

Cartography

(Int. Masterôs Program)

Lehrstuhl für Kartographie

Technische Universität München

Masterôs Thesis

Visualizing dynamic spatial height information in a dam

monitoring context

 Author: Amir Ashkan Baghdoust

 Supervisors: Prof. Thomas H. Kolbe

 MSc Kanishk Chaturvedi

 MSc Juliane Cron

30 June 2017

 ii

Declaration of authorship

I hereby declare that the submitted master thesis entitled Visualizing dynamic spatial height

information in a dam monitoring context is my own work and that, to the best of my knowledge,

it contains no material previously published, or substantially overlapping with material submitted

for the award of any other degree at any institution, except where acknowledgement is made in the

text.

Munich, 28th of June 2017 Amir Ashkan Baghdoust

iii

Abstract

Natural disasters constantly threaten the safety of our infrastructures including dams. The potential

damages associated with dams usually stem from the failure of the structure due to overtopping,

seepage water flow, and deformation. Therefore, the implementation of monitoring techniques is

essential in detecting any potential damage in an early stage. In creating such monitoring systems,

the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) suite of specifications

enable the gathering of real time information from heterogeneous sources by introducing a

standard interface for time series. Although many researchers has implemented SWE based

monitoring systems, there has been little work in combining the Sensor Observation Services and

the Web Processing Services (WPS) with 3D visualization methods. Thanks to the recent

advancement in WebGL and HTML5 this research uses the WebGL-based frameworks such as

Three.js and Cesium Virtual Globe JavaScript Libraries to create 3D models on the browser

without a need for any plug-ins. Moreover, this research mainly focuses on developing a

framework for visualization of dynamic data acquired from web services such as sensor

observation services and Web Processing Services. This framework will help Cesiumôs virtual

globe access and visualize the dam model and the sensor water levels from the Sensor Observation

Services. It also visualizes the dynamic height observation data and the interpolated water body

acquired through Web Processing Services in a web-based application. In addition, the application

will provide a further analysis tool in the form of charts that would allow in-depth examination of

changes in height values.

Keywords: dam monitoring systems, 3D visualization, HTML5, WebGL, virtual globes, Sensor

Web Enablement (SWE), Sensor Observation Services (SOS), Web Processing Services(WPS)

iv

Table of Contents

Abstract ééééééééééééééééééééééééééééééééé.....ii

List of Figures ééééééééééééééééééééééééééééé...........v

List of Tables ééééééééééééééééééééééééééééé............vi

1 Introduction ... 1

1.1 Motivation .. 2

1.2 Research Objectives ... 3

1.3 Research questions ... 4

1.4 Thesis structure .. 4

2 Literature and Standards review ... 5

2.1 3D visualization in the context of Dam Monitoring Systems .. 5

2.2 Relevant standards .. 6

2.2.1 CityGML ... 6

2.2.2 OGC Web Processing Service ... 10

2.2.3 OGC Sensor Web Enablement initiative .. 11

2.2.4 CityGML Dynamizer ADE ... 12

2.3 Web-based 3D visualization ... 13

2.3.1 3D modeling standards ... 13

2.3.2 HTML5 and WebGL ... 15

3 Data preparation ... 19

3.1 Study area and data .. 19

3.1.1 Terrain Model ... 21

3.1.2 CityGML Waterbody object ... 23

3.1.3 CityGML of the Dam infrastructures .. 24

3.1.4 Web Processing Services .. 26

3.1.5 Sensor Observation Services ... 28

3.2 Software/Applications used .. 30

3.3 Hardware used .. 30

4 Design and Implementation ... 31

4.1 Available approaches ... 31

v

4.1.1 Representation using a KML Network Link file: ... 31

4.1.2 Direct object generation using Cesium ... 32

4.1.3 Using of Dynamizers .. 32

4.1.4 Visualizing the KML files in the Goggle Earth environment 33

4.1.5 Using CZML ... 34

4.2 High-level architecture ... 35

4.3 Pre-processing .. 37

4.4 Server side: ... 40

4.5 Client side ... 41

4.5.1 Web Browser and WebGL .. 41

4.5.2 Web application .. 42

5 Results and Discussion .. 49

5.1 Web-based interface ... 49

5.2 Initial loading of the dynamic geometries .. 51

5.3 Supporting temporal variations of height/seepage levels ... 53

5.4 Supporting temporal variations in charts ... 55

5.5 Comparison with other WebGL frameworks ... 59

6 Conclusions and Recommendations .. 64

6.1 Conclusion .. 64

6.2 Answers to research questions ... 64

6.3 Recommendation and future works .. 67

7 References .. 69

vi

List of Figures

Figure 2-1: The five LODs defined by CityGML ... 6

Figure 2-2: UML structure of the Waterbody CityGML standard ... 7

Figure 2-3: UML structure of the Tunnel CityGML standard ... 8

Figure 2-4:UML structure of the Transportation CityGML standard ... 9

Figure 2-5:UML structure of the Generic object CityGML standard ... 10

Figure 2-6: The relation of Dynamizers with the input and output sourcese 13

Figure 2-7:glTF pipeline progression of content authoring, conversion, delivery, rendering 14

Figure 2-8:Example CZML file structure ... 17

Figure 2-9:Cesium architecture ... 17

Figure 3-1 : Location of Bever river dam in Bever Block .. 19

Figure 3-2: Areal View of Bever River dam .. 20

Figure 3-3: Map of the Bever River Dam with the water level measurement stations and the

Control tunnel ... 20

Figure 3-4: Existing TAMIS 3D widget ... 21

Figure 3-5: The integration of DEM layers .. 22

Figure 3-6: UML structure of the Waterbody CityGML standard ... 24

Figure 3-7:diagram of the Waterbody CityGML generation process ... 24

Figure 3-8: River Dam Infrastructures CityGML ... 25

Figure 3-9: Roads CityGML model .. 25

Figure 3-10: Control tunnel CityGML .. 26

Figure 3-11: The request JSON example .. 27

Figure 3-12: Example WPS Response Raster ... 27

Figure 3-13: The SOS Request structure .. 28

Figure 3-14:SOS response for a specific timeseries ... 29

Figure 3-15: response for a specific timeseries ... 29

Figure 4-1:KML/glTF structure .. 31

Figure 4-2: Diagram of Dynamizers integration with the WPS ... 33

Figure 4-3: Workflow of visualization of KML in Google Earth Pro .. 34

Figure 4-4: Structure of the CZML file with the Time interval Collections 35

Figure 4-5: Diagram of the High-level Architecture .. 36

Figure 4-6: Workflow for integration of Models and the OGC services with Cesium 37

Figure 4-7: KML/GlTF generation process .. 38

Figure 4-8: KML to CZML conversion process ... 39

Figure 4-9: Applicationôs flow diagram ... 42

Figure 4-10: The Nearest Neighbor Algorithm used for resampling .. 45

Figure 4-11: Surface members value update mechanism ... 46

Figure 5-1: Initial Application interface ... 49

Figure 5-2: Initial Application interface ... 49

https://d.docs.live.net/644d90c58b7d51a5/AmirBaghdoust%20-Expose%20-Master%20ThesisFIANL1.docx#_Toc483483862

vii

Figure 5-3: Loaded Models with the water surface .. 51

Figure 5-4: The Water level data for stations ... 52

Figure 5-5: Seepage Level Layer .. 52

Figure 5-6: Model's behavior on selection .. 52

Figure 5-7: Visualization of the dynamic water level data in 4 time stamps 53

Figure 5-8:The Buffer indicator .. 54

Figure 5-9: Visualization of the dynamic Seepage level data in three different time stamps 55

Figure 5-10: Visualization without the underground data .. 55

Figure 5-11: Interactive chart section of the application .. 56

Figure 5-12: Drop down menu for selecting timeseries to be added to the chart 57

Figure 5-13: Station geometry selection for adding timeseries data to the chart 57

Figure 5-14: Selection of waterbody cell data to be added to the chart .. 58

Figure 5-15: The water level indicator gauge ... 59

Figure 5-16: Initial Web interface of the extended Three.js based 3D widget 60

Figure 5-17: Water level on the exit gates during two different time stamps 61

Figure 5-18: Visualization of subsurface models ... 62

List of Tables

Table 3-1: Used Software ... 30

Table 3-2: Used Hardware .. 30

Table 4-1: comparison of COLLADA and GlTF's performance .. 38

Table 5-1: Comparison of the Three.js and Cesium.js Libraries in creating a dynamic dam

monitoring 3D application .. 62

https://d.docs.live.net/644d90c58b7d51a5/AmirBaghdoust%20-Expose%20-Master%20ThesisFIANL1.docx#_Toc483483869

1

1 Introduction

Natural disasters constantly threaten the safety of dams as man-made structures that are subject to

direct natural exposure. Potential damages associated with dams usually stem from the failure of

the structure due to overtopping, seepage water flow, and deformation("Research Project TAMIS,"

2014). This makes the implementation of monitoring techniques essential to detect any potential

for damage in an early stage.

 Relevant data for damsô risk management involve information from hydrological measurements,

geological data, and the damsô constructions standards. This information is currently collected

independently and lacks the temporal and spatial consistency. Thus, preventing the integration of

the measured elements for a comprehensive analysis. In this context, a dam monitoring system

allows for the combination of the multiparametric data acquired from the ground sensors with

geoprocessing and visualization capabilities. Numerous properties can be measured in such dam

monitoring systems including temperature, precipitation and physical properties such as seepage

and water level at the ñAirò site.

Increased seepage may be associated with internal erosion in the dam. Internal erosion is one of

the main reasons for dam failures (Sjödahl, Dahlin, & Zhou, 2006). However, itôs hard to detect

this internal erosion by conventional methods. Hence, new approaches should be developed to

monitor seepage water with the help of its contributing factors such as damôs water level and

precipitations. Considering the fact that the water level is measured in height above sea level, 3D

visualization can help the user acquire more knowledge and information from these sources in

contrast to 2D visualizations.

Also, by providing the variation of the water level through time, there can be a more

comprehensive monitoring system for the user. All these are made possible through the

introduction of Sensor Web infrastructures that enables a setup to access real-time data observed

by sensors. This data can be used in combination of the 3D web-based technologies to represent a

real-time visualization of the current state of water levels in the dam.

With the help of 3D visualizations, users can grasp a more realistic view of the objects in

comparison to the conventional 2D plans, hence, making its application ideal for the case of water

level monitoring. In addition, with the advancements in computer graphics, high computational

devices and the latest trend in web technologies (such as HTML5 and WebGL), the realization of

3D models in the web environment is easier than before. The combination of HTML5 and WebGL

enables the web browsers to provide tools for analyzing and representing the 3D world without

the need of any plug-in.

Furthermore, the developments of the WebGL-based frameworks such as the JavaScript libraries

Three.js and Cesium Virtual Globe have provided good possibilities in creating 3D content without

the need for low-level programming.

2

1.1 Motivation

The introduction of WebGL and HTML5 enables the realization of 3D visualization directly within

the browser without the need of a plugin. And various virtual globes such as Cesium Virtual Globe

have been developed based on this combination. One of the main challenges in 3D Visualization

using the WebGL and HTML5 combination technologies is the visualization and analysis of 3D

objects. These objects can be buildings or in the case of a dam monitoring system the infrastructure

models and the water surface generated from height points. These objects are usually represented

using CityGML that will include the spatial and graphical aspects of the objects along with the

attributes.

The Digital Earth envisions a multi-resolution, three-dimensional representation of the planet in

order to find, visualize, and make sense of vast amounts of geo-referenced information on the

physical and social environment (Craglia et al., 2012). To achieve this goal standardized

observations infrastructures and easily available visualization technologies should be put in place.

However, the lack of efficient visualization systems through the web and interoperable frameworks

that allow standardizing the access to the city models, have limited the use of these datasets and

various researchers try to overcome these bottlenecks. The work of (Chaturvedi, Yao, & Kolbe,

2015) defines a framework and implementation of a web-based 3D client for processing,

visualization, and analysis of very large semantic 3D city models. Consequently, it represents how

Cesium can be used in 3D visualization and illustrates how it can be tailored for objects with

complex semantics. The efficient visualization client introduced in the mentioned paper allows

for the interaction with CityGML features. Therefore, the 3D models can now be easily

implemented with web based Cesium applications.

Furthermore, (Schilling, Bolling, & Nagel, 2016) also provides an alternative solution to render

huge 3D city models on the web browsers. They evaluate the newly introduced glTF formats usage

in combination with Cesium.js. This paper also considers the use of glTF/B3DM/3D Tiles in

Cesium.js which stores the vertices separately and increases the rendering performance and

provides storable attributes.

Systems with support for the OGC Sensor Web Enablement (SWE) suite of specifications are

capable of gathering information from heterogeneous sources by introducing a standard interface

for time series. This technology is proven to be reliable and is being used in many projects in

firefighting and pollution control. In addition, the application of Sensor Web in flood warning

scenarios has been demonstrated by (Spies & Heier, 2008). Geoprocessing systems provide

algorithmic functionality for spatiotemporal data. This is possible when geoprocessing

functionalities are published as web services and standardized interfaces.

Considering all the work above in the field of SWE based monitoring systems, there has been little

work in combining these Sensor Observation Services with 3D visualization methods. Nonetheless

3

(Bröring, Vial, & Reitz, 2014), tried to present an approach for processing real-time sensor data

streams to enable scalable Web-based 3D visualizations while focusing on processing efficiency.

Despite all the developments in the field, many research challenges including finding the optimal

information density and incorporation of 4th dimension in the form of time different elements

within the 3D models have not been thoroughly discussed.

The addition of time in an interactive GIS poses interesting challenges both conceptually and

regarding implementation (Arsenault et al., 2004). However, platforms such as Cesium.js provide

the necessary building blocks for time varying data visualization that has not been yet fully taken

advantage of. The work of (Chaturvedi & Kolbe, 2016) proposes a new concept, ñDynamizers,ò

which allows integrating dynamic and time-dependent data with semantic 3D city models such as

CityGML. This approach not only allows representing dynamic data in different and generic ways

but also enhances spatial, thematic and appearance properties of static city objects by dynamic

property values. In addition, the Dynamizers also establish the explicit links between sensors and

the respective properties of the city model objects that are measured by them. However, the

technology is yet to be implemented in 3D geodatabases.

Furthermore, as these visualization technologies become more mainstream there will be more

demand for more real-time data visualization, this gives a great opportunity for integration of real-

time data sources such as Sensor Observation Service with the currently available frameworks

such as Cesium.js.

However, considering the challenges regarding visualizing of spatiotemporal data and taking into

account the advantages of WebGL based platforms such as Cesium.js, this study is motivated

toward developing a framework for visualization of dynamic data acquired from web services such

as sensor observation services and Web Processing Services. This framework will help Cesium

access and visualize the dam model and the sensor water levels from the Sensor Observation

Services. It also visualizes the dynamic height observation data and the interpolated water body

acquired through Web Processing Services in a web-based application.

1.2 Research Objectives

The core objective of this research will be to develop a framework to implement 3D visualization

of water level data, the dynamic variation in the height levels and the seepage water level using

the OGCôs Sensor Web Enablement (SWE) framework and Sensor Observation Services data

within the Cesium.js as a browser-based WebGL enabled platform. The application would provide

further analysis tool in the form of charts that would allow in-depth examination of changes in

height values.

4

1.3 Research questions

- What is the most suitable format to visualize water bodies and the surrounding building

structure for the mentioned dam monitoring system in the web browser using Cesium virtual

globe?

- What is the most efficient way to retrieve dynamic data from Web Processing Service and

Sensor Observation Service?

- What is the most efficient way to visualize such time-dynamic variations using Cesium.js?

- How can the dynamic 3D visualization model of water level within the dam monitoring system

help realȤtime prediction of potential natural hazards and detection of irregularities in the dam

structure?

- How can the gauge readings be visualized within a line graph as a navigable feature along the

timelines?

1.4 Thesis structure

The organization of this thesis is presented as follows:

Chapter 1: Introduction, this section includes the general overview concerning the topic. It

discusses the background and the motivation behind the research. The research question and

objective are also presented in this chapter.

Chapter 2: Literature Review, the chapter will elaborate the essential components of the research.

The chapter will also include the relevant standards and technologies necessary for the study.

Chapter 3: Data preparation, this part will introduce the utilized datasets and the additional steps

required for incorporating the data into the visualization pipeline.

Chapter 4: Design and Implementation, the methodology used in integrating the OGC standards

and the data models in the Cesium framework is described. In this section, the high-level

architecture and its essential implementation components are proposed.

Chapter 5: Results and discussions, in this part of the research, the obtained results at each

implementation step is presented.

Chapter 6: Conclusion and Recommendations, as the final chapter, the section will answer the

primary research questions and consequently, provide some recommendation for future studies.

5

2 Literature and Standards review

This section describes all sensor web technologies besides the browser components and the 3D

object models necessary for the proposed study. In addition, the previous works in the field of

Dam monitoring context visualization of CityGML data are presented.

2.1 3D visualization in the context of Dam Monitoring Systems

Ensuring the safety of Dams as a man-made structure is only possible if there is a comprehensive

monitoring system in place. In light of this, there have been many attempts to present the dam

inspecting bodies with an online monitoring system that can oversee the infrastructures condition

through day and night and help the user prevent any possible damage to the dam and the

surrounding environment. Such systems try to couple 2D graphs with real-time data in order to

infer some understanding from the gathered data. This is visible in the works of (Zimmerman,

Jordan, & Newell, 2016) where they create a portal for the users to access charts and reports and

see possible alarm notifications quickly. The system enables the integration and combination of

sensors and data sources from different vendors. In these systems, there is no representation of

geospatial data. Other toolkits provide some level of geospatial visualization by integrating a 2D

map of the area within the monitoring toolbox. (Yang, Bao, Liang, Mi, & Yang, 2009) Is an

example of this approach where sensor data are visualized on the map using OpenLayers1 library.

The interface in this application helps detect any overflow of the dam.

 In relation to 3D Dam data visualization, typically the researchers focus on highlighting different

parts of the dams. Such studies include visualization of geometric surfaces, lithological and

hydraulic level properties done by (Dominguez-Acosta, Granados-Olivas, Hibbs, Eastoe, &

Hawley, 2004) and the visualization of groundwater and surface features for hydraulic erosion for

various types of dams carried out by (Chen et al., 2011). These models are not browser based and

are specific to one feature of the dam. Moreover, the final output is not part of a complete dam

monitoring toolkit.

On the other hand, some research visualizes the dam body and its elements in 3D representation

inside a web platform in order to maximize the accessibility of the tools. In these visualizations

such as (Pantea, Hudson, Grauch, & Minor, 2011)The data is mostly coupled with additional

information from various sources to enhance the understanding of the context. Also, (Wu, Cui, &

Zhong, 2012) and (Fan et al., 2016) depicts a web-based 3D visualization of the dam based on

Unity3D2 Game engine. The first paper integrates the damsô dynamic data from a database with

the 3D models on a web client to represent the current state of the dam to the construction

managers. In this application, the models are created using 3ds Max before being fed into the

Unity3D engine. The latter paper, however, shows the 3D visualization system for damôs

1 https://openlayers.org/
2 https://unity3d.com/

6

foundation curtain grouting. In this work, a combination of parameters measured on the site is sent

to the server using a short distance wireless network. This information is then visualized using the

Unity3D engine.

The available approaches in using the Unity3D engine in creating the visualizations can be

extremely cumbersome. This is because Unity3D doesnôt have access to the DOM elements when

creating interactive features. Moreover, the Unity3D engine is mainly a game engine and doesnôt

only focus of web based visualizations. The proprietary nature of the product also discourages the

implementation of the tool in a commercial Dam monitoring context.

Considering all the mentioned literature, it is evident that little or no work has been carried out to

visualize OGC Sensor Web Enablement data as part of dynamic 3D visualization toolkit that would

enable in-depth analysis of the damôs conditions in a browser environment using open source

libraries.

2.2 Relevant standards

The standards used in conducting this research is disrobed in this section.

2.2.1 CityGML

City Geography Markup Language (CityGML) is an open data model and XML-based format

for the storage and exchange of virtual 3D city models. CityGML models both complex and

georeferenced 3D vector data along with the semantics associated with the data. CityGML

allows defining different thematic modules such as buildings, streets, vegetation as well as

water bodies. Additionally, it provides functionality to represent the scale of the specific object

with the help of five consecutive Levels of Detail (LOD) (Gröger, Kolbe, Nagel, & Häfele,

2012). The 3D objects become more detailed with increasing LOD.

Figure 2-1: The five LODs defined by CityGML (Gröger et al., 2012).

7

Multiple modules represent the version 2.0.0 of CityGML (based on OGC 12-019) (Figure 2-

1). The vertical modules provide the definitions of the different thematic models like building,

relief (i.e. di,digital terrain model), city furniture, land use, water body, and transportation, etc.

The waterbody module (based on OGC 12-019, cityGML V 2.0.0) is of great importance in

this research. The module will represent the three-dimensional geometry of the underground

waters, and it also includes a dynamic element of WaterSurface to represent temporarily

changing situations of tidal flats. The module can also include the optional

WaterGroundSurface and WaterClosureSurfaces which represent the basin and the boundaries

between waterbodies respectively.

The Figure 2-2 depicts the UML diagram of the Waterbody module

Figure 2-2: UML structure of the Waterbody CityGML standard(Gröger et al., 2012)

The LOD1 mainly used in this research will include a highly generalized surface and is

represented as MultiSurface. Based on the diagram this attribute can be assigned to a

combination of different geometry types. However, for this research, the polygon

representation of the geometry is selected.

The other utilized cityGML modules include the Transportation, Tunnel and Generic cityGML

elements.

The tunnel module(based on OGC 12-019, cityGML V 2.0.0) used in this research represents

the control tunnel under the Dam structures. The model supports the representation of thematic

and spatial aspects of tunnels and tunnel parts in four levels of detail(Gröger et al., 2012) . The

chosen level of detail for this project was the LOD3 without the walls to better depict the

underground infrastructures.

Figure 2-3 shows the UML diagram of the Tunnel module. In this module, the _AbstractTunnel

is the key class which is a subclass of the thematic class _Site. This class can either be

8

specialized to a Tunnel or to a TunnelPart. A _AbstractTunnel usually consists of TunnelParts,

which again are _AbstractTunnels.

Figure 2-3: UML structure of the Tunnel CityGML standard(Gröger et al., 2012)

Moreover, the transportation objects represent the thematic and special aspects of the road data;

these objects are described by 3D surfaces in the Transportation CityGML module (based on OGC

12-019, cityGML V 2.0.0). The LOD 1 illustration of the data is chosen to visualize the

surrounding dam area. Figure 2-4 depicts the UML diagram of the CityGML Transportation

9

model. Based on the OGC standards description (Gröger et al., 2012) the main class in this model

is TransportationComplex, which represents a road or any other major transportation feature. In

the chosen LOD1 this class provides a surface geometry for describing the shape of the road. This

can be broken down into different sections of the road network as various TrafficAreas however

in this research only the general shape of the roads is considered.

Figure 2-4:UML structure of the Transportation CityGML standard (Gröger et al., 2012)

Other dam facilities such as waterways and the integral dam structures also need to have some

standardized 3D representation. Since none of the existing cityGML models represent these

facilities, they are visualized using the Generic CityGML Module. These generic extensions to the

CityGML data model are realized by the classes GenericCityObject and _genericAttribute defined

within the thematic extension module Generics(Gröger et al., 2012).

To represent the geometry of the GenericCityObject, an arbitrary 3D GML geometry object GML3

geometry is used as an explicit representation. The following Figure 2-5 denotes the UML diagram

of the generic CityGML modules.

10

Figure 2-5:UML structure of the Generic object CityGML standard (Gröger et al., 2012)

2.2.2 OGC Web Processing Service

The OGC Web Processing Service (Version 1.0.0, OGC 05-007r7) Standard describes how to

access geospatial processes from a web interface. The service provides client access to pre-

programmed calculations and/or computation models that operate on spatially referenced

data(Schut, 2007). The geoprocessing offered by this service based on the definition of online

geoprocessing presented by (Hofer, 2015), can be described as the manipulation of the geospatial

data for generation of novel web based outputs. This involves numerous operations from

intersection to interpolation models.

The main operations within the WPS standard are threefold. The operation to obtain the service

metadata (GetCapabilities), The operation to obtain the process metadata (DescribeProcess) and

the operation to run processes (Execute) (Mueller & Pross, 2015). Creating a complete request

requires adding of parameter identifiers and values to these operations. This result can be sent to

the WPS server using HTTP Get, where the server will respond by sending an XML file or using

HTTP Post where an XML file is sent from the client to the server. The HTTP get is used mainly

for the GetCapabilities, and DescribeProcess operations and the HTTP Post is primarily used for

the Execute operation. The execution process can be run synchronously or asynchronously. The

asynchronous execution is favored for the more time-consuming processes. Therefore, in this type

11

of execution, an immediate status information response is sent to the user after the request has been

sent. The response will also include a result location that can be accessed as soon as the process is

finished.

The output of a WPS process is always an XML document. And just like the input requests, the

output XMLôs structure is defined in the OGC WPS 2.0 Interface Standard (14-065). The

existence of a prescribed XML structure enables the developers to create applications that can read

the WPS output documents.

2.2.3 OGC Sensor Web Enablement initiative

The OGC Sensor Web Enablement (SWE) standards suite specifies interfaces and data encodings

to enable real-time integration of heterogeneous sensor networks. In this way, most types of

sensors can be discovered, accessed and reused for creating web-accessible sensor applications

and services. It focusses mainly on geo-sensors; whose georeferenced location is an important

factor and produces georeferenced observation data. SWE contains two important information

models (Mike Botts, Reichardt, & Outreach, 2006):

o Sensor Model Language (SensorML) (version 2.0, OGC 12-000), which defines an

XML schema for describing the processes within sensor and observation processing

systems, and provides information needed for discovery, geo-referencing, and

processing of observations(M Botts, Robin, Greenwood, & Wesloh, 2014).

o Observations & Measurements (O&M) (Version 2.0.0, OGC 10-025r1) ,which is a

generic information model for describing observations(Cox, 2011).

Sensor Modelling Language details the sensing procedure attribute defining a skeletal framework

to model sensing devices(Mike Botts, 2007) .According to O&M, SensorML models an entity that

performs observations(Cox, 2011). It models physical sensing devices as processes, enabling the

transformation of input into an output. Although its focus lies on modeling physical sensor systems

and processing of sensor observations, it can be applied in a broader way for modeling any type

of process and process chains(Mike Botts, 2007).

O&M, on the other hand, provides a model for observations, their results, and supplementary

attributes. It has been approved as an ISO standard (ISO/TC211, 2010). The second version of this

implementation is currently available. An observation herein is defined as an act performed by a

procedure, such as a sensor, over time or instant. Its result is an estimation of the value of a property

of some feature. Besides that additional information, such as observation time, spatial location, the

feature of interest or the sensing procedure can be listed (Cox, 2011).

In addition, SWE provides different interface models and web services. The most important service

within the scope of this research work is the Sensor Observation Service (SOS) (Version 1.0.0,

OGC 06-009r6) (Arthur Na & Priest, 2007). It defines an open interface by which a client can

12

obtain observation data and sensor and platform descriptions from one or more sensors. The

response of the SOS is encoded in O&M and uses the SensorML specifications to provide an

interface to make sensors and sensor data archives accessible via an interoperable web-based

interface.

SOS aims to carefully model sensors, sensor systems, and observations in order to cover all

different kinds of sensors and to support the different requirements of users in the case of using

sensor data in an interoperable way(Arthur Na & Priest, 2007). The SOS response represents the

aggregate readings from live, in-situ and remote sensors. SOS allows a user to send requests based

on spatial, temporal and thematic criteria (Bröring, Echterhoff, Jirka, Simonis, & Lemmens, 2011).

Moreover, implementing this system helps increase the accessibility to the different environmental

data in a critical situation. In the SOS used for this project, the values of the reading are shown as

time series for each sensor station and enable the querying of sensor reading for any desirable

timespan.

2.2.4 CityGML Dynamizer ADE

While CityGML is a useful tool in simulating 3D contents, it currently lacks the support for time-

varying properties. Dynamizers can be described as a mechanism for storing dynamic values

separately from the original attributes in CityGML. This feature is an extension to CityGML which

stores dynamic variations and overrides the specific properties of the CityGML feature property

(Chaturvedi & Kolbe, 2016). The proposed schema of the output CityGML contains dynamic

values in special types of features. These values are considered as ómodifiersô to the static values

of the CityGML feature attributes. The dynamizers are defined as feature types consisting of

attributes attributeRef, startPoint, and endPoint (Chaturvedi & Kolbe, 2016). The Figure 2-6

depicts the nature of the Dynamizer feature as a bridge between the dynamic data sources and the

city object models.

13

Figure 2-6: The relation of Dynamizers with the input and output sources(Chaturvedi & Kolbe, 2016)

For integrating sensor data inside cityGML, allows for the explicit linkage to sensors. This is done

by linking of sensor observations with the respective city model objects. Hence, Dynamizers can

enhance static waterbody models used in this research by introducing the dynamic property values.

The mentioned concept is intended to be proposed to become part of the next version of CityGML

(version 3.0) therefore it is only considered at the conceptual level in this research. And a practical

implementation is not considered.

2.3 Web-based 3D visualization

While CityGML enables better information sharing in the context of 3D models, it also enables

the various analysis on the 3D models. However, the sheer size and complexity of the CityGML

models hinder the effective browser based visualization of such file. As a result, visualization of

CityGML files on the web has become an essential area of research today (Prieto, Izkara, &

Delgado del Hoyo, 2012). In order to achieve the plugin-independent visualization of the CityGML

data on the browser, the browser friendly 3D formats have to be utilized. These formats and the

underlying HTML5 and WebGL requirements for achieving the research goal are described in this

section.

2.3.1 3D modeling standards

CityGML can be considered the best suitable standard to represent 3D dataôs geometry and

semantic information. However, the complexity and the large size of the CityGML files hinders

their web-based visualizations. Therefore, several 3D standards such as glTF and COLLADA are

14

introduced in order to visualize 3D data inside a web browser better. This section describes these

data standards.

- glTF:

GlTF(GL Transmission Format) is a royalty-free specification for the efficient transmission

and loading of 3D scenes and models by applications. glTF minimizes both the size of 3D

assets and the runtime processing needed to unpack and use those assets. It has also been

designed with the modern graphics card and web technologies, especially WebGL in mind.

The format combines an easily parseable JSON scene description with one or more binary files

representing geometry, animations, and other rich data(Khronos, 2016).

Khronos is promoting glTF as the standard 3D format for the web. glTF is created using a

COLLADA digital asset exchange (dae) files. These files were established as an ISO standard

in 2013. The parent COLLADA format is widely supported as an export file type option across

many 3D software. However, while the collada DAE is a single file, the collada2gltf converter

outputs multiple files. Khronos supports both glTF and Collada, besides managing the OpenGL

and WebGL standards.

In glTF rather than capturing the full fidelity of the entire scene data only the essential scene

elements necessary for the visualization are kept. Moreover, collada2gltf then optimizes the

kept data elements in multiple ways. This process makes the files more readily consumable by

WebGL. Depicted in Figure 2-7 is the workflow of 3D modelsô conversion to glTF format.

Figure 2-7:glTF pipeline progression of content authoring, conversion, delivery, rendering(Trevett, 2013)

- COLLADA:

COLLADA (COLLAborative Design Activity), is an open Digital Asset Exchange Schema for the

interactive 3D industry. COLLADA is a standard of the Khronos group3.The format defines an

open standard XML schema from which digital contents of assets can be easily retrieved.

COLLADA documents are XML files, usually identified with a ó.dae.' (digital asset exchange)

filename extension(Khronos, 2016). COLLADA is an intermediate language for transporting data

among various interactive 3D applications this means that the file type tries to be as detailed and

3 http://www.khronos.org/

15

explicit as possible to represent a complete picture of the visualization. This means that

COLLADA will provide comprehensive encoding for geometry, shaders, physics, and kinematics.

The high level of details in the COLLADA files undermines their effectiveness on browser-based

visualization.

In this research, the two file formatsô size and performance are compared in the data preparation

chapter to select the most appropriate file format for the visualization.

2.3.2 HTML5 and WebGL

As the GIS applications move from the conventional desktop versions toward web platforms, the

need for a platform-independent solution is evident. HTML as the enabler of this visualizations

has come a long way from the static pages. The latest revision of HTML known as HTML5 is an

extremely powerful platform for running sophisticated applications. The available advanced

graphical technologies such as the Canvas element, WebGL and CSS3 3D and scalable vector

graphics (SVG) enable the interactive 3D experience on the browser without the need for external

plugins.

WebGL as an extension of the HTML5 Canvas element is the standard 3D graphics API for the

Web written in a low-level language and is based on OpenGL ES 2.0. However, there are several

open source JavaScript toolkits that provide higher-level access to the API to make it look more

like a traditional drawing library (Parisi, 2014). Some of the notable frameworks in the context of

visualizing geographic data worth mentioning include:

- Three.js: Three.js is a JavaScript based library, which creates 3D contents on the web

browser with a very low level of complexity. It is lightweight in nature and can perform

rendering with the help of HTML5 canvas, SVG and WebGL (Mrdoob, 2013). The built-

in file format support available in Three.js permits the parsing of JSON or COLLADA file

formats. In addition, the library provides the necessary interaction by enabling object

picking which makes it easy to add interactivity to the applications.

Another solution for visualizing GIS data on the web is to utilize the existing Virtual Globes. These

globes enable the visualization of global geospatial data and allow for the interaction between

the data and the user. The virtual Globes not only reduces the effort of manually accessing archives

of satellite imageries but also allows users to interact and extract content from the globe in real

time on the web (Elvidge & Tuttle, 2008). Among the available Virtual Globes such as WebGL

Earth (Klokan Technologies, 2011), OpenWebGlobe (Christen & Nebiker, 2011) and

Cesium(Analytics Graphics Inc, 2016), Cesium is the only open source solution that has good

maintenance by its user community and enable the integration of numerous data sources, creation

of cameras and geometry objects. Therefore, this library is chosen and elaborated in following

16

 - Cesium.js: Cesium (Analytics Graphics Inc, 2016)is an open sourced JavaScript Library

that enables the creation of 3D globes or 2D maps with only a few lines of code on the web browser.

This library has the following features that can help enhance the visualizations:

¶ Cesium is open source code under the Apache 2.0 license, which means, it is free for

commercial and non-commercial use.

¶ Cesium supports imagery layers using Bing, OpenStreetMaps, ESRI standards and it also

supports the integration of imagery from external TMS.

¶ It also shows vector data from various sources such as KML, TopoJSON, GeoJSON and

ESRI shapefiles.

¶ Cesium provides Cesium a material system to change the objectsô appearance to adapt to

the user needs.

¶ It supports math libraries that include the major reference frames such as World Geodetic

System (WGS84) and International Celestial Reference Frame (ICRF). The libraries have

built-in functions to support the coordinates and Cartesian conversions.

¶ The Cesium Virtual Globe allows for the visualization of dynamic time dependent elements

with the help of Cesium language (CZML).

CZML is a JSON format for describing a time-dynamic graphical scene, primarily for

display in a web browser running Cesium. While Cesium has a rich client-side API, CZML

enables Cesium to be data-driven. This gives the generic Cesium viewer the possibility to

show a rich 3D scene without the need for any custom code. In many ways, the relationship

between Cesium and CZML is similar to the relationship between Google Earth and

KML (AnalyticalGraphics Inc, 2016). The easy to parse JSON structure of the CZML files

makes way for incremental streaming of data to the client. This means the entire document

doesnôt need to be present before the scene can be displayed. The most important feature

of the CZML format is the accurate description of properties that change value over time.

Clients are also expected to be able to interpolate over time-tagged samples. Within CZML

every property can be time-dynamic. Figure 2-8 shows an example CZML file structure

where a sample property is represented as dynamic values.

17

Figure 2-8:Example CZML file structure (Source: Analytics Graphics, Inc., 2011)

Cesium architecture as a client-side virtual globe is organized in four layers shown in Figure 2-9

below.

Figure 2-9:Cesium architecture (Source: Analytics Graphics, Inc., 2011)

The image shows the level that each layer is used by the applications. Generally, each layer stacks

functionality over the previous layer and raises the level of abstraction. The layers are:

¶ Core ï Contains low-level functions such as the number crunching like linear algebra,

intersection tests, and projections.

¶ Renderer ï This layer is a thin abstraction over WebGL. It comprises the already available

GLSL functions to provide, textures and shader programs.

[
 // packet one
 {
 "id" : "GroundControlStation"
 "position" : { "cartographicDegrees" : [- 75.5 , 40.0 , 0.0] },
 "point" : {
 "color" : { "rgba" : [0, 0, 255, 255] },
 },

 " someProperty " : [
 {
 " interval " : " 2012- 04- 30T12:00:00Z/13:00:00Z " ,
 " number" : 5
 },
 {
 " interval " : " 2012- 04- 30T13:00:00Z/14:00:00Z " ,
 " number" : 6
 },

 },
 // packet two
 {
 "id" : "PredatorUAV" ,
 // ...
 }

18

¶ Scene - Scene is mainly built on Core and Renderer to provide relativity high-level map

and globe constructs like imagery layers, polylines, labels, and cameras.

¶ Dynamic Scene ï As the top layer of abstraction, this layer handles the time-dynamic

visualization constructs including CZML rendering. Instead of frame by frame rendering,

this layer enables the storage, loading, and rendering of the data in dynamic objects

altogether.

Furthermore, an extensive comparison of the two mentioned libraries is provided in the result

section of this thesis.

19

3 Data preparation

The following section includes two main parts. The first one identifies the study area, the available

datasets and the data preparation steps taken for obtaining the initial the necessary preliminary data

for the visualization. The second part describes the hardware and software tools required for

execution of this research.

3.1 Study area and data

The chosen site for this research is the Bever river dam located in the catchment area of the river

Wupper, a tributary of the river Rhine in Western Germany. This area is a subsection of the

TAMIS4 research projects area of interest which is known as the Bever-Block. The

Wupperverband 5(Wupper Association) as a responsible body for management of the water

volume and water of the Wupper river has established a web-based system for visualization and

analysis of the sensor data located along the watershed. The existence of the extensive sensor

technologies on the dam and the already implemented web interface has led us to choose this area

for the implementation of this research project. The Figure 3-1 below illustrates the relative

position of the Bever block area within Germany besides the network clusters of the Bever-Block

reservoir system.

Figure 3-1 : Location of Bever river dam in Bever Block

The Figure 3-2 and Figure 3-3 denote the Bever River damôs aerial view and the plan view of the

area respectively. Also, the plan view includes the control tunnel of the dam, the location of the

water level sensors and an example of the sensor types with their relative positions. These series

4
 http://tamis.kn.e-technik.tu-dortmund.de

5 http://www.wupperverband.de

20

of water level sensors on the ground and seepage sensors inside the control tunnel below the

surface continuously monitor the damôs behavior. These sensors are part of various sensor

technologies that track the changes on the dam. The control tunnel shown in the image stretches

along the dam wall and provides access to the essential damôs infrastructures.

Figure 3-2: Areal View of Bever River dam

Figure 3-3: Map of the Bever River Dam with the water level measurement stations and the Control tunnel

The Existing Dam Monitoring system at TAMIS project already includes a 3D component

developed by the author. This widget uses the powerful Three.js library, described in the WebGL

technologies of the second chapter, to show the latest SOS values of the water levels on the terrain

model. However, the model has no support for the WPS interpolation surface and dynamic data.

The support for the mentioned WPS surfaces and the dynamic data values are implemented as part

Seepage sensors

Control Tunnel
Water level sensors

21

of this thesis. In addition, the support for the integration of 3DCityDB6 exported KML/COLLADA

files are developed as part of this thesis to compare the functionalities of Cesium and Three.js.

Figure 3-4 pinpoints the currently available 3D widget in the TAMIS control center. The

application includes layersô list where the user can select each station and see the latest water levels

values.

Figure 3-4: Existing TAMIS 3D widget

In the following section, the data used in the research and the necessary processing for their

integration into the 3D model are presented.

The required data for caring out the implementation of this application mostly need some level of

preprocessing. This is because an efficient visualization pipeline entails standardized data sources

that can be recreated for other Dam facilities. Therefore, the available data for the dam are

converted into CityGML as the most suitable standard for representing virtual 3D city models.

This model will also facilitate the future updating of the models. And since the data is represented

in different levels of detail (LOD) the infrastructure data can be further developed to include more

detailed model definitions.

3.1.1 Terrain Model

The terrain model for this project includes numerous sources. The original Digital Elevation Model

(DEM) for the immediate area around the Bever River Dam has been created using the equally

spaced point data provided by Wupperverband. This dataset is converted into a Raster surface

6 http://www.3dcitydb.org/3dcitydb/3dcitydbhomepage/

22

using QGIS (Version 2.12.0) providing the DEM model with the resolution of 8.6 meters in cell

size.

 Notwithstanding, the coverage of this terrain model when visualized on the Cesium globe is not

sufficient and creates an island disconnected from the surrounding. To resolve this problem, since

Cesium can handle bigger data terrain models, a larger data set with the lower resolution was used

to create a more comprehensive terrain model that would comprise a vaster area. For this purpose,

the openly available DEM from the DLR7ôs SRTM X-SAR project with the spatial resolution of

25 meters was utilized. A combined layer from the overlap of the small higher resolution image

and the lower resolution DEM creates the broad terrain basis for the visualization (Figure 3-5).

Figure 3-5: The integration of DEM layers

However, to use the generated Heightmap in Cesium, the output raster has to be converted into

tile dataset format. Each tile in the Terrain Tile format contains 65 x 65 height values, with small

overlap on the edges of the tiles to create a seamless terrain. Cesium translates the Heightmap

tiles into a uniform triangle mesh. Cesium also supports quantized-mesh-1.08 format for the input

terrain data. However, there is no open source software for creating these quantized-mesh

surfaces at the time of this research. Therefore, the Heightmap tiles were generated using the

Cesium Terrain Builder as a command-line utility developed by the GeoData Institute,

University of Southampton 9. The tool will return a set of tiled ñ. terrainò files in different zoom

levels. This layer folder, when placed on a local server, can be used by Cesium for drawing the

ground information.

7 http://www.dlr.de/eoc/en/
8 https://cesiumjs.org/data-and-assets/terrain/formats/quantized-mesh-1.0.html
9 https://github.com/homme/cesium-terrain-builder

�^�Z�d�D��
�����D���(�Œ�}�u��

�����D���(�Œ�}�u��
�W�}�]�v�š��

���o���À���š�]�}�v

�&�]�v���o��
�����D

