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Abstract  

Natural disasters constantly threaten the safety of our infrastructures including dams. The potential 

damages associated with dams usually stem from the failure of the structure due to overtopping, 

seepage water flow, and deformation. Therefore, the implementation of monitoring techniques is 

essential in detecting any potential damage in an early stage. In creating such monitoring systems, 

the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) suite of specifications 

enable the gathering of real time information from heterogeneous sources by introducing a 

standard interface for time series. Although many researchers has implemented SWE based 

monitoring systems, there has been little work in combining the Sensor Observation Services and 

the Web Processing Services (WPS) with 3D visualization methods. Thanks to the recent 

advancement in WebGL and HTML5 this research uses the WebGL-based frameworks such as 

Three.js and Cesium Virtual Globe JavaScript Libraries to create 3D models on the browser 

without a need for any plug-ins. Moreover, this research mainly focuses on developing a 

framework for visualization of dynamic data acquired from web services such as sensor 

observation services and Web Processing Services. This framework will help Cesiumôs virtual 

globe access and visualize the dam model and the sensor water levels from the Sensor Observation 

Services. It also visualizes the dynamic height observation data and the interpolated water body 

acquired through Web Processing Services in a web-based application. In addition, the application 

will provide a further analysis tool in the form of charts that would allow in-depth examination of 

changes in height values. 

 

Keywords: dam monitoring systems, 3D visualization, HTML5, WebGL, virtual globes, Sensor 

Web Enablement (SWE), Sensor Observation Services (SOS), Web Processing Services(WPS) 
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1 Introduction  

Natural disasters constantly threaten the safety of dams as man-made structures that are subject to 

direct natural exposure. Potential damages associated with dams usually stem from the failure of 

the structure due to overtopping, seepage water flow, and deformation("Research Project TAMIS," 

2014). This makes the implementation of monitoring techniques essential to detect any potential 

for damage in an early stage. 

 Relevant data for damsô risk management involve information from hydrological measurements, 

geological data, and the damsô constructions standards. This information is currently collected 

independently and lacks the temporal and spatial consistency. Thus, preventing the integration of 

the measured elements for a comprehensive analysis. In this context, a dam monitoring system 

allows for the combination of the multiparametric data acquired from the ground sensors with 

geoprocessing and visualization capabilities. Numerous properties can be measured in such dam 

monitoring systems including temperature, precipitation and physical properties such as seepage 

and water level at the ñAirò site.  

Increased seepage may be associated with internal erosion in the dam. Internal erosion is one of 

the main reasons for dam failures (Sjödahl, Dahlin, & Zhou, 2006). However, itôs hard to detect 

this internal erosion by conventional methods. Hence, new approaches should be developed to 

monitor seepage water with the help of its contributing factors such as damôs water level and 

precipitations. Considering the fact that the water level is measured in height above sea level, 3D 

visualization can help the user acquire more knowledge and information from these sources in 

contrast to 2D visualizations. 

Also, by providing the variation of the water level through time, there can be a more 

comprehensive monitoring system for the user. All these are made possible through the 

introduction of Sensor Web infrastructures that enables a setup to access real-time data observed 

by sensors. This data can be used in combination of the 3D web-based technologies to represent a 

real-time visualization of the current state of water levels in the dam.  

With the help of 3D visualizations, users can grasp a more realistic view of the objects in 

comparison to the conventional 2D plans, hence, making its application ideal for the case of water 

level monitoring. In addition, with the advancements in computer graphics, high computational 

devices and the latest trend in web technologies (such as HTML5 and WebGL), the realization of 

3D models in the web environment is easier than before. The combination of HTML5 and WebGL 

enables the web browsers to provide tools for analyzing and representing the 3D world without 

the need of any plug-in.  

Furthermore, the developments of the WebGL-based frameworks such as the JavaScript libraries 

Three.js and Cesium Virtual Globe have provided good possibilities in creating 3D content without 

the need for low-level programming.  
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1.1  Motivation  

The introduction of WebGL and HTML5 enables the realization of 3D visualization directly within 

the browser without the need of a plugin. And various virtual globes such as Cesium Virtual Globe 

have been developed based on this combination.  One of the main challenges in 3D Visualization 

using the WebGL and HTML5 combination technologies is the visualization and analysis of 3D 

objects. These objects can be buildings or in the case of a dam monitoring system the infrastructure 

models and the water surface generated from height points. These objects are usually represented 

using CityGML that will include the spatial and graphical aspects of the objects along with the 

attributes. 

The Digital Earth envisions a multi-resolution, three-dimensional representation of the planet in 

order to find, visualize, and make sense of vast amounts of geo-referenced information on the 

physical and social environment (Craglia et al., 2012). To achieve this goal standardized 

observations infrastructures and easily available visualization technologies should be put in place. 

However, the lack of efficient visualization systems through the web and interoperable frameworks 

that allow standardizing the access to the city models, have limited the use of these datasets and 

various researchers try to overcome these bottlenecks. The work of (Chaturvedi, Yao, & Kolbe, 

2015) defines a framework and implementation of a web-based 3D client for processing, 

visualization, and analysis of very large semantic 3D city models. Consequently, it represents how 

Cesium can be used in 3D visualization and illustrates how it can be tailored for objects with 

complex semantics.  The efficient visualization client introduced in the mentioned paper allows 

for the interaction with CityGML features. Therefore, the 3D models can now be easily 

implemented with web based Cesium applications. 

Furthermore, (Schilling, Bolling, & Nagel, 2016) also  provides an alternative solution to render 

huge 3D city models on the web browsers. They evaluate the newly introduced glTF formats usage 

in combination with Cesium.js. This paper also considers the use of glTF/B3DM/3D Tiles in 

Cesium.js which stores the vertices separately and increases the rendering performance and 

provides storable attributes.  

Systems with support for the OGC Sensor Web Enablement (SWE) suite of specifications are 

capable of gathering information from heterogeneous sources by introducing a standard interface 

for time series. This technology is proven to be reliable and is being used in many projects in 

firefighting and pollution control. In addition, the application of Sensor Web in flood warning 

scenarios has been demonstrated by (Spies & Heier, 2008). Geoprocessing systems provide 

algorithmic functionality for spatiotemporal data. This is possible when geoprocessing 

functionalities are published as web services and standardized interfaces. 

Considering all the work above in the field of SWE based monitoring systems, there has been little 

work in combining these Sensor Observation Services with 3D visualization methods. Nonetheless 
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(Bröring, Vial, & Reitz, 2014), tried to present an approach for processing real-time sensor data 

streams to enable scalable Web-based 3D visualizations while focusing on processing efficiency. 

Despite all the developments in the field, many research challenges including finding the optimal 

information density and incorporation of 4th dimension in the form of time different elements 

within the 3D models have not been thoroughly discussed.   

The addition of time in an interactive GIS poses interesting challenges both conceptually and 

regarding implementation (Arsenault et al., 2004). However, platforms such as Cesium.js provide 

the necessary building blocks for time varying data visualization that has not been yet fully taken 

advantage of. The work of (Chaturvedi & Kolbe, 2016)  proposes a new concept,  ñDynamizers,ò 

which allows integrating dynamic and time-dependent data with semantic 3D city models such as 

CityGML. This approach not only allows representing dynamic data in different and generic ways 

but also enhances spatial, thematic and appearance properties of static city objects by dynamic 

property values. In addition, the Dynamizers also establish the explicit links between sensors and 

the respective properties of the city model objects that are measured by them. However, the 

technology is yet to be implemented in 3D geodatabases.  

Furthermore, as these visualization technologies become more mainstream there will be more 

demand for more real-time data visualization, this gives a great opportunity for integration of real-

time data sources such as Sensor Observation Service with the currently available frameworks 

such as Cesium.js. 

However, considering the challenges regarding visualizing of spatiotemporal data and taking into 

account the advantages of WebGL based platforms such as Cesium.js, this study is motivated 

toward developing a framework for visualization of dynamic data acquired from web services such 

as sensor observation services and Web Processing Services. This framework will help Cesium 

access and visualize the dam model and the sensor water levels from the Sensor Observation 

Services. It also visualizes the dynamic height observation data and the interpolated water body 

acquired through Web Processing Services in a web-based application.  

1.2 Research Objectives  

The core objective of this research will be to develop a framework to implement 3D visualization 

of water level data, the dynamic variation in the height levels and the seepage water level using 

the OGCôs Sensor Web Enablement (SWE) framework and Sensor Observation Services data 

within the Cesium.js as a browser-based WebGL enabled platform. The application would provide 

further analysis tool in the form of charts that would allow in-depth examination of changes in 

height values. 
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1.3 Research questions 

 

- What is the most suitable format to visualize water bodies and the surrounding building 

structure for the mentioned dam monitoring system in the web browser using Cesium virtual 

globe? 

- What is the most efficient way to retrieve dynamic data from Web Processing Service and 

Sensor Observation Service? 

- What is the most efficient way to visualize such time-dynamic variations using Cesium.js? 

- How can the dynamic 3D visualization model of water level within the dam monitoring system 

help realȤtime prediction of potential natural hazards and detection of irregularities in the dam 

structure? 

- How can the gauge readings be visualized within a line graph as a navigable feature along the 

timelines?  

 

1.4 Thesis structure  

The organization of this thesis is presented as follows: 

Chapter 1: Introduction, this section includes the general overview concerning the topic. It 

discusses the background and the motivation behind the research. The research question and 

objective are also presented in this chapter.  

Chapter 2:  Literature Review, the chapter will elaborate the essential components of the research. 

The chapter will also include the relevant standards and technologies necessary for the study. 

Chapter 3: Data preparation, this part will introduce the utilized datasets and the additional steps 

required for incorporating the data into the visualization pipeline.  

Chapter 4: Design and Implementation, the methodology used in integrating the OGC standards 

and the data models in the Cesium framework is described.  In this section, the high-level 

architecture and its essential implementation components are proposed. 

Chapter 5: Results and discussions, in this part of the research, the obtained results at each 

implementation step is presented.  

Chapter 6: Conclusion and Recommendations, as the final chapter, the section will answer the 

primary research questions and consequently, provide some recommendation for future studies. 
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2 Literature and Standards review 

This section describes all sensor web technologies besides the browser components and the 3D 

object models necessary for the proposed study. In addition, the previous works in the field of 

Dam monitoring context visualization of CityGML data are presented. 

2.1 3D visualization in the context of Dam Monitoring Systems 

Ensuring the safety of Dams as a man-made structure is only possible if there is a comprehensive 

monitoring system in place. In light of this, there have been many attempts to present the dam 

inspecting bodies with an online monitoring system that can oversee the infrastructures condition 

through day and night and help the user prevent any possible damage to the dam and the 

surrounding environment. Such systems try to couple 2D graphs with real-time data in order to 

infer some understanding from the gathered data. This is visible in the works of  (Zimmerman, 

Jordan, & Newell, 2016) where they create a portal for the users to access charts and reports and 

see possible alarm notifications quickly. The system enables the integration and combination of 

sensors and data sources from different vendors. In these systems, there is no representation of 

geospatial data. Other toolkits provide some level of geospatial visualization by integrating a 2D 

map of the area within the monitoring toolbox. (Yang, Bao, Liang, Mi, & Yang, 2009) Is an 

example of this approach where sensor data are visualized on the map using OpenLayers1 library. 

The interface in this application helps detect any overflow of the dam. 

 In relation to 3D Dam data visualization, typically the researchers focus on highlighting different 

parts of the dams. Such studies include visualization of geometric surfaces, lithological and 

hydraulic level properties done by (Dominguez-Acosta, Granados-Olivas, Hibbs, Eastoe, & 

Hawley, 2004) and the visualization of groundwater and surface features for hydraulic erosion for 

various types of dams carried out by (Chen et al., 2011). These models are not browser based and 

are specific to one feature of the dam. Moreover, the final output is not part of a complete dam 

monitoring toolkit.  

On the other hand, some research visualizes the dam body and its elements in 3D representation 

inside a web platform in order to maximize the accessibility of the tools. In these visualizations 

such as (Pantea, Hudson, Grauch, & Minor, 2011)The data is mostly coupled with additional 

information from various sources to enhance the understanding of the context. Also, (Wu, Cui, & 

Zhong, 2012) and (Fan et al., 2016) depicts a web-based 3D visualization of the dam based on 

Unity3D2 Game engine. The first paper integrates the damsô dynamic data from a database with 

the 3D models on a web client to represent the current state of the dam to the construction 

managers. In this application, the models are created using 3ds Max before being fed into the 

Unity3D engine. The latter paper, however, shows the 3D visualization system for damôs 

                                                 

1 https://openlayers.org/ 
2 https://unity3d.com/ 
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foundation curtain grouting. In this work, a combination of parameters measured on the site is sent 

to the server using a short distance wireless network. This information is then visualized using the 

Unity3D engine.   

The available approaches in using the Unity3D engine in creating the visualizations can be 

extremely cumbersome. This is because Unity3D doesnôt have access to the DOM elements when 

creating interactive features. Moreover, the Unity3D engine is mainly a game engine and doesnôt 

only focus of web based visualizations. The proprietary nature of the product also discourages the 

implementation of the tool in a commercial Dam monitoring context.  

Considering all the mentioned literature, it is evident that little or no work has been carried out to 

visualize OGC Sensor Web Enablement data as part of dynamic 3D visualization toolkit that would 

enable in-depth analysis of the damôs conditions in a browser environment using open source 

libraries. 

2.2 Relevant standards 

The standards used in conducting this research is disrobed in this section.  

2.2.1 CityGML  

City Geography Markup Language (CityGML) is an open data model and XML-based format 

for the storage and exchange of virtual 3D city models. CityGML models both complex and 

georeferenced 3D vector data along with the semantics associated with the data. CityGML 

allows defining different thematic modules such as buildings, streets, vegetation as well as 

water bodies.  Additionally, it provides functionality to represent the scale of the specific object 

with the help of five consecutive Levels of Detail (LOD)  (Gröger, Kolbe, Nagel, & Häfele, 

2012). The 3D objects become more detailed with increasing LOD. 

 

Figure 2-1: The five LODs defined by CityGML  (Gröger et al., 2012). 
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Multiple modules represent the version 2.0.0 of CityGML (based on OGC 12-019) (Figure 2-

1). The vertical modules provide the definitions of the different thematic models like building, 

relief (i.e. di,digital terrain model), city furniture, land use, water body, and transportation, etc. 

The waterbody module (based on OGC 12-019, cityGML V 2.0.0) is of great importance in 

this research. The module will represent the three-dimensional geometry of the underground 

waters, and it also includes a dynamic element of WaterSurface to represent temporarily 

changing situations of tidal flats. The module can also include the optional 

WaterGroundSurface and WaterClosureSurfaces which represent the basin and the boundaries 

between waterbodies respectively.  

The Figure 2-2 depicts the UML diagram of the Waterbody module  

 

Figure 2-2: UML structure of the Waterbody CityGML standard(Gröger et al., 2012) 

 

The LOD1 mainly used in this research will include a highly generalized surface and is 

represented as MultiSurface. Based on the diagram this attribute can be assigned to a 

combination of different geometry types. However, for this research, the polygon 

representation of the geometry is selected. 

The other utilized cityGML modules include the Transportation, Tunnel and Generic cityGML 

elements.  

The tunnel module(based on OGC 12-019, cityGML V 2.0.0)  used in this research represents 

the control tunnel under the Dam structures. The model supports the representation of thematic 

and spatial aspects of tunnels and tunnel parts in four levels of detail(Gröger et al., 2012) . The 

chosen level of detail for this project was the LOD3 without the walls to better depict the 

underground infrastructures.  

Figure 2-3 shows the UML diagram of the Tunnel module. In this module, the _AbstractTunnel 

is the key  class  which is a subclass of the thematic class _Site. This class can either be 
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specialized  to a Tunnel or to a TunnelPart. A _AbstractTunnel usually consists of TunnelParts, 

which again are _AbstractTunnels.  

 

Figure 2-3:  UML structure of the Tunnel CityGML standard(Gröger et al., 2012) 

Moreover, the transportation objects represent the thematic and special aspects of the road data; 

these objects are described by 3D surfaces in the Transportation CityGML module (based on OGC 

12-019, cityGML V 2.0.0). The LOD 1 illustration of the data is chosen to visualize the 

surrounding dam area. Figure 2-4 depicts the UML diagram of the CityGML Transportation 
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model. Based on the OGC standards description (Gröger et al., 2012) the main class in this model 

is TransportationComplex, which represents a road or any other major transportation feature. In 

the chosen LOD1 this class provides a surface geometry for describing the shape of the road. This 

can be broken down into different sections of the road network as various TrafficAreas however 

in this research only the general shape of the roads is considered.  

 

Figure 2-4:UML structure of the Transportation CityGML standard (Gröger et al., 2012) 

Other dam facilities such as waterways and the integral dam structures also need to have some 

standardized 3D representation. Since none of the existing cityGML models represent these 

facilities, they are visualized using the Generic CityGML Module. These generic extensions to the 

CityGML data model are realized by the classes GenericCityObject and _genericAttribute defined 

within the thematic extension module Generics(Gröger et al., 2012). 

To represent the geometry of the GenericCityObject, an arbitrary 3D GML geometry object GML3 

geometry is used as an explicit representation.  The following Figure 2-5 denotes the UML diagram 

of the generic CityGML modules. 
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Figure 2-5:UML structure of the Generic object CityGML standard (Gröger et al., 2012) 

 

2.2.2 OGC  Web Processing Service 

The OGC Web Processing Service (Version 1.0.0, OGC 05-007r7) Standard describes how to 

access geospatial processes from a web interface. The service provides client access to pre-

programmed calculations and/or computation models that operate on spatially referenced 

data(Schut, 2007). The geoprocessing offered by this service based on the definition of online 

geoprocessing presented by (Hofer, 2015), can be described as the manipulation of the geospatial 

data for generation of novel web based outputs. This involves numerous operations from 

intersection to interpolation models.   

The main operations within the WPS standard are threefold.  The operation to obtain the service 

metadata (GetCapabilities), The operation to obtain the process metadata (DescribeProcess) and 

the operation to run processes (Execute) (Mueller & Pross, 2015). Creating a complete request 

requires adding of parameter identifiers and values to these operations. This result can be sent to 

the WPS server using HTTP Get, where the server will respond by sending an XML file or using 

HTTP Post where an XML  file is sent from the client to the server. The HTTP get is used mainly 

for the GetCapabilities, and DescribeProcess operations and the HTTP Post is primarily used for 

the Execute operation. The execution process can be run synchronously or asynchronously. The 

asynchronous execution is favored for the more time-consuming processes. Therefore, in this type 
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of execution, an immediate status information response is sent to the user after the request has been 

sent. The response will also include a result location that can be accessed as soon as the process is 

finished.  

The output of a WPS process is always an XML document. And just like the input requests, the 

output XMLôs structure is defined in the OGC WPS 2.0 Interface Standard (14-065). The 

existence of a prescribed XML structure enables the developers to create applications that can read 

the WPS output documents. 

 

2.2.3 OGC Sensor Web Enablement initiative 

The OGC Sensor Web Enablement (SWE) standards suite specifies interfaces and data encodings 

to enable real-time integration of heterogeneous sensor networks. In this way, most types of 

sensors can be discovered, accessed and reused for creating web-accessible sensor applications 

and services. It focusses mainly on geo-sensors; whose georeferenced location is an important 

factor and produces georeferenced observation data. SWE contains two important information 

models (Mike Botts, Reichardt, & Outreach, 2006):  

o Sensor Model Language (SensorML)  (version 2.0, OGC 12-000), which defines an 

XML schema for describing the processes within sensor and observation processing 

systems, and provides information needed for discovery, geo-referencing, and 

processing of observations(M Botts, Robin, Greenwood, & Wesloh, 2014). 

o Observations & Measurements (O&M) (Version 2.0.0, OGC 10-025r1) ,which is a 

generic information model for describing observations(Cox, 2011).  

Sensor Modelling Language details the sensing procedure attribute defining a skeletal framework 

to model sensing devices(Mike Botts, 2007) .According to O&M, SensorML models an entity that 

performs observations(Cox, 2011). It models physical sensing devices as processes, enabling the 

transformation of input into an output. Although its focus lies on modeling physical sensor systems 

and processing of sensor observations, it can be applied in a broader way for modeling any type 

of process and process chains(Mike Botts, 2007). 

O&M, on the other hand, provides a model for observations, their results, and supplementary 

attributes. It has been approved as an ISO standard (ISO/TC211, 2010). The second version of this 

implementation is currently available. An observation herein is defined as an act performed by a 

procedure, such as a sensor, over time or instant. Its result is an estimation of the value of a property 

of some feature. Besides that additional information, such as observation time, spatial location, the 

feature of interest or the sensing procedure can be listed (Cox, 2011). 

In addition, SWE provides different interface models and web services. The most important service 

within the scope of this research work is the Sensor Observation Service (SOS) (Version 1.0.0, 

OGC 06-009r6) (Arthur Na & Priest, 2007). It defines an open interface by which a client can 
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obtain observation data and sensor and platform descriptions from one or more sensors. The 

response of the SOS is encoded in O&M and uses the SensorML specifications to provide an 

interface to make sensors and sensor data archives accessible via an interoperable web-based 

interface. 

SOS aims to carefully model sensors, sensor systems, and observations in order to cover all 

different kinds of sensors and to support the different requirements of users in the case of using 

sensor data in an interoperable way(Arthur Na & Priest, 2007). The SOS response represents the 

aggregate readings from live, in-situ and remote sensors. SOS allows a user to send requests based 

on spatial, temporal and thematic criteria (Bröring, Echterhoff, Jirka, Simonis, & Lemmens, 2011). 

Moreover, implementing this system helps increase the accessibility to the different environmental 

data in a critical situation. In the SOS used for this project, the values of the reading are shown as 

time series for each sensor station and enable the querying of sensor reading for any desirable 

timespan. 

2.2.4 CityGML Dynamizer ADE  

While CityGML is a useful tool in simulating 3D contents, it currently lacks the support for time-

varying properties. Dynamizers can be described as a mechanism for storing dynamic values 

separately from the original attributes in CityGML. This feature is an extension to CityGML which 

stores dynamic variations and overrides the specific properties of the CityGML feature property 

(Chaturvedi & Kolbe, 2016).  The proposed schema of the output CityGML contains dynamic 

values in special types of features. These values are considered as ómodifiersô to the static values 

of the CityGML feature attributes. The dynamizers are defined as feature types consisting of 

attributes attributeRef, startPoint, and endPoint (Chaturvedi & Kolbe, 2016). The Figure 2-6 

depicts the nature of the Dynamizer feature as a bridge between the dynamic data sources and the 

city object models.  
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Figure 2-6: The relation of Dynamizers with the input and output sources(Chaturvedi & Kolbe, 2016) 

For integrating sensor data inside cityGML, allows for the explicit linkage to sensors. This is done 

by linking of sensor observations with the respective city model objects. Hence, Dynamizers can 

enhance static waterbody models used in this research by introducing the dynamic property values. 

The mentioned concept is intended to be proposed to become part of the next version of CityGML 

(version 3.0) therefore it is only considered at the conceptual level in this research. And a practical 

implementation is not considered.  

2.3 Web-based 3D visualization 

While CityGML enables better information sharing in the context of 3D models, it also enables 

the various analysis on the 3D models. However, the sheer size and complexity of the CityGML 

models hinder the effective browser based visualization of such file. As a result, visualization of 

CityGML files on the web has become an essential area of research today (Prieto, Izkara, & 

Delgado del Hoyo, 2012). In order to achieve the plugin-independent visualization of the CityGML 

data on the browser, the browser friendly 3D formats have to be utilized. These formats and the 

underlying HTML5 and WebGL requirements for achieving the research goal are described in this 

section.  

2.3.1 3D modeling standards  

CityGML can be considered the best suitable standard to represent 3D dataôs geometry and 

semantic information. However, the complexity and the large size of the CityGML files hinders 

their web-based visualizations. Therefore, several 3D standards such as glTF and COLLADA are 
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introduced in order to visualize 3D data inside a web browser better. This section describes these 

data standards. 

- glTF:  

GlTF(GL Transmission Format) is a royalty-free specification for the efficient transmission 

and loading of 3D scenes and models by applications. glTF minimizes both the size of 3D 

assets and the runtime processing needed to unpack and use those assets. It has also been 

designed with the modern graphics card and web technologies, especially WebGL in mind. 

The format combines an easily parseable JSON scene description with one or more binary files 

representing geometry, animations, and other rich data(Khronos, 2016). 

Khronos is promoting glTF as the standard 3D format for the web. glTF is created using a 

COLLADA digital asset exchange (dae) files. These files were established as an ISO standard 

in 2013. The parent COLLADA format is widely supported as an export file type option across 

many 3D software.  However, while the collada DAE is a single file, the collada2gltf converter 

outputs multiple files. Khronos supports both glTF and Collada, besides managing the OpenGL 

and WebGL standards.   

In glTF rather than capturing the full fidelity of the entire scene data only the essential scene 

elements necessary for the visualization are kept.  Moreover, collada2gltf then optimizes the 

kept data elements in multiple ways. This process makes the files more readily consumable by 

WebGL. Depicted in Figure 2-7 is the workflow of 3D modelsô conversion to glTF format.  

 

Figure 2-7:glTF pipeline progression of content authoring, conversion, delivery, rendering(Trevett, 2013) 

 

 

- COLLADA: 

COLLADA (COLLAborative Design Activity), is an open Digital Asset Exchange Schema for the 

interactive 3D industry. COLLADA is a standard of the Khronos group3.The format defines an 

open standard XML schema from which digital contents of assets can be easily retrieved. 

COLLADA documents are XML files, usually identified with a ó.dae.' (digital asset exchange) 

filename extension(Khronos, 2016). COLLADA is an intermediate language for transporting data 

among various interactive 3D applications this means that the file type tries to be as detailed and 

                                                 

3 http://www.khronos.org/ 
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explicit as possible to represent a complete picture of the visualization. This means that 

COLLADA will provide comprehensive encoding for geometry, shaders, physics, and kinematics. 

The high level of details in the COLLADA files undermines their effectiveness on browser-based 

visualization. 

In this research, the two file formatsô size and performance are compared in the data preparation 

chapter to select the most appropriate file format for the visualization.  

2.3.2 HTML5 and WebGL 

As the GIS applications move from the conventional desktop versions toward web platforms, the 

need for a platform-independent solution is evident. HTML as the enabler of this visualizations 

has come a long way from the static pages. The latest revision of HTML known as HTML5 is an 

extremely powerful platform for running sophisticated applications. The available advanced 

graphical technologies such as the Canvas element, WebGL and CSS3 3D and scalable vector 

graphics (SVG) enable the interactive 3D experience on the browser without the need for external 

plugins.  

WebGL as an extension of the HTML5 Canvas element is the standard 3D graphics API for the 

Web written in a low-level language and is based on OpenGL ES 2.0. However, there are several 

open source JavaScript toolkits that provide higher-level access to the API to make it look more 

like a traditional drawing library (Parisi, 2014). Some of the notable frameworks in the context of 

visualizing geographic data worth mentioning include: 

- Three.js: Three.js is a JavaScript based library, which creates 3D contents on the web 

browser with a very low level of complexity. It is lightweight in nature and can perform 

rendering with the help of HTML5 canvas, SVG and WebGL (Mrdoob, 2013).  The built-

in file format support available in Three.js permits the parsing of JSON or COLLADA file 

formats. In addition, the library provides the necessary interaction by enabling object 

picking which makes it easy to add interactivity to the applications. 

 

Another solution for visualizing GIS data on the web is to utilize the existing Virtual Globes. These 

globes enable the visualization of global geospatial data and allow for the    interaction between 

the data and the user. The virtual Globes not only reduces the effort of manually accessing archives 

of satellite imageries but also allows users to interact and extract content from the globe in real 

time on the web (Elvidge & Tuttle, 2008). Among the available Virtual Globes such as WebGL 

Earth (Klokan Technologies, 2011), OpenWebGlobe (Christen & Nebiker, 2011) and 

Cesium(Analytics Graphics Inc, 2016), Cesium is the only open source solution that has good 

maintenance by its user community and enable the integration of numerous data sources, creation 

of cameras and geometry objects. Therefore, this library is chosen and elaborated in following 
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 - Cesium.js: Cesium (Analytics Graphics Inc, 2016)is an open sourced JavaScript Library 

that enables the creation of 3D globes or 2D maps with only a few lines of code on the web browser. 

This library has the following features that can help enhance the visualizations: 

¶ Cesium is open source code under the Apache 2.0 license, which means, it is free for 

commercial and non-commercial use. 

¶ Cesium supports imagery layers using Bing, OpenStreetMaps, ESRI standards and it also 

supports the integration of imagery from external TMS.  

¶ It also shows vector data from various sources such as KML, TopoJSON, GeoJSON and 

ESRI shapefiles. 

¶ Cesium provides Cesium a material system to change the objectsô appearance to adapt to 

the user needs.  

¶ It supports math libraries that include the major reference frames such as World Geodetic 

System (WGS84) and International Celestial Reference Frame (ICRF). The libraries have 

built-in functions to support the coordinates and Cartesian conversions. 

¶ The Cesium Virtual Globe allows for the visualization of dynamic time dependent elements 

with the help of Cesium language (CZML).  

CZML is a JSON format for describing a time-dynamic graphical scene, primarily for 

display in a web browser running Cesium. While Cesium has a rich client-side API, CZML 

enables Cesium to be data-driven. This gives the generic Cesium viewer the possibility to 

show a rich 3D scene without the need for any custom code. In many ways, the relationship 

between Cesium and CZML is similar to the relationship between Google Earth and 

KML (AnalyticalGraphics Inc, 2016). The easy to parse JSON structure of the CZML files 

makes way for incremental streaming of data to the client. This means the entire document 

doesnôt need to be present before the scene can be displayed. The most important feature 

of the CZML format is the accurate description of properties that change value over time. 

Clients are also expected to be able to interpolate over time-tagged samples. Within CZML 

every property can be time-dynamic.  Figure 2-8 shows an example CZML file structure 

where a sample property is represented as dynamic values.  
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Figure 2-8:Example CZML file structure (Source: Analytics Graphics, Inc., 2011) 

Cesium architecture as a client-side virtual globe is organized in four layers shown in Figure 2-9 

below. 

 

Figure 2-9:Cesium architecture (Source: Analytics Graphics, Inc., 2011) 

The image shows the level that each layer is used by the applications. Generally, each layer stacks 

functionality over the previous layer and raises the level of abstraction. The layers are: 

¶ Core ï Contains low-level functions such as the number crunching like linear algebra, 

intersection tests, and projections. 

¶ Renderer ï This layer is a thin abstraction over WebGL. It comprises the already available 

GLSL functions to provide, textures and shader programs. 

[  
    // packet one  
    {  
        "id" :  "GroundControlStation"  
        "position" :  { "cartographicDegrees" :  [ - 75.5 , 40.0 , 0.0 ] },  
        "point" :  {  
            "color" :  { "rgba" :  [ 0, 0, 255, 255] },  
        },  
 
 " someProperty " :  [  
        {  
            " interval " :  " 2012- 04- 30T12:00:00Z/13:00:00Z " ,  
            " number" :  5 
        },  
        {  
            " interval " :  " 2012- 04- 30T13:00:00Z/14:00:00Z " ,  
            " number" :  6 
        },  
 
    },  
    // packet two  
    {  
        "id" :  "PredatorUAV" ,  
        // ...  
    }  
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¶ Scene - Scene is mainly built on Core and Renderer to provide relativity high-level map 

and globe constructs like imagery layers, polylines, labels, and cameras. 

¶ Dynamic Scene ï As the top layer of abstraction, this layer handles the time-dynamic 

visualization constructs including CZML rendering. Instead of frame by frame rendering, 

this layer enables the storage, loading, and rendering of the data in dynamic objects 

altogether. 

Furthermore, an extensive comparison of the two mentioned libraries is provided in the result 

section of this thesis.  
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3 Data preparation 

The following section includes two main parts. The first one identifies the study area, the available 

datasets and the data preparation steps taken for obtaining the initial the necessary preliminary data 

for the visualization. The second part describes the hardware and software tools required for 

execution of this research.  

 

3.1 Study area and data 

The chosen site for this research is the Bever river dam located in the catchment area of the river 

Wupper, a tributary of the river Rhine in Western Germany. This area is a subsection of the 

TAMIS4 research projects area of interest which is known as the Bever-Block. The 

Wupperverband 5(Wupper Association) as a responsible body for management of the water 

volume and water of the Wupper river has established a web-based system for visualization and 

analysis of the sensor data located along the watershed. The existence of the extensive sensor 

technologies on the dam and the already implemented web interface has led us to choose this area 

for the implementation of this research project. The Figure 3-1 below illustrates the relative 

position of the Bever block area within Germany besides the network clusters of the Bever-Block 

reservoir system. 

 

Figure 3-1 : Location of Bever river dam in Bever Block 

 

The Figure 3-2 and Figure 3-3 denote the Bever River damôs aerial view and the plan view of the 

area respectively. Also, the plan view includes the control tunnel of the dam, the location of the 

water level sensors and an example of the sensor types with their relative positions. These series 

                                                 

4
 http://tamis.kn.e-technik.tu-dortmund.de 

5 http://www.wupperverband.de 
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of water level sensors on the ground and seepage sensors inside the control tunnel below the 

surface continuously monitor the damôs behavior. These sensors are part of various sensor 

technologies that track the changes on the dam.  The control tunnel shown in the image stretches 

along the dam wall and provides access to the essential damôs infrastructures.  

 

Figure 3-2: Areal View of Bever River dam 

 

    

Figure 3-3: Map of the Bever River Dam with the water level measurement stations and the Control tunnel 

                   

The Existing Dam Monitoring system at TAMIS project already includes a 3D component 

developed by the author. This widget uses the powerful Three.js library, described in the WebGL 

technologies of the second chapter, to show the latest SOS values of the water levels on the terrain 

model. However, the model has no support for the WPS interpolation surface and dynamic data.  

The support for the mentioned WPS surfaces and the dynamic data values are implemented as part 

Seepage sensors 
 

Control Tunnel 
Water level sensors  
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of this thesis. In addition, the support for the integration of 3DCityDB6 exported KML/COLLADA 

files are developed as part of this thesis to compare the functionalities of Cesium and Three.js. 

Figure 3-4 pinpoints the currently available 3D widget in the TAMIS control center. The 

application includes layersô list where the user can select each station and see the latest water levels 

values.     

 

Figure 3-4: Existing TAMIS 3D widget 

 

In the following section, the data used in the research and the necessary processing for their 

integration into the 3D model are presented. 

The required data for caring out the implementation of this application mostly need some level of 

preprocessing. This is because an efficient visualization pipeline entails standardized data sources 

that can be recreated for other Dam facilities. Therefore, the available data for the dam are 

converted into CityGML as the most suitable standard for representing virtual 3D city models. 

This model will  also facilitate the future updating of the models. And since the data is represented 

in different levels of detail (LOD) the infrastructure data can be further developed to include more 

detailed model definitions.   

  

3.1.1 Terrain Model  

The terrain model for this project includes numerous sources. The original Digital Elevation Model 

(DEM) for the immediate area around the Bever River Dam has been created using the equally 

spaced point data provided by Wupperverband. This dataset is converted into a Raster surface 

                                                 

6 http://www.3dcitydb.org/3dcitydb/3dcitydbhomepage/ 
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using QGIS (Version 2.12.0) providing the DEM model with the resolution of 8.6 meters in cell 

size. 

 Notwithstanding, the coverage of this terrain model when visualized on the Cesium globe is not 

sufficient and creates an island disconnected from the surrounding.  To resolve this problem, since 

Cesium can handle bigger data terrain models, a larger data set with the lower resolution was used 

to create a more comprehensive terrain model that would comprise a vaster area.  For this purpose, 

the openly available DEM from the DLR7ôs SRTM X-SAR project with the spatial resolution of 

25 meters was utilized. A combined layer from the overlap of the small higher resolution image 

and the lower resolution DEM creates the broad terrain basis for the visualization (Figure 3-5).       

 

Figure 3-5: The integration of DEM layers 

 

However, to use the generated Heightmap in Cesium, the output raster has to be converted into 

tile dataset format. Each tile in the Terrain Tile format contains 65 x 65 height values, with small 

overlap on the edges of the tiles to create a seamless terrain. Cesium translates the Heightmap 

tiles into a uniform triangle mesh. Cesium also supports quantized-mesh-1.08 format for the input 

terrain data. However, there is no open source software for creating these quantized-mesh 

surfaces at the time of this research. Therefore, the Heightmap tiles were generated using the 

Cesium Terrain Builder as a command-line utility developed by the GeoData Institute, 

University of Southampton 9. The tool will return a set of tiled ñ. terrainò files in different zoom 

levels. This layer folder, when placed on a local server, can be used by Cesium for drawing the 

ground information. 

                                                 

7 http://www.dlr.de/eoc/en/ 
8 https://cesiumjs.org/data-and-assets/terrain/formats/quantized-mesh-1.0.html 
9 https://github.com/homme/cesium-terrain-builder 
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