

Percentage of occurrences of natural disasters by disaster type (1995-2015)

Numbers of people affected by weather-related disasters (1995-2015) (NB: deaths are excluded from the total affected.) Flood Drought Storm Extreme temperature Landslide & Wildfire 16% 660 million 56% 2% 94 million 2.3 billion 8 million 26% 1.1 billion

 First use of remote sensing for flood mapping in 1970s

- First use of remote sensing for flood mapping in 1970s
- Crutial element of flood risk management

- First use of remote sensing for flood mapping in 1970s
- Crutial element of flood risk management
- Important source of information for supporting disaster management authorities, decision makers, and humanitarian relief organizations

- First use of remote sensing for flood mapping in 1970s
- Crutial element of flood risk management
- Important source of information for supporting disaster management authorities, decision makers, and humanitarian relief organizations

Arid Areas

OBJECTIVES

Research Question 1

 Investigation of time-seriesbased method for improvement of flood mapping

Research Question 2

Research Question 3

OBJECTIVES

Research Question 1

- Investigation of time-seriesbased method for improvement of flood mapping
- Testing influence of time-series duration

Research Question 2

Research Question 3

OBJECTIVES

Research Question 1

- Investigation of time-seriesbased method for improvement of flood mapping
- Testing influence of time-series duration
- Assessment of statistical parameters of time-series data

Research Question 2

Research Question 3

Research Question 1

Does the use of the Sentinel-1 time-series data improve flood mapping in arid areas in comparison to existing approach from Sentinel-1 Flood Service?

Research Question 2

What is the influence of time-series parameters on classification accuracy?

Research Question 3

What are the uncertainties and limitations of this approach?

Research of floods in: floodlist, disastercharter

Visual comparison with arid regions

during flo

Visual confirmati on optical d (L8 & S-2

during flo

Visual confirmati on optical d (L8 & S-2

with arid regions

Visual confirmation on optical data (L8 & S-2)

Research of S-1 image during flood

Acceptance of chosen AOI

Visual confirmation

Second Stage Flood S-1 data detection using S-1 during event Flood Service Postclassifi-Improved flood mask refinement Computation Exclusion of statistic - layer of sand -S-1 time areas series data

S-1 data
during event
using S-1
Flood Service

S-1 data
during event

Flood
detection
using S-1
Flood Service

_

_

d		
on		
S-1	Ī	

Exclusion

S	-1
r	vice

Result		Reference Data		Row total
(x - 100%)		Flood	Non Flood	ROW LOCAL
Classification	Flood	f/f	nf/f	UA1 = f/f + nf/f
Data	Non Flood	f/nf	nf/nf	UA2 = f/nf + nf/nf
Column total		PA1 = f/f + f/nf	PA2 = nf/f + nf/nf	SUM = PA1 + PA2

Iraq November, 2015

S

Somalia

2014-2017

2015

- Tests with time-series periods:
 - 2014-2017
 - 2015
 - 2016
- · Tests with MODIS

2016

MODIS

2014-2017

200 images

Overall Accuracy - sum of correctly classified pixels from each class divided by number of all pixels

-15 dB

Producer's Accuracy - ratio of number of pixels which are correctly classified as flood to the total number of pixels which truly are flood in reference data

-20 dB

User's Accuracy - ratio of number of pixels which are correctly classified as flood to the total number of pixels classified as flood

Overall Accuracy - sum of correctly classified pixels from each class divided by number of all pixels

Producer's Accuracy - ratio of number of pixels which are correctly classified as flood to the total number of pixels which truly are flood in reference data

-20 dB

User's Accuracy - ratio of number of pixels which are correctly classified as flood to the total number of pixels classified as flood

2015

55 images

2016

64 images

MODIS

- Three-years time series obtains the highest accuracy
- Time Series with higher accuracy than MODIS

- -15 dB generate the highest accuracy
- The best results with frequency range 60-100%

Iraq

- 2016
- 79 images
- Performed to test limitation of approach

- -20 dB improves less than 1%
- Floods on sandy regions not detectable

- -20 dB improves less than 1%
- Floods on sandy regions not detectable

 Successful creation of exclusion layers

Future Research

- Successful creation of exclusion layers
- Improvement of flood mapping using time-series data

Future Research

- Successful creation of exclusion layers
- Improvement of flood mapping using time-series data
- Better accuracy with threeyears than a one-year period

Future Research

- Successful creation of exclusion layers
- Improvement of flood mapping using time-series data
- Better accuracy with threeyears than a one-year period
- · Better results than with MODIS

Future Research

- Successful creation of exclusion layers
- Improvement of flood mapping using time-series data
- Better accuracy with threeyears than a one-year period
- · Better results than with MODIS
- Iraq case confirms limitations of the method

Future Research

Future Research

 Additional experiments with the method

Future Research

- Additional experiments with the method
- World-wide exclusion layers for near-real-time flood mapping

Future Research

- Additional experiments with the method
- World-wide exclusion layers for near-real-time flood mapping
- · Further tests on different AOI

Sources

Motivation:

UNISDR, CRED (2016). Poverty & death: Disaster Mortality 1996-2015. Retrieved [17.08.2017] from http://www.preventionweb.net/publications/list/#hits=20&sortby=default&view=pw&filter=unisdrcontenttype%3A%5E
 %22Documents+%26+Publications%22%24%0D%0Ahazards%3A%5E%22Flood%22%24

Flood Mapping:

- https://disasterscharter.org/web/guest/-/flood-in-venezuela-bolivarian-republicof-call-619-
- https://disasterscharter.org/web/guest/-/flood-in-austral-2

Arid Areas:

 Peel, M. C., Finlayson, B. L., and McMahon, T. A. (2011). Updated world map of the Köppen-Geiger climate classification. Desert climate (BWh, BWk). Retrieved [11.06.2017] from https://en.wikipedia.org/wiki/Desert_climate.

First Stage:

- · https://disasterscharter.org/web/guest/-/flood-in-chi-5
- http://unesdoc.unesco.org/images/0021/002163/216333s.pdf
- · https://earthexplorer.usgs.gov/
- · https://scihub.copernicus.eu/

Results:

· Google Earth

Iraq:

- Google Earth
- · https://scihub.copernicus.eu/

