e s t t o our f i r e p o i n t ?
24 n e a r e s t I n d e x <− app ly ( g D i s t a n c e ( t e s t , t h i s P o i n t , by id =TRUE) , 1 , which . min )
25

26 # f i n a l l y , a s s i g n i n g t h e p r e c i p i t a t i o n va lue , i n mm
27 shp@data $ P r e c i p i t a t i o n [ j ] <− t e s t [ n e a r e s t I n d e x , ] $ P r e c i p i t a t i o n
28

29 }

Figure 12 illustrates the above mentioned method for a particular fire pixel.

Figure 12: Extraction of meteorological data using nearest neighbour method.

The white circles are the weather grid values for Portugal on the day associated with the fire
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pixel. The blue triangle is the fire pixel’s location. The nearest grid value to the fire pixel is

depicted by the blue circle, which is assigned as the weather value for that fire pixel.

In the case of precipitation, it was observed that there was negligible precipitation associated

with most of the fire pixels ie.there was no precipitation on most of the days when the fire pixels

were detected.

Figure 13: Precipitation (mm) associated with the fire pixels.

This is shown in Figure 13. This also proves that the precipitation is not a suitable indicator

for forest fires in this study. Therefore, precipitation is rejected as an input parameter. It can be

used to characterize a forest fire season as a time period with negligible precipitation, but that is

not in the scope of this thesis.

3.1.5 Month of Fire Occurrence

As mentioned earlier, Portugal experiences a high number of forest fires in the summer season

when compared to the winter. The frequency of the fire pixels was visualized over time. It was

observed that the fires followed a seasonal pattern over the years, as shown in Figure 14. 2003

and 2005 are the years with most number of fire detections. In the box plot in Figure 15, it can

be seen that July, August and September were the months where most of the fires were recorded,

with some exceptions which will be discussed in the next chapter. Therefore, the month of fire

occurrences was included as an input parameter for the one-class SVM model. The R code used

to achieve the above mentioned time series analysis is given in Appendix B (A.2).
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Figure 14: Frequency of fires over time.

Figure 15: Monthly frequency of the fires.
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3.1.6 Latitude

As visualized in Figure 9, it is clearly evident that most of the fires occurring in Portugal are

in the northern and the central region. Figure 16 shows the kernel density map of the fires in

Portugal, confirming that the density of fires is generally increasing with latitude with some

exceptions which will be discussed in the next chapter. Therefore, latitude of the fire pixels was

also included as an input parameter for the one-class SVM model.

Figure 16: Kernel density map of the fire distribution in Portugal. R code can be found in appendix B (A.2).
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3.2 Known Forest Fire Events: Collection and Outlier Removal

3.2.1 Collection

To train the one-class SVM model, fire pixels that belonged to forest fires had to be identified. For

this, 38 known large forest fire events were identified through historical research. The images for

these fire events were obtained from NASA’s Earth Observatory and DLR’s ZKI service. Figure

17a shows an example of a georeferenced forest fire image on QGIS.

(a) Georeferenced forest fire image. The fires are outlined in red. (b) Digitizing the fire extents.

Figure 17: Extraction of known fire events.

The extent of these fires were digitzed as shown in Figure 17b. These digitized shapes were

used to extract the respective fire pixels from the MODIS data. The fire pixels were matched

with the shapes based on the date of the fire. The following R code was used for the extraction:
1

2 ## Add an Id t o t h e shp d a t a f rame ( p r ima ry key )
3 shp@data $ID <− 1 : nrow ( shp@data )
4

5 #Example o f f i r e s on August 3 ,2003
6 # c o n v e r t i n g t h e d a t e column t o a d a t e o b j e c t v e c t o r
7 shp@data $DATE <− as . Date ( a s . c h a r a c t e r ( shp@data $ACQ DATE) )
8

9 # t h e v e c t o r used t o s t o r e t h e IDs o f t h e f o r e s t f i r e p i x e l s
10 B i g F i r e s I D s <− numer ic ( )
11

12 # Func t i o n used t o c l i p t h e f i r e s u s i ng t h e d i g i t i z e d shape s
13 c l i p R e a l F i r e s <− f u n c t i o n ( c l i p P a t h , layerName , f i r e D a t e ) {
14

15 c l ipShapeTemp <− readOGR ( dsn = c l i p S h a p e pa th , l a y e r = layerName )
16 # t r a n s f o r m i n g t h e shape t o UTM 29N p r o j e c t i o n
17 c l ipShapeTemp <− spTrans fo rm ( cl ipShapeTemp , p r o j 4 s t r i n g ( shp ) )
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18

19 # c l i p p i n g t h e f i r e s s p a t i a l l y
20 TempFires <− I n i t i a l S h p [ cl ipShapeTemp , ]
21 # s u b s e t t i n g t h e f i r e s t empo r a l l y , u s i n g t h e f i r e d a t e
22 TempFires <− TempFires [ TempFires $DATE == f i r e D a t e , ]
23 r e t u r n ( TempFires $ID )
24 }
25

26 c l i p S h a p e pa t h <− ” d i g i t z e d shape pa t h ”
27

28 tempIDS<− c l i p R e a l F i r e s ( c l i p S h a p e pa th , ” l a y e r name” , ”2003−08−03” )
29

30 # S t o r i n g t h e IDs o f t h e e x t r a c t e d f i r e s
31 B i g F i r e s I D s <− c ( B igF i r e s IDs , tempIDS )
32

33 F i r e s T a b l e <− shp [ B igF i r e s IDs , ]
34

35 # S t o r i n g t h e f o r e s t f i r e s ( l a b e l e d d a t a ) i n a s e p e r a t e d a t a f rame
36 F i r e s E x p o r t T a b l e <− s e l e c t ( F i r e sTab l e@da t a , LATITUDE , LONGITUDE,DATE, ID , BRIGHTNESS ,
37 FRP , BRIGHT T31 , Tempera tu re , f i r eMon th , WindSpeed , CONFIDENCE,
38 LULC val , LanduseClass , e l e v a t i o n V a l u e s )

A total of 6767 fire pixels were identified as fire pixels belonging to large fires. Hereon,

these fire pixels will be referred to as “labeled samples/data”. The rest of the fire pixels will

be referred to as “unlabeled samples/data”. The pixels in the unlabeled data may or may not

be large forest fire pixels. The aim is to locate the ones that are more likely to be large forest fire

pixels in the unlabeled data. Figure 18 shows the spatial distribution of the labeled data. The

blue circles resemble the fire pixels. Most of the fires are located in the north of Portugal.

Figure 18: Spatial distribution of the labeled data.
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Most of the fires occurred during summer in the month of August as shown below in Figure

19.

Figure 19: Monthly distribution of the labeled data.

3.2.2 Analysing and Visualizing the Input Parameters

The basic idea behind this thesis is that the fire pixels in the labeled data (large forest fires) exhibit

certain unique characteristics. These characteristics could lead to the detection of similar fire

pixels from the unlabeled data. Figure 20 compares different input parameters of the labeled

data to that of the unlabeled data. Figure 21 shows similar graphs for the MODIS attributes.

The distribution of input parameter values in the labeled data is different when compared to

the unlabeled data. The values are more clustered in the labeled data when compared to the

unlabeled data. In other words, the fire pixels in the labeled data follow certain patterns that

set them apart from the unlabeled fire pixels. In the graphs for temperature, LC, windspeed,

elevation and confidence, some outliers are visible that are caused probably by the digitization

errors from the previous step ie. non-forest fire pixels were included in the labeled data due

to human error while digitization (Figure 17b), measurement errors in the algorithm or noise.

The graphs for BTs and FRP mostly have upper outliers, which are also discussed in the next

sub-chapter.
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(a) Variation of temperature

(b) Variation of land cover. Refer to appendix A for the LC values.

(c) Variation of wind speed.

(d) Variation of elevation

Figure 20: Variation of input parameters.
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(a) Variation of fire detection confidence

(b) Variation of channel 21 BT

(c) Variation of channel 31 BT.

(d) Variation of FRP

Figure 21: Variation of input parameters (MODIS attributes).
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Tables 2 and 3 compare the labeled and unlabeled samples statistically in terms of mean and

median. The values for both datasets are mostly different, which again shows that the large forest

fire pixels do not exhibit the same characteristics as a general population of fire pixels. However,

there is an exception in the case of BTs which will be discussed in chapter 6. In the case of land

cover, it is a categorical variable. So, the graph in Figure 20 is a better method of visualization

for land cover than the statistics given below.

Input Parameter Mean Median
1 Temperature 25.33 25.5
2 Land Cover 25.49 27
3 Wind Speed 3.37 3.2
4 Elevation 427.98 347
5 Confidence 80.55 88
6 Channel 21 BT 340.88 334.1
7 Channel 31 BT 303.24 303.5
8 FRP 130.30 53.1

Table 2: Labeled data.

Input Parameter Mean Median
1 Temperature 21.15 22.1
2 Land Cover 24.28 26
3 Wind Speed 2.88 2.7
4 Elevation 508.73 477
5 Confidence 73.09 75
6 Channel 21 BT 326.09 321.1
7 Channel 31 BT 297.25 296.2
8 FRP 66.17 27.5

Table 3: Unlabeled data.

3.2.3 Outlier Analysis

A box plot outlier analysis is performed to detect the outliers found in the previous step. The

box plots give the minimum and the maximum thresholds for removing the outliers as explained

in section 2.2.2. The labeled data basically represents a class (large forest fires). By removing

the extreme outliers, the definition of this class is made more specific by cutting down the range

of values ie. the class is now defined by points that are less scattered than before in the feature

space (refer 2.4.1). The R code used to obtain the thresholds is given in Appendix B (A.2).

The 5 summary values: Minimum, First Quartile (Q1), Median(Q2), Third Quartile(Q3) and

Maximum, are mentioned in Table 4. The minimum and the maximum values are the thresholds

used.

Input Parameter Minimum Q1 Median Q3 Maximum
1 Temperature 15.5 22.8 25.5 28.1 33.6
2 Elevation 7 207 347 614 1223
3 Wind Speed 0.5 2.5 3.2 4.1 6.4
4 Land Cover 14 23 27 29 33
5 Confidence 20 68 88 100 100
6 FRP 3 24.6 53.1 121.25 266.2
7 Channel 21 BT 300 321.9 334.1 352.5 398.4
8 Channel 31 BT 276 295.4 303.5 309.5 330.5

Table 4: Box plot summary values.
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The following code was used to apply the thresholds to the labeled data :
1 # Apply ing t h e t h r e s h o l d s
2 f i r e s w i t h o u t O u t l i e r s <− s u b s e t ( F i r e s E x p o r t T a b l e , BRIGHT T31 > 2 75 . 99 )
3 f i r e s w i t h o u t O u t l i e r s <− s u b s e t ( f i r e s w i t h o u t O u t l i e r s , FRP > 2 . 9 9 )
4 f i r e s w i t h o u t O u t l i e r s <− s u b s e t ( f i r e s w i t h o u t O u t l i e r s , BRIGHTNESS > 2 99 . 99 )
5 f i r e s w i t h o u t O u t l i e r s <− s u b s e t ( f i r e s w i t h o u t O u t l i e r s , Tempera tu r e > 15 .4 & Tempera tu r e <

3 3 . 7 )
6 f i r e s w i t h o u t O u t l i e r s <− s u b s e t ( f i r e s w i t h o u t O u t l i e r s , WindSpeed > 0 . 4 & WindSpeed < 6 . 5 )
7 f i r e s w i t h o u t O u t l i e r s <− s u b s e t ( f i r e s w i t h o u t O u t l i e r s , CONFIDENCE > 19)
8 f i r e s w i t h o u t O u t l i e r s <− s u b s e t ( f i r e s w i t h o u t O u t l i e r s , LULC v a l > 13 & LULC v a l < 34)
9 f i r e s w i t h o u t O u t l i e r s <− s u b s e t ( f i r e s w i t h o u t O u t l i e r s , e l e v a t i o n V a l u e s > 6 & e l e v a t i o n V a l u e s <

1223 )
10

11 #Re−e x p o r t i n g t h e t a b l e s w i t h o u t o u t l i e r s
12 B i g F i r e s I D s <− f i r e s w i t h o u t O u t l i e r s $ID
13

14 #number o f b i g f i r e s a f t e r removing t h e o u t l i e r s −−> 6206
15 l e n g t h ( B i g F i r e s I D s )
16

17 F i r e s T a b l e <− shp [ B igF i r e s IDs , ]
18

19 # F o r e s t F i r e s
20 F i r e s E x p o r t T a b l e <− s e l e c t ( F i r e sTab l e@da t a , LATITUDE , LONGITUDE,DATE, ID , BRIGHTNESS ,
21 FRP , BRIGHT T31 , Tempera tu re , f i r eMon th , WindSpeed , CONFIDENCE,
22 LULC val , LanduseClass , e l e v a t i o n V a l u e s )
23

24 NonFi reTab le <− s e t d i f f ( shp@data , F i r e sTab l e@da t a )
25

26 # r e s t o f t h e d a t a
27 NonF i r e sExpo r tTab l e <− s e l e c t ( NonFi reTable , LATITUDE , LONGITUDE,DATE, ID , BRIGHTNESS ,
28 FRP , BRIGHT T31 , Tempera tu re , f i r eMon th , WindSpeed , CONFIDENCE,
29 LULC val , LanduseClass , e l e v a t i o n V a l u e s )

Around 450 fire pixels were removed from the labeled data through this analysis. Figure 22

shows the visualization of the outliers for different input parameters. For FRP and BTs, only the

lower outliers are removed because high values of BTs are essential criteria for the C6 algorithm

for active fire detection and high FRP is an ovbious indication of a fire. These values cannot be

considered as outliers. Also, latitude and month of fire occurrence are not a part of this analysis.

Because latitude would result in removal of the known fire events in the south of Portugal and

the month parameter would result in removal of fires from non-summer months as most of the

known fires occurred in July and August and in Northern and Central Portugal (explained in

detail in the next chapter).
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Figure 22: Visualization of outliers for different input parameters.
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3.3 Known Forest Fire Events: Cluster Analyses

3.3.1 Clustering Behavior of Forest Fires

The nearest neighbour method explained in section 2.2.1 is used to estimate the clustering

degree of the known forest fire events (labeled data). The fire events were considered as

separate distributions and NNI was calculated for each one of them. Area for all the indices

was calculated using a bounding box. Also, the Average Nearest Neighbour Distance (ANND)

for each distribution was obtained using the following code:
1 #Get Big F i r e IDs from o u t l i e r a n a l y s i s
2 R e a l F i r e P o i n t s <− shp [ B igF i r e s IDs , ]
3

4 # d a t a f r ames t o s t o r e t h e NNI and ave r ag e n e a r e s t n e i ghbou r d i s t a n c e
5 avgNND perDay<− d a t a . f rame ( avg NND = numer ic ( ) )
6

7 NNI perDay <− d a t a . f rame (NNI = numer ic ( ) )
8

9 f o r ( r e a l D a t e i n 1 : l e n g t h ( un ique ( R e a l F i r e P o i n t s @ d a t a $DATE) ) ) {
10 # F i r e s from t h e c u r r e n t f i r e e v en t
11 t h i s D a y F i r e s <− R e a l F i r e P o i n t s [ R e a l F i r e P o i n t s $DATE ==
12 un ique ( R e a l F i r e P o i n t s @ d a t a $DATE) [ r e a l D a t e ] , ]
13

14 #Do i t on ly i f t h e r e a r e a t l e a s t 2 p o i n t s i n t h e same o v e r p a s s ( Area c a l c u l a t i o n )
15 i f ( nrow ( t h i s D a y F i r e s ) > 2){
16

17 #x and y c o o r d i n a t e s
18 x <− c o o r d i n a t e s ( t h i s D a y F i r e s ) [ , 1 ]
19 y <− c o o r d i n a t e s ( t h i s D a y F i r e s ) [ , 2 ]
20

21 # c o o r d i n a t e s f o r t h e bounding box
22 l 1 <− bbox ( t h i s D a y F i r e s ) [ 1 , 1 ] #x
23 l 2 <− bbox ( t h i s D a y F i r e s ) [ 1 , 2 ] #x
24 l 3 <− bbox ( t h i s D a y F i r e s ) [ 2 , 1 ] #y
25 l 4 <− bbox ( t h i s D a y F i r e s ) [ 2 , 2 ] #y
26

27 #window of o b s e r v a t i o n
28 win <− owin ( x r ange =c ( l1 , l 2 ) , y r ange =c ( l3 , l 4 ) )
29

30 # c o n v e r t i n g t o ppp
31 day ppp <− ppp ( x , y , window=win , marks= t h i sDayF i r e s@da t a )
32

33 ## N e a r e s t n e i ghbou r i ndex t e s t
34 #n = number o f p o i n t s
35 n = l e n g t h ( n n d i s t ( day ppp ) )
36

37 #D = mean n e a r e s t n e i ghbou r d i s t a n c e
38 D = mean ( n n d i s t ( day ppp ) )
39 avgNND perDay [ r e a l D a t e , ] <− c ( a s . numer ic (D) )
40

41 # Bounding Box Area
42 A= a r e a . owin ( bounding . box . xy ( coo rd s ( day ppp ) ) )
43

44 #NNI
45 R=2∗D∗ s q r t ( n /A)
46 NNI perDay [ r e a l D a t e , ] <− c ( a s . numer ic (R) )
47

48 }
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49 }
50

51 #NNI
52 mean (NNI perDay $NNI , na . rm= TRUE)
53 # [ 1 ] 0 . 27
54

55 # c l u s t e r s i z e
56 mean ( avgNND perDay $ avg NND, na . rm= TRUE)
57 # [ 1 ] 1328 .82
58 max (avgNND perDay $ avg NND, na . rm= TRUE)
59 # [ 1 ] 3057 .753

The average NNI was 0.27 which means that most of the forest fire events were clustered.

The mean ANND is ∼1328 meters and the maximum is ∼3058 meters. This means that the

most dispersed fire event has an ANND of 3.058 km. This radius would ensure that all the fire

events are considered while computing the cluster parameters in the next step which depend on

the number of spatial and temporal neighbours. Therefore, 3058 meters was used as the radius

for spatial neighbour search in the next step.

3.3.2 Spatial and Temporal Cluster Analysis

The objective of this analysis was to quantify the spatial and temporal cluster behaviour of forest

fires. Figure 23 illustrates the concept behind the calculation of the spatial and ST parameters

for the fire pixels. A spatial filter of x meters is applied to reject pixels (highlighted in red) that

Figure 23: Concept behind the cluster parameters.
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are out of spatial proximity of the observed pixel (highlighted in green). The value of x here is

3058 meters, obtained from the previous step. This is the radius that is used to count the number

of spatial neighbours for each fire pixel. This is the first cluster parameter, which is equal to 31

in this case.

Then, a temporal filter of n days is applied to reject the fire pixels that are temporally not

close enough to the observed fire pixel. This results in another cluster parameter which is equal

to 21 in this case, as shown in the figure above. This parameter has both spatial and temporal

components.

(a) Labeled Data (b) All Data.

Figure 24: Variation of ST neighbours with increasing number of days in the past.

To quantify the temporal characteristics of the fires, it is essential to get the right estimate for

the value of n. For this, each pixel in the labeled data was examined in terms of ST neighbours

with increasing number of days in the past (Figure 24a). The average number of neighbours in

a radius of 3058 meters were plotted against the number of days (in the past) under observation.

The graphs show the cumulative sum on the y-axis ie. for n = 2 (in Figure 24a), the value on

y axis is 22 which means that the y-value is 22 for 2 days together and not the 2nd day alone.

It can also be seen that the y-value for the labeled data is generally much greater than that for

the data including all the fire pixels (Figure 24b), which means that the forest fire pixels are

more clustered when compared to the whole dataset. The y-value in the in fig 24a experiences a

sharp jump from n=0 to n=1 and then, this is more or less constant. It is 14 for the day of the fire

occurrence (n=0),∼21 for one day in the past and then it is 22∼23. This means that the day of the

fire occurrence and the previous day are the most critical days for temporal clustering signified

by the jump. Therefore, two new parameters are introduced: number ST neighbours on the day

of the fire occurrence and in a 2-day window. The code that is used to perform this analysis is
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given in Appendix B (A.2). On the whole, one spatial parameter and two ST parameters have

been introduced in this sub-chapter using the following code:
1 # c r e a t e x me t e r s b u f f e r s a round each p o i n t
2 shp b u f f e r <− gBu f f e r ( shp , wid th = 3058 , by id = TRUE)
3

4 ## For each ID , f i n d IDs w i t h i n t h a t B u f f e r
5 # t empo ra ry d a t a f r a m e bak
6 bak <− shp
7

8 # Using on ly t h e r e l e v a n t columns
9 bak@data <− s e l e c t ( bak@data , ID , DATE)

10

11 # o v e r l a y i n g t h e s e b u f f e r s on t h e p o i n t s . Each b u f f e r i s l i n k e d t o a f i r e p o i n t t h r ough t h e ID
12 bak ove r <− ove r ( shp b u f f e r , bak , r e t u r n L i s t = TRUE)
13

14 # d a t a f rame wi th coun t o f s p a t i a l and s p a t i o t empo r a l n e i g h b o r s
15 r e s <− d a t a . f rame ( c i r c l e I D = numer ic ( ) , c t SpTempNeighbors = numer ic ( ) , c t S p a t i a l N e i g h b o r s =

numer ic ( )
16 , c t S p a t i a l N e i g h b o r s sameDay = numer ic ( ) )
17

18 # P r o c e s s i n g each b u f f e r
19 f o r ( j i n 1 : l e n g t h ( bak ove r ) ) {
20

21 tmp <− bak ove r [ j ]
22

23 # l i s t t o d a t a f r a m e
24 df <− l d p l y ( tmp , d a t a . f rame ) # h t t p : / / s t a c k o v e r f l o w . com / a / 4227483
25

26 #The ID of t h e b u f f e r o r i g i n
27 Circ leName <− names ( tmp )
28 df $ C i r c l e I D <− Circ leName
29

30 # Date o f t h e b u f f e r o r i g i n
31 C i r c l e D a t e <− df $DATE[ which ( d f $ID == Circ leName ) ] # o r d f $ C i r c l e I D i n s t e a d o f c i r c l e name
32

33 #Removing t h e o r i g i n , b ecau se we don ’ t want i t t o be c o n s i d e r e d as a ne i ghbou r o f i t s e l f
34 df <− f i l t e r ( df , ID ! = Circ leName ) # f i l t e r i n g ou t t h e ID i t s e l f , t h e f i r e p o i n t
35

36 # t i m e d i f f e r e n c e , be tween t h e d a t e o f f i r e and t h e d a t e o f ne i ghbo r s , i n days
37 df $TIMEDIFF <−d i f f t i m e ( d f $DATE, C i r c l eDa t e , u n i t s = ” days ” )
38

39 # f i l t e r i n g ou t t h e p o i n t s t h a t a r e no t s p a t i a l l y c l o s e enough ( n = 1)
40 df t i m e F i l t e r <− f i l t e r ( df , TIMEDIFF >= −1 & TIMEDIFF <=0)
41

42 # f i l t e r i n g ou t t h e p o i n t s t h a t a r e no t on t h e same day ( n = 0)
43 df t i m e F i l t e r sameDay <− f i l t e r ( df , TIMEDIFF == 0)
44

45 # s t o r i n g t h e count , number o f s p a t i o t empo r a l n e i ghbo r s , s p a t i a l n e i ghbo r s , s p a t i a l neghbo r s
on same day

46 r e s [ j , ] <− c ( a s . numer ic ( Circ leName ) , nrow ( d f t i m e F i l t e r ) , nrow ( d f ) , nrow ( d f t i m e F i l t e r
sameDay ) )

47 }
48

49 # J o i n i n g on t h e b a s i s o f ID
50 shp@data <− d p l y r : : l e f t j o i n ( shp@data , r e s , by = c ( ” ID”=” c i r c l e I D ” ) )

In this thesis, it is assumed that a pixel needs to have at least one spatial or ST neighbour to

qualify as a true forest fire pixel. Therefore, an additional filter is applied to remove the pixels

from the labeled data that are spatially and spatio-temporally separated. This is done in order
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to introduce a clustering condition to the one-class SVM model through the labeled data. The

code to apply the cluster filters is given below:
1 #ST n e i g h b o u r s f o r n =0 ,1
2 f i r e s w i t h o u t O u t l i e r s <− s u b s e t ( F i r e s E x p o r t T a b l e , c t SpTempNeighbors > 0 )
3 f i r e s w i t h o u t O u t l i e r s <− s u b s e t ( f i r e s w i t h o u t O u t l i e r s , c t S p a t i a l N e i g h b o r s sameDay > 0 )
4 # S p a t i a l n e i g h b o u r s
5 f i r e s w i t h o u t O u t l i e r s <− s u b s e t ( f i r e s w i t h o u t O u t l i e r s , c t S p a t i a l N e i g h b o r s > 0 )
6 #new Big F i r e s
7 B i g F i r e s I D s <− f i r e s w i t h o u t O u t l i e r s $ID
8

9 #number o f b i g f i r e s a f t e r removing t h e o u t l i e r s −−> 6102
10 l e n g t h ( B i g F i r e s I D s )
11

12 # r e e x p o r t i n g t h e l a b e l e d d a t a
13 F i r e s T a b l e <− shp [ B igF i r e s IDs , ]
14

15 #Big F i r e s
16 F i r e s E x p o r t T a b l e <− s e l e c t ( F i r e sTab l e@da t a , LATITUDE , LONGITUDE,DATE, ID , BRIGHTNESS , FRP ,
17 BRIGHT T31 , Tempera ture , f i r eMon th , WindSpeed , CONFIDENCE,
18 LULC val , e l e v a t i o n V a l u e s , c t SpTempNeighbors ,
19 c t S p a t i a l N e i g h b o r s sameDay , c t S p a t i a l N e i g h b o r s )
20

21

22 NonFi reTab le <− s e t d i f f ( shp@data , F i r e sTab l e@da t a )
23

24 # r e s t o f t h e d a t a
25 NonF i r e sExpo r tTab l e <− s e l e c t ( NonFi reTable , LATITUDE , LONGITUDE,DATE, ID , BRIGHTNESS , FRP ,
26 BRIGHT T31 , Tempera tu re , f i r eMon th , WindSpeed , CONFIDENCE,
27 LULC val , e l e v a t i o n V a l u e s , c t SpTempNeighbors ,
28 c t S p a t i a l N e i g h b o r s sameDay , c t S p a t i a l N e i g h b o r s )

All in all, 665 outliers were removed from the labeled data. Figure 25 shows the labeled data

before and after the outlier analysis, highlighting the outliers in red.

Figure 25: Labeled data: before and after outlier analysis.
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3.4 Summary

In this chapter, a total of 13 input parameters have been described for the one-class SVM model. The overview of the input table is given in

Table 5.

Fire
Pixels Latitude Month Channel 21

BT FRP Channel 31
BT Temperature Wind

Speed Confidence Land
Cover Elevation Spatial

Neighbours
ST Neighbours
n = 0

ST Neighbours
n = 1

1 41.11 8 335.20 88.00 307.90 30.80 2.20 84 21.00 400.00 9.00 9.00 16.00
2 41.10 8 332.00 71.40 307.60 30.80 2.20 80 28.00 372.00 11.00 11.00 21.00
3 40.51 8 331.50 88.40 300.70 29.10 2.20 80 29.00 901.00 13.00 13.00 43.00
4 40.51 8 354.60 287.50 303.20 29.20 2.60 97 27.00 829.00 6.00 6.00 31.00
5 40.50 8 352.00 243.40 302.10 29.10 2.20 96 21.00 897.00 12.00 10.00 45.00
.
.
.
.
.
.
n

Table 5: Input table

The R code used to create the above table is given in Appendix C (A.3). Out of 53331 fire pixels, 6102 are a part of the labeled dataset

and the rest are unlabeled. In the next chapter, the labeled samples are passed as input to a one-class SVM and the resulting model is used to

detect similar fire pixels that are likely to be a part of large fires from the unlabeled dataset.
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4 APPLICATION OF ONE-CLASS SVMs

This chapter explains the application of the input parameters (derived in the previous chapter) by

a one-class SVM model. The first sub-chapter gives the general workflow for the application of

a one-class SVM in this thesis. The second sub-chapter explains the tuning process involved in

order to obtain the best results from the one-class SVM model. The third sub-chapter describes

the techniques used to prevent overfitting of the model.

4.1 Basic Workflow

In the previous chapter, the MODIS hotspots were split into 2 parts: labeled and unlabeled data.

As explained earlier in sub-chapter 2.4.1, the one-class SVM requires a known or labeled dataset

that is a collection of vectors belonging to a single class. The labeled data, now consists of 13

different input parameters / attributes that define the fire pixels that belong to large forest fires.

Figure 26 illustrates the basic workflow for the application of a one-class SVM in this thesis.

Figure 26: Application of a one-class SVM.

The one-class SVM produces a model as an output after learning the classes in the labeled

data. The learning process needs to be performed with the optimum hyperparameters for the
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model, which is described in the next sub-chapter. The model is then used to make logical

predictions (TRUE/FALSE) on the fire pixels in the unlabeled data. Based on the prediction

results, the model can also be corrected for overfitting, which is done and described in 4.3. The

R library e1071 provides the required functions to create and tune the one-class SVM model for

this thesis.

4.2 Tuning the one-class SVM model

In chapter 2.4.1, it was mentioned that the SVMs are highly dependent on some so called

hyperparameters. These hyperparameters are Cost, Gamma (kernel parameter) and Nu. A slight

modification in any of these parameters might result in huge errors in the predictions. The e1071

package provides a tune function that can be used to tune the SVM model to obtain the optimum

hyperparameters. It performs a grid search and a 10-fold CV to select the best parameters for the

model. For one-class SVMs, only nu and gamma need to be estimated (as explained in 2.4.1).

An example of this function is given below :
1 # Tuning t h e model , x c o n t a i n s t h e i n p u t p a r a m e t e r s and y c o n t a i n s a v e c t o r wi th c l a s s v a l u e .
2 # In t h i s case , y i s l o g i c a l Vec to r wi th v a l u e s = TRUE ( s i n g l e c l a s s )
3 t uned <− t u n e . svm ( x=x , y=y ,
4 nu = 0 . 0 0 1 : 1 . 0 ,
5 gamma = 10ˆ (−4 :0 ) ,
6 t y p e = ’ one−c l a s s i f i c a t i o n ’ )

The lower and upper grid limits of each parameter are passed to the tune function along with

a type “one-classification” to specify that it is done for a one-class SVM model. In this case, a

2-dimensional grid is created because of the number of parameters. A model is created for each

combiination (γ,nu) in this grid. 10-fold CV is used as the sampling method for each model.

Figure 27 illustrates a 10-fold CV process. The labeled data is randomly split into 10 equal parts.

9 parts are used as training set and the 10th part is used for testing. The CV step is repeated 9

more times, with each part used as the test data exactly once. The 10 results are averaged to

produce an estimation. These results are classification errors ie. the fraction of the test data that

was predicted incorrectly.

The tune function looks for the model with the lowest classification error. The parameters of

that model are given as output as shown in the example below:
1 t uned
2

3 # Pa r ame t e r t u n i n g o f svm :
4 #− s amp l ing method : 10− f o l d c r o s s v a l i d a t i o n
5 #− b e s t p a r a m e t e r s :
6 # gamma nu
7 # 0 .001 0 .001
8 #− b e s t pe r f o rmance : 0 . 002295082 . Th i s i s t h e e r r o r v a l u e o f t h e b e s t model
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Figure 27: 10-fold cross-validation.

4.3 Cross-Validation

Overfitting is often caused due to high model complexity. This happens when there are too many

input parameters defining the one-class distribution (labeled data). This makes the model too

specific to the input/labeled data. The aim is to detect similar fire pixels from the unlabeled data

and not identical ones. The following techniques are used in this thesis to test the model for

overfitting.

4.3.1 Leave-one-out Cross-Validation

The objective of this method is to analyse the influence of a single large fire event on the one-

class SVM model. In this CV technique, each large fire event is left out of the labeled data and

a model is created using the other fire events as training set. This model is used to detect the

left out fire event and the accuracy of the predictions is examined. If (F1,F2,F3,F4.....Fn) are the

large fire events, F1 is left out in the first run and (F2,F3,F4.....Fn) are considered as the training

set to build the model and the predictions are made on F1. This step is repeated n times for all

the events. The difference between this approach and the 10-fold CV approach is in this case,

that the labeled data is split in terms of the fire events opposed to a random split in 10-fold CV.
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The prediction results are given in Table 6.

Index Prediction Accuracy Fire Date
1 99.41 2003-08-03
2 100 2003-08-04
3 100 2003-08-07
4 100 2003-08-08
5 100 2003-08-09
6 99.21 2003-08-11
7 100 2003-08-12
8 100 2003-08-13
9 100 2003-07-28
10 99.6 2003-09-12
11 100 2003-09-13
12 100 2004-07-26
13 100 2004-07-28
14 100 2005-08-04
15 100 2005-08-05
16 100 2005-08-06
17 100 2005-08-07
18 100 2005-08-14
19 100 2005-08-16
20 99.78 2005-08-21
21 100 2005-08-22
22 100 2005-08-24
23 100 2005-07-12
24 100 2005-07-20
25 100 2005-07-23
26 27.6 2005-10-03
27 100 2006-08-13
28 100 2006-08-07
29 100 2006-08-09
30 77.14 2006-06-05
31 100 2010-08-13
32 100 2013-08-29
33 100 2016-08-10
34 100 2016-08-11
35 100 2016-08-12
36 100 2016-08-13
37 100 2016-08-14

Table 6: Prediction accuracy.

Index Prediction Accuracy Fire Date
1 99.26 2003-08-03
2 100 2003-08-04
3 100 2003-08-07
4 100 2003-08-08
5 100 2003-08-09
6 99.21 2003-08-11
7 100 2003-08-12
8 100 2003-08-13
9 100 2003-07-28
10 99.2 2003-09-12
11 100 2003-09-13
12 100 2004-07-26
13 100 2004-07-28
14 100 2005-08-04
15 100 2005-08-05
16 100 2005-08-06
17 100 2005-08-07
18 100 2005-08-14
19 100 2005-08-16
20 99.34 2005-08-21
21 99.57 2005-08-22
22 100 2005-08-24
23 100 2005-07-12
24 100 2005-07-20
25 100 2005-07-23
26 99.39 2005-10-03
27 100 2006-08-13
28 100 2006-08-07
29 100 2006-08-09
30 100 2006-06-05
31 100 2010-08-13
32 100 2013-08-29
33 100 2016-08-10
34 99.70 2016-08-11
35 100 2016-08-12
36 100 2016-08-13
37 100 2016-08-14

Table 7: Prediction accuracy without month of
fire occurrence.

These tables are represented graphically in Figure 28. Prediction accuracy is the fraction of

fire pixels that were predicted correctly for each fire event that was left out. In Figure 28a, it can

be seen that the prediction accuracy is almost 100 % for all the cases except for all the events

except for event indices 26 and 30 where it is ∼20 % and ∼80 % respectively. These fire events

occurred in the months of October and June (refer Table 6). Also, these two events are the only

ones in the known labeled data that occur in these months. This means that the model rejects
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fire events from the months that are not in the usual fire season (July, August, September). This

is caused by the input parameter “Month of Fire Occurrence”, which makes the model overfit

with respect to the months in the labeled data. Therefore, this input parameter is removed and

the whole process is repeated. The results are shown in Table 7 and graphically represented in

Figure 28b.

(a) Prediction accuracy. (b) Prediction accuracy without month of fire occurrence.

Figure 28: Prediction Accuracies.

As shown, the prediction accuracy is now almost 100 % for all the events after removing

the month parameter. Therefore, the month parameter is rejected for the one-class SVM model.

This method basically proves that an individual fire event does not affect the model in terms of

prediction accuracy ie. the left-out event can be predicted correctly with the help of other fire

events. The R code for the above analysis is given in Appendix D (A.4).

4.3.2 Hold-out Cross-Validation

Figure 29 illustrates the Hold-out CV method concisely. The labeled data is split into 2 random

halves: half A and half B. In the first step, half A is used to train the model and half B is used

for testing. In the second step, half B is used to train the model and half A is used for testing.

The prediction accuracies in both cases are examined. For an ideal case, the accuracies in both

steps should be high. This method checks the dependence of the model on each half of the data.
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Figure 29: Hold-out cross-validation.

The R code used to achieve the above mentioned steps is given in Appendix D (A.4). The

prediction accuracies for both steps were almost 100 %. Figure 30 gives a pictorial description

of the results. The green circles depict the true detections and the red circles depict the false

detections.

(a) Step 1. (b) Step 2.

Figure 30: Hold-out cross-validation results

It can be seen that the labeled set does not consist of fires in all regions of Portugal. The

latitude parameter is the only input parameter that is dependent on the spatial locaiton of the

fire pixels. This parameter might cause the model to reject fires in regions where there are no

labeled samples (discussed in the next chapter).
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Both the CV techniques used in this thesis prevent overfitting. Underfitting occurs when the model becomes too generic. For example, a

simple/general classification condition might make the model predict too many fire pixels as true detections. In this thesis, validating a model

for underfitting is not possible with the available data. Because the data does not consist of fire pixels labeled as false detections. This was the

primary reason behind choosing a one-class SVM model, because only the data for true detections (large fire events) was available.

Finally, the one-class SVM model was derived using the following input table (with 12 parameters):

Fire
Pixels Latitude Channel 21

BT FRP Channel 31
BT Temperature Wind

Speed Confidence Land
Cover Elevation Spatial

Neighbours
ST Neighbours
n = 0

ST Neighbours
n = 1

1 41.11 335.20 88.00 307.90 30.80 2.20 84 21.00 400.00 9.00 9.00 16.00
2 41.10 332.00 71.40 307.60 30.80 2.20 80 28.00 372.00 11.00 11.00 21.00
3 40.51 331.50 88.40 300.70 29.10 2.20 80 29.00 901.00 13.00 13.00 43.00
4 40.51 354.60 287.50 303.20 29.20 2.60 97 27.00 829.00 6.00 6.00 31.00
5 40.50 352.00 243.40 302.10 29.10 2.20 96 21.00 897.00 12.00 10.00 45.00
.
.
.
.
.
.
n

Table 8: Final Input Table

The model is applied on the unlabeled samples to make predictions. The results are described in the next chapter.
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5 RESULTS AND DISCUSSIONS

5.1 Detection of Large Fire Events Using the One-Class SVM Model

The final one-class SVM model derived in the previous chapter was applied on the unlabeled

samples to detect large fire events in the time period 2000-2016. The R code for the application

of the model is given in Appendix E (A.5). As a result, 79.8 % of the fires were detected as true

large fires. Figure 31 shows the spatial distribution of the true and false detections.

(a) True detections. (b) False detections. (c) Labeled samples.

Figure 31: One-class SVM model results.

To check the model’s spatial dependence on the labeled samples (mentioned in 4.3.2), the

results are compared with the spatial distribution of the labeled samples in the above figure.

There is no identifiable region where the model shows excessive spatial dependence on latitude.

There are no regions where there are only true detections caused by the presence of labeled

samples in that region or only false detections caused by the absence of labeled samples in that

region. This shows at a first glance, that the model is not excessively dependent on the latitude

of the fire pixels.

To verify the effect of the tuning function described in 4.2, the model was also created with

the default hyperparameters in R. Almost 3000 samples were used as support vectors by default

which led to a true detection percentage of ∼22 %, which is clearly a case of overfitting.
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It is already stated that the primary objective of this thesis is to increase the significance of true large fire events and not to identify the false

detections. The true detections were visualized over time as shown in Figure 32.

Figure 32: Frequency of true detections over time.

The peaks in the image resemble high frequency of true detections. These true detections are then analyzed on a daily basis to identify the

day with the most number of true hits. The code used for this step is given in Appendix E (A.5). For example, there is a peak at the beginning

of the second half-year of 2015. Therefore, the true detections from June to September were analyzed followed by the identification of August

9, 2015 as the day with most number of true hits. Then, a satellite image for this day was obtained through historical research to verify if there

was really a fire on this day. For verification, the satellite images (surface reflectance images in true colour) were mostly obtained from NASA

Worldview [5]. 2 snapshot images for July 20, 2012 and March 18, 2009 were downloaded from Chelys’ EOsnap [4].

Some of the detected large fire events are shown in the pictures below. The satellite images are on the left and the results (visualized on

QGIS) are on the right side. In the visualizations of the results, green points depict true detections and the red points depict false detections

on the particular day. In the satellite images, the visible fires are highlighted using red circles.
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Source: NASA Worldview. Fires circled in red. Fires circled in red.

Figure 33: August 9, 2015.

Source: NASA Worldview. Fires circled in red.

Figure 34: August 25, 2013.
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Source: NASA Worldview. Fires circled in red.

Figure 35: September 4, 2012.

Source: NASA Worldview. Fires circled in red.

Figure 36: March 28, 2012.
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Source: Chelys.

Figure 37: July 20, 2012.

Source: Chelys.

Figure 38: March 18, 2009.
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Figure 39: September 10, 2001.

The fires on September 10, 2001 (Figure 39) were verified through a news article that was

found on [3]. Fires near the cities of Guarda and Viseu were identified as shown.

5.2 Sensitivity and Specificity Analysis

As already mentioned in sub-chapter 2.4.3, sensitivity, in the perspective of this thesis, is the

fraction of correctly classified large fire pixels and specificity is the fraction of correctly classified

non-large fire pixels. To judge the effect of each input parameter on the one-class SVM model,

a sensitivity and specificity analysis is performed. Each input parameter is removed from the

model and predictions are made each time (12 times). The sensitivity and the specificity values

are calculated as per the equations 15 and 16, on page 19. The reference for the correct and non-

correct predictions is obtained through the model from the previous step which uses all the 12

input parameters. The results are given in Table 9. The sensitivity values for all the parameters

was almost equal to 1, but the specificity values were low when the temperature, FRP, land cover

and the cluster parameters were removed. For example, without the temperature, the model

would not classify any true pixels as false, but would classify almost 50 % of the false pixels as

true. This means that the temperature, land cover and ST clustering are the three most influential

factors that affect the model, making it reject more pixels than the other parameters. The R code

used for this analysis is given in Appendix E (A.5).
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Input Parameter Sensitivity specificity
1 Latitude 1.00 0.95
2 Channel 21 BT 0.99 0.97
3 FRP 0.99 0.87
4 Channel 31 BT 0.98 0.91
5 Temperature 1.00 0.51
6 WindSpeed 0.99 0.90
7 Confidence 0.99 0.96
8 Land Cover 0.99 0.71
9 Elevation 0.99 0.93
10 ST Neighbours (n=1) 1.00 0.90
11 ST Neighbours (n=0) 1.00 0.82
12 Spatial Neighbours 1.00 0.87

Table 9: Sensitivity and Specificity

This means that the model is relatively more responsive to active fires occurring on areas with

forest cover, fires occurring in ST clusters and fires coupled with high sir temperatures. This is

expected for Portugal as it experiences most of its fires in the summer. The effect of BTs are

minimal as shown in the table above. This might be caused due to the fact that the BTs are an

intrinsic part of the C6 algorithm to detect active fires (discussed in detail in the next chapter).

55



6 CONCLUSIONS AND FUTURE WORK

This thesis analyses different factors that affect the MODIS Collection 6 active fire hotspots and

combines them using a one-class SVM model to increase the statistical significance of large fire

events among the hotspot population. The approach is useful in building a reliable fire database

and also in aiding operations related to forest fire management. It basically acts as a filter for the

hotspots, narrowing down the possibilities of large fires to a subset of the overall sample set. 79.8

% of the unlabeled fire pixels were predicted as true large fire pixels. These true detections were

analysed over time to identify other large fire events in the time period of the study (2000-2016).

The one-class SVM model does not depend on straight-forward conditions where it makes

predictions based on individual input parameters. This is one of the biggest advantages of this

approach where there is no direct correlation between the input parameters in the data. For

example, the results included fires from the months of March, July, August and September.

This is an indication that the model does not detect fires only in the summer season with high

temperatures. Also, there were fires in southern Portugal, which proves that the predictions were

not biased towards the latitude of the fire pixels. That being said, it is also not possible to state the

exact reason behind a fire pixel being predicted as a false detection based on its parameter values

due to the complex nature of a one-class SVM. Due to the unavailability of labeled samples in

the case of false detections, it was not possible to verify the results in terms of false detections.

The model was checked for overfitting, resulting in the exclusion of the month of fire occurrence

as an input parameter. The model was not checked for underfitting due to the unavailability of

data associated with false detections, as mentioned above. The model was found to be more

sensitive to land cover, temperature and the cluster parameters, signifying the clustering nature

of the hotspots in forest regions. However, this does not mean that the model rejects all the fire

pixels from non-forest areas, those connected to low temperatures or sparsely distributed fire

pixels.

It was also observed that both the BTs from Channel 21 and 31 did not have a significant influence

on the model. The reason behind this might be that the BTs are already an intrinsic part of the

C6 algorithm where they are thresholded in order to filter the fire pixels. In other words, both

the labeled and unlabeled fire pixels already belong to a certain interval of the BT measurement
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scale, resulting in no obvious trend among the labeled samples in particular. On the other hand,

FRP being a value calculated by the algorithm and not used for active fire detection as a threshold,

did have an impact on the model. FRP is an indirect measurement of the magnitude of a fire.

In Tables 2 and 3 on page 33, it can be seen that the labeled samples had a higher FRP on an

average when compared to the unlabeled samples whereas the BTs did not show a significant

change.

The model could be successfully adapted to other study areas as the model does not use any

input parameters that are specific to the study area (Portugal) except for the latitude. This should

be taken into consideration for study areas that do not have any relation between forest fires and

the latitude, unlike Portugal. The model could also be extended by introducing other external

factors such as slope, humidity etc as input parameters and removing the parameters such as BTs.

Another development could be increasing the weights of the parameters that the model is more

sensitive to, such as land cover or clustering. This might lead to identification of false detections,

provided the ground data for false detections is available. Finally, an improved ground research

step at the beginning to collect data for known large fires, for instance, by involving the local fire

departments’ databases, could surely boost the accuracy of this approach.
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A APPENDICES

A.1 Appendix A: LC Classes Distribution Table

LC ID LC Class Frequency Percentage
33 Transitional woodland-shrub 14830 27.81
21 Moors and heathland 7127 13.36

18 Land principally occupied by agriculture,
with significant areas of natural vegetation 4425 8.30

5 Broad-leaved forest 4404 8.26
20 Mixed forest 3552 6.66
9 Coniferous forest 2458 4.61
8 Complex cultivation patterns 2425 4.55
3 Annual crops associated with permanent crops 2377 4.46
31 Sparsely vegetated areas 2092 3.92
22 Natural grasslands 2049 3.84
23 Non-irrigated arable land 1771 3.32
30 Sclerophyllous vegetation 1023 1.92
12 Discontinuous urban fabric 690 1.29
24 Olive groves 630 1.18
35 Vineyards 570 1.07
26 Permanently irrigated land 556 1.04
1 Agro-forestry areas 411 0.77
25 Pastures 355 0.67
6 Burnt areas 304 0.57
17 Industrial or commercial units 239 0.45
15 Fruit trees and berry plantations 221 0.41
27 Rice fields 190 0.36
34 Unclassified 141 0.26
28 Road and rail networks and associated land 105 0.20
19 Mineral extraction sites 102 0.19
36 Water bodies 74 0.14
4 Bare rocks 51 0.10
10 Construction sites 46 0.09
32 Sport and leisure facilities 40 0.08
37 Water courses 24 0.05
2 Airports 18 0.03
13 Dump sites 13 0.02
11 Continuous urban fabric 10 0.02
29 Salines 5 0.01
7 Coastal lagoons 1 0.00
14 Estuaries 1 0.00
16 Green urban areas 1 0.00

Table 10: Percentage distribution of the LC classes for MODIS fire pixels in 2000-2016.
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A.2 Appendix B: R Code for Deriving the Input Parameters

To convert the MODIS fire data to a time series object and plot the required graphs in section

3.1.5:
1 # C r e a t i n g t ime s e r i e s o b j e c t
2 # g roup ing by month
3

4 # g e t t i n g t h e months o f each f i r e
5 f i r eMon th Year <− as . Date ( p a s t e ( a s . numer ic ( f o rma t ( shp@data $DATE, ”20%y” ) ) , a s . numer ic ( f o rma t (

shp@data $DATE, ”%m” ) ) , ” 01 ” , sep = ” / ” ) , f o rma t = ”%Y/%m/%d” )
6

7 t imeSe r i e sDF <− d a t a . f rame ( f i r eMon th Year )
8

9 # c r e a t i n g a v e c t o r o f a l l t h e months i n t h e t ime p e r i o d
10 monthsVec to r <− seq ( min ( f i r eMon th Year ) , max ( f i r eMon th Year ) , by=” months ” )
11

12 # coun t t h e f r e q u e n c y of each month
13 d i s t C o u n t <− p l y r : : coun t ( t imeSe r i e sDF )
14

15 DfforTS <− d a t a . f rame ( monthsVec to r )
16

17 # c r e a t i n g a d a t a f r a m e wi th f i r e o c c u r e n c e s pe r month
18 DfforTS <− d p l y r : : l e f t j o i n ( DfforTS , d i s tCoun t , by = c ( ” monthsVec to r ”=” f i r eMon th Year ” ) )
19

20 # a s s i g n i n g t h e NA v a l u e s a new c l a s s , t h e months t h a t don ’ t have f i r e s
21 DfforTS $ f r e q <− c a r : : r e code ( DfforTS $ f r eq , ”NA=0” )
22

23 # g e t t i n g t h e t ime frame f o r our t i m e s e r i e s o b j e c t
24 minYear <− as . numer ic ( f o rma t ( min ( DfforTS $ monthsVec to r ) , ”20%y” ) )
25 maxYear <− as . numer ic ( f o rma t ( max ( DfforTS $ monthsVec to r ) , ”20%y” ) )
26 minMonth <− as . numer ic ( f o rma t ( min ( DfforTS $ monthsVec to r ) , ”%m” ) )
27 maxMonth <− as . numer ic ( f o rma t ( max ( DfforTS $ monthsVec to r ) , ”%m” ) )
28

29 #The t ime s e r i e s o b j e c t
30 t i m e S e r i e s F i r e s <− t s ( DfforTS $ f r eq , s t a r t =c ( minYear , minMonth ) , end=c ( maxYear , maxMonth ) ,

f r e q u e n c y =12)
31

32 # F i r e Count ove r t ime
33 p l o t ( t i m e S e r i e s F i r e s , main = ” ” , x l a b =” ” , y l a b =” ” , a d j = 0 . 5 ,
34 axes =FALSE , cex . main =3)
35 a x i s ( 1 , a t =2000:2016 , l a b e l = p a s t e ( ” ” , 2000 :2016 ) , l a s =2 , cex . l a b =1 . 5 , cex . a x i s =1 . 5 , cex . main

=1 . 5 , cex . sub = 1 . 5 )
36 a x i s ( 2 , l a s =2 , cex . l a b =1 . 5 , cex . a x i s =1 . 5 , cex . main =1 . 5 , cex . sub = 1 . 5 )
37 box ( )
38

39 #Box P l o t f o r monthly f i r e o c cu r ence
40 b o x p l o t ( t i m e S e r i e s F i r e s ˜ c y c l e ( t i m e S e r i e s F i r e s ) , main = ” Monthly f r e q u e n c y of F i r e s ove r t ime ” ,

x l a b =” Months ” , y l a b =” F i r e coun t ” )
41

42 # c r e a t i n g a new column t o s t o r e t h e month o f f i r e o c c u r r e n c e
43 shp@data $ f i r eMon th <− as . numer ic ( f o rma t ( shp@data $DATE, ”%m” ) )
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To plot the kernel density of the fire distribution in Portugal in 2000-2016 in section 3.1.6:
1

2 # Conve r t i n g t h e f i r e s t o a PPP o b j e c t ( p o i n t p a t t e r n )
3 #x and y c o o r d i n a t e s
4 x <− c o o r d i n a t e s ( shp ) [ , 1 ]
5 y <− c o o r d i n a t e s ( shp ) [ , 2 ]
6

7 # c o o r d i n a t e s f o r t h e bounding box
8 l 1 <− bbox ( shp ) [ 1 , 1 ] #x
9 l 2 <− bbox ( shp ) [ 1 , 2 ] #x

10 l 3 <− bbox ( shp ) [ 2 , 1 ] #y
11 l 4 <− bbox ( shp ) [ 2 , 2 ] #y
12

13 #window of o b s e r v a t i o n
14 win <− owin ( x r ange =c ( l1 , l 2 ) , y r ange =c ( l3 , l 4 ) )
15 # c l a s s ( win )
16

17 # c o n v e r t i n g t o ppp
18 shp ppp <− ppp ( x , y , window=win , marks=shp@data )
19

20 # Kerne l Den s i t y
21 # P l o t t i n g t h e k e r n e l d e n s i t y o f t h e
22 K1 <− d e n s i t y ( shp ppp )
23 p l o t (K1 , main=” ” )
24 c o n t o u r (K1 , add=TRUE)

To obtain the thresholds in outlier analysis in section 3.2.3:
1 # O b t a i n i n g t h e t h r e s h o l d s
2 # Tempera tu r e
3 b o x p l o t ( F i r e s E x p o r t T a b l e $ Tempera tu re , main=” Tempera tu r e ” , y l a b =” Tempera tu r e (C) ” ) $ s t a t s
4

5 # E l e v a t i o n
6 b o x p l o t ( F i r e s E x p o r t T a b l e $ e l e v a t i o n V a l u e s , main=” E l e v a t i o n ” , y l a b =” E l e v a t i o n (m) ” ) $ s t a t s
7

8 # Windspeed
9 b o x p l o t ( F i r e s E x p o r t T a b l e $WindSpeed , main=”Wind Speed ” , y l a b =”Wind Speed (m/ s ) ” ) $ s t a t s

10

11 #Land Cover
12 b o x p l o t ( F i r e s E x p o r t T a b l e $LULC val , main=” Land Cover ” , y l a b =”LC c l a s s IDs ” ) $ s t a t s
13

14 # Conf idence
15 b o x p l o t ( F i r e s E x p o r t T a b l e $CONFIDENCE, main=” Conf idence ” , y l a b =” F i r e D e t e c t i o n Conf idence ” ) $ s t a t s
16

17 #FRP
18 b o x p l o t ( F i r e s E x p o r t T a b l e $FRP , main=”FRP” , y l a b =” F i r e R a d i a t i v e Power (MW) ” ) $ s t a t s
19

20 # channe l 21 BT
21 b o x p l o t ( F i r e s E x p o r t T a b l e $BRIGHTNESS , main=” Channel 21 BT” , y l a b =” B r i g h t n e s s Tempera tu r e (K) ” ) $

s t a t s
22

23 # channe l 31 BT
24 b o x p l o t ( F i r e s E x p o r t T a b l e $BRIGHT T31 , main=” Channel 31 BT” , y l a b =” B r i g h t n e s s Tempera tu r e (K) ” ) $

s t a t s
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For spatio-temporal analysis in section 3.3.2:
1 ## Temporal a n a l y s i s
2

3 # S t o r i n g i t i n a l i s t o f d a t a f r a m e s t o use i t l a t e r
4 l i s t O f T e m p o r a l R e s <− l i s t ( )
5 f o r ( i i n 0 : 1 0 ) {
6

7 #x me t e r s : : ” shp ” f o r a l l f i r e s , ” R e a l F i r e P o i n t s ” f o r r e a l f i r e s
8 shp b u f f e r <− gBu f f e r ( R e a l F i r e P o i n t s , w id th = 3058 , by id = TRUE)
9 # p l o t ( shp b u f f e r )

10

11 ## For each ID , f i n d IDs w i t h i n t h a t B u f f e r
12 bak <− shp
13 bak@data <− s e l e c t ( bak@data , ID , DATE)
14 # o v e r l a y t h e b u f f e r on t h e t a r g e t p o i n t s
15 bak ove r <− ove r ( shp b u f f e r , bak , r e t u r n L i s t = TRUE)
16

17 r e s <− d a t a . f rame ( timeWindow = numer ic ( ) , c i r c l e I D = numer ic ( ) , c t SpTempNeighbors = numer ic
( ) )

18

19 f o r ( j i n 1 : l e n g t h ( bak ove r ) ) {
20 tmp <− bak ove r [ j ]
21 # c o n v e r t i n g t o d a t a f rame from l i s t
22 df <− do . c a l l ( r b i n d . d a t a . frame , tmp )
23

24 #The ID of t h e b u f f e r o r i g i n
25 Circ leName <− names ( tmp )
26 df $ C i r c l e I D <− Circ leName
27

28 # Date o f t h e b u f f e r o r i g i n
29 C i r c l e D a t e <− df $DATE[ which ( d f $ID == Circ leName ) ]
30

31 #Removing t h e o r i g i n , b ecau se we don ’ t want i t t o be c o n s i d e r e d as a ne i ghbou r o f i t s e l f
32 df <− f i l t e r ( df , ID ! = Circ leName )
33

34 # t i m e d i f f e r e n c e , be tween t h e d a t e o f f i r e and t h e d a t e o f ne i ghbo r s , i n days
35 df $TIMEDIFF <− d i f f t i m e ( d f $DATE, C i r c l eDa t e , u n i t s = ” days ” )
36

37 # f i l t e r i n g ou t t h e p o i n t s t h a t a r e no t t e m p o r a l l y c l o s e enough ( 0 , 1 , 2 , 3 , 4 . . 1 0 days i n t h e
p a s t )

38 df <− f i l t e r ( df , TIMEDIFF >= − i & TIMEDIFF <=0 )
39

40 r e s [ j , ] <− c ( i , a s . numer ic ( Circ leName ) , nrow ( d f ) ) # s t o r i n g t h e count , number o f n e i g h b o r s
41 }
42

43 l i s t O f T e m p o r a l R e s [ [ i +1 ] ] <− r e s
44 }
45

46 #To s t o r e t h e r e s u l t s
47 summary <− d a t a . f rame ( TimeWindow = numer ic ( ) , Mean = numer ic ( ) , Median = numer ic ( ) ,

S t a n d a r d D e v i a t i o n = numer ic ( ) ,
48 Var i ance = numer ic ( ) , Maximum = numer ic ( ) )
49 f o r ( i i n 1 : 1 1 ) {
50 mean <− mean ( l i s t O f T e m p o r a l R e s [ [ i ] ] [ [ ” c t SpTempNeighbors ” ] ] )
51 median <− median ( l i s t O f T e m p o r a l R e s [ [ i ] ] [ [ ” c t SpTempNeighbors ” ] ] )
52 sd <− sd ( l i s t O f T e m p o r a l R e s [ [ i ] ] [ [ ” c t SpTempNeighbors ” ] ] )
53

54 max <− max ( l i s t O f T e m p o r a l R e s [ [ i ] ] [ [ ” c t SpTempNeighbors ” ] ] )
55 v a r i a n c e <− va r ( l i s t O f T e m p o r a l R e s [ [ i ] ] [ [ ” c t SpTempNeighbors ” ] ] )
56

57 summary [ i , ] <−c ( i −1,mean , median , sd , v a r i a n c e , max )
58 }
59

60 # ave r ag e number o f n e a r e s t n e i g h b o u r s p l o t
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61 g g p l o t ( summary , a e s ( TimeWindow ) , main =” ” ) +
62 geom l i n e ( a e s ( y = Mean ) , c o l o u r =” r ed ” ) +
63 theme ( p l o t . t i t l e = e l emen t t e x t ( h j u s t = 0 . 5 , f a c e =” bo ld ” , s i z e =12) , a x i s . t i t l e = e l emen t

t e x t ( h j u s t = 0 . 5 , f a c e =” bo ld ” , s i z e =12) , a x i s . t e x t = e l emen t t e x t ( h j u s t = 0 . 5 , s i z e =12) ) +
64 l a b s ( x = ”Number o f Days i n t h e p a s t ” , y = ” Average number o f n e i g h b o u r s ” ) +
65 s c a l e x c o n t i n u o u s ( b r e a k s = c ( 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 ) ) +
66 s c a l e y c o n t i n u o u s ( b r e a k s = c ( 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 ) )
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A.3 Appendix C: Complete R Code for Creating the Input Table

1 # Pa t h s
2 Por t uga lLandCove r <− ”LC pa t h ”
3 E l e v a t i o n <− ” E l e v a t i o n r a s t e r p a t h ”
4 t e m p e r a t u r e D a t a <− r e ad . t a b l e ( ” t e m p e r a t u r e csv pa t h ” , sep = ” ; ” , h e ade r = TRUE)
5 WindSpeedData <− r e ad . t a b l e ( ” windspeed csv pa t h ” , sep = ” ; ” , h e ade r = TRUE)
6

7 # t h e p o i n t s h a p e f i l e
8 pa t h <− ”MODIS d a t a s h a p e f i l e p a t h ”
9 shp <− readOGR ( dsn = path , l a y e r = ”MODIS l a y e r name” )

10

11 # c r e a t e r a s t e r l u l c
12 l u l c L a y e r <− r a s t e r ( Po r t uga lLandCove r )
13

14 # E x t r a c t t h e r a s t e r v a l u e s u n d e r l y i n g t h e f i r e p o i n t s
15 shp@data $LULC v a l <− e x t r a c t ( l u l c L a y e r , shp )
16

17 # a s s i g n i n g t h e NA v a l u e s a new c l a s s
18 shp@data $LULC v a l <− c a r : : r e code ( shp $LULC val , ”NA=45” )
19

20 # c r e a t e r a s t e r e l e v a t i o n
21 e l e v a t i o n L a y e r <− r a s t e r ( E l e v a t i o n )
22

23 # E x t r a c t t h e e l e v a t i o n r a s t e r v a l u e s u n d e r l y i n g t h e f i r e p o i n t s
24 shp@data $ e l e v a t i o n V a l u e s <− e x t r a c t ( e l e v a t i o n L a y e r , shp )
25

26 # S p a t i o Temporal Neigbourhood A n a l y s i s s t a r t s h e r e f o r xkm and n days window
27 ## Copy shp . Remove Data . Add ID
28 shp@data $ID <− 1 : nrow ( shp@data )
29 shp@data $DATE <− as . Date ( a s . c h a r a c t e r ( shp@data $ACQ DATE) )
30

31 #What r a d i u s do you want t o s e t h e r e ?? i n me t e r s
32 r a d i u s <− 3058
33 # c r e a t i n g t e m p e r a t u r e and windspeed column
34 shp@data $ Tempera tu r e <− 0
35 shp@data $WindSpeed <− 0
36

37 #3058 b u f f e r
38 shp b u f f e r <− gBu f f e r ( shp , wid th = r a d i u s , by id = TRUE)
39 # p l o t ( shp b u f f e r )
40

41 ## For each ID , f i n d IDs w i t h i n t h a t B u f f e r
42 bak <− shp
43 bak@data <− s e l e c t ( bak@data , ID , DATE, ACQ TIME)
44 bak ove r <− ove r ( shp b u f f e r , bak , r e t u r n L i s t = TRUE)
45

46 # d a t a f rame wi th coun t o f s p a t i a l and h i s t o r i c a l n e i g h b o r s
47 r e s <− d a t a . f rame ( c i r c l e I D = numer ic ( ) , c t SpTempNeighbors = numer ic ( ) , c t S p a t i a l N e i g h b o r s =

numer ic ( )
48 , c t S p a t i a l N e i g h b o r s sameDay = numer ic ( ) )
49

50 #2day window
51 f o r ( j i n 1 : l e n g t h ( bak ove r ) ) {
52 # c a t ( p a s t e 0 ( i , ”\n ” ) )
53 tmp <− bak ove r [ j ]
54

55 df <− l d p l y ( tmp , d a t a . f rame ) # h t t p : / / s t a c k o v e r f l o w . com / a / 4227483
56

57 Circ leName <− names ( tmp )
58 df $ C i r c l e I D <− Circ leName
59
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60 C i r c l e D a t e <− df $DATE[ which ( d f $ID == Circ leName ) ] # o r d f $ C i r c l e I D i n s t e a d o f c i r c l e name
61

62 df <− f i l t e r ( df , ID ! = Circ leName ) # f i l t e r i n g ou t t h e ID i t s e l f , t h e f i r e p o i n t
63

64 # t i m e d i f f e r e n c e , be tween t h e d a t e o f f i r e and t h e d a t e o f ne i ghbo r s , i n days
65 df $TIMEDIFF <−d i f f t i m e ( d f $DATE, C i r c l eDa t e , u n i t s = ” days ” )
66

67 # f i l t e r i n g ou t t h e p o i n t s t h a t a r e no t s p a t i a l l y c l o s e enough (2 day window he r e ) n =1
68 df t i m e F i l t e r <− f i l t e r ( df , TIMEDIFF >= −1 & TIMEDIFF <=0)
69

70 # f i l t e r i n g ou t t h e p o i n t s t h a t a r e no t on t h e same day n=0
71 df t i m e F i l t e r sameDay <− f i l t e r ( df , TIMEDIFF == 0)
72

73

74

75 # s t o r i n g t h e count , number o f s p a t i o t empo r a l n e i ghbo r s , s p a t i a l n e i g h b o r s
76 r e s [ j , ] <− c ( a s . numer ic ( Circ leName ) , nrow ( d f t i m e F i l t e r ) , nrow ( d f ) , nrow ( d f t i m e F i l t e r

sameDay ) )
77 }
78

79 # J o i n i n g on t h e b a s i s o f ID , which we c r e a t e d i n t h e b e g i n n i n g
80 shp@data <− d p l y r : : l e f t j o i n ( shp@data , r e s , by = c ( ” ID”=” c i r c l e I D ” ) )
81

82

83

84 ######## Monthly Occu r r ence ############
85 shp@data $ f i r eMon th <− as . numer ic ( f o rma t ( shp@data $DATE, ”%m” ) )
86

87

88 # ######### Tempera tu r e ########
89 co lnames ( t e m p e r a t u r e D a t a ) #TEMPERATURE AVG i s t h e name
90

91 #ADDING DATE
92 t e m p e r a t u r e D a t a $ Date <− as . Date ( a s . c h a r a c t e r ( t e m p e r a t u r e D a t a $DAY) , f o rma t = ’%Y%m%d ’ )
93

94 #Add Tempera tu r e v a l u e f o r each p o i n t
95 f o r ( j i n 1 : nrow ( shp@data ) ) {
96

97 t e s t <− s u b s e t ( t empe r a t u r eDa t a , Date == shp@data [ j , ] $DATE)
98

99 #making i t a s p a t i a l p o i n t d a t a f rame wi th 4326 p r o j e c t i o n
100 c o o r d i n a t e s ( t e s t ) <− c ( ”LONGITUDE” , ”LATITUDE” )
101 p r o j 4 s t r i n g ( t e s t ) =CRS( ”+ i n i t =epsg :4326 ” ) # s e t i t t o l a t−l ong
102 t e s t = spTrans fo rm ( t e s t , p r o j 4 s t r i n g ( shp ) )
103

104 #The f i r e p o i n t unde r o b s e r v a t i o n
105 t h i s P o i n t <− shp [ j , ]
106

107 n e a r e s t I n d e x <− app ly ( g D i s t a n c e ( t e s t , t h i s P o i n t , by id =TRUE) , 1 , which . min )
108

109 # f i n a l l y , a s s i g n i n g t h e t e m p e r a t u r e va lue , i n C e l s i u s
110 shp@data $ Tempera tu r e [ j ] <− t e s t [ n e a r e s t I n d e x , ] $TEMPERATURE AVG
111

112 }
113 ######## t e m p e r a t u r e v a l u e s added #########
114

115 # ############ WindSpeed #############
116 #Renaming Labe l3 t o LanduseC la s s
117 co lnames ( WindSpeedData ) #WINDSPEED i s t h e name
118

119 #ADDING DATE
120 WindSpeedData $ Date <− as . Date ( a s . c h a r a c t e r ( t e m p e r a t u r e D a t a $DAY) , f o rma t = ’%Y%m%d ’ )
121

122 #Add Wind speed va l u e f o r each p o i n t
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123 f o r ( j i n 1 : nrow ( shp@data ) ) {
124

125 t e s t <− s u b s e t ( WindSpeedData , Date == shp@data [ j , ] $DATE)
126

127 #making i t a s p a t i a l p o i n t d a t a f rame wi th 4326 p r o j e c t i o n
128 c o o r d i n a t e s ( t e s t ) <− c ( ”LONGITUDE” , ”LATITUDE” )
129 p r o j 4 s t r i n g ( t e s t ) =CRS( ”+ i n i t =epsg :4326 ” ) # s e t i t t o l a t−l ong
130 t e s t = spTrans fo rm ( t e s t , p r o j 4 s t r i n g ( shp ) )
131

132 #The f i r e p o i n t unde r o b s e r v a t i o n
133 t h i s P o i n t <− shp [ j , ]
134

135 n e a r e s t I n d e x <− app ly ( g D i s t a n c e ( t e s t , t h i s P o i n t , by id =TRUE) , 1 , which . min )
136

137 # f i n a l l y , a s s i g n i n g t h e windspeed i n m/ s
138 shp@data $WindSpeed [ j ] <− t e s t [ n e a r e s t I n d e x , ] $WINDSPEED
139 }
140

141 # T r a i n i n g d a t a
142 F i r e s T a b l e <− shp [ B igF i r e s IDs , ]
143

144 F i r e s E x p o r t T a b l e <− s e l e c t ( F i r e sTab l e@da t a , LATITUDE , LONGITUDE,DATE, BRIGHTNESS ,
145 BRIGHT T31 , FRP , Tempera tu re , f i r eMon th , WindSpeed , CONFIDENCE,
146 LULC val , e l e v a t i o n V a l u e s , c t S p a t i a l N e i g h b o r s ,
147 c t S p a t i a l N e i g h b o r s sameDay , c t SpTempNeighbors )
148

149 # Te s t d a t a
150 NonFi reTab le <− s e t d i f f ( shp@data , F i r e sTab l e@da t a )
151

152 # f o r t h e expo r t , t h i s t a b l e a l s o has a d d i t i o n a l p a r a m e t e r s from t h e modis d a t a
153 NonF i r e sExpo r tTab l e <− s e l e c t ( NonFi reTable , LATITUDE , LONGITUDE,DATE, BRIGHTNESS ,
154 BRIGHT T31 , FRP , Tempera ture , f i r eMon th , WindSpeed , CONFIDENCE,
155 LULC val , e l e v a t i o n V a l u e s , c t S p a t i a l N e i g h b o r s ,
156 c t S p a t i a l N e i g h b o r s sameDay , c t SpTempNeighbors )
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A.4 Appendix D: R Code for CV approaches

For Leave-one-out CV in section 4.3.1:
1 #Number o f un ique f i r e d a t e s == number o f f i r e i n c i d e n t s we have
2 un ique F i r e Da tes <− un ique ( F i r e s T a b l e $DATE)
3

4 #To c a l c u l a t e t h e a c cu r a cy o f each model
5 L i s t o f F i r e D e t e c t i o n s <− l i s t ( d a t a . f rame ( ) )
6

7 ######## Tuning and model ing f o r each f i r e e v en t ##########
8 f o r ( i i n 1 : l e n g t h ( un ique F i r e Da tes ) ) {
9

10 p r i n t ( un ique F i r e Da tes [ i ] ) # r e f e r e n c e
11 # c u r r e n t d a t e
12 c u r r e n t D a t e <− un ique F i r e Da tes [ i ]
13

14 tempShape <− shp
15 # removing t h e c u r r e n t d a t e from t h e t r a i n d a t a s e t
16 t empTra inDa ta <− F i r e s E x p o r t T a b l e [ F i r e s E x p o r t T a b l e $DATE ! = c u r r e n t D a t e , ]
17

18 #Adding t h e e l i m i n a t e d f i r e t o our t e s t d a t a ( t h e c u r r e n t d a t e f i r e )
19 TestCopy <− s e t d i f f ( F i r e s E x p o r t T a b l e , t empTra inDa ta )
20

21 #dummy dependen t column : : a l l True
22 t empTra inDa ta $ B i g F i r e <− as . l o g i c a l ( ”TRUE” )
23

24 #Making x and y columns f o r t h e model : : we romove unnec e s a r y columns which we don t need f o r
t h e model

25 # bu t need t o v i s u a l i z e t h e r e s u l t s l a t e r u s i ng t h e s e columns
26 x <− s u b s e t ( t empTra inData , s e l e c t = −DATE) #make x v a r i a b l e s
27 x <− s u b s e t ( x , s e l e c t = −ID ) #make x v a r i a b l e s
28 x <− s u b s e t ( x , s e l e c t = −B i g F i r e ) #make x v a r i a b l e s
29 x <− s u b s e t ( x , s e l e c t = −LONGITUDE) #make x v a r i a b l e s
30 x <− s u b s e t ( x , s e l e c t = −f i r eMon th ) #ADD THIS TO REMOVE THE FIRE MONTH
31

32 y <− t empTra inDa ta $ B i g F i r e #make y v a r i a b l e ( dependen t )
33

34 # Tuning t h e model , one c l a s s SVM, 10 f o l d c r o s s v a l i d a t i o n
35 t uned <− t u n e . svm ( x=x , y=y ,
36 nu = 0 . 0 0 1 : 1 . 0 ,
37 gamma = 10ˆ (−4 :0 ) ,
38 t y p e = ’ one−c l a s s i f i c a t i o n ’ )
39

40 model <−svm ( x=x , y=y , t ype = ’ one−c l a s s i f i c a t i o n ’ ,
41 gamma = tuned $ b e s t . p a r a m e t e r s $gamma , nu = tuned $ b e s t . p a r a m e t e r s $nu )
42

43 # t e s t on t h e l e f t ou t f i r e
44 Tes t <− s u b s e t ( TestCopy , s e l e c t = −ID )
45 Tes t <− s u b s e t ( Tes t , s e l e c t = −DATE )
46 Tes t <− s u b s e t ( Tes t , s e l e c t = −LONGITUDE )
47 Tes t <− s u b s e t ( Tes t , s e l e c t = −f i r eMon th ) #ADD THIS TO REMOVE THE FIRE MONTH
48

49 p red <− p r e d i c t ( model , Te s t ) # c r e a t e p r e d i c t i o n s
50

51 TestCopy $ p r e d i c t i o n s <− p red
52

53 ##### D e t e c t i o n s f o r t h e l e f t ou t f i r e e v en t
54 L i s t o f F i r e D e t e c t i o n s [ [ i ] ] <− TestCopy
55

56 }
57

58 shp $ B i g F i r e <− ”No F i r e ”
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59 f o r ( i i n 1 : l e n g t h ( B i g F i r e s I D s ) ) {
60 shp $ B i g F i r e [ shp $ID == B i g F i r e s I D s [ i ] ] <− ” Big F i r e ”
61 }
62

63 # For V i s u a l i z i n g a l l t h e r e s u l t s
64 R e s u l t Tab le <− d a t a . f rame ( Index = numer ic ( 0 ) , R e s u l t Accuracy = numer ic ( 0 ) ,
65 DATE = c h a r a c t e r ( 0 ) , s t r i n g s A s F a c t o r s = FALSE)
66 f o r ( i i n 1 : l e n g t h ( un ique F i r e Da tes ) ) {
67 # C u r r e n t d a t e
68 un ique F i r e Da tes [ i ]
69 # Te s t f o r t h e f i r s t da t e , use t h e same t e m p l a t e f o r any d a t e ! !
70 hh <− L i s t o f F i r e D e t e c t i o n s [ [ i ] ]
71

72 # Merging o t h e r columns
73 hh <− merge ( x = hh , y = shp@data [ , c ( ” ID” , ” B i g F i r e ” ) ] , by = ” ID” )
74

75 # P e r c e n t a g e o f p o i n t s t h a t a r e d e t e c t e d as t r u e and a r e a l s o l a b e l e d as r e a l b i g f i r e s
76 f r a c t i o n = nrow ( hh [ hh$ p r e d i c t i o n s ==”TRUE” & hh$ B i g F i r e == ” Big F i r e ” , ] ) /
77 nrow ( hh [ hh$ B i g F i r e == ” Big F i r e ” , ] )
78 S u c c e s s P e r c e n t a g e = f r a c t i o n ∗ 100
79

80 d a t e = as . c h a r a c t e r ( un ique F i r e Da te s [ i ] )
81 R e s u l t Tab le [ i , ]<− c ( i , S u c c e s s P e r c en t a g e , d a t e )
82 }
83 # V i s u a l i z e r e s u l t s
84 View ( R e s u l t Tab le )
85 # p l o t r e s u l t s
86 p l o t ( R e s u l t Tab le $ Index , R e s u l t Tab le $ R e s u l t Accuracy , x l a b = ’ F i r e Event Index ’ , y l a b = ’ P r e d i c t i o n

Accuracy ’ , y l im=c ( 0 , 100) )

For Hold-out CV in section 4.3.2:
1 copy<− F i r e s E x p o r t T a b l e #Copy b e f o r e samp l ing t h e d a t a f r a m e
2 # d e f i n e f r a c t i o n o f t r a i n i n g and t e s t s e t
3 bound <− f l o o r ( ( nrow ( copy ) / 4 )∗ 2)
4 copy <− copy [ sample ( nrow ( copy ) ) , ] # sample rows
5

6 TempTrainData <− copy [ 1 : bound , ] # g e t t r a i n i n g s e t
7 TempTestData <− copy [ ( bound +1) : nrow ( copy ) , ] # g e t t e s t s e t
8 # TempTestData <− copy [ 1 : bound , ] # f o r s t e p 2
9 # TempTrainData <− copy [ ( bound +1) : nrow ( copy ) , ] # f o r s t e p 2

10

11 # P r e p a r i n g t h e t r a i n i n g d a t a f o r t h e model
12 TempTrainData $ B i g F i r e <− as . l o g i c a l ( ”TRUE” )
13

14 x <− s u b s e t ( TempTrainData , s e l e c t = −DATE) #make x v a r i a b l e s
15 x <− s u b s e t ( x , s e l e c t = −ID ) #make x v a r i a b l e s
16 x <− s u b s e t ( x , s e l e c t = −B i g F i r e ) #make x v a r i a b l e s
17 x <− s u b s e t ( x , s e l e c t = −LONGITUDE) #make x v a r i a b l e s
18 x <− s u b s e t ( x , s e l e c t = −f i r eMon th ) #make x v a r i a b l e s
19

20 y <− TempTrainData $ B i g F i r e #make y v a r i a b l e ( dependen t )
21

22 # Tuning t h e model
23 t uned <− t u n e . svm ( x=x , y=y ,
24 nu = 0 . 0 0 1 : 1 . 0 ,
25 gamma = 10ˆ (−4 :0 ) ,
26 t y p e = ’ one−c l a s s i f i c a t i o n ’ )
27

28 model <−svm ( x=x , y=y , t ype = ’ one−c l a s s i f i c a t i o n ’ ,
29 gamma = tuned $ b e s t . p a r a m e t e r s $gamma , nu = tuned $ b e s t . p a r a m e t e r s $nu )
30

31 Tes t <− s u b s e t ( TempTestData , s e l e c t = −ID )
32 Tes t <− s u b s e t ( Tes t , s e l e c t = −DATE )
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33 Tes t <− s u b s e t ( Tes t , s e l e c t = −LONGITUDE )
34 Tes t <− s u b s e t ( Tes t , s e l e c t = −f i r eMon th )
35

36 p red <− p r e d i c t ( model , Te s t ) # c r e a t e p r e d i c t i o n s
37

38 TempTestData $ p r e d i c t i o n s <− p red
39

40 # P e r c e n t a g e o f t r u e f i r e s == P r e d i c t i o n Accuracy
41 s t e p 1 = ( nrow ( TempTestData [ TempTestData $ p r e d i c t i o n s == TRUE , ] ) / nrow ( TempTestData ) ) ∗100
42 p r i n t ( s t e p 1 )
43

44 # s t e p 2
45 # P e r c e n t a g e o f t r u e f i r e s == P r e d i c t i o n Accuracy
46 # s t e p 2 = ( nrow ( TempTestData [ TempTestData $ p r e d i c t i o n s == TRUE , ] ) / nrow ( TempTestData ) ) ∗100
47 # p r i n t ( s t e p 2 )
48

49 # P l o t t h e r e s u l t s
50 # C r e a t i n g spd f
51 xy <− TempTestData [ , c ( 2 , 1 ) ]
52

53 s pd f <− S p a t i a l P o i n t s D a t a F r a m e ( coo rd s = xy , d a t a = TempTestData ,
54 p r o j 4 s t r i n g = CRS( ”+ p r o j = l o n g l a t +datum=WGS84 + e l l p s =WGS84 +

towgs84 =0 ,0 ,0 ” ) )
55

56 s pd f <− spTrans fo rm ( spdf , p r o j 4 s t r i n g ( shp ) )
57

58 # t h e p o r t u g a l s h a p e f i l e
59 P o r t p a t h <− ” p o r t u g a l s h a p e f i l e p a t h ”
60 p o r t u g a l S h a p e <− readOGR ( dsn = P o r t p a t h , l a y e r = ” s h a p e f i l e name” )
61 p o r t u g a l S h a p e <− spTrans fo rm ( po r t uga lShape , p r o j 4 s t r i n g ( shp ) )
62 p l o t ( p o r t u g a l S h a p e )
63

64 T r u e F i r e s <− s pd f [ s pd f $ p r e d i c t i o n s == ”TRUE” , ]
65 F a l s e F i r e s <− s pd f [ s pd f $ p r e d i c t i o n s == ”FALSE” , ]
66

67 p o i n t s ( T r u eF i r e s , c o l =” g r een ” )
68 p o i n t s ( F a l s e F i r e s , c o l =” r ed ” )

72



A.5 Appendix E: R Code for one-class SVM application

To apply the one-class SVM model on the unlabeled samples in section 5.1:
1

2 # P r e p a r i n g i n p u t d a t a f o r t h e model
3 F i r e s E x p o r t T a b l e $ B i g F i r e <− as . l o g i c a l ( ”TRUE” )
4

5 x <− s u b s e t ( F i r e s E x p o r t T a b l e , s e l e c t = −DATE) #make x v a r i a b l e s
6 x <− s u b s e t ( x , s e l e c t = −ID ) #make x v a r i a b l e s
7 x <− s u b s e t ( x , s e l e c t = −B i g F i r e ) #make x v a r i a b l e s
8 x <− s u b s e t ( x , s e l e c t = −LONGITUDE) #make x v a r i a b l e s
9 x <− s u b s e t ( x , s e l e c t = −f i r eMon th ) #make x v a r i a b l e s

10

11 y <− F i r e s E x p o r t T a b l e $ B i g F i r e #make y v a r i a b l e ( dependen t )
12

13 # Tuning t h e model
14 t uned <− t u n e . svm ( x=x , y=y ,
15 nu = 0 . 0 0 1 : 1 . 0 ,
16 gamma = 10ˆ (−4 :0 ) ,
17 t y p e = ’ one−c l a s s i f i c a t i o n ’ )
18

19 # c r e a t e model
20 model <−svm ( x=x , y=y , t ype = ’ one−c l a s s i f i c a t i o n ’ ,
21 gamma = tuned $ b e s t . p a r a m e t e r s $gamma , nu = tuned $ b e s t . p a r a m e t e r s $nu )
22

23 # c r e a t e model w i th d e f a u l t p a r a m e t e r s t o check t h e e f f e c t o f t u n i n g
24 #model <−svm ( x=x , y=y , t ype = ’ one−c l a s s i f i c a t i o n ’ )
25

26 # T e s t i n g on t h e non f i r e s s e t
27 Tes t <− s u b s e t ( NonF i r e sExpo r tTab l e , s e l e c t = −ID )
28 Tes t <− s u b s e t ( Tes t , s e l e c t = −DATE )
29 Tes t <− s u b s e t ( Tes t , s e l e c t = −LONGITUDE )
30 Tes t <− s u b s e t ( Tes t , s e l e c t = −f i r eMon th )
31

32 #make p r e d i c t i o n s
33 p red <− p r e d i c t ( model , Te s t ) # c r e a t e p r e d i c t i o n s
34

35 # j o i n t h e p r e d i c t i o n s wi th o t h e r columns
36 Temp NonF i r e sExpo r tTab l e = NonF i r e sExpo r tTab l e
37 Temp NonF i r e sExpo r tTab l e $ p r e d i c t i o n s <− p red
38

39 # P e r c e n t a g e o f t r u e f i r e s : : Re f e r en ce 79 .8 %
40 nrow ( Temp NonF i r e sExpo r tTab l e [ Temp NonF i r e sExpo r tTab l e $ p r e d i c t i o n s == TRUE , ] ) / nrow ( Temp

NonF i r e sExpo r tTab l e )
41

42 # P l o t R e s u l t s
43 # C r e a t i n g spd f
44 xy <− Temp NonF i r e sExpo r tTab l e [ , c ( 2 , 1 ) ]
45 s pd f <− S p a t i a l P o i n t s D a t a F r a m e ( coo rd s = xy , d a t a = Temp NonF i r e sExpo r tTab l e ,
46 p r o j 4 s t r i n g = CRS( ”+ p r o j = l o n g l a t +datum=WGS84 + e l l p s =WGS84 +

towgs84 =0 ,0 ,0 ” ) )
47 s pd f <− spTrans fo rm ( spdf , p r o j 4 s t r i n g ( shp ) )
48

49 t r u e P o i n t s <− s pd f [ s pd f $ p r e d i c t i o n s == ”TRUE” , ]
50 f a l s e P o i n t s <− s pd f [ s pd f $ p r e d i c t i o n s == ”FALSE” , ]
51

52 p l o t ( p o r t u g a l S h a p e )
53 p o i n t s ( t r u e P o i n t s , c o l =” g r een ” , pch = 20)
54

55 p l o t ( p o r t u g a l S h a p e )
56 p o i n t s ( f a l s e P o i n t s , c o l =” r ed ” , pch = 20)
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To analyse true detections over short intervals (months or days):
1

2 #Nunmber o f f i r e s i n t h e ye a r xxxx
3 t r u e F i r e s <− shp [ a s . numer ic ( f o rma t ( shp $DATE, ”20%y” ) ) == ” yea r ” , ]
4 nrow ( t r u e F i r e s ) #number o f t r u e h i t s i n t h a t y e a r
5

6 custom t r u e F i r e s <− t r u e F i r e s [ t r u e F i r e s $DATE > ” s t a r t d a t e ” & t r u e F i r e s $DATE < ” end d a t e ” , ]
7 nrow ( custom t r u e F i r e s ) #number o f t r u e h i t s i n t h i s t ime p e r i o d
8

9 # C r e a t i n g t ime s e r i e s d a t a
10

11 # g roup ing by days
12 # c r e a t i n g a v e c t o r o f a l l t h e months i n t h e t ime p e r i o d
13 daysVec t o r <− seq ( min ( custom t r u e F i r e s $DATE) , max ( custom t r u e F i r e s $DATE) , by=” days ” )
14

15 t imeSe r i e sDF <− d a t a . f rame ( custom t r u e F i r e s $DATE)
16

17 # coun t t h e f r e q u e n c y of each month
18 d i s t C o u n t <− p l y r : : coun t ( t imeSe r i e sDF )
19

20 DfforTS <− d a t a . f rame ( day sVec to r )
21

22 # c r e a t i n g a d a t a f r a m e wi th f i r e o c c u r e n c e s pe r day
23 DfforTS <− d p l y r : : l e f t j o i n ( DfforTS , d i s tCoun t , by = c ( ” day sVec t o r ”=” custom t r u e F i r e s .DATE” ) )
24

25 # a s s i g n i n g t h e NA v a l u e s a new c l a s s
26 DfforTS $ f r e q <− c a r : : r e code ( DfforTS $ f r eq , ”NA=0” )
27 # Viewing t h e t a b l e t o i d e n t i f y t h e day wi th t h e most number o f h i t s
28 View ( DfforTS )

For sensitivity and specificity analysis in section 5.2:
1 # Re f e r ence from t h e comple t e model
2 TrueF i r e IDs <− Temp NonF i r e sExpo r tTab l e [ Temp NonF i r e sExpo r tTab l e $ p r e d i c t i o n s == TRUE , ] $ID
3 F a l s e F i r e I D s <− Temp NonF i r e sExpo r tTab l e [ Temp NonF i r e sExpo r tTab l e $ p r e d i c t i o n s == FALSE , ] $ID
4

5 # l a b e l e d Data
6 #Making i n p u t d a t a f o r t h e model
7 F i r e s E x p o r t T a b l e $ B i g F i r e <− as . l o g i c a l ( ”TRUE” )
8 x <− s u b s e t ( F i r e s E x p o r t T a b l e , s e l e c t = −DATE) #make x v a r i a b l e s
9 x <− s u b s e t ( x , s e l e c t = −ID ) #make x v a r i a b l e s

10 x <− s u b s e t ( x , s e l e c t = −B i g F i r e ) #make x v a r i a b l e s
11 x <− s u b s e t ( x , s e l e c t = −LONGITUDE) #make x v a r i a b l e s
12 x<− s u b s e t ( x , s e l e c t = −f i r eMon th ) #make x v a r i a b l e s
13

14 y <− F i r e s E x p o r t T a b l e $ B i g F i r e #make y v a r i a b l e ( dependen t )
15

16 # Un labe l ed d a t a . t h e non f i r e s s e t
17 Tes t <− s u b s e t ( NonF i r e sExpo r tTab l e , s e l e c t = −ID )
18 Tes t <− s u b s e t ( Tes t , s e l e c t = −DATE )
19 Tes t <− s u b s e t ( Tes t , s e l e c t = −LONGITUDE )
20 Tes t <− s u b s e t ( Tes t , s e l e c t = −f i r eMon th )
21

22 # Tab le t o s t o r e r e s u l t s
23 R e s u l t s = d a t a . f rame ( I n p u t Pa r ame t e r = c h a r a c t e r ( ) , S e n s i t i v i t y = numer ic ( ) , s p e c i f i c i t y =

numer ic ( ) , s t r i n g s A s F a c t o r s = FALSE)
24 #Removing each column f o r t h e a n a l y s i s
25 f o r ( i i n 1 : l e n g t h ( names ( x ) ) ) {
26 p r i n t ( names ( x ) [ i ] )
27 # drop t h i s a t t r i b u t e
28 t h i s A t t r i b u t e = as . c h a r a c t e r ( names ( x ) [ i ] )
29 d rops <− c ( t h i s A t t r i b u t e )
30 temp x = x [ , ! ( names ( x ) %i n% drops ) ]
31 temp t e s t = Te s t [ , ! ( names ( Te s t ) %i n% drops ) ]
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32

33 # Tuning t h e model
34 t uned <− t u n e . svm ( x=temp x , y=y ,
35 nu = 0 . 0 0 1 : 1 . 0 ,
36 gamma = 10ˆ (−4 :0 ) ,
37 t y p e = ’ one−c l a s s i f i c a t i o n ’ )
38

39 model <−svm ( x=temp x , y=y , t ype = ’ one−c l a s s i f i c a t i o n ’ , gamma = tuned $ b e s t . p a r a m e t e r s $gamma ,
40 nu = tuned $ b e s t . p a r a m e t e r s $nu )
41

42 p red <− p r e d i c t ( model , temp t e s t ) # c r e a t e p r e d i c t i o n s
43

44 Temp NonF i r e sExpo r tTab l e = NonF i r e sExpo r tTab l e
45 Temp NonF i r e sExpo r tTab l e $ p r e d i c t i o n s <− p red
46

47 # True and F a l s e IDs f o r t h i s c a s e
48 TempTrueFireIDs <− Temp NonF i r e sExpo r tTab l e [ Temp NonF i r e sExpo r tTab l e $ p r e d i c t i o n s == TRUE , ] $

ID
49 TempFa l seF i r e IDs <− Temp NonF i r e sExpo r tTab l e [ Temp NonF i r e sExpo r tTab l e $ p r e d i c t i o n s == FALSE , ]

$ID
50

51 # Values o f Confus ion Mat r i x
52 t r u e p o s i t i v e s <− sum ( t a b l e ( TempTrueFireIDs [ TempTrueFireIDs %i n% TrueF i r e IDs ] ) )
53 f a l s e p o s i t i v e s <− sum ( t a b l e ( TempTrueFireIDs [ TempTrueFireIDs %i n% F a l s e F i r e I D s ] ) )
54 t r u e n e g a t i v e s <− sum ( t a b l e ( TempFa l seF i r e IDs [ TempFa l seF i r e IDs %i n% F a l s e F i r e I D s ] ) )
55 f a l s e n e g a t i v e s <− sum ( t a b l e ( TempFa l seF i r e IDs [ TempFa l seF i r e IDs %i n% TrueF i r e IDs ] ) )
56

57 # s e n s i t i v i t y
58 s e n s i t i v i t y = t r u e p o s i t i v e s / ( t r u e p o s i t i v e s + f a l s e n e g a t i v e s )
59 p r i n t ( s e n s i t i v i t y )
60

61 # s p e c i f i c i t y
62 s p e c i f i c i t y = t r u e n e g a t i v e s / ( t r u e n e g a t i v e s + f a l s e p o s i t i v e s )
63 p r i n t ( s p e c i f i c i t y )
64

65 R e s u l t s [ i , ] = c ( t h i s A t t r i b u t e , s e n s i t i v i t y , s p e c i f i c i t y )
66

67 }
68 # Rounding o f f d e c ima l s
69 R e s u l t s $ S e n s i t i v i t y = fo rma t ( round ( as . numer ic ( R e s u l t s $ S e n s i t i v i t y ) , 2 ) , n sma l l = 2 )
70 R e s u l t s $ s p e c i f i c i t y = fo rma t ( round ( as . numer ic ( R e s u l t s $ s p e c i f i c i t y ) , 2 ) , n sma l l = 2 )

75


	DECLARATION OF AUTHORSHIP
	ABSTRACT
	ACKNOWLEDGEMENT
	INTRODUCTION
	THEORETICAL BACKGROUND
	DATA COLLECTION AND PREPARATION
	APPLICATION OF ONE-CLASS SVMs
	RESULTS AND DISCUSSIONS
	CONCLUSIONS AND FUTURE WORK
	References
	APPENDICES

