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Abstract  

Natural disasters constantly threaten the safety of our infrastructures including dams. The potential 

damages associated with dams usually stem from the failure of the structure due to overtopping, 

seepage water flow, and deformation. Therefore, the implementation of monitoring techniques is 

essential in detecting any potential damage in an early stage. In creating such monitoring systems, 

the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) suite of specifications 

enable the gathering of real time information from heterogeneous sources by introducing a 

standard interface for time series. Although many researchers has implemented SWE based 

monitoring systems, there has been little work in combining the Sensor Observation Services and 

the Web Processing Services (WPS) with 3D visualization methods. Thanks to the recent 

advancement in WebGL and HTML5 this research uses the WebGL-based frameworks such as 

Three.js and Cesium Virtual Globe JavaScript Libraries to create 3D models on the browser 

without a need for any plug-ins. Moreover, this research mainly focuses on developing a 

framework for visualization of dynamic data acquired from web services such as sensor 

observation services and Web Processing Services. This framework will help Cesium’s virtual 

globe access and visualize the dam model and the sensor water levels from the Sensor Observation 

Services. It also visualizes the dynamic height observation data and the interpolated water body 

acquired through Web Processing Services in a web-based application. In addition, the application 

will provide a further analysis tool in the form of charts that would allow in-depth examination of 

changes in height values. 

 

Keywords: dam monitoring systems, 3D visualization, HTML5, WebGL, virtual globes, Sensor 

Web Enablement (SWE), Sensor Observation Services (SOS), Web Processing Services(WPS) 
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1 Introduction 

Natural disasters constantly threaten the safety of dams as man-made structures that are subject to 

direct natural exposure. Potential damages associated with dams usually stem from the failure of 

the structure due to overtopping, seepage water flow, and deformation("Research Project TAMIS," 

2014). This makes the implementation of monitoring techniques essential to detect any potential 

for damage in an early stage. 

 Relevant data for dams’ risk management involve information from hydrological measurements, 

geological data, and the dams’ constructions standards. This information is currently collected 

independently and lacks the temporal and spatial consistency. Thus, preventing the integration of 

the measured elements for a comprehensive analysis. In this context, a dam monitoring system 

allows for the combination of the multiparametric data acquired from the ground sensors with 

geoprocessing and visualization capabilities. Numerous properties can be measured in such dam 

monitoring systems including temperature, precipitation and physical properties such as seepage 

and water level at the “Air” site.  

Increased seepage may be associated with internal erosion in the dam. Internal erosion is one of 

the main reasons for dam failures (Sjödahl, Dahlin, & Zhou, 2006). However, it’s hard to detect 

this internal erosion by conventional methods. Hence, new approaches should be developed to 

monitor seepage water with the help of its contributing factors such as dam’s water level and 

precipitations. Considering the fact that the water level is measured in height above sea level, 3D 

visualization can help the user acquire more knowledge and information from these sources in 

contrast to 2D visualizations. 

Also, by providing the variation of the water level through time, there can be a more 

comprehensive monitoring system for the user. All these are made possible through the 

introduction of Sensor Web infrastructures that enables a setup to access real-time data observed 

by sensors. This data can be used in combination of the 3D web-based technologies to represent a 

real-time visualization of the current state of water levels in the dam.  

With the help of 3D visualizations, users can grasp a more realistic view of the objects in 

comparison to the conventional 2D plans, hence, making its application ideal for the case of water 

level monitoring. In addition, with the advancements in computer graphics, high computational 

devices and the latest trend in web technologies (such as HTML5 and WebGL), the realization of 

3D models in the web environment is easier than before. The combination of HTML5 and WebGL 

enables the web browsers to provide tools for analyzing and representing the 3D world without 

the need of any plug-in.  

Furthermore, the developments of the WebGL-based frameworks such as the JavaScript libraries 

Three.js and Cesium Virtual Globe have provided good possibilities in creating 3D content without 

the need for low-level programming.  
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1.1  Motivation  

The introduction of WebGL and HTML5 enables the realization of 3D visualization directly within 

the browser without the need of a plugin. And various virtual globes such as Cesium Virtual Globe 

have been developed based on this combination.  One of the main challenges in 3D Visualization 

using the WebGL and HTML5 combination technologies is the visualization and analysis of 3D 

objects. These objects can be buildings or in the case of a dam monitoring system the infrastructure 

models and the water surface generated from height points. These objects are usually represented 

using CityGML that will include the spatial and graphical aspects of the objects along with the 

attributes. 

The Digital Earth envisions a multi-resolution, three-dimensional representation of the planet in 

order to find, visualize, and make sense of vast amounts of geo-referenced information on the 

physical and social environment (Craglia et al., 2012). To achieve this goal standardized 

observations infrastructures and easily available visualization technologies should be put in place. 

However, the lack of efficient visualization systems through the web and interoperable frameworks 

that allow standardizing the access to the city models, have limited the use of these datasets and 

various researchers try to overcome these bottlenecks. The work of (Chaturvedi, Yao, & Kolbe, 

2015) defines a framework and implementation of a web-based 3D client for processing, 

visualization, and analysis of very large semantic 3D city models. Consequently, it represents how 

Cesium can be used in 3D visualization and illustrates how it can be tailored for objects with 

complex semantics.  The efficient visualization client introduced in the mentioned paper allows 

for the interaction with CityGML features. Therefore, the 3D models can now be easily 

implemented with web based Cesium applications. 

Furthermore, (Schilling, Bolling, & Nagel, 2016) also  provides an alternative solution to render 

huge 3D city models on the web browsers. They evaluate the newly introduced glTF formats usage 

in combination with Cesium.js. This paper also considers the use of glTF/B3DM/3D Tiles in 

Cesium.js which stores the vertices separately and increases the rendering performance and 

provides storable attributes.  

Systems with support for the OGC Sensor Web Enablement (SWE) suite of specifications are 

capable of gathering information from heterogeneous sources by introducing a standard interface 

for time series. This technology is proven to be reliable and is being used in many projects in 

firefighting and pollution control. In addition, the application of Sensor Web in flood warning 

scenarios has been demonstrated by (Spies & Heier, 2008). Geoprocessing systems provide 

algorithmic functionality for spatiotemporal data. This is possible when geoprocessing 

functionalities are published as web services and standardized interfaces. 

Considering all the work above in the field of SWE based monitoring systems, there has been little 

work in combining these Sensor Observation Services with 3D visualization methods. Nonetheless 
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(Bröring, Vial, & Reitz, 2014), tried to present an approach for processing real-time sensor data 

streams to enable scalable Web-based 3D visualizations while focusing on processing efficiency. 

Despite all the developments in the field, many research challenges including finding the optimal 

information density and incorporation of 4th dimension in the form of time different elements 

within the 3D models have not been thoroughly discussed.   

The addition of time in an interactive GIS poses interesting challenges both conceptually and 

regarding implementation (Arsenault et al., 2004). However, platforms such as Cesium.js provide 

the necessary building blocks for time varying data visualization that has not been yet fully taken 

advantage of. The work of (Chaturvedi & Kolbe, 2016)  proposes a new concept,  “Dynamizers,” 

which allows integrating dynamic and time-dependent data with semantic 3D city models such as 

CityGML. This approach not only allows representing dynamic data in different and generic ways 

but also enhances spatial, thematic and appearance properties of static city objects by dynamic 

property values. In addition, the Dynamizers also establish the explicit links between sensors and 

the respective properties of the city model objects that are measured by them. However, the 

technology is yet to be implemented in 3D geodatabases.  

Furthermore, as these visualization technologies become more mainstream there will be more 

demand for more real-time data visualization, this gives a great opportunity for integration of real-

time data sources such as Sensor Observation Service with the currently available frameworks 

such as Cesium.js. 

However, considering the challenges regarding visualizing of spatiotemporal data and taking into 

account the advantages of WebGL based platforms such as Cesium.js, this study is motivated 

toward developing a framework for visualization of dynamic data acquired from web services such 

as sensor observation services and Web Processing Services. This framework will help Cesium 

access and visualize the dam model and the sensor water levels from the Sensor Observation 

Services. It also visualizes the dynamic height observation data and the interpolated water body 

acquired through Web Processing Services in a web-based application.  

1.2 Research Objectives  

The core objective of this research will be to develop a framework to implement 3D visualization 

of water level data, the dynamic variation in the height levels and the seepage water level using 

the OGC’s Sensor Web Enablement (SWE) framework and Sensor Observation Services data 

within the Cesium.js as a browser-based WebGL enabled platform. The application would provide 

further analysis tool in the form of charts that would allow in-depth examination of changes in 

height values. 
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1.3 Research questions 

 

- What is the most suitable format to visualize water bodies and the surrounding building 

structure for the mentioned dam monitoring system in the web browser using Cesium virtual 

globe? 

- What is the most efficient way to retrieve dynamic data from Web Processing Service and 

Sensor Observation Service? 

- What is the most efficient way to visualize such time-dynamic variations using Cesium.js? 

- How can the dynamic 3D visualization model of water level within the dam monitoring system 

help real‐time prediction of potential natural hazards and detection of irregularities in the dam 

structure? 

- How can the gauge readings be visualized within a line graph as a navigable feature along the 

timelines?  

 

1.4 Thesis structure  

The organization of this thesis is presented as follows: 

Chapter 1: Introduction, this section includes the general overview concerning the topic. It 

discusses the background and the motivation behind the research. The research question and 

objective are also presented in this chapter.  

Chapter 2:  Literature Review, the chapter will elaborate the essential components of the research. 

The chapter will also include the relevant standards and technologies necessary for the study. 

Chapter 3: Data preparation, this part will introduce the utilized datasets and the additional steps 

required for incorporating the data into the visualization pipeline.  

Chapter 4: Design and Implementation, the methodology used in integrating the OGC standards 

and the data models in the Cesium framework is described.  In this section, the high-level 

architecture and its essential implementation components are proposed. 

Chapter 5: Results and discussions, in this part of the research, the obtained results at each 

implementation step is presented.  

Chapter 6: Conclusion and Recommendations, as the final chapter, the section will answer the 

primary research questions and consequently, provide some recommendation for future studies. 
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2 Literature and Standards review 

This section describes all sensor web technologies besides the browser components and the 3D 

object models necessary for the proposed study. In addition, the previous works in the field of 

Dam monitoring context visualization of CityGML data are presented. 

2.1 3D visualization in the context of Dam Monitoring Systems 

Ensuring the safety of Dams as a man-made structure is only possible if there is a comprehensive 

monitoring system in place. In light of this, there have been many attempts to present the dam 

inspecting bodies with an online monitoring system that can oversee the infrastructures condition 

through day and night and help the user prevent any possible damage to the dam and the 

surrounding environment. Such systems try to couple 2D graphs with real-time data in order to 

infer some understanding from the gathered data. This is visible in the works of  (Zimmerman, 

Jordan, & Newell, 2016) where they create a portal for the users to access charts and reports and 

see possible alarm notifications quickly. The system enables the integration and combination of 

sensors and data sources from different vendors. In these systems, there is no representation of 

geospatial data. Other toolkits provide some level of geospatial visualization by integrating a 2D 

map of the area within the monitoring toolbox. (Yang, Bao, Liang, Mi, & Yang, 2009) Is an 

example of this approach where sensor data are visualized on the map using OpenLayers1 library. 

The interface in this application helps detect any overflow of the dam. 

 In relation to 3D Dam data visualization, typically the researchers focus on highlighting different 

parts of the dams. Such studies include visualization of geometric surfaces, lithological and 

hydraulic level properties done by (Dominguez-Acosta, Granados-Olivas, Hibbs, Eastoe, & 

Hawley, 2004) and the visualization of groundwater and surface features for hydraulic erosion for 

various types of dams carried out by (Chen et al., 2011). These models are not browser based and 

are specific to one feature of the dam. Moreover, the final output is not part of a complete dam 

monitoring toolkit.  

On the other hand, some research visualizes the dam body and its elements in 3D representation 

inside a web platform in order to maximize the accessibility of the tools. In these visualizations 

such as (Pantea, Hudson, Grauch, & Minor, 2011)The data is mostly coupled with additional 

information from various sources to enhance the understanding of the context. Also, (Wu, Cui, & 

Zhong, 2012) and (Fan et al., 2016) depicts a web-based 3D visualization of the dam based on 

Unity3D2 Game engine. The first paper integrates the dams’ dynamic data from a database with 

the 3D models on a web client to represent the current state of the dam to the construction 

managers. In this application, the models are created using 3ds Max before being fed into the 

Unity3D engine. The latter paper, however, shows the 3D visualization system for dam’s 

                                                 

1 https://openlayers.org/ 
2 https://unity3d.com/ 
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foundation curtain grouting. In this work, a combination of parameters measured on the site is sent 

to the server using a short distance wireless network. This information is then visualized using the 

Unity3D engine.   

The available approaches in using the Unity3D engine in creating the visualizations can be 

extremely cumbersome. This is because Unity3D doesn’t have access to the DOM elements when 

creating interactive features. Moreover, the Unity3D engine is mainly a game engine and doesn’t 

only focus of web based visualizations. The proprietary nature of the product also discourages the 

implementation of the tool in a commercial Dam monitoring context.  

Considering all the mentioned literature, it is evident that little or no work has been carried out to 

visualize OGC Sensor Web Enablement data as part of dynamic 3D visualization toolkit that would 

enable in-depth analysis of the dam’s conditions in a browser environment using open source 

libraries. 

2.2 Relevant standards 

The standards used in conducting this research is disrobed in this section.  

2.2.1 CityGML  

City Geography Markup Language (CityGML) is an open data model and XML-based format 

for the storage and exchange of virtual 3D city models. CityGML models both complex and 

georeferenced 3D vector data along with the semantics associated with the data. CityGML 

allows defining different thematic modules such as buildings, streets, vegetation as well as 

water bodies.  Additionally, it provides functionality to represent the scale of the specific object 

with the help of five consecutive Levels of Detail (LOD)  (Gröger, Kolbe, Nagel, & Häfele, 

2012). The 3D objects become more detailed with increasing LOD. 

 

Figure 2-1: The five LODs defined by CityGML  (Gröger et al., 2012). 
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Multiple modules represent the version 2.0.0 of CityGML (based on OGC 12-019) (Figure 2-

1). The vertical modules provide the definitions of the different thematic models like building, 

relief (i.e. di,digital terrain model), city furniture, land use, water body, and transportation, etc. 

The waterbody module (based on OGC 12-019, cityGML V 2.0.0) is of great importance in 

this research. The module will represent the three-dimensional geometry of the underground 

waters, and it also includes a dynamic element of WaterSurface to represent temporarily 

changing situations of tidal flats. The module can also include the optional 

WaterGroundSurface and WaterClosureSurfaces which represent the basin and the boundaries 

between waterbodies respectively.  

The Figure 2-2 depicts the UML diagram of the Waterbody module  

 

Figure 2-2: UML structure of the Waterbody CityGML standard(Gröger et al., 2012) 

 

The LOD1 mainly used in this research will include a highly generalized surface and is 

represented as MultiSurface. Based on the diagram this attribute can be assigned to a 

combination of different geometry types. However, for this research, the polygon 

representation of the geometry is selected. 

The other utilized cityGML modules include the Transportation, Tunnel and Generic cityGML 

elements.  

The tunnel module(based on OGC 12-019, cityGML V 2.0.0)  used in this research represents 

the control tunnel under the Dam structures. The model supports the representation of thematic 

and spatial aspects of tunnels and tunnel parts in four levels of detail(Gröger et al., 2012) . The 

chosen level of detail for this project was the LOD3 without the walls to better depict the 

underground infrastructures.  

Figure 2-3 shows the UML diagram of the Tunnel module. In this module, the _AbstractTunnel 

is the key  class  which is a subclass of the thematic class _Site. This class can either be 
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specialized  to a Tunnel or to a TunnelPart. A _AbstractTunnel usually consists of TunnelParts, 

which again are _AbstractTunnels.  

 

Figure 2-3:  UML structure of the Tunnel CityGML standard(Gröger et al., 2012) 

Moreover, the transportation objects represent the thematic and special aspects of the road data; 

these objects are described by 3D surfaces in the Transportation CityGML module (based on OGC 

12-019, cityGML V 2.0.0). The LOD 1 illustration of the data is chosen to visualize the 

surrounding dam area. Figure 2-4 depicts the UML diagram of the CityGML Transportation 
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model. Based on the OGC standards description (Gröger et al., 2012) the main class in this model 

is TransportationComplex, which represents a road or any other major transportation feature. In 

the chosen LOD1 this class provides a surface geometry for describing the shape of the road. This 

can be broken down into different sections of the road network as various TrafficAreas however 

in this research only the general shape of the roads is considered.  

 

Figure 2-4:UML structure of the Transportation CityGML standard (Gröger et al., 2012) 

Other dam facilities such as waterways and the integral dam structures also need to have some 

standardized 3D representation. Since none of the existing cityGML models represent these 

facilities, they are visualized using the Generic CityGML Module. These generic extensions to the 

CityGML data model are realized by the classes GenericCityObject and _genericAttribute defined 

within the thematic extension module Generics(Gröger et al., 2012). 

To represent the geometry of the GenericCityObject, an arbitrary 3D GML geometry object GML3 

geometry is used as an explicit representation.  The following Figure 2-5 denotes the UML diagram 

of the generic CityGML modules. 
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Figure 2-5:UML structure of the Generic object CityGML standard (Gröger et al., 2012) 

 

2.2.2 OGC  Web Processing Service 

The OGC Web Processing Service (Version 1.0.0, OGC 05-007r7) Standard describes how to 

access geospatial processes from a web interface. The service provides client access to pre-

programmed calculations and/or computation models that operate on spatially referenced 

data(Schut, 2007). The geoprocessing offered by this service based on the definition of online 

geoprocessing presented by (Hofer, 2015), can be described as the manipulation of the geospatial 

data for generation of novel web based outputs. This involves numerous operations from 

intersection to interpolation models.   

The main operations within the WPS standard are threefold.  The operation to obtain the service 

metadata (GetCapabilities), The operation to obtain the process metadata (DescribeProcess) and 

the operation to run processes (Execute) (Mueller & Pross, 2015). Creating a complete request 

requires adding of parameter identifiers and values to these operations. This result can be sent to 

the WPS server using HTTP Get, where the server will respond by sending an XML file or using 

HTTP Post where an XML file is sent from the client to the server. The HTTP get is used mainly 

for the GetCapabilities, and DescribeProcess operations and the HTTP Post is primarily used for 

the Execute operation. The execution process can be run synchronously or asynchronously. The 

asynchronous execution is favored for the more time-consuming processes. Therefore, in this type 
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of execution, an immediate status information response is sent to the user after the request has been 

sent. The response will also include a result location that can be accessed as soon as the process is 

finished.  

The output of a WPS process is always an XML document. And just like the input requests, the 

output XML’s structure is defined in the OGC WPS 2.0 Interface Standard (14-065). The 

existence of a prescribed XML structure enables the developers to create applications that can read 

the WPS output documents. 

 

2.2.3 OGC Sensor Web Enablement initiative 

The OGC Sensor Web Enablement (SWE) standards suite specifies interfaces and data encodings 

to enable real-time integration of heterogeneous sensor networks. In this way, most types of 

sensors can be discovered, accessed and reused for creating web-accessible sensor applications 

and services. It focusses mainly on geo-sensors; whose georeferenced location is an important 

factor and produces georeferenced observation data. SWE contains two important information 

models (Mike Botts, Reichardt, & Outreach, 2006):  

o Sensor Model Language (SensorML)  (version 2.0, OGC 12-000), which defines an 

XML schema for describing the processes within sensor and observation processing 

systems, and provides information needed for discovery, geo-referencing, and 

processing of observations(M Botts, Robin, Greenwood, & Wesloh, 2014). 

o Observations & Measurements (O&M) (Version 2.0.0, OGC 10-025r1) ,which is a 

generic information model for describing observations(Cox, 2011).  

Sensor Modelling Language details the sensing procedure attribute defining a skeletal framework 

to model sensing devices(Mike Botts, 2007) .According to O&M, SensorML models an entity that 

performs observations(Cox, 2011). It models physical sensing devices as processes, enabling the 

transformation of input into an output. Although its focus lies on modeling physical sensor systems 

and processing of sensor observations, it can be applied in a broader way for modeling any type 

of process and process chains(Mike Botts, 2007). 

O&M, on the other hand, provides a model for observations, their results, and supplementary 

attributes. It has been approved as an ISO standard (ISO/TC211, 2010). The second version of this 

implementation is currently available. An observation herein is defined as an act performed by a 

procedure, such as a sensor, over time or instant. Its result is an estimation of the value of a property 

of some feature. Besides that additional information, such as observation time, spatial location, the 

feature of interest or the sensing procedure can be listed (Cox, 2011). 

In addition, SWE provides different interface models and web services. The most important service 

within the scope of this research work is the Sensor Observation Service (SOS) (Version 1.0.0, 

OGC 06-009r6) (Arthur Na & Priest, 2007). It defines an open interface by which a client can 
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obtain observation data and sensor and platform descriptions from one or more sensors. The 

response of the SOS is encoded in O&M and uses the SensorML specifications to provide an 

interface to make sensors and sensor data archives accessible via an interoperable web-based 

interface. 

SOS aims to carefully model sensors, sensor systems, and observations in order to cover all 

different kinds of sensors and to support the different requirements of users in the case of using 

sensor data in an interoperable way(Arthur Na & Priest, 2007). The SOS response represents the 

aggregate readings from live, in-situ and remote sensors. SOS allows a user to send requests based 

on spatial, temporal and thematic criteria (Bröring, Echterhoff, Jirka, Simonis, & Lemmens, 2011). 

Moreover, implementing this system helps increase the accessibility to the different environmental 

data in a critical situation. In the SOS used for this project, the values of the reading are shown as 

time series for each sensor station and enable the querying of sensor reading for any desirable 

timespan. 

2.2.4 CityGML Dynamizer ADE  

While CityGML is a useful tool in simulating 3D contents, it currently lacks the support for time-

varying properties. Dynamizers can be described as a mechanism for storing dynamic values 

separately from the original attributes in CityGML. This feature is an extension to CityGML which 

stores dynamic variations and overrides the specific properties of the CityGML feature property 

(Chaturvedi & Kolbe, 2016).  The proposed schema of the output CityGML contains dynamic 

values in special types of features. These values are considered as ‘modifiers’ to the static values 

of the CityGML feature attributes. The dynamizers are defined as feature types consisting of 

attributes attributeRef, startPoint, and endPoint (Chaturvedi & Kolbe, 2016). The Figure 2-6 

depicts the nature of the Dynamizer feature as a bridge between the dynamic data sources and the 

city object models.  
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Figure 2-6: The relation of Dynamizers with the input and output sources(Chaturvedi & Kolbe, 2016) 

For integrating sensor data inside cityGML, allows for the explicit linkage to sensors. This is done 

by linking of sensor observations with the respective city model objects. Hence, Dynamizers can 

enhance static waterbody models used in this research by introducing the dynamic property values. 

The mentioned concept is intended to be proposed to become part of the next version of CityGML 

(version 3.0) therefore it is only considered at the conceptual level in this research. And a practical 

implementation is not considered.  

2.3 Web-based 3D visualization 

While CityGML enables better information sharing in the context of 3D models, it also enables 

the various analysis on the 3D models. However, the sheer size and complexity of the CityGML 

models hinder the effective browser based visualization of such file. As a result, visualization of 

CityGML files on the web has become an essential area of research today (Prieto, Izkara, & 

Delgado del Hoyo, 2012). In order to achieve the plugin-independent visualization of the CityGML 

data on the browser, the browser friendly 3D formats have to be utilized. These formats and the 

underlying HTML5 and WebGL requirements for achieving the research goal are described in this 

section.  

2.3.1 3D modeling standards  

CityGML can be considered the best suitable standard to represent 3D data’s geometry and 

semantic information. However, the complexity and the large size of the CityGML files hinders 

their web-based visualizations. Therefore, several 3D standards such as glTF and COLLADA are 
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introduced in order to visualize 3D data inside a web browser better. This section describes these 

data standards. 

- glTF:  

GlTF(GL Transmission Format) is a royalty-free specification for the efficient transmission 

and loading of 3D scenes and models by applications. glTF minimizes both the size of 3D 

assets and the runtime processing needed to unpack and use those assets. It has also been 

designed with the modern graphics card and web technologies, especially WebGL in mind. 

The format combines an easily parseable JSON scene description with one or more binary files 

representing geometry, animations, and other rich data(Khronos, 2016). 

Khronos is promoting glTF as the standard 3D format for the web. glTF is created using a 

COLLADA digital asset exchange (dae) files. These files were established as an ISO standard 

in 2013. The parent COLLADA format is widely supported as an export file type option across 

many 3D software.  However, while the collada DAE is a single file, the collada2gltf converter 

outputs multiple files. Khronos supports both glTF and Collada, besides managing the OpenGL 

and WebGL standards.   

In glTF rather than capturing the full fidelity of the entire scene data only the essential scene 

elements necessary for the visualization are kept.  Moreover, collada2gltf then optimizes the 

kept data elements in multiple ways. This process makes the files more readily consumable by 

WebGL. Depicted in Figure 2-7 is the workflow of 3D models’ conversion to glTF format.  

 

Figure 2-7:glTF pipeline progression of content authoring, conversion, delivery, rendering(Trevett, 2013) 

 

 

- COLLADA: 

COLLADA (COLLAborative Design Activity), is an open Digital Asset Exchange Schema for the 

interactive 3D industry. COLLADA is a standard of the Khronos group3.The format defines an 

open standard XML schema from which digital contents of assets can be easily retrieved. 

COLLADA documents are XML files, usually identified with a ‘.dae.' (digital asset exchange) 

filename extension(Khronos, 2016). COLLADA is an intermediate language for transporting data 

among various interactive 3D applications this means that the file type tries to be as detailed and 

                                                 

3 http://www.khronos.org/ 
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explicit as possible to represent a complete picture of the visualization. This means that 

COLLADA will provide comprehensive encoding for geometry, shaders, physics, and kinematics. 

The high level of details in the COLLADA files undermines their effectiveness on browser-based 

visualization. 

In this research, the two file formats’ size and performance are compared in the data preparation 

chapter to select the most appropriate file format for the visualization.  

2.3.2 HTML5 and WebGL 

As the GIS applications move from the conventional desktop versions toward web platforms, the 

need for a platform-independent solution is evident. HTML as the enabler of this visualizations 

has come a long way from the static pages. The latest revision of HTML known as HTML5 is an 

extremely powerful platform for running sophisticated applications. The available advanced 

graphical technologies such as the Canvas element, WebGL and CSS3 3D and scalable vector 

graphics (SVG) enable the interactive 3D experience on the browser without the need for external 

plugins.  

WebGL as an extension of the HTML5 Canvas element is the standard 3D graphics API for the 

Web written in a low-level language and is based on OpenGL ES 2.0. However, there are several 

open source JavaScript toolkits that provide higher-level access to the API to make it look more 

like a traditional drawing library (Parisi, 2014). Some of the notable frameworks in the context of 

visualizing geographic data worth mentioning include: 

- Three.js: Three.js is a JavaScript based library, which creates 3D contents on the web 

browser with a very low level of complexity. It is lightweight in nature and can perform 

rendering with the help of HTML5 canvas, SVG and WebGL (Mrdoob, 2013).  The built-

in file format support available in Three.js permits the parsing of JSON or COLLADA file 

formats. In addition, the library provides the necessary interaction by enabling object 

picking which makes it easy to add interactivity to the applications. 

 

Another solution for visualizing GIS data on the web is to utilize the existing Virtual Globes. These 

globes enable the visualization of global geospatial data and allow for the    interaction between 

the data and the user. The virtual Globes not only reduces the effort of manually accessing archives 

of satellite imageries but also allows users to interact and extract content from the globe in real 

time on the web (Elvidge & Tuttle, 2008). Among the available Virtual Globes such as WebGL 

Earth (Klokan Technologies, 2011), OpenWebGlobe (Christen & Nebiker, 2011) and 

Cesium(Analytics Graphics Inc, 2016), Cesium is the only open source solution that has good 

maintenance by its user community and enable the integration of numerous data sources, creation 

of cameras and geometry objects. Therefore, this library is chosen and elaborated in following 
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 - Cesium.js: Cesium (Analytics Graphics Inc, 2016)is an open sourced JavaScript Library 

that enables the creation of 3D globes or 2D maps with only a few lines of code on the web browser. 

This library has the following features that can help enhance the visualizations: 

• Cesium is open source code under the Apache 2.0 license, which means, it is free for 

commercial and non-commercial use. 

• Cesium supports imagery layers using Bing, OpenStreetMaps, ESRI standards and it also 

supports the integration of imagery from external TMS.  

• It also shows vector data from various sources such as KML, TopoJSON, GeoJSON and 

ESRI shapefiles. 

• Cesium provides Cesium a material system to change the objects’ appearance to adapt to 

the user needs.  

• It supports math libraries that include the major reference frames such as World Geodetic 

System (WGS84) and International Celestial Reference Frame (ICRF). The libraries have 

built-in functions to support the coordinates and Cartesian conversions. 

• The Cesium Virtual Globe allows for the visualization of dynamic time dependent elements 

with the help of Cesium language (CZML).  

CZML is a JSON format for describing a time-dynamic graphical scene, primarily for 

display in a web browser running Cesium. While Cesium has a rich client-side API, CZML 

enables Cesium to be data-driven. This gives the generic Cesium viewer the possibility to 

show a rich 3D scene without the need for any custom code. In many ways, the relationship 

between Cesium and CZML is similar to the relationship between Google Earth and 

KML(AnalyticalGraphics Inc, 2016). The easy to parse JSON structure of the CZML files 

makes way for incremental streaming of data to the client. This means the entire document 

doesn’t need to be present before the scene can be displayed. The most important feature 

of the CZML format is the accurate description of properties that change value over time. 

Clients are also expected to be able to interpolate over time-tagged samples. Within CZML 

every property can be time-dynamic.  Figure 2-8 shows an example CZML file structure 

where a sample property is represented as dynamic values.  
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Figure 2-8:Example CZML file structure (Source: Analytics Graphics, Inc., 2011) 

Cesium architecture as a client-side virtual globe is organized in four layers shown in Figure 2-9 

below. 

 

Figure 2-9:Cesium architecture (Source: Analytics Graphics, Inc., 2011) 

The image shows the level that each layer is used by the applications. Generally, each layer stacks 

functionality over the previous layer and raises the level of abstraction. The layers are: 

• Core – Contains low-level functions such as the number crunching like linear algebra, 

intersection tests, and projections. 

• Renderer – This layer is a thin abstraction over WebGL. It comprises the already available 

GLSL functions to provide, textures and shader programs. 

[ 
    // packet one 
    { 
        "id": "GroundControlStation" 
        "position": { "cartographicDegrees": [-75.5, 40.0, 0.0] }, 
        "point": { 
            "color": { "rgba": [0, 0, 255, 255] }, 
        },  
 
 "someProperty": [ 
        { 
            "interval": "2012-04-30T12:00:00Z/13:00:00Z", 
            "number": 5 
        }, 
        { 
            "interval": "2012-04-30T13:00:00Z/14:00:00Z", 
            "number": 6 
        }, 
 
    }, 
    // packet two 
    { 
        "id": "PredatorUAV", 
        // ... 
    } 
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• Scene - Scene is mainly built on Core and Renderer to provide relativity high-level map 

and globe constructs like imagery layers, polylines, labels, and cameras. 

• Dynamic Scene – As the top layer of abstraction, this layer handles the time-dynamic 

visualization constructs including CZML rendering. Instead of frame by frame rendering, 

this layer enables the storage, loading, and rendering of the data in dynamic objects 

altogether. 

Furthermore, an extensive comparison of the two mentioned libraries is provided in the result 

section of this thesis.  
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3 Data preparation 

The following section includes two main parts. The first one identifies the study area, the available 

datasets and the data preparation steps taken for obtaining the initial the necessary preliminary data 

for the visualization. The second part describes the hardware and software tools required for 

execution of this research.  

 

3.1 Study area and data 

The chosen site for this research is the Bever river dam located in the catchment area of the river 

Wupper, a tributary of the river Rhine in Western Germany. This area is a subsection of the 

TAMIS4 research projects area of interest which is known as the Bever-Block. The 

Wupperverband 5(Wupper Association) as a responsible body for management of the water 

volume and water of the Wupper river has established a web-based system for visualization and 

analysis of the sensor data located along the watershed. The existence of the extensive sensor 

technologies on the dam and the already implemented web interface has led us to choose this area 

for the implementation of this research project. The Figure 3-1 below illustrates the relative 

position of the Bever block area within Germany besides the network clusters of the Bever-Block 

reservoir system. 

 

Figure 3-1 : Location of Bever river dam in Bever Block 

 

The Figure 3-2 and Figure 3-3 denote the Bever River dam’s aerial view and the plan view of the 

area respectively. Also, the plan view includes the control tunnel of the dam, the location of the 

water level sensors and an example of the sensor types with their relative positions. These series 

                                                 

4
 http://tamis.kn.e-technik.tu-dortmund.de 

5 http://www.wupperverband.de 



20 

 

of water level sensors on the ground and seepage sensors inside the control tunnel below the 

surface continuously monitor the dam’s behavior. These sensors are part of various sensor 

technologies that track the changes on the dam.  The control tunnel shown in the image stretches 

along the dam wall and provides access to the essential dam’s infrastructures.  

 

Figure 3-2: Areal View of Bever River dam 

 

    

Figure 3-3: Map of the Bever River Dam with the water level measurement stations and the Control tunnel 

                   

The Existing Dam Monitoring system at TAMIS project already includes a 3D component 

developed by the author. This widget uses the powerful Three.js library, described in the WebGL 

technologies of the second chapter, to show the latest SOS values of the water levels on the terrain 

model. However, the model has no support for the WPS interpolation surface and dynamic data.  

The support for the mentioned WPS surfaces and the dynamic data values are implemented as part 

Seepage sensors 
 

Control Tunnel 
Water level sensors  
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of this thesis. In addition, the support for the integration of 3DCityDB6 exported KML/COLLADA 

files are developed as part of this thesis to compare the functionalities of Cesium and Three.js. 

Figure 3-4 pinpoints the currently available 3D widget in the TAMIS control center. The 

application includes layers’ list where the user can select each station and see the latest water levels 

values.     

 

Figure 3-4: Existing TAMIS 3D widget 

 

In the following section, the data used in the research and the necessary processing for their 

integration into the 3D model are presented. 

The required data for caring out the implementation of this application mostly need some level of 

preprocessing. This is because an efficient visualization pipeline entails standardized data sources 

that can be recreated for other Dam facilities. Therefore, the available data for the dam are 

converted into CityGML as the most suitable standard for representing virtual 3D city models. 

This model will also facilitate the future updating of the models. And since the data is represented 

in different levels of detail (LOD) the infrastructure data can be further developed to include more 

detailed model definitions.   

  

3.1.1 Terrain Model  

The terrain model for this project includes numerous sources. The original Digital Elevation Model 

(DEM) for the immediate area around the Bever River Dam has been created using the equally 

spaced point data provided by Wupperverband. This dataset is converted into a Raster surface 

                                                 

6 http://www.3dcitydb.org/3dcitydb/3dcitydbhomepage/ 
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using QGIS (Version 2.12.0) providing the DEM model with the resolution of 8.6 meters in cell 

size. 

 Notwithstanding, the coverage of this terrain model when visualized on the Cesium globe is not 

sufficient and creates an island disconnected from the surrounding.  To resolve this problem, since 

Cesium can handle bigger data terrain models, a larger data set with the lower resolution was used 

to create a more comprehensive terrain model that would comprise a vaster area.  For this purpose, 

the openly available DEM from the DLR7’s SRTM X-SAR project with the spatial resolution of 

25 meters was utilized. A combined layer from the overlap of the small higher resolution image 

and the lower resolution DEM creates the broad terrain basis for the visualization (Figure 3-5).       

 

Figure 3-5: The integration of DEM layers 

 

However, to use the generated Heightmap in Cesium, the output raster has to be converted into 

tile dataset format. Each tile in the Terrain Tile format contains 65 x 65 height values, with small 

overlap on the edges of the tiles to create a seamless terrain. Cesium translates the Heightmap 

tiles into a uniform triangle mesh. Cesium also supports quantized-mesh-1.08 format for the input 

terrain data. However, there is no open source software for creating these quantized-mesh 

surfaces at the time of this research. Therefore, the Heightmap tiles were generated using the 

Cesium Terrain Builder as a command-line utility developed by the GeoData Institute, 

University of Southampton 9. The tool will return a set of tiled “. terrain” files in different zoom 

levels. This layer folder, when placed on a local server, can be used by Cesium for drawing the 

ground information. 

                                                 

7 http://www.dlr.de/eoc/en/ 
8 https://cesiumjs.org/data-and-assets/terrain/formats/quantized-mesh-1.0.html 
9 https://github.com/homme/cesium-terrain-builder 
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Final 
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3.1.2 CityGML Waterbody object 

The water body as the one main dynamic part of the final implementation must use the water 

surface interpolation data, resulting from the WPS to create the reference waterbody structure for 

the visualization. This object model structure should allow for future update of the height values.   

Based on the need for a standard 3D object element, the waterbody geometry is constructed as a 

CityGML (Version 2.0) waterbody object. The LOD1 representation for the waterbody seems to 

show the necessary level of details. Therefore, the final output will have the LOD 1 and show a 

low level of illustration and high grade of generalization. The process in which the desired surface 

model is created requires the FME Benchmark and is fully shown in  Figure 3-7. The steps for this 

process involves: 

- The acquisition of the reference GeoTIFF from the Web Processing Service is the primary 

step. In this step, only to have a continuous visualization, the interpolation body of the 

starting day chosen for the final application is selected to be used as the reference surface 

waterbody.  

- A generalization step to reduce the images pixel sizes. This phase is done to reduce the 

computation power required when updating the elements. The Nearest Neighbor algorithm 

resamples the surfaces cells and creates a lower resolution image from the WPS received 

GeoTIFF image 

- The categorization of the height values into a number of groups and the addition of an id 

attribute. The categories and the id data simplify the update of cell values by providing a 

reference for each cell.  

- The final surface object must follow the OGC standards of waterbody objects. Therefore, the 

necessary attributes and the structure of the waterbody element needs to be added. Based on The 

CityGML UML diagram in Figure 3-6 visibly shows that to have the standard CityGML object the 

surface must have MultiSurface Geometry attribute and the principal waterBounding surface in the 

output mo
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Figure 3-6: UML structure of the Waterbody CityGML standard 

 

 

Figure 3-7:diagram of the Waterbody CityGML generation process 

3.1.3 Dam infrastructures according to CityGML standards  

As described in the introduction of this section, the available layers at the Bever River Dam must 

also be represented in CityGML (Version 2.0) format to enhance the scalability and consistency 

of the files for future projects. After creating the 3D objects with surface elements from the original 

CAD line representations, these features are converted to CityGML using the appropriate schema.  

The conversion process will define the 3D Shapefile objects as input and like the previous 

waterbody surface will include the addition of the necessary attributes based on the CityGML 

Schema. 

WPS TIF  

Generalize the Raster  

Categorize the cells 
based on the heights  

Add CityGML 
attributes based 

on OGC standards 

Exported 
waterbody 

CityGML  
Convert to polygons 
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 The existing datasets include the dams control tunnel, the road entities, and the dam's facilities 

layer and the implemented CityGML schema of each data layer are shown in - Figure 3-10. 

 

Figure 3-8: River Dam Infrastructures CityGML 

 

 Figure 3-9: Roads CityGML model 

River Dam infrastructures:  
 As a CityGML generic Module 

Roads: as CityGML 

 transportation module 
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Figure 3-10: Control tunnel CityGML 

 

3.1.4 Web Processing Services  

The OGC standardized WPS 2.0 provided by 52°North10 enables the dynamic value update of the 

waterbody elevations. The WPS is accessed using a REST API for the TAMIS project and provides 

a thin access layer to processing functionalities for timeseries data via RESTful Web binding.  The 

Capabilities resource is encoded in the JSON format and provided at the root URL of the API. It 

lists common metadata like provider information and the available processes.  This service 

provides numerous processing functionalities such as the regression predictions and interpolation 

capabilities. The Clients can resolve the URL to navigate to a single Process representation. In this 

research, for acquiring the data for the water body surface and the seepage surface the interpolation 

process is utilized.  

The Image below ( Figure 3-11) shows the job resource encoded in JSON with input, output and 

the time stamp value definition that needs to be posted to the API to create a new job. 

                                                 

10 10 http://52north.org/communities/geoprocessing/wps/ 

Control tunnel: as CityGML 

 tunnel module 
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Figure 3-11: The request JSON example 

Due to the asynchronous execution of the API, a response is immediately returned after the post 

request. The response URL is regardless of the finishing status of the actual request. If the process 

is finished, links to the outputs are generated.  Figure 3-12 is an example of the results acquired 

using the WPS service. It demonstrates the predicted water levels for a period from 04.01.2016 to 

28.02.2016 using the sensor reading at the defined time stamps.  

 
Figure 3-12: Example WPS Response Raster 
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3.1.5 Sensor Observation Services 

The sensors monitoring the water level are accessible using an OGC standardized SOS service. 

This service is provided by 52°North's Sensor Web community. And it is available using a 

RESTful Web binding. The timeseries data is queried using the URL link.  The example of a query 

and the structure of the query is described in Figure 3-13.  

 

Figure 3-13: The SOS Request structure 

The response of the queried timeseries data will be a JSON data file. The representation in  Figure 

3-14 shows the structure of the timeseries data’s reply without a timestamp query. This data shows 

the corresponding station property such as its position and the first and last value. Accordingly, 

the response shown in Figure 3-14 depicts an output in case of including a time span attribute in 

the request where only the value for all the timeseries reading in the requested period is returned.  

 Query Example for getting the value for a time series in a given time period : 

http://localhost:8080/tamis-proxy/proxy?requestUrl=http://fluggs.wupperverband.de/sos2-

tamis/api/v1/timeseries/592/timespan=P14DT0h/2016-03-01T05:50:25.10Z 

► Structure of the request is: 
 

● http://localhost:8080/tamis-proxy/proxy?requestUrl=http://fluggs.wupperverband.de/sos2-

tamis/api/v1        (SOS instance)  

● timeseries       (SOS Request parameter to get the lists of all timeseries available.)  

● 592                  (Timeseries of interest id)  

● timespan= 2015-11-10T09:00:00Z/2015-11-10T12:00:00Z  (iso8601 format of the interval)  

http://localhost:8080/tamis-proxy/proxy?requestUrl=http://fluggs.wupperverband.de/sos2-tamis/api/v1/timeseries/592/timespan=P14DT0h/2016-03-01T05:50:25.10Z
http://localhost:8080/tamis-proxy/proxy?requestUrl=http://fluggs.wupperverband.de/sos2-tamis/api/v1/timeseries/592/timespan=P14DT0h/2016-03-01T05:50:25.10Z
http://localhost:8080/tamis-proxy/proxy?requestUrl=http://fluggs.wupperverband.de/sos2-tamis/api/v1
http://localhost:8080/tamis-proxy/proxy?requestUrl=http://fluggs.wupperverband.de/sos2-tamis/api/v1
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Figure 3-14:SOS response for a specific timeseries 

 

 

Figure 3-15: response for a specific timeseries 

 

In the final implementation, the data provided by this SOS service is used in updating the station's 

water tube visualizations. 
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3.2 Software/Applications used  

The necessary software packages and applications required for this thesis and their intent of use is 

enumerated in Table 3-1 below. 

Table 3-1: Used Software 

Software/Application Purpose 

QGIS 2.12.0 For converting the CAD dam infrastructure objects into 3D 

Shapefiles 

FME 2016  Creation of a conversion process for generating the CityGML 

models. 

Apache HTTP Server (Version 3.2.2) Initiating the local web server to allow the communication 

between the client and server and hosting of the Terrain tiles. 

Google Chrome 58.0.3029.96 (64-bit) The basis for running the web application on web browser 

Internet Explorer 11.0 To test the web application on web browser  

NetBeans IDE 8.1 The environment for developing the application 

TUM 3D-Web-Map-Client To represent the KML/GlTF models in Cesium  

TUM 3DCityDB (Version 3.3.1) Import of CityGML files to the 3D city 

database and export as KML/glTF and KML/COLLADA 

PostGIS version 2.0 Used by 3DCityDB as 3D city database to store 3D objects 

Highchart.js Library (Version 5.0) Utilized for the implementation of the interactive charts and 

the gauge indicator.  

Cesium.js library (Version 1.33) Visualizing the virtual globe as the basis for the application 

Three.js Library (Version r85) To develop a similar visualization environment with the 

Cesium globe to compare the results from two methods.   

52°North clients  

 

3.3 Hardware used 

  Table 3-2 below indicates the Hardware used in conducting this research. These configurations 

match the minimum requirement for Cesium based applications. 

 

Table 3-2: Used Hardware 

Processor Intel Core i5-3337M 1.80GHz 

RAM 8 GB 

Graphics card NVIDIA GeForce GT 740M 

Video RAM 2 GB 
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4 Design and Implementation 

In this chapter, the different possible scenarios for the integration of OGC WPS and SOS data with 

waterbody objects within the Cesium platform are discussed, and the high-level architecture of the 

chosen method is represented, and additionally, the constituting components of the implemented 

solution are described. 

4.1 Available approaches 

Considering the constant update requirement of the real-time sensor data, choosing the most 

efficient at the same time most comprehensive method of integration can make a difference in the 

user experience. The possible options range from the methods that are more server oriented to the 

methods that rely more on the client side. The most suitable approach would be the one with a 

reasonable balance between the server and the client side.  

Thereby, in the following section, all the possible visualization approaches for such goal in Cesium 

realm, and their efficacies are presented. 

 

4.1.1 Representation using a KML Network Link file:  

In this method, each time stamp would be represented using a KMLNetworkLink (KML Tutorial, 

2013). In other words, a single KML file, containing the references of the water surface geometries 

is created, which will include the height value of each instance for the particular time stamp. Since 

the 3DCityDB Importer/Exporter provides the ability to export CityGML data to KML/glTF 

easily, this method seems to be the simplest approach. However, it would require a considerable 

amount of pre-processing of the data to create the network link for each time stamp. As a result, 

there will be a bulk of files stored on the server, that might not all even be called by the clients. 

Therefore, this method while being the most straight forward approach does not represent the best 

possible solution.   

 

Figure 4-1:KML/glTF structure 

Link to geometry file  

Position of the element 

Dynamic height attribute  
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 Moreover, there can also be another iteration of this approach illustrated in Figure 4-1:KML/glTF 

structure that would include a single Master KMLNetworkLink file that will have the reference to 

geometries and the height attribute which will, in turn, be updated using the client’s request to the 

server. This proposed method would eliminate the pre-processing issue, but it would require the 

interface to read the master KML file again each time the new date is requested, making it still an 

unpopular method.  

4.1.2  Direct object generation using Cesium  

Since having an external source as the updating element would require the constant reread of the 

sources from the server, an alternative would be to directly draw the dynamic elements within 

Cesium and change the different attributes on-the-fly. The direct rendering in Cesium means that 

each water body object will be created as a Cesium entity instances which will be fetched from the 

DOM and updated every time the client requests another time stamp. The result of such approach 

while acceptable has the following drawbacks; 

- The initial loading time will be substantially higher than loading an external format since 

each object should be created using the script that converts the WPS resulting raster file 

to entity objects.  

- Entity instances do not handle dynamic elements in an efficient way. Therefore, the 

already existing height values will be lost each time a new timespan is requested. This 

would cause redundancies in the way the data is loaded.  

4.1.3 Representing variations using CityGML Dynamizers 

Dynamizers, as introduced by (Chaturvedi & Kolbe, 2016),  allows the representation of dynamic 

and time-varying attributes within semantic 3D city models. As the Figure 4-2 denotes, the concept 

allows defining a new dynamizer feature type for the CityGML Waterbody object. The dynamizer 

feature, on the one hand, allows representing dynamic variations of the height values, and on the 

other hand, allows referencing to the respective attribute of the CityGML object and override its 

values accordingly. Using dynamizers, the dynamic variations of the Waterbody objects can be 

represented with the CityGML source file itself. Each geometry object would have a dynamic 

attribute that would include the post request variables required for getting the water level data from 

the server. Therefore, once loaded Cesium could eventually load the corresponding WPS layer 

based on the dynamic attribute.  

The Dynamizer concept has already been implemented as an Application Domain Extension 

(ADE) of CityGML 2.0 within the OGC Future City Pilot Phase 111 and is intended to become a 

part of the next version of CityGML (version 3.0). However,  it is currently not supported by  the 

3DCityDB. Therefore, it cannot be applied for the purpose of this project. 

                                                 

11 http://www.opengeospatial.org/projects/initiatives/fcp1 
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Figure 4-2: Diagram of Dynamizers integration with the WPS 

4.1.4  Visualizing the KML files in the Google Earth environment  

An additional possible visualization method would be an outside browser solution using Google 

Earth Pro. Despite the notable improvements in the browser-based visualization methods, there 

are still good reasons to use the conventional desktop app to visualize 3D data. Furthermore, since 

Google Earth primarily recognizes KML as its XML-based language, the current KML 

NetworkLink Link structure of the available data seems to be presentable on this platform. It is 

important to note that, Google Earth doesn’t support the glTF format and the models must be in 

COLLADA. In addition, while previous browsers allowed the end-user to modify their browser 

by downloading and installing the Google Earth plugin, this feature is not available anymore, 

making the desktop based application of this solution the only possible approach. And the newly 

introduced browser-based Google Earth is still in its production and has many shortcomings in 

visualizing external data sources. Hence, the possible workflow for such visualization, in the 

desktop version of the application, is visualized in Figure 4-3. This method would be similar to 

visualization of the KML NetworkLink file in Cesium globe where the updates are made using a 

JavaScript code running on nodeJS. However, this would not have the issues confronted in the first 

proposed method while there is not browser communication in between.  

Dynamic WPS data  
CityGML file of the water body  

<cityObjectMember> 

<wtr:WaterBody gml:id="CELL_0_DN_6"> 

<gen:stringAttribute name="Height">  

<gen:value>0.99</gen:value> 

</gen:stringAttribute> 

</wtr:WaterBody>  

</cityObjectMember> 

 
Body of the Post request 

{ 

    "inputs": [ 

        { 

            "id": "timespan", 

            "value": "2016-03-15T10:00:01.00Z%2F2016-04-

01T10:00:01.00Z", 

            "type" : "text/plain" 

        } 

        

<cityObjectMember> 

<dyn:Dynamizer> 

<dyn:attributeRef> // WaterBody [@gml:id = CELL_0_DN_6']/ stringAttribute[@name = Height 

']/gen:value</dyn:attributeRef> 

<dyn:startPoint> 2016-01-01T00:00:00Z </dyn:startPoint> 

<dyn:endPoint> 2016-01-15T00:00:00Z </dyn:endPoint> 

<dyn:dynamicData>.. </dyn:dynamicData> 

</dyn:Dynamizer> 

Replacing dynamic 

attributes using XPath 

POST 

request  

WPS 
service 

Send  
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Figure 4-3: Workflow of visualization of KML in Google Earth Pro 

 

    All in all, this method would limit our ability to have easily accessible visualization platform.      

Moreover, Google Earth support can be uneven for machines not running Microsoft Windows. 

And the constant reloading of the data source can be problematic and would create blinking effects.                                                                                                              

4.1.5 Using CZML  

As already noted in the literature review section, CZML or Cesium Language is a JSON based 

language that was designed especially for the Cesium program. CZML can accurately describe 

properties that change value over time(Cesium,2016). Another additional feature of CZML is that 

it is structured for efficient, incremental streaming to a client, making it less cumbersome for the 

client side. And as already discussed in the introduction of this section the ability to provide the 

balance between the server and the client side is the decisive factor in choosing the optimum 

visualization method. Accordingly, using CZML will provide for the representation of static 

elements of the visualization pipeline within the server while the dynamic variation is stored on 

the client side. Such an ability would provide the opportunity to recall the values for the already 

existing timestamps without the need for a repetitive request to the server. Each geometry element 

is depicted in a CZML packet with the glTF model as their model attribute.  

The structure of the JSON file will allow for the addition of various timestamps. In this study, the 

different attribute is the height element of the position attribute, but since the future addition of 

timestamps to the model is done through Cesium, using the corresponding entity instance, the 

position values are converted into Cartesian values, which makes the addition of height 

measurements in meters for each time stamp a big problem. To avoid the unnecessary conversion 

and the possible inaccuracies based on the file structure of the model shown in Figure 4-4 the node 

positioning of the glTF models representing each CZML packet is considered for the intervals    

# Get the time stamp from google Earth  

# create the post request using the time 

stamp  

# receive the WPS GeoTIFF result  

# parse the result as array where each 

array index corresponds to the geometry 

id of the KML element  

 

Updated 

KMLNetwork 

Link file 

Send the timestamp  

Pseudocode code of the WPS loader 
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Figure 4-4: Structure of the CZML file with the Time interval Collections 

 

In short, it can be said that CZML would provide the best visualization method while it can be 

flexible enough to incorporate the time dynamic elements and have the speed and lightness to 

quickly and widely render the items onto the scene. Moreover, this format has the possibility to be 

extended to communicate additional static or time-dynamic data, such as charts in this scenario, to 

a more sophisticated client. However, the only limitation with this approach is that it will only be 

usable with Cesium virtual globe. 

4.2 High-level architecture 

The following would describe the high-level overview of the architecture established in order to 

visualize the dynamic data of waterbodies.  
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Figure 4-5: Diagram of the High-level Architecture 

 

As visible in Figure 4-5 The whole system architecture consists of three levels; 

- pre-processing: This section will include the conversion of the CityGML files into the KML 

NetworkLink files that will later be parsed into CZML JSON files that will constitute the semantic 

data of the visualization.  

- Server side: The server is where the static CZML data and the dynamic OGC services reside. The 

first one is the direct result of the pre-processing section while the latter is provided by coupling 

of the services in TAMIS Geoprocessing architecture. This part of the server communicates the 

WPS water body results and the SOS readings to the client.  

-Client: The web application is the main party in the client side. It will include the interface for the 

user to visualize and interact with 3D objects. The interface also incorporates the functionality to 

call new timespans to update the waterbody and the seepage indicators on the map. 

Overall this architecture can be better visualized in the detailed integration diagram shown in 

Figure 4-6 where the cesium platform will use the OGC SOS and WPS REST APIs to add time 

intervals to the JSON based CZML files within the DOM.  
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Figure 4-6: Workflow for integration of Models and the OGC services with Cesium 

 

The design of each section is as follows; 

4.3 Pre-processing 

As described in the architecture diagram the bottom layer will encompass the conversion process. 

In this level, the CityGML model is converted to a KML NetworkLink file. The NetworkLink file 

will include the reference to the glTF surface geometries. This is essential since glTF models do 

not have projected positions and the CityGML model only include the local spatial reference 

system. Thus, the resulting KML file will have the positions in a global reference system, in this 

case, WGS84, for each surface member. This KML reference file is used to create the CZML based 

file for the visualization.  

In order to achieve this goal, the 3DCityDB Importer/Exporter is used. 3D City Database as a free 

geodatabase allows the storage, representation, and managing of virtual 3D city models on top of 

a standard spatial relational database.  As an open source tool, this application allows the import 

of CityGML file to a 3D city database and export of the contents of the database in the form of 

KML NetworkLink file. The functionality can be described with the help of Figure 4-7: 
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Figure 4-7: KML/GlTF generation process 

 

Based on the figure above, the surface waterbody CityGML model is imported into the database. 

The toolkit provides the option to import various object types from the source file. However, since 

the used CityGML only includes the waterbodies, therefore, is it fully imported within the 

database.  

Given the need for the standard relational database for the 3D city database, PostGIS v2.0 is used 

as the spatial database to store the model data. Having 3D city database installed on top of PostGIS 

v2.0 can provide the tables to store water body class object of the model and the other object 

classes of the CityGML standard. 

Once the data has been successfully imported into the database, the exporting process can begin.  

In order to export the models from the source CityGML waterbody object to a Cesium visualizable 

model, the 3DCityDB Importer/Exporter is used. This tool can export city models from the 3D 

city database in KML/COLLADA, and KML/glTF format.  

According to the specification of GlTF and COLLADA, it can be said that while COLLADA is 

designed to include all the details of the scene and the entirety of the available information for 

import in any 3D content authoring program, the glTF format is mostly optimized for delivery to 

WebGL-enabled web browsers. Each glTF file component is designed to be as lightweight as 

possible for minimizing the processing and rendering demands placed upon the Web 

Browser(Khronos, 2016). This speed and performance difference is also visible with the dataset 

used in this research. The  Table 4-1 below shows the difference in loading speed and the memory 

space used in the browser when loading a single water surface cell in different browsers.  

 

Table 4-1: comparison of COLLADA and GlTF's performance 

 glTF COLLADA 

Browser Memory (KB) Loading Time (s) Memory (KB)    Loading Time (s) 

Chrome 0.476 2.01 s 4.3 17.43 s 

Internet Explorer 1.5  2.13 s 4.23  19.24 s 

 The benchmark was run on a regular laptop, having the specifications mentioned in section 3.2 .  

CityGML 
3dCity DB 

KML NetworkLink 

GlTF models 

JSON file 

Import Export 
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 Based on the described merits of the glTF model, the glTF (Khronos Group, Version1.0,2016) 

format is chosen as the desired format in the exporting feature of the exporter toolset. This toolset 

uses a tiling strategy and creates a reference of the glTF files with their corresponding tiles in each 

master KML file using KMLNetworkLink (KML Tutorial, 2013). In other words, a single KML 

file is created, containing the references of glTF files in each tile and their details such as the 

geographical location and the gml id. If there are no tiles and glTF models, there will be only one 

KML file containing geometry and semantic information of the CityGML file.  

The Master KML NetworkLink file now needs to be processed to CZML (Version 1, 2016 Cesium) 

format in order to be imported in Cesium Virtual Globe. The code example in  Figure 4-8 best 

presents the changes made to achieve the CZML JSON-based file format from the KML resource 

file. In this section, a JavaScript code is run using NodeJS to export the JSON file. 

Each of the CZML elements or packages include the references glTF file as their model. In 

addition, the position and the id element are filled in accordance with the KML file. Accordingly, 

to improve the speed of time interval addition and eliminate the need for additional projection 

change, as discussed previously, the node transformation is added to include the current elevation 

position and the future height time intervals. This file is later visualized in Cesium and will have 

the ability to have added time stamps on the DOM level.  

 

Figure 4-8: KML to CZML conversion process 

 The process of creating CZML models must be repeated for all the geometry data that would have 

dynamic properties. Therefore, the Stations and water level tubes must also have the CZML 

representation. However, Since the SOS service contains the station's details including the 

locations and other necessary information, nodeJS is used to directly acquire the static geometry 

information and create the corresponding CZML element.  

In order to create the Stations CZML a JavaScript code send a request to the SOS and gets the 

location of the stations and creates a cylinder CZML instance for each station and as for the water 

Sample CZML element 

  <Placemark id="COLLADA_52"> 

      <name>52</name> 

      <Model> 

        <altitudeMode>absolute</altitudeMode> 

        <Location> 

          <longitude>7.3671873</longitude> 

          <latitude>51.1426047</latitude> 

          <altitude>262.7593643</altitude> 

        </Location> 

        <Orientation> 

          <heading>358.7280439</heading> 

        </Orientation> 

        <Link> 

          <href>8/52.gltf</href> 

        </Link> 

      </Model> 

    </Placemark> 

          

{ 

    "id": "52", 

     "name": "CELL_52_DN_6", 

      "position": { 

            "cartographicDegrees":  

[7.3671873, 51.1426047,0] 

        },  

        "model": { 

 "gltf": "8/52.gltf ", 

"nodeTransformations": {  

  "Y_UP_Transform": { 

         "translation": {  

                               "cartesian":[0,0, 262.7593643] 

           } 

  } 

 } 

          } 

} 

Sample KML Networkfile element 
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tubes, the SOS requests gets the value for the initial timestamp, also used for creating the 

waterbody geometry, timespan and creates a CZML polyline instance. 

In addition to these models the terrain tile set needs to be provided to Cesium hence the seamless 

underlying topography can be created. Cesium offers a number of different sources for the 

integration of terrain data, one of which is height map data. In order to create the height map 

Cesium Terrain Builder 12as a C++ open source library is used. The tile set created with this tool 

can sit behind a terrain server used by Cesium. This tool was executed using a virtual machine 

running on Linux.  

With the help of this library, from a GDAL raster representing a Digital Elevation Model (DEM), 

the gzipped terrain tiles are created, saving the resulting tiles to a directory. The terrain tileset will 

be a heightmap-1.0 file format and will be represented in a simple quadtree pyramid that follows 

the Tile Map Service (TMS) layout and global-geodetic profile. 

The tool calculates the maximum zoom level concomitant with the native raster resolution and 

creates terrain tiles for all zoom levels between that maximum and zoom level 0 where the tile 

extents overlap the raster extents and resampling.  

 

4.4 Server side: 

The Apache HTTP server has been used in this research, which acts as a local server and is 

responsible for providing the data to the client side. In addition, in order to avoid the CORS (Cross-

origin resource sharing) errors while requesting the SOS links from an external source, a Tomcat 

server is implemented.  

The server side will have two constituting parts, one being a local server and another being 

responsible for the processing services. 

The geoprocessing side of this application mainly manages the request for new time spans for the 

visualization. On each user request for the SOS and WPS, the server receives a time-dependent 

link for the first service and a header including the time stamp for the second one. The services in 

return retrieves the required GeoTIFF in the case of the WPS, and the JSON result in the SOS 

requests and updates the visualization.  

TAMIS Geoprocessing services, used in this research, are separate components. Therefore, each 

request for the SOS and WPS results are made using a different call. However, while the WPS 

uses the SOS data, it can retrieve the observations from the SOS without the client’s involvement. 

 

                                                 

12 https://github.com/geo-data/cesium-terrain-builder 
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4.5  Client side 

Throughout this section, the client side of the implementation is described. This part will include 

the web-based application, the visualization of 3D elements and on the fly updating of the dynamic 

data. It will also specify the web browser and the underlying rendering WebGL technology used 

by Cesium.  

4.5.1 Web Browser and WebGL  

The initial stage in the implementation of this project will be consideration of different web 

browsers. Since this technology is part of a Dam Monitoring system, it should have the ability to 

be integrated into the already existing dam monitoring dashboards.  In addition, the 

implementation of this research requires a HTML5 enabled browser that has the capability to 

support WebGL specifications. These mentioned criteria limit the implementation of this 

application to two main browsers. While the web browser comparison is out of the scope of this 

research, in the following, a short description of the browsers functionalities in running such 3D 

visualization application is presented. 

• Google Chrome (Version 57.0.2987.133): This browser was the chosen browser for the 

development process of the application. This browser provides a fast and seamless interaction 

of the user with the models, and the updates are implemented without any lag or interference 

with the current visualization scene.   

• Internet Explorer (Version 11.1066.14393): Since the existing dam monitoring system at 

TAMIS has the requirement to run on Internet Explorer, due to compatibility with older 

computers, the application performance was tested in the IE environment. It appears that while 

IE handles the visualization and on the fly updates in a reasonably acceptable manner, it still 

has some shortcomings when compared to Google Chrome.  The latter presents a faster terrain 

tile update and a more lag free panning and zooming experience when compared with this 

browser.  

And as for the WebGL API, it should also be mentioned that this API is the factor enabling the 

visualization of such 3D models in a browser without a need for any plugins. In addition, its 

provided hardware acceleration enhances the browser's handling of 3D contents.  And as discussed 

in previous sections, the Scene and the Renderer components of Cesium API use WebGL. Hence 

the Cesium API can provide a development capability in a low-level language for web 

applications.  
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4.5.2 Web application 

The web based application as the primary component of the project has been developed to run on 

top of an HTML5 browser utilizing WebGL as an interface for the end-user to perform the 

functions as part of the Dam monitoring system toolkit. The processing of the application can be 

described with the help of following process flow diagram in  Figure 4-9: 

 

Figure 4-9: Application’s flow diagram 

The process includes the following sections: 

4.5.2.1 Initial Web interface 

In loading the initial models; 

• The client sends a request to the server for index.html 

• index.html calls Cesium.js, which in turn accesses related JavaScript and CSS files. These 

files are responsible for loading first virtual globe on the web browser, within the HTML5 

canvas element.  

• Consequently, the 3DityDbLoader.js JavaScript file is loaded into the application. This 

code will load the initial static elements of the Dam surrounding such as the roads and other 

infrastructures. These models have exported CityGML models, and they are rendered using 
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their Master JSON file using 3DCityDB-Web-Map (Version 1.1.0, Chair of 

Geoinformatics, Technical University of Munich).  

• In addition, the Terrain Model is loaded using CesiumTerrainProvider API. 

 

4.5.2.2 Initial loading of the dynamic geometries 

As the next step of the application to load the CZML models, the index.html file accesses the 

CZMLLoader.js code with the help of Cesium.js.  

This code will initiate the load of the dynamic elements including the waterbody surface, 

seepage level, and the station's water level tubes.  

The parser will create a Cesium entity element based on each CZML packet using the id of the 

CZML element, and moreover, a function dedicates a color property for the surface bodies 

based on their height value to better represent the changes in values.  

This in effect will create the initial water surface visualization, the seepage surface and the 

water level tubes. Each surface geometry vertex can be picked as an individual object. Thus, 

the individual surface elements height value can be retrieved on mouse click. 

  

4.5.2.3 Retrieving the WPS and SOS data  

Integration of the dynamic data to our model starts from obtaining the data from the server. In this 

section, the amount of necessary communication between the client and server is defined. Below 

the different practice in the client- server relation when it comes to requesting data from a Rest 

API are described.  

- Server-side caching: In this request, a single call to the WPS service fetches all the 

GeoTIFF raster layers representing the water levels, and these files are stored on the server 

and Cesium will access the data from the server and update the water surface values. 

This method while requiring one request and being light on the client side, might take very 

long time to complete and in the case of failing at any stage, the visualization process 

might interfere. Therefore, this method will have too much of a server side involvement.  

- Client side caching: In this approach, like the previous method, the client makes only one 

request to the server to get all the available interpolation rasters, and from here Cesium 

will process the data until all the surface geometries time spans are updated with the data 

for all the time frames. 

This method will have little to no burden on the server side and will rely mostly on the 

client to process the data, However, just like the first method, in this process, the first 

request’s response time will be extremely lengthy. Also, more complication will exist in 

processing the data and the implementation on the client side. 
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- Gradual client side caching: Based on this methodology, the client sends many 

individual requests to the server based on the time stamp it requires. The results are then 

parsed and used by Cesium to update the height values.  

When using this approach, only the necessary requests are made, and there will not be 

many unused results on the client side. Nevertheless, this means that the user might have 

to wait before seeing the data when a new request for an unexacting time stamp is made.   

Based on the nature of the WPS and SOS data available in this research, the third methodology 

was adopted. Since the high initial waiting time for the user is not desired. Moreover, the apparent 

drawback of using the methods, such as the waiting of the user when accessing new time span, 

was addressed by enabling a buffer method. The proposed method will constantly monitor the 

available data as the Cesium clock instance changes and check the availability of the value of 

future time intervals. This is possible since we know that the sensor data is updated every 14 days 

for the water level data and every two days for the seepage levels.  

 

4.5.2.4 Updating the dynamic values  

The updating of the dynamic data, as the section requiring the most processing, is tailored to 

produce the fastest update capability possible for the geometries by optimizing the amount of 

proccing needed on the server and the client side. The process for achieving this aim is as 

follows; 

• The onTimeChange.js code is implemented as the loading of the CZML models is 

resolved.  

• The application uses a JavaScript event handler and listens for a change in the cesium 

clock property that indicates the change in the time slider value and will initialize the 

update process.  

• Before updating the time interval collection of the geometries, the application must 

make sure that the geometry group lacks the new timestamp within its time interval 

collection. This makes sure that an already existing time interval is not loaded twice. 

Consequently, helping the application to run faster.   

• Once the application has specified that the geometry group lacks the current time stamp 

value, the corresponding OGC service is run to obtain the values. Each of the request 

types and their on the fly integration into the already visualized models is described in 

detail in the following. 

 

 

 



45 

 

4.5.2.4.1 Updating values for Water surface and Seepage Surface 

With the completion of previous steps, the application is now ready to make the POST request to 

the WPS service to obtain the interpolated surface raster for the timespan. As already discussed in 

the available data sources section Since the execute operation is done via HTTP POST, a proper 

Execute Request Payload should be specified as arrays in the form of inputs and outputs. The 

timespan received from Cesium will comprise the input timespan attribute of the payload and the 

desired geoprocessing result layer, which will be the prediction interpolation map in this research, 

constitutes the output array. 

 The resulting WPS response from the server will be a link to the prediction map in case of a 

successful response.  This link can now be retrieved using an HTTP GET request. Eventually, this 

will result in a GeoTIFF file which can be parsed using the GeoTIFFJS library. 

The parsed GEOTIFF arising from the request will be an array containing the cell values of the 

raster image. It is important to note, however, that since the initial surface geometries including 

the seepage and the water level surfaces are all a generalized version of the starting raster image, 

the newly received raster maps should also be generalized with the same algorithm.  

The algorithm used in preparing the starting surfaces was the Nearest Neighbor resampling 

method. Hence, the same procedure is followed to create a resampled subset from the GeoTIFF 

array values, where the dataset is resampled by the factor of 10 to reduce the computation time.  

Figure 4-10 reveals the procedure in which the algorithm selects the value of the pixel center 

closest to the x, y location of the center of the generalized raster dataset and assigns that value to 

the generalized raster’s pixel. 

 

Figure 4-10: The Nearest Neighbor Algorithm used for resampling  

 

Finally, the resulting data subset can be mapped to its corresponding geometry element on the 

virtual globe. Given the fact that our CZML elements had been rendered with their respective 

CityGML Ids, representing their cell positions, index of the resulting subset GeoTIFF array’s 
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values can help select the matching Cesium entity object. At this point, a new time interval is added 

to the Z value of the entity objects node transformation which will include the raster value of the 

related pixel as illustrated in  Figure 4-11 and the time interval instance. As stated in the source 

data representation section the temporal resolution of the observations are 14 days since the sensors 

are updated with 14-day intervals. This means that the added time instance to the Cesium objects 

will have the current time, acquired from Cesium, and 14 days later from that as the start and the 

end of the interval. However, for the seepage data, this interval is only 2 days. This makes the 

seepage level data more current when compared to the water level readings.  

The seepage level surface and the water level surface while both represent the changes of a variable 

underground, each characterizes a different element. The first body depicts the height of the water 

from the lowest point of the piezometer whereas the second surface only depicts the changes in 

the flowing water levels underground and has values that would hardly go over few meters. Based 

on this characteristic of these surfaces, the seepage level data is only visualized as color values and 

not the actual height on the draped geometry over the dam body structure. 

  

 

 

4.5.2.4.2 Visualization of the Underground Elements in Cesium 

As the previous step is finalized, the layer representing the seepage level, since being already 

placed over the surface of the dam, can easily be updated. However, Since in Cesium the camera 

cannot yet be placed below the ellipsoid, there are some depth perception issues in representing 

object below the surface. Therefore, different measures, currently applicable to Cesium (Version 

1.33) in overcoming this problem are presented  in this research.  

Currently, the only provided solution in Cesium for visualizing underground data is the 

depthTestAgainstTerrain functionality of the globe, which if disabled yields a see-through surface 

262.28 Figure 4-11: Surface members value update mechanism 
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for objects under the ground to be seen. Moreover, the Cesium Ground-Push13  plugin developed 

by Chris Cooper tries to give the user the ability to eliminate the terrain data for the region of 

interest. Despite the efforts, this repository is not maintained anymore and doesn’t support the 

latest version of Cesium. Notwithstanding, this method could not have helped this research while 

the terrain data constitutes an important part of this visualization and its existence is essential. 

Thus, the implemented methods for better visualization of the underground data are as follows: 

• Using variation in opacity: in visualizing the water level layer, an opacity attribute is 

proposed where each element will have transparency level based on their distance to the 

surface. In other words, every element that is closer to the surface of the globe will be more 

visible, while geometry elements that are further away from the surface seem more 

transparent. This transparency value is calculated upon the loading of the CZML surface 

elements to the virtual globe by subtracting the height value from the surface elevation 

obtained from the Terrain data.  

 

• Adding depth layer: The issue of depth perception seems to be the most critical issue when 

it comes to visualization of subsurface data in virtual globes. In Theory, this issue can be 

resolved by the introduction of a ground surface under the current terrain model. While one 

solution for achieving, such illustration could be a creation of a secondary globe with a 

different ellipsoid inside the current earth representation, this method is currently not 

implementable in Cesium since Cesium’s terrainProvider function that creates the Terrain 

tiles can only mosaic the tiles on the globe surface of the scene. And currently, there can 

only be one globe per viewer element in Cesium. However, Cesium provides an Ellipsoid 

geometry object which, placed inside the initial earth globe, could create the reference 

ground under the surface. Meanwhile, it was observed that this feature object can’t be 

viewed at higher zoom levels and will disappear because only small part of the geometry 

is in the scene. This leaves us with the only option, known as depth cues previously 

presented by (Ziolkowska & Reyes, 2016) in which a rectangle geometry layer is created 

beneath the surface, and an image is used as the material. This method when combined 

with an outline KML layer at the same underground height, would create the height 

definition.  

 

• Enabling underground Camera movement: Another lacking feature in Cesium is the 

unnatural camera movements near underground elements. In an attempt to reduce this 

abnormal behavior for such features, the tolerance variables such as the 

‘minimumTrackBallHeight’ and the ‘minimumCollisionTerrainHeight’ of the 

‘screenSpaceCameraController’ of the scene element was lowered to the minimum height 

of the available features. Hence, the models can now be viewed from under the surface. 

                                                 

13 https://github.com/NICTA/cesium-groundpush-plugin 
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This provides a more responsive panning and zooming experience when the camera and an 

object are at a close distance to each other.    

With the completion of these steps and addition of the new time interval, the time interval is 

visualized on Cesium, and the process is repeated for the next timestamp.  

 

4.5.2.4.3 Updating values of the station's water level tubes  

In the effort to update the values of the water level tubes heights, the OGC ‘s Sensor Observation 

Services provided by 52°North Series REST API is used. The method of retrieving the SOS data 

and updating the geometry on the globe is essentially the same as the WPS loading mechanism, 

with variations in request type and the parsing of the data. To fetch a particular timeseries data a 

GET request against a SOS instance is required. The link for the request is represented by a long 

URL where it includes the timeseries of interest and a time span. Each CZML element of the water 

cylinders is stored with the timeseries id value as their id, hence making it easy to obtain and 

update the elements. The request link is created for each CZML element of the water level 

polylines, consisting of their id as the timeseries of interest and the beginning and end time stamp. 

The starting time is just as in WPS received from the Cesium clock element, and for the end 

timespan, the already mentioned temporal resolution of 14-days is considered. The ISO8601time 

string of this period is what constitutes the SOS request links. 

Subsequent to sending the get request including the time stamp and the timeseries ids, a JSON 

array including the time stamp and the timeseries value at the specified period is retrieved. At this 

point, a new time interval instance will be added to the time interval collections of the Cesium 

entity polylines position property. The value attribute of the timeseries in the retrieved JSON is 

added as the Z value in the new time interval instance with the addition of the time span 

representing the start and the end of the instance. This period will match the time frame sent in the 

initial HTTP request. 

 

4.5.2.5 Visualization of data on chart 

Illustrating the dynamic data on charts requires the completion of data loading in Cesium. As 

Cesium acquires the water level data from the WPS service, this data is available for the line chart 

section to be called. In this step, the chartsCreation.js JavaScript code is run to allow for the further 

processing of the Cesium data within the Highcharts.js (Version 5.0, Highsoft).  

As for the gauge widget inside the virtual globe, this element is dynamically updates based on the 

loaded data. And for the chart data, provided that the user selects a surface member of the water 

level data or a timeseries this data is sent to the Highcharts.js (Version 5.0, Highsoft) library, used 

in this research, to update the values on the chart.  

The chart values are updated every time Cesium’s time property changes. Therefore, it will 

immediately include any newly loaded data. 
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5 Results and Discussion 

In this Chapter, the results from the implementation process and the final web application is 

outlined. Moreover, the discussions concerning each step is also represented.   

5.1 Web-based interface 

The starting point of this application is the web-interface, the client accesses this page through 

running the HTML page on the local server. Figure 5-1 and Figure 5-2 illustrates the initially 

loaded page at different zoom levels. 

 

Figure 5-1: Initial Application interface 

 

Figure 5-2: Initial Application interface 
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What is shown in the screenshots, is the web interface representing the Cesium Virtual Globe that 

utilizes the WebGL API.  The models described in this level are the infrastructure layers and the 

terrain data. The terrain data is loaded based on the Cesium’s tiling scheme according to the zoom 

level from the Apache server. Additionally, the infrastructure layers represent the roads, the sensor 

stations, the control tunnel and the water exit way of the dam.  

The interface has three part of interactive buttons. The group of buttons on the right, as the built-

in Cesium elements, include the location search, the ellipsoid to 2D view navigator and the base 

layer imagery selector. The group of functionalities on the left, however, are applied to better 

interact with the visualized surface models, the SOS and WPS data. In addition to the mentioned 

features, there exists a legend map representing the color ramps for the water levels and the seepage 

data. Finally, the chart data representation panel is lodged on the bottom of the screen. This section 

will provide the functionalities to interact with the data on charts. Since having all the layers active 

at the same time might produce some occlusion, the buttons introduced here help the user switch 

between the layers’ visibility. These buttons provide the following functions; 

• WPS Water Level surface: switches the water level surface layer on and off. Considering, 

the fact that this layer is beneath the surface level, having this layer disabled might become 

handy in some cases.  

• SOS Water Tubes: This controls the visibility of the water tubes representing the water 

level in each station. Given the dependence of the surface levels to these water level 

readings and the overlap of information the user can select between having this layer or the 

surface layer based on their application.  

• WPS seepage level surface: This segment represents the seepage level on the surface of the 

dam. As already discussed in the first chapter, the dam’s seepage level is a result of various 

elements one of which is the water levels near the dam. Therefore, this reading can be 

helpful in its self when shown on the surface of the dam as the space where it has the most 

impact.    

• Show Underground: The feature is included to give the user the option to view the Cesium 

Globe in its best-intended form. While the initially visualized globe has a disabled depth 

transparency, this feature can enable the user to have the underground elements hidden, 

and only see the possible overflow of the water surface if it exists. 

• Legend: The legend switch only assists in decluttering the screen in case the information 

on the left side of the screen obstructs the visualization to an unacceptable level.  

• Gauge: Allows the user to remove the gauge element indicating the current mean water 

level on the dam site. 

• Chart data interaction features:  

o Add Series: In combination with the drop-down selection element this button will 

call the timeseries data requested by the user and depict the data on the chart. The 

already existing Cesium time bar can be used to navigate the charts data range. 

o Remove Series: Consequently, eliminates the series data from the chart.  

o Moreover, there exists a hidden button that is only activated on the selection of a 

section of the water level data. In this functionality, when the user chooses a cell 

from the water body the surface element’s height variation through time is 

visualized on the chart.    
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5.2 Initial loading of the dynamic geometries 

This level is what immediately follows the starting step. Thus, assuming an existence of a reliable 

internet connection (in the case of running on a remote server), this step and the previous step are 

visualized synchronously.  

The CZML data models are what is loaded in this step. The water level surface (Figure 5-3), the 

stations’ water level shapes (Figure 5-4) and the seepage level surface (Figure 5-5) constitute the 

loaded elements. These geometries are added to the globe at the same time. The seepage data, 

However, is not shown on the map to avoid confusion on the first interaction with the data. 

The user can now zoom, pan or rotate to visualize the dam from different angles. 

 

Figure 5-3: Loaded Models with the water surface 

The opacity level of the pixels on the water surface shown in Figure 5-3 gives the user a better 

understanding of its position in relation to the terrain. This is done to overcome the blending mode 

effect that results from the see-through terrain data.   

 



52 

 

Figure 5-4: The Water level data for stations 

 

 

Figure 5-5: Seepage Level Layer 

 

The user can also select a geometry element in these features and view its value. This value denotes 

the height of the geometry at the current time. This value will later be updated base on the time 

stamp. This is depicted in  Figure 5-6.   

 

Figure 5-6: Model's behavior on selection 
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5.3 Supporting temporal variations of height/seepage levels 

As soon as the models are loaded in the browser, the listener for a change in the Cesium’s Clock 

instance takes effect.  Here the Cesium time slider indicates the change in the Clock variable. And 

the play and pause button on the slider can start or stop the change and the animation. As the slider 

is programmed to run after the models’ loading is complete, the updating of the timestamp value 

triggers the JavaScript code to check for the last available timestamp for the object groups 

availability and load the next timestamp with requests to the WPS before the time slider has 

reached the time. Therefore, the loading is always done beforehand, and it is stored for access 

when called by the slider. The image compilation in Figure 5-7 demonstrates the different water 

surfaces and sensor stations’ water level data acquired in different time frames as the slider, shown 

in the red box, continues to play the animation.  

 

 

 

    In case the user changes the slider point, as the Figure 5-8 indicates if the geometries lack the 

timestamp in their height intervals the animation is stopped showing a loading indicator to the 

user. Consequent to the successful loading of the data, the animation will resume and the forward-

looking method described will continue so there can be a seamless animation of height value 

changes without any unnecessary pauses. 

04.03.2016 

02.02.2016 .02.201617  

21.07.2016 

Figure 5-7: Visualization of the dynamic water level data in 4 time stamps 
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Figure 5-8:The Buffer indicator 

 Similarly, the seepage surface is constantly updating.  The series of images in  Figure 5-9 

demonstrate the variation in the seepage surface water levels in the course of a week. The update 

of the water level surface and the seepage level surfaces occur at the same time and do not have 

any interference despite their different update frequencies. 

 

02.02.2016 05.  .02.2016  

09.07.2016 
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Figure 5-9:  Visualization of the dynamic Seepage level data in three different time stamps 

 

Figure 5-10: Visualization without the underground data 

 

An additional feature in this application is the ability to hide the underground elements. This can 

be helpful to declutter the environment and only visualize the water level on exposed surfaces or 

overflow cases. With this feature, the user can still monitor the seepage level changes and have 

access to the displayed gauge regarding the water levels. Also, as visible in Figure 5-10, the water 

levels in critically important areas like the section in the exit channel of the dam are still visible in 

the no-underground mode.  

5.4 Supporting temporal variations in charts 

Among the primary goals of this research is to implement the 3D visualization as part of a dam 

monitoring system. Therefore, the existence of analytic tools that help the understanding of this 

vast amount of information is necessary. 

In respect to this goal, numerous data analyzes, and compression features are added to the chart 

functionality of the application. The data provided by the 3D representation combined with the 

aggregated data on chart enables the client to have a more detailed perception of the site.  

The chart element of the web-app is created using the Highcharts.js Library (Version 5.0.0, 

Highsoft). This library offers an easy way to integrate interactive charts into web applications. 

Highchart’s provides a framework to create SVG based interactive maps which are perfectly 

capable of integration with virtual globes such as Cesium. While the library provides various chart 

types, in this research, the line chart, and the angular gauge have been used to visualize the water 
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level and the sensor data.  The principle behind this part of the functionalities is to provide the user 

with a mechanism to compare and realize the sensor reading data and the Web Processing services 

output under one roof. This way the graphs give the sensor reading’s numbers shape and form. 

The main chart feature of this implementation, shown in Figure 5-11, is located above the Cesium 

time bar this bar while managing the 3D model, affords the ability to navigate the charts and change 

the time resolution by zooming in and out. In addition, it can be seen from the figure that Cesium’s 

current time representation pin is extended using the Highchart’s Plotline capability to comprise 

the whole chart. This improves the correlation between the data on the virtual globe and the sensor 

readings.  

 

Figure 5-11: Interactive chart section of the application 

 

Various sources can feed the data into the chart for visualization: 

• As the most obvious interaction feature the drop-down list, as highlighted in Figure 5-12, 

provide the list of available Piezometer stations. The data for these stations are obtained 

from the SOS server upon a request of the user, and the parsed results are added to the 

graph. To reduce the client’s waiting time this data is initially requested in four-month 

intervals and later updates gradually to fill the complete time span of the Cesium time 

widget. The sensor readings can be stacked on each other in the chart by adding and 

removing different stations. Using the Add and Remove buttons on the left side of the list.  

• Figure 5-13 in the below section presents another data input source possible in this 

application. Upon selection of the stations’ tube cylinders, the corresponding Cesium 

Infobox will include the button to add and remove the data from the charts. This method 
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will follow the overview zoom and filter details-on-demand principle promoted in data 

visualizations.  

 

 

Figure 5-12: Drop down menu for selecting timeseries to be added to the chart 

 

Figure 5-13: Station geometry selection for adding timeseries data to the chart 

• An additional data source is the water level interpolation surface, acquired from the WPS 

services. In this approach, the user can select the individual geometry elements 

representing the high variations. This selection, when added to the chart, represents the 

surface element’s water level changes during the available time span. To better distinguish 
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the interpolated surface measurements from the sensor data, this information is presented 

as a red dashed line. (Figure 5-14) 

 

Figure 5-14: Selection of waterbody cell data to be added to the chart 

 

Given the existence of each cell as an independent Cesium entity with time interval attributes, the 

data interpolation amounts for the cell is represented on the chart based on the corresponding data 

in the time interval collection of the Cesium entity, which is constantly updating for the selected 

time span.  

Subsequently, the interface includes a mean water level indicator on the body of the dam. This 

data will show the average water level on the site in a gauge element and is always updating based 

on the visualized surface data.  

While this chart is also produced using the Highchart.js library, it has been configured to be 

embedded in the Cesium globe. This is done while having the gauge inside the model gives a more 

realistic feel to the model and better shows the dynamic nature of the visualization. Whereas, the 

creation of the indicator as a dashboard element would create an overflow of information for the 

user at first glance.   

For this purpose, the SVG element of the produced Angular Gauge chart is used as the material 

for a Cesium Wall entity placed on the corner of the dam structure. This material is then in turn 

updated based on the timestamp. Visible in Figure 5-15 , beside the number indicating the water 

level, the gauge also contains the legends color categories which help the understanding of the 

overall water trends and variations. 
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Figure 5-15: The water level indicator gauge 

 

5.5  Comparison with other WebGL frameworks 

As described in the available data chapter, the existing 3D visualization element of the TAMIS 

project developed by the author already supports the visualization of the static station's water level 

visualization. However, for the purpose of this research, the support for the dynamic water level 

surfaces in addition to the support for CityGML models is added on top of the current model in 

order to have a common base for the comparison between the two platforms.  

The Three.js product, previously used GeoJSON to draw the infrastructures of the river dam but 

with the creation of the CityGML objects from the dam facilities, the shifts toward integration of 

CityGML models seems reasonable. For creating a pipeline that can use the already existing KML 

NetworkLink files provided by the City3dDB exporter, used by Cesium, the COLLADA loader 

plugin of Three.js is used. Because, unlike Cesium, Three.js doesn’t currently support the 

integration of glTF models.  

Also, since being in the initial stages of development, the dynamic loading of the data is not done 

through a time slider, but it is done through a next and previous button. Clicking the buttons will 

send the timestamp with the requests to the server and retrieves the corresponding GeoTIFF. This 

image is then parsed and visualized as a mesh geometry object with heights on the existing model.  

Unlike Cesium where the glTF tiles of the water surface would load in less than 2 seconds, in 

Three.js each COLLADA feature takes more than 20 seconds to load. Therefore, some part of the 

checkboard tiles might fail due to the vast waiting time. Additionally, finding the COLLADA 

models based on their ids and updating their value is an extremely time-consuming process. This 

is while, unlike Cesium that enables searching for objects within a specific data sources Entity 

Collection, Three.js only stores all the elements in one single object which evidently increases the 
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time required for the search loop required for getting an element with their id. These deficiencies 

have led us to use a mesh surface for creating the water levels. A mesh surface geometry is created 

from the image pixel. The mesh pixels’ height and color are what is updated on each call.  

The Figure 5-16 below indicates the interface and the initially visualized model on the TAMIS 

control center 3D widget. Here the opacity of the base layer is reduced to make the underlying 

water surface visible. The left side controls provide the options to switch between layers and 

request a new period.  

 

Figure 5-16: Initial Web interface of the extended Three.js based 3D widget 

While the time slider in Cesium provides the chance to load the upcoming time events’ data in 

advance, the implemented button navigation here forces the user to wait for the layer to load. Also, 

the absence of a flexible time attribute for storing dynamic data in Three.js forces us to reload the 

data for each time instance. This by itself can also contribute to the speed and flexibility of the 

result. 

It should also be mentioned that the mesh nature of the water data makes it hard to include any 

additional information, like what cesium can provide upon selection of a pixel cell. 

On the other hand, however, Three.js seems to provide a better representation concerning the 

intersection points of water surface and the object. As visible in Figure 5-17 the water level 

variations inside the exit way of the dam are better visible in the Three.js model.  
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Figure 5-17: Water level on the exit gates during two different time stamps 

 

A further merit of the non-globe 3D visualization of data in Three.js is the ability to represent 

underground features and elements better. The simple navigation below the terrain model and the 

double-sidedness of the mesh structures create a more emerging experience when interacting with 

subsurface data (Figure 5-18).  
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Figure 5-18: Visualization of subsurface models 

 

Table 5-1in the below section gives a comprehensive comparison between these libraries in 

visualizing SOS and WPS data in the dam monitoring context.  

 

Table 5-1: Comparison of the Three.js and Cesium.js Libraries in creating a dynamic dam monitoring 3D application  

 Three.js Cesium.js 

Terrain Models 

-  Mesh structures represent the ground 

surface  

-  Multiple Mesh objects can be created and 

overlaid. 

-  Easily generated using Mesh object and 

elevation map without the need for pre-

preparation of data.  

- not suitable for visualization of big areas  

- Multi-Resolution quadtree pyramid of 

Heightmaps (heightmap-1.0 format). 

making it suitable for globe visualization 

- Provides existing terrain data sources 

- Quadtree pyramid of additional terrain 

data needs to be created using the Cesium 

Terrain Builder 

  

Coordination 

systems 

 

- Supports local coordination only.  

- Geographic data need to be projected to 

local coordinate using libraries such as 

D3JS 

- Supports geographic coordinates.  

Imagery 

Layers 

- Single images can be loaded as overlay 

material on mesh objects  

- Supports several standard Ready-to-

use high-resolution imagery layers 

- Images are represented as tiles 

 

Representation 

of Geometries 

- Object meshes, lines and polygons are 

what constitutes all the objects that are 

stored in the scene based on their name  

- Based on the provided data source a 

collection of entities is made. Under the 

hood, the entities are made from 
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- There can be many objects with the same 

name.  

various primitives representing the 

geometry. 

- Entities must have unique ids 

 

Data sources 

variety 

- Supports reading of COLLADA models 

when used with a plugin  

- Still, lacks the support for rendering KML 

data and glTF format 

- Various data sources can be added 

including KML, glTF and Cesium’s 

native CZML files.  

 

Handling OGC 

WPS and SOS 

data 

- Both frameworks support the integration of OGC sensor observation services and Web 

processing services.  

Handling 

temporal 

variation 

- Doesn’t have native support for time-

dependent data.  

- Data must be reloaded on each time stamp  

- Cesium offers the easy loading of time-

dynamic data .it also enables the 

customization of graphics visualization 

around it. 

- Time intervals can be used to represent 

all the objects property during each 

time stamp 

Speed and 

response time 

- The mesh structures should fully load to be 

rendered in the scene. This makes the 

initial loading time to increase. 

- Implementation of COLLADA models 

will further delay the loading time while 

each COLLADA element may take up to 

10 times more than there glTF 

counterparts to load  

- The adapted Tilling scheme enables a 

gradual loading of elements in the 

globe.  

- Supported glTF models are easily 

loaded into model  

Support for 

Subsurface 

elements 

- Since the mesh structures are drawn on a 

plane scene, navigating around the 

surfaces is easily done.  

- Geometry elements can be drawn as 

double sided features. 

- Globe structure hinders out of the box 

support for underground data and 

representation of depth.  

- Camera navigation near the ground and 

under the surface is a major hurdle. 

 

Feature 

selection 

- Ray casting needs to be done to find 

selected object  

- Selecting a feature will prompt an 

HTML Iframe object that can include 

any desired data. 
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6 Conclusions and Recommendations 

6.1 Conclusion 

In this research, the visualization of spatiotemporal Web Sensor data using HTML5 and WebGL 

API for use in a dam monitoring context has been implemented. 

 In achieving this goal, the 3D models of the dam infrastructures have been combined with the 

dynamic OGC Sensor Observation Services and Web Processing Services in order to depict 

dynamic data variation through time. The methodology developed enables the visualization of time 

varying water body elements in the Cesium virtual globe. It enables the integration of mentioned 

OGC services with the Cesium model and provides access to interactive data analysis tools such 

as charts and indicator gauges that, in correlation with the Cesium environment, allow for better 

observation of height changes over time.   

 

6.2 Answers to research questions  

What is the most suitable format to visualize water bodies and the surrounding building structure 

for the mentioned dam monitoring system in the web browser using Cesium virtual globe? 

Since the data elements include static and dynamic objects, different data formats are deployed for 

each group of data sources. The static nature of infrastructure layers such as the control tunnel, 

roads, and water facilities, makes them a great candidate to be visualized using their already 

existing CityGML Models as they follow the CityGML standard issued by the Open Geospatial 

Consortium. After these models have been exported from the 3DcityDB, they can be easily 

visualized on Cesium using the 3dcitydb-web-map plugin. The exported format from the database 

is KML/glTF file while the combination of glTF’s ideal loading speed and the reference system 

provided by KML creates the best results in visualizing the non-dynamic elements of the 

visualization.  

On the other hand, for representing the time dependent waterbody surfaces, the seepage level, and 

the piezometer water levels, a different file format had to be chosen. This data type needed to 

create a balance between a server side and client side when updating new timespans. Among the 

available options, CZML was the only format that adequately fulfilled the requirements for a data 

type that can have temporal variation and can be easily updated using an index based search for 

the elements. The CityGML waterbody objects created from a sample WPS response were 

therefore converted to CZML JSON based features that will have interval elements in their 

elevation attribute.  
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What is the most efficient way to retrieve dynamic data from Web Processing Service and Sensor 

Observation Service? 

In this research from the various available methods in retrieving the Rest API results, after 

analyzing all the existing models, the client caching model is chosen. In this method, the request 

from the users is only sent when Cesium needs it for visualization. Therefore, solely the necessary 

time frames are used and unnecessary loading of the data is avoided. Other solutions, however, 

would require lengthy initial loadings that would affect the user experience. Nevertheless, the 

downside of this loading method will be the waiting time when requesting the data for a new time 

windows. To minimize this issue, the proposed solution in the animation mode of Cesium uses a 

buffering mechanism to load the data for the upcoming time intervals before the intervals have 

been reached. This way the user can experience a seamless animation with minimum waiting time. 

This combination allows the use of the Cesium time component for managing the requested data. 

 

What is the most efficient way to visualize such time-dynamic variations using Cesium.js? 

As already discussed, the CZML file format chosen for visualization in this research can handle 

time interval collections that include the time stamp and the values in its properties. Hence, 

eliminating the need for reloading from the server when accessing the already existing time 

intervals. To obtain the time intervals value property, a methodology was proposed to parse the 

SOS and WPS services’ responses into time interval collections for each element. These time 

intervals are called by the Cesium API when the corresponding time value contained in the interval 

is reached on the time bar. While the parsing from the SOS services JSON response is to some 

level straight forward, the process for parsing the WPS’s GeoTIFF response requires further 

measures. The applicable methods included the id based update of elements or the category based 

updating. The latter method is requiring the categorization of height values into a number of 

groups. This method while being to some level faster does not produce the desired results in the 

case of this research. As the groups constantly change in each time interval and don’t follow a 

constant pattern. Thus, the best possible method for updating the waterbody objects was to use the 

cell id of the initial CityGML file to couple the GeoTIFF pixel values with the water surface 

elements. And since each time stamp constitutes a new interval element in the Cesium entity 

object, when the user requests the already existing time stamp there will be no need for the reload 

of the data from the WPS service.   
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How can the dynamic 3D visualization model of water level within the dam monitoring system 

help real‐time prediction of potential natural hazards and detection of irregularities in the dam 

structure? 

This research in line with the objectives of the TAMIS project makes use of various sensor and 

processing technologies to monitor river dams. The 3aD visualization of the various data sources 

provides the following merits in a dam monitoring system: 

• The currently collected sensor data each follow their own temporal, spatial and contextual 

requirements and have different formats. Thus, the combination of these various sensor 

and processing elements in a 3D environment creates a uniform context for the acquired 

data as it integrates the geological terrain data with sensor measurements. This provided 

environment in combination with the charts integration, allows the user to display and 

compare the time series data values as a graph and a 3D representation. This helps in 

understanding the relation between the timeseries values and the surface values. It can also 

provide a good evaluation of the accuracy of the interpolation surface.  

• The induvial sensor measurements hinder the comprehensive conclusions or the 

identification and detection of cascading influences. Therefore, the visualized 3D models 

enable the representation of the water levels positions in relation to the critical 

infrastructure and surrounding environment. This model depicts the water level variations’ 

effect on the facilitates overt time.   

• The application can also facilitate the simultaneous visualization of various measurement 

sensors. This feature will provide a bigger picture in case of potential irregularities by 

letting the monitoring body know if the inconsistency is part of a bigger problem or it is 

only a minor issue. The incorporation of various sensor data is extremely crucial while in 

cases where irregularities are induced by natural hazards it is probable that cascading 

effects such as heavy rain, earthquakes, rainfall will follow. Thus, the multiple visualized 

layers allow for the appropriate actions in mitigating the contributing factors to be taken. 

• Conventionally the WPS water level prediction surfaces could only be retrieved and 

viewed locally, but this application not only allows the user to visualize the surface levels 

for a specific time stamp it also gives the user the ability to navigate through the data and 

visually compare the changes in values through time and determine the water retention 

curve. This characteristic is crucial in determining unexplained seepage.   

• All in all, the application simplifies the understanding of the complex sensor data which 

will improve reaction time in cases of potential failure.   
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How can the gauge readings be visualized within a line graph as a navigable feature along the 

timelines?  

To be able to better understand the changes in water level values a line chart is integrated with the 

web application. The proposed diagram uses the flexible Highchart JavaScript Library (Version 

5.0, Highsoft) with a combination of Cesium Clock instance to draw the axis on the fly. In this 

model, the charts range is fully controlled with the Cesium time bar panel which provides the 

navigation and change of resolution in the charts. The graph needs to update the axis values on 

each clock change instance and retrieve the data from the cesium entities in the virtual globe. The 

time interval collection, as the enabler for such dynamic visualization in Cesium, includes the time 

and the changing value for each geometry. And this is what the chart retrieves to draw the 

horizontal and vertical axis at each point in time. The ability to illustrate multiple timeseries data 

on the chart drastically improves the user’s ability to compare the data for a given time span. 

Moreover, various methods for visualizing a gauge element on the dam visualization was analyzed. 

The required method had to be representable on the Cesium globe as a Cesium object and have 

updatability. Therefore, the flexible and updatable SVG charts were selected to be used with 

Cesium Wall entity element to have fixed positioning of the chart on the globe. The SVG dynamic 

objects placed as the material for the Cesium entity object was the most effective method to 

visualize such dynamic objects as a fixed element on the globe.  

6.3  Recommendation and future works 

Considering the results of this research, it can be said that future studies should be done on the 

following topics to further enhance the dynamic data visualization on the Cesium virtual globe for 

a dam monitoring application: 

Use of Dynamizers: As mentioned in the design and implementation section, Dynamizers allow 

the storage of dynamic values alongside static models. This feature is yet to be integrated within 

3DcityDB toolkit. When complete it can be used to integrate the WPS links to the timestamps with 

the static water surface geometry. This way the request for the values is made based on the 

Dynamizers’ dynamic data property. This will reduce the workflow in integrating the WPS data 

with the static surface elements.  

  Subsurface data visualization:  In contexts similar to  dam monitoring systems, underground data 

constitutes a major part of the available features. However, Cesium currently has very limited 

functionality in the representation of  under surface data. Hence, the development of new 

capabilities in visualizing the subsurface features can further improve the visualization.  

Increased Update frequency: Currently the available data sources provide the data with a temporal 

resolution of 14 days, therefore, having the data with more temporal accuracy can improve the 

visualization and enhance the monitoring of the dam structures. 
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Usage of additional sensors: Based on the information provided overtopping, seepage water flows, 

and deformation is among the main causing factors of dam failure. In this research, only the 

Seepage flows and their contributing factors are represented. incorporation of other sensor 

technologies such as the GPS sensors can establish a better framework for monitoring the dam's 

facilities with respect to other causes of irregularities. 3D representation of the structure 

deformation of the dam infrastructure could also help the detection of potential hazards.  
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