
Faculty of Environmental Sciences Institute for Cartography

Master Thesis

Concept and Implementation of a
Contextualized Navigable 3D
Landscape Model: The Uch Enmek
Example(Altai Republic,Siberia).

Mussab Mohamed Abuelhassan Abdalla
Born on: 7th December 1983 in Khartoum
Matriculation number: 4118733
Matriculation year: 2014

to achieve the academic degree

Master of Science (M.Sc.)

Supervisors
Dr.Nikolas Prechtel
Dr.Sander Münster

Submitted on: 18th September 2017

Faculty of Environmental Sciences Institute for Cartography

Task for the preparation of a Master Thesis

Name:
Matriculation number:
Matriculation year:

Mussab Mohamed Abuelhassan Abdalla
4118733
2014

Title: Concept and Implementation of a Contextualized Navigable
3D Landscape Model: The Uch Enmek Example(Altai
Republic,Siberia).

Objectives of work
Scope/Previous Results:Virtual Globes can attract and inform websites visitors on natural
and cultural objects and sceneries.Geo-centered information transfer is suitable for majority
of sites and artifacts. Virtual Globes have been tested with an involvement of TUD institutes:
e.g. the GEPAM project (Weller,2013), and an archaeological excavation site in the Altai
Mountains ("Uch enmek", c.f. Schmid 2012, Schubert 2014).Virtual Globes technology should
be flexible in terms of the desired geo-data configuration. Research data should be controlled
by the authors. Modes of linking geo-objects to different types of meta-information seems
evenly important for a successful deployment.
Motivation: For an archaeological conservation site ("Uch Enmek") effort has already been
directed into data collection, model development and an initial web-based presentation.The
present "Open Web Globe" technology is not developed any further, what calls for a migra-
tion into a different web environment. A revision of existing contents, data structures and
visualization modes seems sensible.
Objective: Theoretical consideration shall give a comprehensive overview on uses of Virtual
Globes in Cultural Heritage or -more specifically- an archaeological context. Web applica-
tions embedding Virtual Globes as the underlying technology, standers interoperability, im-
plemented functionality, activities of the user community, performance, maintenance and ex-
pected sustainability, etc.
Practical Part: The present data on the "Uch Enmek" conservation site shall be adapted,
and be toughened up to work within the favored new Virtual Globe environment. In dealing
with a scientific landscape model, preservation of object structures and topological consis-
tency (option of "clickability" for objects for further contextualization) shall be considered.
Non photorealistic elements in the model can make sense and are welcome.Linked to the im-
plementation, some presently critical issues shall be clarified in the best possible way:
-Spatial reference systems other than the one used in the Virtual Globe?
-Flexibility in respect to customized digital elevation models and image data?
-Object-by-object import versus import of compact object groups
-Transparent import work flows from 2D(GIS) and 3D and automation potential.
-Handling of surface and subsurface (Kurgan) objects.
-Parameters influencing the performance (total mesh number, depth of subdivision of the mesh
into objects, texture detail(resolution),multiple instances of identical textures, etc.)
-Operating ability of the application in different browsers and on smart phones.
The achieved results shall be evaluated. Moreover, an outlook shall be given in respect to
desirable amendments and extensions of the model.
Deliverables:

Faculty of Environmental Sciences Institute for Cartography

The results have to be submitted as a written document along with a digital version. This
document has to be delivers in two copies. All data, relevant for further scientific treatment,
has to be stores on a digital media,and to be added to the final submission. The contents
of the digital media should be structured in such a way, that an easy continuation of project
work will be facilitated. The results should furthermore be presented on an A0 poster; the
suitable poster template is available through the institution’s homepage.

Supervisors: Dr.Nikolas Prechtel
Dr.Sander Münster

Issued on:
Due date for submission:

Statement of authorship

I hereby certify that I have authored this Master Thesis entitled Concept and Implementation
of a Contextualized Navigable 3D Landscape Model: The Uch Enmek Example(Altai Repub-
lic,Siberia). independently and without undue assistance from third parties. No other than
the resources and references indicated in this thesis have been used. I have marked both literal
and accordingly adopted quotations as such. There were no additional persons involved in the
intellectual preparation of the present thesis. I am aware that violations of this declaration
may lead to subsequent withdrawal of the degree.

Dresden, 18th September 2017

Mussab Mohamed Abuelhassan Abdalla

Acknowledgment

Abstract

The aim of the thesis can be divided into two main scopes. The first part is to examine and
to validate available Virtual Globe environments and to make a decision based on a defined
criterion on which environment shall be used to represent available Geo-data set. Most pop-
ular environments will be reviewed, the underlying technologies, functionality, performance,
sustainability and use community activity will be compared for each environment. Addition-
ally, a survey was conducted on real-world implementation of the use of Virtual Globes in
area of cultural heritage and archaeology, from which the design concept of the practical part
will be inspired. Secondly, after a decision is made, implementing rendering and visualization
techniques provided by the selected web globe environment is carried out in order to convey
the model data sources in a web application, the results shall be presented and discussed and
further recommendations shall be made at the end of the thesis.

The motivation for the web application development which is built from vector data, photo
collections and 3D models. is to carry on the efforts made by the Institute of Cartography,
TUD in cooperation with Ghent University for assisting in research and management of the
culturally-rich conservation area “Ethno-Nature Park Uch Enmek”. The “ Open Web Globe ”
technology, that has been used so far ([46], [44]), is not developed any further. This calls for
a transfer of the project into a different technical environment. In this context, a revision of
the existing data structures and organization and provision seems sensible.

List of Figures
2.1 Example of a simple geoJSON file (www.geojson.org) 6
2.2 glTF design . 7
2.3 World Wind Explorer,an HTML5/JavaScript geo-browser built from the NASA

WebWorldWind SDK . 8
2.4 Marble Desktop . 9
2.5 OssimPlanet Desktop . 10
2.6 webgl Earth on browser . 11
2.7 Cesium basic application on browser . 12
2.8 Colombus view (2.5D) in Cesium and 2D view 12
2.9 The Cesium Graphics Stack [38] . 16
2.10 A House mesh from the Tuekta model (Burckhardt 2012) converted into GLtf. 16

3.1 Overview map of the "UCH Enmek" natural Park (Prechtel 2010) 23
3.2 The Data integration work-flow into Cesium compatible formats 26
3.3 The System architecture of the web application 29
3.4 Workflow of the back-end services . 31
3.5 "Uch Enmek" web server functionality . 34
3.6 "Uch Enmek" Database . 35
3.7 Workflow of the front end application . 36
3.8 The UI execution flow . 38
3.9 Canvas interactivity algorithm . 42

4.1 www.baloola.eu home page prototype . 43
4.2 initialized view of the application, the "Uch Enmek" Etno-Nature Park 44
4.3 The Four base layers covering (Karakol) . 45
4.4 Thematic layers and the legend (Karakol) . 45
4.5 3D landscape of Karakol . 46
4.6 The interior of the Kurgan schematic model (Karakol) 47
4.7 The Balance button resets the tilted camera axis (left) and balances the camera

view(right) . 47
4.8 Selected Building feature (Karakol) . 48
4.9 Infobox and coordinates panel (Tuekta) . 48
4.10 Update.html . 49
4.11 Updated description (Tuekta) . 49
4.12 Karakol 3D landscape on iphone 7 (left). IKONOS imagery of Karakol appears

as a black rectangle (right) . 52

iii

www.baloola.eu

.13 A screen shot from the performance test shows the load time of the imagery
data "purple" and geojson data "grey" (http://www.webpagetest.org) 58

iv

http://www.webpagetest.org

List of Tables
2.1 Visualization Capabilities . 14

3.1 GIS raw Data . 24
3.2 3D data classes . 25
3.3 Used Software packages and Frameworks with their purpose 30

v

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 Objective . 2
1.3 Critical Issues . 2
1.4 Structure . 2

2 Literature and Standards review 4
2.1 Fundamental Concepts . 4

2.1.1 3D web graphics . 4
2.1.2 XML . 5
2.1.3 JSON . 6

2.2 Theoretical considerations . 7
2.2.1 Virtual Globes . 7
2.2.2 Web Globes . 8
2.2.3 Classification . 12
2.2.4 Virtual Globes in Cultural Heritage . 17

3 Methodology and Technical Implementation 22
3.1 Data Sources and Study Area . 22
3.2 Data Processing . 25

3.2.1 Digital Terrain Model . 26
3.2.2 3D Models . 27

3.3 Design . 27
3.3.1 Used Software and Applications . 29

3.4 Implementation . 31
3.4.1 Server-side application . 31
3.4.2 Client-side application . 36

4 Results and Discussion 43
4.1 Results . 43

4.1.1 Web Application . 43
4.2 Discussion . 50

4.2.1 Critical issues Clarification . 50
4.3 Conclusion and future work . 53
.1 Web Application Performance Test . 58
.2 Server-Side Application . 58

.2.1 "server.js": Uch Enmek Server . 58

vi

.2.2 "wines.js": Database Management Module 59
.3 Client side Application . 61

.3.1 "main.js": The core program of the client side application 61

.3.2 "ui.js": The user interface code . 70

.3.3 "update.js": The Update Page Interface 73

.3.4 "indoor.js": The indoor navigation mode 74

1 Introduction
As Virtual Globe software has become extremely popular both inside and outside educa-

tional settings [47], lot of research has been carried out to explore potentials and roles of
Virtual Globes. Known for their ability to render massive real-world terrain,imagery and
vector datasets [17], Virtual Globes additionally have the power of three-dimensional visual-
izations to geographic information, and with recent development in web 2.0, namely webGL
and HTML5 Virtual Globes became an improved delivery tool for the geographical information
over the internet.

Virtual Globes has been tested and used as a tool of representation and has been compared
in many previous studies in its performance and efficiency with two dimensional maps in all of
it’s forms(e.g digital,paper). Some of these studies concluded that analytical results depicted
in 3D on a globe viewer make the reader perceive the analytical reality more actively and
self-referenced [50], Virtual Globes have been found to enrich and stimulate spatial thinking
for users [47], they are considered to be the forth generation of web mapping [40]

1.1 Motivation

The Russian Altai Mountains, which approximately coincide with the administrative borders
of the Altai Republic within the Russian Federation, is the host of many valuable cultural and
archaeological sites such as the burial mounds of "Uch Enmek" which reflects a lot of valuable
information about the unique Scythian culture that flourished between 9th and the 1st century
BC [9]. This has drawn the attention of many inside and outside the scientific community
in the last decades. Archaeologists, anthropologists and geo-environmentalists among other
academicians have been cooperatively making substantial effort maintaining and preserving
the unique natural environment and cultural variety of the region, The TU Dresden Alti project
is one of the initiatives that plays a main role in the geoscientific-methodological contribution
to conservation activities [37].

A sequence of conducted researches and projects (Prechtel 2011, Schmid 2011 [44] & Bur-
ckhardt 2012 [14], Schubert 2014 [46] and Zimmermann 2015 [57]) resulted in a set of a
Geo-database which consist of 2D data-collection, 3D models and an initial web-based presen-
tation.The present "Open Web Globe" technology is not developed any further, this require a
migration into a different web environment.

1

1.2 Objective

The aim of the thesis is to establish a comprehensive criteria which a decision will be made
based upon, an investigation on the available web based Virtual Globes to find out which web
Globe will be carrying the task. T 3D vitalization for the Archaeological sites of "Uch Enmek"
will be made, data sources will be processed in order to be visualized in the new environment.

Assessment on the results and the methodologies will be discussed, and aspects like data
integration, performance in different browsers and devices will be detailed, additionally rep-
resentation potentials will be included in scope of validation as well. The thesis will include
a review of the best available practices in the scope of utilizing Virtual Globe technology in
Cultural heritage with the focus on the Archaeological application, the review will illustrate
technology, data integration, design and interactivity of these practices, the design of the the-
ses application will be inspired by some of the innovative concepts presented in the available
projects.

1.3 Critical Issues

The critical issues that should be clarified:

• Spatial reference systems other than the one used in the Virtual Globe?

• Flexibility in respect to customized digital elevation models and image data?

• Object-by-object import versus import of compact object groups.

• Handling of surface and subsurface (Kurgan) objects.

• Parameters influencing the performance (total mesh number, depth of subdivision of
the mesh into objects, texture detail(resolution),multiple instances of identical textures,
etc.)

• Operating ability of the application in different browsers and on smart phones.

1.4 Structure

The thesis starts with the chapter of introduction which gives a brief outline on the thesis and
the motivation and provides an overview the thesis structure.

The second chapter will contain some reviews of some aspects related to the scope of the
thesis, it will introduce some fundamental concepts and will give a brief introduction of the
technology related to the work flow to familiarize the reader with the technical implementa-
tion,it will also include the definition of the criteria of the search of the web globe environment,
a list of web globes will be examined under the light of the defined criterion and a decision will
be made on which of the proposed environments will be selected to visualize the data models.
Next, a survey on the implemented Virtual Globes/web based applications in cultural her-

itage will review some of the available projects, prototypes and researches on the topic.

The third chapter will illustrate the design of the web application that is made, it explains
the data processing for the migration to the new environment and the steps were made for the
integration of the data, the rendering and the implementation of the available functionality
provided by the web- Globe platform, the problems that occurred and the solutions that were
performed.regarding integration, interaction and performance.

2

In the last chapter the concluded results will be presented and evaluated and the thesis will
be summarized, problem overview will be demonstrated and future work will be proposed.

3

2 Literature and Standards review
In this chapter the first section will explain some of the scientific and technical components

related to the research, and it will include an overview on web 3D graphics related technologies
and concepts in order to familiarize them for the reader. In the second section some of available
Environments will be introduced with a review on their technologies and features, this section
will include a technical classification of the presented Virtual Globes which will influence the
decision on which environment will carry on visualization task for the thesis. The third section
will demonstrate some of the available implementation of Virtual Globes usage in cultural
heritage with the focus on archaeological context, finally this chapter will contain justification
and more description of the selected environment.

2.1 Fundamental Concepts

2.1.1 3D web graphics

GLSL

The OpenGL Shading Language (GLSL) is the principle shading language for OpenGL.
While, thanks to OpenGL Extensions, there are several shading languages available for use in
OpenGL, GLSL is the only one that is a part of the OpenGL core.
GLSL is a C-style language. The language has undergone a number of version changes, and

it shares the deprecation model of OpenGL. [54]

OpenGL

OpenGL is the premier environment for developing portable, interactive 2D and 3D graphics
applications. Since its introduction in 1992, OpenGL has become the industry’s most widely
used and supported 2D and 3D graphics application programming interface (API), bringing
thousands of applications to a wide variety of computer platforms. OpenGL fosters innova-
tion and speeds application development by incorporating a broad set of rendering, texture
mapping, special effects, and other powerful visualization functions. [55]

WebGL

Web Graphics Library (WebGL) is a cross-platform, royalty-free API used to create 3D graph-
ics in a Web browser. WebGL uses the OpenGL shading language, GLSL, and offers the famil-
iarity of the standard OpenGL API. Because it runs in the HTML5 Canvas element, WebGL
has full integration with all Document Object Model (DOM) interfaces. WebGL is a DOM
API, which means that it can be used from any DOM-compatible language e.g. JavaScript,

4

Java and Objective C. Because it is based on OpenGL and will be integrated across popular
browsers, WebGL offers a number of advantages, among them [56]:

• An API that is based on a familiar and widely accepted 3D graphics standard Cross-
browser and cross-platform compatibility

• Tight integration with HTML content, including layered composting, interaction with
other HTML elements, and use of the standard HTML event handling mechanisms

• Hardware-accelerated 3D graphics for the browser environment

• A scripting environment that makes it easy to prototype 3D graphics,which means there
is no need to compile and link before it is possible to view and debug the rendered
graphics .

2.1.2 XML

Extensible Markup Language "XML" is a markup language that defines a set of rules for encod-
ing documents in a format that is both human-readable and machine-readable, XML describes
a class of data objects called XML documents and partially describes the behavior of computer
programs which process them. XML is an application profile or restricted form of "SGML",
the Standard Generalized Markup Language. [11], a handful of formats used in computer
graphics 3D representation are build based on XML schema, such as COLLADA,VRML
and it’s successor X3D,

COLLADA

COLLADA is a COLLAborative Design Activity that defines an XML-based schema to enable
3D authoring applications to freely exchange digital assets without loss of information, enabling
multiple software packages to be combined into extremely powerful tool chains. [6]

COLLADA does not accept binary data inside XML.The COLLADA schema defines the
XML elements and attributes that enable COLLADA to represent many features using these
XML building blocks. The COLLADA feature set includes [31]:

• Mesh geometry.

• Transform hierarchy (rotation, translation, shear, scale, matrix).

• Effects.

• Shaders (Cg, GLSL, GLES)

• Materials.

• Textures.

• Lights.

• Cameras.

• Skinning.

• Animation.

• Physics (rigid bodies, constraints, rag dolls, collision, volumes).

• Multi-representations.

• User data.

5

2.1.3 JSON

JavaScript Object Notation (JSON) is a lightweight data-interchange format. It is easy for
humans to read and write. It is easy for machines to parse and generate. It is based on a
subset of the JavaScript Programming Language. [18]

JSON is a text format that is completely language independent but uses conventions that
are familiar to programmers of the C-family of languages, including C, C++, Java, JavaScript,
Perl, Python, and many others. These properties make JSON an ideal data-interchange lan-
guage. [18]

GeoJSON

GeoJSON is a geospatial data interchange format based on JavaScript Object Notation (JSON).
It defines several types of JSON objects and the manner in which they are combined to repre-
sent data about geographic features, their properties, and their spatial extents.GeoJSON uses
a geographic coordinate reference system, World Geodetic System 1984, and units of decimal
degrees. [15]

Figure 2.1: Example of a simple geoJSON file (www.geojson.org)

GeoJSON supports the following geometry types: "Point", "LineString", "Polygon", "Multi-
Point", "MultiLineString", and "MultiPolygon". Geometric objects with additional properties
are "Feature" objects. Sets of features are contained by "FeatureCollection" objects.

GLTF

The GL Transmission Format "glTF" is a runtime asset delivery format for GL APIs: WebGL,
OpenGL ES, and OpenGL. glTF bridges the gap between 3D content creation tools and
modern GL applications by providing an efficient, extensible, interoperable format for the
transmission and loading of 3D content. [32]

glTF assets are JSON files, and supporting external data. Specifically, a glTF asset is
represented by [32]:

• A JSON-formatted file (.gltf) containing a full scene description i.e. node hierarchy,
materials, cameras, as well as descriptor information for meshes, shaders, animations,
and other constructs

• Binary files (.bin) containing geometry and animation data, and other buffer-based data
(positions, normals, texture coordinates, vertex colors, etc)

• Image files (.jpg, .png, etc.) for textures

6

• GLSL text files (.glsl) for GLSL shader source code

Assets defined in other formats, such as images and GLSL shader source code, may be stored
in external files referenced via Uniform Resource Identifier (URI) or embedded directly into
the JSON using data URIs . This will result in a binary glTF.

Figure 2.2: glTF design

2.2 Theoretical considerations

2.2.1 Virtual Globes

Virtual Globes are software providing a three dimensional representation of Earth, allowing
users to explore Earth in a virtual environment [35]. The most popular Virtual Globe in the
market is Google Earth, other known Virtual Globes are Bing Maps Platform from Microsoft,
ArcGIs Explorer form ESRI, and NASA World Wind. Currently, the use of WebGL API
triggered the emergence of new class of Virtual Globes. Factors like the context capability of
Virtual Globes, their ease of use, the growth of provided reliable geospatial data such as satellite
imagery, digital elevation models and vector data sets, and the increased internet accessibility
have increased the popularity of Virtual Globes and offered potential improvements to the
geo-visualization and scientific analysis [12]

Virtual Globes typically provides sets of functionalities that allow users to visualize, inte-
grate, communicate and process geospatial data, provides volumes of freely available images
and DEMs, and additionally researchers often use Virtual Globes as the geographical con-
text in which to lay their own data and to effectively display and communicate their research
findings [35]. Studies on the use of Virtual Globes in landscape proves that access to, and
integration of information are improved by using Virtual Globes and their data [45] and users
interest and awareness of the data are raised [3]. The use of connected 2D data displays and
3D views in Virtual Globes enhances the explorative analysis and evaluation of geospatial
information, especially for data sets that have a direct relation to landscape [7].

7

2.2.2 Web Globes

From the various specifications and properties of the available Virtual Globes, the license
type was the key criterion for selecting the environment to develop the web application, the
free "open source" software are the solutions that will be included as candidates, some real-life
application developed using "closed" license Virtual Globes and even some application that
uses other HTML5 technologies are included in the survey section because of the adaptable
features in these applications such as design principles, functionalities, innovative use of API to
meet the specified needs. Some of the of the most popular open source - or free Virtual Globes
- in the market are NASA World Wind, Marble, OssimPlanet, WebGL Earth and Cesium.

NASA World Wind
World Wind is a free, open source API for a Virtual Globe. World Wind allows developers to
quickly and easily create interactive visualizations of 3D globe, map and geographical informa-
tion. Organizations across the world use World Wind to monitor weather patterns, visualize
cities and terrain, track the movement of planes, vehicles and ships, analyze geospatial data,
and educate people about the Earth. World Wind is an SDK (software development kit) that
developers can use to build their own applications. World Wind provides a geographic ren-
dering engine for powering a wide range of projects, from satellite tracking systems to flight
simulators. [1]

Figure 2.3: World Wind Explorer,an HTML5/JavaScript geo-browser built from the NASA
WebWorldWind SDK

Features

Some of the general features of NASA World Wind include:

• The World wind is a SDK available in java for Android, java for desktop application and
in java script for HTML5.

8

• Has many forges and clones (e.g. Geoforge which is also an open source software that
has a plug-in mechanism).

• Available data sets are useful for scientific oriented applications, and for extraterrestrial
visualization.

NASA World Wind supports Keyhole Markup Language (KML) and COLLAborative De-
sign Activity (Collada) which is also an XML based format.

Marble

Figure 2.4: Marble Desktop

Marble is a free Virtual Globe and world atlas for desktop and mobile, it is open source with
GNU Lesser General Public License (LGPL), it is written in C++ and provides bindings for
Qt Quick (QML) and Python. It is part of the KDE (international free software community)
education project and allows users to learn more about the Earth and other planets. Data is
provided by OpenStreetMap, as well as NASA Blue Marble: Next Generation and others. [30]

features

Some of the features of Marble web environment [30]:

• Functionality includes address searching, positioning and tracking, routing and naviga-
tion for vehicles bikes and pedestrians, measurement and bookmarks.

• Links to Wikipedia articles.

• Great educational tool.

9

OssimPlanet
OssimPlanet is a cross-platform desktop Geospatial viewer, it is built on top of the 3D

graphics application programming interface OpenSceneGraph, Libwms which is a library
that is used to query WMS and OSSIM.OSSIM is a powerful set of geospatial libraries
and applications for processing imagery, maps, terrain, and vector data, written in C++ and
released under an LGPL license. OssimPlanet provides the ability to view native geospatial
formats, Elevation data sets, and OGC Web Mapping Services (WMS) interfaces over the web,
it supports navigation to street addresses through the geocoding menu item.

Figure 2.5: OssimPlanet Desktop

Webgl Earth
WebGL Earth [49] is an open-source Virtual Globe made with HTML5 and Canvas WebGL

technology. It comes with a JavaScript API adapting the popular LeafletJS API. Similar to
Leaflet mapping library and Google Maps API, WebGL Earth API gives the ability to visualize
maps, satellite imagery and aerial photography on top of a virtual terrain.

WebGL is a free software available under standard Apache 2.0 license. It is calling internally
CesiumJS engine.

10

Figure 2.6: webgl Earth on browser

Features:

• Rotation and zoom of the globe,tilt of the camera, and free movement in space.

• Runs without a plugin in modern web browsers.

• Displays existing maps (OpenStreetMap, Bing, ...)

• Supports custom map tiles for the Earth or other planets, Custom geodata, such as
GeoTIFF, ECW, MrSID, etc can be easily turned to compatible tiles using Maptiler.this
means the ability to use the globe offline.

Cesium
Cesium is an open-source JavaScript library for world-class 3D globes and maps, it built

on HTML5 technologies, most important is WebGl. Which gives a lot of potentials like the
ability of visualizing 3d shapes in the globe, image layers, terrain models and time dynamic
visualization.

Cesium is cross-platform, cross browser, and aimed at dynamic-data visualization.It is open-
source under the Apache 2.0 license which means free for commercial and non-commercial use.
Unlike platforms like Google Earth, it is not targting end users. It requires programming to
use and has a lot of potential for customization and user added content. As it provides some
base data to users,such as web map services from mapbox,Esri and OSM maps. it is also
classified as a visualization application. [30]

Features:

• Support creating data-driven time-dynamic scenes.

• visualizes terrain data from several sources and allows adding custom terrain data.

11

Figure 2.7: Cesium basic application on browser

• Render two dimensional GeoJSON and TopoJSON data,and render 3D models using
GLTF with textures and animations.

• Draw spatial data such as points, markers, labels, lines, models, polygons, and volumes.

• Use mouse and touch handlers for rotate, zoom and pan.

• Switch from Virtual Globe (3D) to Columbus view (2.5D) TO map view (2D).

Figure 2.8: Colombus view (2.5D) in Cesium and 2D view

2.2.3 Classification

As mentioned in the previous section the main criterion for selecting the optimum environ-
ment is it’s availability for users and developers; therefore for only open source Virtual Globes
were included. The required platform for the Virtual Globe to run is another important feature
to be considered, some of the Virtual Globe can be installed only in a specific operating system
while others are cross-platform meaning that they can be installed in all operating systems,
the ability to operate in mobile devices is yet another considerable feature some virtual Globes
can run in tablets and mobiles but with lesser functionality than a desktop. Virtual Globes can
be also classified based on their installing requirements , some are desktop applications, others

12

are web applications, some of them have some additional requirements and dependencies (e.g
JAVA installed in the machine), yet some can be installed as desktop or can be requested as
a web application [12].

The visualization capabilities of the new environment plays a critical role in shaping
the resulted applications. Factors like what data-type can be represented and how flexible
the representation is (e.g is the data type native in the Virtual Globe or it needs plug-ins to
be visualized) emphasizes what kind of application can be developed and controls its level of
innovation. The main criteria concerning visual capabilities are :

• Terrain rendering.

• Imagery layers (WMS, customized tiles).

• Vector data rendering support.

• 3D models rendering support.

Sustainability of the environment is an essential feature to be considered in selecting the
environment, the Google Web API for example is officially deprecated as of March 20, 2015.
Its last day of operation was March 22, 2017 [26], finding alternatives with sustainable status
is one of the aims of this selection process, another factor that is strongly related to the subject
is how often the environment is upgraded and updated, some Virtual Globes are updated in
monthly bases while others do not have the same progressive development.

Usability: The provided functionalities by Virtual globes determines the options of cus-
tomization that can be made into them for user’s specific needs. Beside the basic tools provided
by the platforms like basic visualization, navigation(e.g zoom-in, zoom out),or geocoding, the
possibility to add new functionalities is an important feature for the platform that will be
exploited to visualize the "Uch Enmek" data set. (Brovelli and Minghini, 2013 [12]) defined
two approaches to customize virtual globes by the developers. (1) to utilize the available
high-level application programming interface (API) which allows users to interact with the
visualized features in the Virtual Globe. This approach does not require advance skills of pro-
gramming and it is available for all the virtual globes in the market regardless of the license.
(2) is to improve and customize basic functions through making changes and plugins to the
source code of the platform for specific needs. This approach is applicable only in the open
source platforms and it requires a higher level of programming skills. The great advantage
of this approach is the ability to create complex functionalities which are not available using
solely the external API.

The web application will be developed through the first approach .However, the ease of using
APIs relays not only on their level of complexity, the learning curve of the API is shaped also
by the provided learning materials, some platforms have proper documentations and tutorials
that help developers from wide range of skills to easily grasp the fundamental – or even some
advance – features of the environment, the activity of the developers community also is a
considered factor to determine the learning curve of the platform.

Assessment

To determine the suitability of the proposed platforms each Virtual Globe was evaluated
in the light of the classification factors, some criteria have more weight than others, this is

13

due to either being more associated to the application required task, or to uncertainty in the
criterion measure, for example sustainability has no solid clear measure, it can be estimated
based on - if exist - any past depreciation or any information on a future one, instead, the
frequency of upgrading and updating releases of the platform can give a better indication of its
sustainability, on the other hand ability to visualize 3D models considered to be a knock-out
criterion since visualizing 3D objects is the most specific requirement for the final result.

Marble, OssimPlanet and NASA World Wind (desktop) are cross-platform software, they
can be installed on any of the three major desktop operating systems (Windows, Mac OS
and linux), while Virtual Globes that uses the Webgl technology(WebGl Earth, Cesium and
web World Wind) are plug-in free and do not require any installation in the user’s machine.
They only require a browser that supports webGL regardless of the user’s operating system or
device, and this is very practical for mobile devices and tablets. Applications built using this
technology can run on Android, iOS or Windows mobile. The accessibility of the web-based
application is an element that expands the range of the targeted audience to a great level
which is a major motivation for the "Uch Enmek" project.

Both the Marble library and OssimPlanet are written in C++ and provide bindings for
Qt Quick (QML),QML (Qt Modeling Language) is a user interface markup language,while
the rest of the Virtual Globes platforms uses JavaScript for building their web applications.
JavaScript is a core technology in world web content production. Traditionally it is used for
developing client-side application but recently it started to gain more popularity for server-side
Web applications using run-time environments such as Node.js [51].

Learnability which defined as the ease and speed with which the users get familiar with the
use of a new product [48], is referring in the case of this thesis to the developer as the product’s
user. Tutorials, Source code documentation and community blogs of each one of the proposed
platforms are the variables to estimate the learnability.

In terms of tutorials web pages and example applications with their source code, Marble
and WorldWind has a well build web pages that contains demos and user guide to build simple
applications, They are directed to developers from wide range of skills, Marble’s tutorials are
introduced with 18 languages. Cesium has a similar developer’s guide page to WorldWind but
it has a sandcastle interactive application which is a documentation generator for the demo ap-
plications. WorldWind and Cesium has a very active community blogs where developing teams
of the environment alongside with other developers exchanges experiences and troubleshoots
problems and challenges faces web developers. WebGL Earth uses leaflet API, which is one of
the leading libraries for building interactive web maps, which shallows its learning curve.

Globe Terrain data GIS Data 3D Data
NASA WorldWind Yes Yes with plug in
Marble No Yes No
webgl Earth Yes Yes Yes
OssimPlanet Yes Yes No
Cesium Yes Yes Yes

Table 2.1: Visualization Capabilities

The visual capabilities of the five Virtual Globes which are shown in table 2.2.3 can be
considered as the critical criteria in the selection process. The environment which are going
to be utilized to develop "Uch Enmek" web application must support loading and rendering
terrain data,GIS Data, imagery tiles and 3D Data.

14

The five environments support layering high-resolution imagery and maps from several stan-
dard services such as Bing maps and Mapbox, they also support layering any customized im-
agery. Marble globe does not support rendering terrain data while other web globes support
terrain data visualization,Cesium and NASA WorldWind have their own data stored in servers
(Cesium has 3 terrain providing servers), it is also possible in Cesium and WorldWind to store
customized terrain data in a geo-server and then request it.

Vector data rendering is supported in the five environments, Cesium, WebGL Earth and
world wind allows loading and rendering of geojson files. Visualizing meshed 3D models isn’t
supported in Marble Globe and OssimPlanet, while in WorldWind loading and rendering 3D
models stored in COLLADA format is only possible using Add-ons [36], Cesium and Webgl
Earth on the other hand supports 3D models rendering, Cesium accepts models stored in
GLTF formats. WorldWind has the advantage of its capability to render the globe with any
required ellipsoid which makes it consistent to work with any spatial reference, while Cesium
only accepts WGS84. However, a version of "Uch Enmek" data set stored in the geo-database
is available with WGS84 as it’s spatial reference. Since WebGl Earth’s Renderer is built on
top of Cesium,WebGL Earth shares most of Cesium’s visual capabilities, the difference is
that WebGL Earth APi is compatible with leaflet, making it much easier and more simple,
however, since leaflet is a library for developing 2D maps, the API limitation are far greater
than Cesium’s API. All of Cesium’s time-varying properties are removed from WebGL Earth,
visualizing moving objects is not possible the same way as in Cesium. Additionally, the
examples on WebGL Earth web page, are using an old version of Cesium (1.14, released on
October 2015) which makes it less sustainable.

Considering the described classification factors, visualization capabilities of the the five
Virtual Globes and the nature of the thesis application, the decision on the environment
that will host the "Uch Enmek" development ranges between Cesium and Webgl Earth since
Webgl Earth is using under the hood Cesium for the rendering of the data. The main difference
between the two environment is the javascript API that both environments are using, Webgl
Earth’s API adapts leafletjs API, leaflet mapping library is oriented towards mobile-friendly
interactive maps while Cesium library is made for web-based globes and maps for visualizing
dynamic data, 3D textured data can be easily loaded into Cesium in GLTF format which is
native in Cesium. This is due Cesium’s Graphics Stack. Therefore, Cesium was the favored
environment for the thesis objective.

Cesium’s Graphic Stack

The Graphics technology in Cesium [38] resembles a general graphics engine, but as
we move up the layers of abstraction in Cesium, classes become more specific to handling
Cesium’s main domain which is Virtual Globes. The lowest level of the stack is the Renderer,
which is a WebGL abstraction layer that handles WebGL resource management and Draw
Command execution. The next layer is the Scene, which is responsible for rendering a frame
by requesting commands from higher levels in Cesium, culling them, ordering them, and
eventually dispatching them to the Renderer. The top layer in the graphics stack, built on
the Renderer and the Scene, is the Primitives, which represent real-world objects that are
rendered by creating commands and providing them to the Scene.

Globe

The Globe primitive renders the globe elements which are: terrain, imagery layers, and
animated water. Cesium uses a quadtree, in geographic coordinates, for hierarchical level of

15

Figure 2.9: The Cesium Graphics Stack [38]

detail. At runtime, imagery tiles from one or more imagery layers, are mapped to each terrain
tile. This enables runtime flexibility and support for open standards, which makes it easy
to re-project non-native (user’s customized) imagery projections. When the Scene calls the
Globe’s update function, the quadtree is traversed and commands are returned for terrain tiles.
Each command references textures for each overlapping imagery tile and uses a procedurally-
generated shader based on the number of overlapping imagery tiles and other conditions such
as if lighting, post-processing filters, or animated water is enabled.

Figure 2.10: A House mesh from the Tuekta model (Burckhardt 2012) converted into GLtf.

Model

The Model primitive which represents a traditional 3D model like an artist would create
in Blender, Maya, etc. is loaded in Cesium as Gltf (see figure 2.10). When the Scene calls a
Model’s update function, the model traverses its node hierarchy - if needed - and applies any
new transforms, animations, or skins. A model may return one command or several hundred

16

depending on how it was authored, how many materials it has, and how many nodes are
targeted for animation.

Primitive

Cesium’s generic primitive, plainly named Primitive consists of a large library of geometries
for common objects drawn on a globe such as polylines, polygons, and extruded volumes. Most
Cesium applications draw the majority of their content using geometries.Cesium geometry
tessellation algorithms are designed to conform to the surface of an ellipsoid such as WGS84,
as opposed to a flat Cartesian world. For example, polygon triangulation includes an addition
subdivision surfaces stage to approximate the curvature of the ellipsoid.

Billboards/Labels/Points

Cesium’s billboards provide a lot of flexibility such as the ability to show/hide, set pixel
and eye offsets, set screen-space rotation, and scale their size based on the distance. This
can lead to “fat vertices” so Cesium uses packing and compression to minimize the number
of vertex attributes. Billboards may be completely static, completely dynamic, or somewhere
in-between where, for example, the position property for a subset of billboards changes every
frame, but the other properties do not. To handle this efficiently, billboards dynamically
groups vertex attributes into separate vertex buffers based on their usage so, for example,
if only the position changes, the rest of the vertex attributes are not written. Text labels
are implemented using billboards, where each character is one billboard. This has some per-
character memory overhead, but does not increase the number of commands generated since
the same texture-atlas-enabled batching is used. Billboards are also used to draw points,
however, starting recent Cesium releases (1.10), the new point primitive is more efficient. It’s
not as general-purpose as billboards, so it has lower overhead like no index data and no texture
atlas.

2.2.4 Virtual Globes in Cultural Heritage

The capabilities and potentials offered by virtual Globes triggered the creation of several Ge-
ographic Information System applications dedicated to cultural heritage, this section presents
some of the projects, researches and applications which are devoted to utilizing navigable 3D
landscapes in Cultural heritage and archaeology, with the focus on applications that were cre-
ated with Virtual Globes or related technologies.
(Prechtel & Münster) [42] have defined a set of concepts that should be achieved for com-
prehensive 3D representations in cultural heritage. (1)For the 3D objects a user-friendly
reconstruction that provides accurate content is a requirement,(2) standardized visualization
technology: the utilization of web 2.0 Technologies in particular HTML5 and WebGL makes it
possible for everyone to explore complex 3D models, (3) volunteered geoinformation: the use
of user-generated data is worth to be considered despite the difficulty to assess their quality
(4) data integration should achieve the most possible interoperable geo-data. The reviewed
projects meets most of these concepts -some projects didn’t involve any user-generated data-.

This survey serves two purposes, first, it helps to evaluate the performance of Virtual Globes
and other web- based technologies in terms of -if applicable- the ability of fulfilling the key
concepts mentioned above, second, it helps shaping the design paradigms of the intended "Uch
Enmek" application. Adopting some design concepts is the reason for including some studies
conducted in technologies other than virtual globes (e.g MAYARCH3D)

17

The searches were made in the following databases: Google Scholar, Research Gate, Academia
and Cesium Demos. In the first three databases the terms "Virtual globe Archaeology" and
"Virtual globe heritage" were used to search for scientific papers with a similar topic, as for
Cesium Demos the name tag "History" was used to filter the Demos list. Scientific papers and
publications were previewed and the studies that included development of applications were
selected for further analysis.

Virtual 3D tour Huelva (Spain)

The authors of this project [25] have produced a virtual journey supported by multiple web
platforms. A “KMZ” file was created to give the user a guided navigation ability, the data
sources are multi-source sets of vector (thematic layers such as Topographic maps and Geolog-
ical maps) and raster data (satellite imagery and DEM), integrated data layers are available
to view and edit as WMS-WFS.
The geospatial data can be viewed in any free or commercial browser (Google Earth, Terra
Explorer), compatibility with mobile phones and tablets is considered. Utilizing user’s loca-
tion in phones and tablets, the user can orient information into his or her location. Field
photographs, interpretive information, and value assessments were added for each placemark
-point of interest (POI)-.

The application objective is to serve as a learning resource designed to improve the teaching
and learning process. The authors have utilized Google Earth capabilities to integrate multiple
multi-source geospatial data, web-based capabilities were used to combine the visualization of
geo-spatial data the descriptive data in forms of diagrams, photographs and information sheets
to quantitatively assess the cultural tourism, scientific and educational value of the site.The
virtual tour gives a good example of interaction with the temporal dimension. The virtual
flight itineraries are provided in compatible video formats to be available in smartphones,
tablets and iPads, this alongside with providing the tour in "KMZ" format increases the do-
main of accessibility.

The project was developed in Google Earth, and there is no 3D objects represented in this
application, yet it successfully integrates a variety of data types and the use of the tours
demonstrates Google Earth’s navigation capability. The accessibility of the application is one
of the issues, "KMZ" file format requires an installed version of a compatible software like
Google Earth, although recently Google Earth launched a mobile application that allows users
to run KMZ files, still the use of WebGl technology appears to be the most efficient method
to augment the accessibility factor.

Policrowd

Policrowd 2.0 [20] is an application that allows all smartphones or multiple-sensor mobile
devices’ users, including cameras and GPS detectors, to become providers of geographical data
as well as help change and increase 3D virtual world mapping with personal geospatial data.
It enables users to create and personalize projects related to specific topics such as environ-
ment, society, scientific research, etc. Personalization is done through a Virtual Globe based
interface provided as a desktop application.
Georeferenced historical maps are rendered on the virtual globe and overlapped with the Ital-
ian orthophoto with pixel resolution of 0.5 meters and the local digital elevation model with
ground resolution of 20x20 meters, users can also exploit a temporal slide-bar to visualize the
evolution of the region over time, another slide-bar allows manipulating transparency of the
maps-image-tiles.

18

Buildings are provided as vector layers which are rendered in 2D, but using available infor-
mation about the buildings like height, year of construction and year of demolition, users can
visualize a 3D model from the vector data through extruding heights, and filter the buildings
according to different criteria.

NASA World Wind SDK is the platform used as visualization panel for this project, this
project shows World Wind’s flexibility with geospatial reference systems and different data
types, and it emphasizes the advance capabilities of NASA World Wind’s API, we can see
it’s ability to render customized terrain data and to develop spatio-temporal analysis tools.
However, the fact that it requires JAVA installation in the user’s machine limits the accessi-
bility, 3D objects consist of meshes and textures are absent which also shows restrictions in
the potential to represent visually powerful 3D models.

The Paths of Via Regina

One of the basic ideas is that the knowledge of the territory is fundamental for its promo-
tion and protection and that the modern techniques of Web mapping can help in this regard
(specifically the multidimensional visualization abilities) [13]. Hence, Web World Wind API
is selected as the tool for setting up the Via Regina geoportal [21]. It is a cross-platform
application that only requires a web browser that supports Web Graphics Library (WebGL).
Web World Wind API provides mostly the same visualization tasks done by the WORLD
WIND SDK -mentioned in Policrowd project above-, in addition it offers some base maps,
such as Landsat imagery, Bing aerial imagery and OSM. It also has view controls and controls
for compass, coordinates and geocoding.

The application aims to integrate virtual globes and VGI systems, using different appli-
cations for crowd sourcing - this task is done through SQL and NoSQL with the focus on
cross-platform data bases-, and NASA WORLD WIND for the visualization task. Although
WORLD WIND SDK provides some advanced visualization features that are not implemented
in Web version, yet the Web version is more accessible and usable for the public, it provides a
more standardized technology, and it merges the use of SQL and noSQL databases, the project
is good example of the usability of virtual globes for crowdsourced data visualization.

The Old Town of Girona

The Old Town of Girona [28] is a prototype created by The "Institut Cartogràfic i Geològic
de Catalunya" (ICGC).The application is a 3D Model of the Old Town of Girona, a historical
section of Catalonia, Spain. It’s a good example of integrating data collected from numerous
sources and converting them to a unified format.

The base image layer is an orthophoto image of Catalunya provided from ICGC’s WMTS
service, tiles are requested through Cesium’s API. The application’s "terrain provider" renders
a local terrain tiles which were generated locally. The 3D model of the town buildings is a
textured mesh that was created using oblique photogrammetry camera, the software Acute3D,
was used to create 42 COLLADA models with LOD 1. It uses calculation-intensive processes
which allows to convert images into a mesh of small triangles that still defines the elevation
model in 3D. Each triangle associates with it a corresponding piece of image, the models were
converted into GLTF format using an open source tool -COLLADA2GLTF-, additionally vec-
tor data that represents the buildings loaded as GeoJSON, then extruded to 3D polygons with a
height value that corresponds to the stored value in the "features" properties in the GeoJSON.

This model allows users to view buildings classified by urban use and functionality. The

19

photographic model is visually very powerful, but it is not ready to integrate data for each
building, since it is a continuous model. Instead, the user can view the vector buildings
which are individually defined by the volume, they can contain information which is stored as
height. In this case, clicking on one of them will get the corresponding planning and cadastral
information.
The integrated data are mostly customized, the terrain data, 3D data, vector data and satellite
imagery are provided by the developers, and they were integrated into the scene directly by
Cesium API after being converted to the corresponding format. The 3D model integration
with it’s relevant data is not functioning in an optimized way, mainly because the procedure
of creating the model resulted in a non-segmented mesh, but generally, this project gives a
good idea about Cesium’s potentials and about data integration.

Usability Assessment of a Virtual Globe-Based 4D Archaeological GIS

In this paper [19] a prototypical 4D archaeological GIS application was developed based on
the virtual globe Cesium. It then demonstrates by means of a usability test with a group
of archaeologists, the aim is to uncover usability problems and the general attitude towards
the created system. The application is a high-fidelity prototype, but to reduce its cost in this
early phase of the development, programming workload was limited by narrowing down the
number of features. While the functionalities are limited in number, they were chosen to rep-
resent still the intended set of functions. The prototype is aimed to work as a GIS application
targeting an audience with variety of expertise levels in interacting with GIS, this means that
the developed functionalities are mainly data management and analysis tools. Buttons in the
user interface allow for: display of attribute information on click, consulting and updating
attribute info in table form, filter on attribute, temporal filtering, distance calculation and 3D
Buffer around point.

The authors did not describe the detailed system architecture or the technical aspects of the
prototype in this paper, but it appears that these functionalities were implemented through
the use of Cesium’s API. In a similar way to "The Old Town of Girona" prototype, vector
2D buildings were extruded using the value of an attribute that describes the height. The
application uses a plug-in to clip the ground to a specified depth in order to visualize the
excavation site, however, the "Ground-Push" plug-in works only with the older releases of
Cesium, and it has some issues with the camera movement on the edges of the "pushed" hole.
Although the functionalities of the prototype are limited the application gives a good insight
of the platform’s potential to develop valuable analytical functionalities.

MAYARCH3D The site of Copan(Honduras)

The MayaArch3D project aims to develop an open source research tool that combines 3D-
Models with the functions of Geographical Information Systems (GIS) for the documentation
and analysis of complex archaeological sites on one internet platform [43] [52].

The open source system (http://www.mayaarch3d.org) has four prototype tools that can
manage, store, query, visualize, and analyze 3D archaeological data:

• (1) The 2D Geobrowser serves as a portal for georeferenced 2D and 3D geometry
stored in a PostgreSQL database, it allows users to navigate in an interactive 2D map
where they can view geometries and their associated attribute.

• (2) The 3D single object viewer allows users to interact with a collection of individual
3D models, this viewer is developed in an the open source GIScene.js library, which is

20

http://www.mayaarch3d.org/language/en/research/tools-in-development/

build on top of three.js the WebGL 3D library, the tool is good to view 3D models in a
close range scale.

• (3) The 3D scene viewer visualizes georeferenced 3D landscapes consist of 3D models
created from 2D footprints(shapefiles) and a terrain model derived from airborne LIDAR
data, the 3D models are clamped to the terrain model and linked to the corresponding
data allowing users to click on models to access the archaeological data.

• (4) TheVirtual panoramic tour tool is virtual tour of the Copan Archaeological Park,
it consists of twenty-four georeferenced panoramic images, that includes text, images,
sound clips and interactive 3D models.

The project developed with consideration of the challenges associated with 3D archaeological
data representation, the design of the project attempts to overcome these challenges through
the use of web technologies to assure accessibility and 3D data sustainability, linkage between
3D models and the archaeological databases and preparing data for data reuse.

The approach of visualizing 3D data with different resolution, and scale (landscape and
single objects like rooms, relics...etc) is implemented by providing different tools for each
category(large scale 2D, 3D landscape, and indoor).

The design of "Uch Enmek" application should adapt "some" the mentioned aspects, the
semantically segmented 3D models which are linked to a database [5] seems as a reasonable
feature to be included in the application, since the capabilities of Virtual Globes provides
native solutions for some of the challenges the separated viewers(tools) approach for example,
can be melted into one unified viewer (canvas) where multiple representations can be visualized
in one scene at once.

21

3 Methodology and Technical
Implementation

The practical part of the thesis aims at an implementation of the theoretical aspects dis-
cussed in the second chapter by exploited Cesium framework to create a virtual 3D landscape.
It was found out that the best way to reflect and evaluate all the theoretical issues is to create
a web-based application. This chapter will introduce the study area and the available data.
It will then emphasize the data processing steps were made to prepare the data for the visual-
ization pipeline. It will continue to demonstrate the design of the web application and explain
the workflow of the application system. It will also explain the implementation process in
creating the application, for the task of "Uch Enmek" visualization.

3.1 Data Sources and Study Area

The Geo-data set provided for the thesis covers the study area of the Ethno-Natural Park
"Uch Enmek" (see figure 3.1), which contains a number of the most famous Scythian burial
sites in the Altai Republic. Within the national park, two sites "KARAKOL" and "TUEKTA"
contain the most important monuments amongst the thousands of smaller monuments spread
over the total area of the park [10]. The data set covers -in detail- those two sites.

The data set which is provided separately for each site can be divided, based on type, into
vector data, satellite imagery, digital elevation models, and 3D models stored in the modeling
software Cinema 4D library. All contained geodata is based on geographic coordinates using
World Geodetic System 1984 (WGS84). In this section a detailed overview of the data will
be presented.

22

Figure 3.1: Overview map of the "UCH Enmek" natural Park (Prechtel 2010)

23

Vector Data

A set of vector data exists in the Altai project’s geo-database. the available thematic layers
are mostly polygons covering man-made, natural and archaeological features within the site
premises. With the exception of the archaeological features which were measured by a team of
archaeologists from Ghent University (J. Beaugois 2007 [10]) using GPS devices, the shapefiles
were digitized from an IKONOS imagery(Scmid 2012 [44],Burckhardt, 2011 [14]).

The vector layeres are stored in ESRI shapefile format and were classified using remote
sensing classification techniques [14]. The shapefiles share similar names to their classes with
a different last four attributes (see table 3.1), where (TWGS) refers to Tuekta site and (KWGS)
to Karakol site.

File name Geometry Description
archeoTWGS-KWGS polygon archaeological sites
forestTWGS-KWGS polygon forest cover
riverTWGS-KWGS polygon river
allroadsTWGS-KWGS polygon roads,tracks, streets
stonyTWGS-KWGS polygon stony ground
buildingTWGS-KWGS polygon building footprints, base elevation, and centre point
frameTWGS-KWGS ployline model outline
greenTWGS-KWGS polygons different vegetation classes apart from forest
muicipTWGS-KWGS polygones the contour of the municipality
fenceTWGS-KWGS polyline The village garden outlines

Table 3.1: GIS raw Data

Satellite Imagery

Two generated RGB images (Prechtel 2017) of the scene were provided for the thesis. The
satellite data from the IKONOS satellite has been granted by GeoEye Foundation to the
Institute of Cartography in 2011. The two pan-sharpened IKONOS color composites are
saved as georeferenced "Tiff" raster format (GeoTiff) and they represent the -locally provided
- base imagery for the thesis.

3D Model

3D models for each site exist in the modeling software Cinema 4D format. Each model con-
sist of buildings, fences, trees, hydrology features, roads and many other features. There are
seven different classes of buildings, see (table 3.1). Each class was assigned with a certain tex-
ture or color. Texturing and coloring of the building objects was done based on the building
class. The classification was made based on the processing of remote sensing data (Burck-
hardt, 2011 [14]),and the texturing along with the creation of the "TUEKTA" model is the
work of (Schmid 2012) [44], while "KARAKOL" landscape model is the work of (Zimmerman
2015) [57]. The level of detail (LOD) of the "Tuekta" 3D landscape is higher than "Karakol",
therefore, 3D prototypes of "Karakol" are extruded polygons defined by their color-tag, while
buildings in "Tuekta" model are "Textured" and uses a different prototype. However, The
"Karakol" model includes two burial mounds 3D reconstructions (Dießner 2013), the under-
ground chambers are rendered with a hypothetically reconstructed indoor objects such as
caskets, tables, and artifacts.

24

Feature-Class Designation ClassCode

Buildings

DWELLING (gable roof) 44110
DWELLING (hip roof) 44120
STABLE (gable roof) 44200
BARN (gable roof) 44220
CABIN (gable roof) 44330
SHANTY 44350
YURT (pitched roof) 44370
ANNEX (pult roof) 44400
RUIN (without roof) 44500

bridges

roads

country road (tarred) 62120
gravel road (6 m) 62230
gravel road (3,5 m) 62240
driveway 62300
driveway grass 62340

landuse garden 77710
built-up area 77720

fence

trees

deciduous large 71500
deciduous Small 71520
conifer large 71600
conifer large 71620

Table 3.2: 3D data classes

The parts of the 3D models that were involved in the project are the triangle meshed objects.
In the "Tuekta" model the buildings objects consist of textured meshes, while in "Karakol"
the meshed objects include buildings, roads, burial mounds, bridges, terrain surface, and
river.The application will be rendering bridges, burial mounds and houses. Buildings in the
virtual models are classified into 7 classes based on the usage of the building, each class
includes buildings of a certain functionality (table3.1). The buildings are geo-referenced based
on the horizontal coordinates retrieved from the Digital Elevation Model, The Altai-DEM was
interpolated from digitized topographic maps. The buildings heights are uniformed for each
prototypes.

Terrain Data

Another raster data source is the digital elevation model data for each site. The DEM was
generated to inherit the consistency of the 2D data [41], therefore, the roads and river bear a
realistic elevation in the resulted relief. Two Geotiff raster DEMs were provided to generate
the terrain for "Uch Enmek" application.

3.2 Data Processing

This section will emphasize the preparation steps taken to obtain the necessary data for the
visualization.

The vector data sets can be rendered in Cesium after being exported from ESRI ARCGIS
software in Geojson format. The Geojson files can be visualized in Cesium as layers attached
to the terrain surface or to the ellipsoid, however, the Ground clamping setting can only work

25

Figure 3.2: The Data integration work-flow into Cesium compatible formats

when the height values of the Geojson data are set to undefined. Therefore, all the Z values
were removed from the vector data before exporting is to the compatible Geojson format.

The IKONOS imagery can be served in the application as a single tile. The size of each
image is relatively small (less than 7 MB) which makes the cost of loading the entire image
at once in the client machine bearable. Therefore, the approach of dividing the images into
tiles and serving it as WMS can be avoided in this case, instead, the IKONOS images were
exported to JPEG format which means that their storage size were reduced and they are no
longer associated with any geographical data, Cesium API has a tiling scheme that allows
projection of an image tile within the provided geographical coordinates of the image corners
(extent).

3.2.1 Digital Terrain Model

The adopted approach used by Cesium to visualize the terrain is called the Tile-Model which
is a recursive subdivision of a portion of an area based on a quad-tree structure [17]. Hence, the
level of detail (LOD) management is done based on the zoom level or the camera position [22].
Cesium API supports two formats of elevation datasets to be requested: Height Map and
Quantized Mesh 1.0. However, there is no open source software to generate quantized-mesh

26

format at the moment. Therefore, Height map data was generated to be requested by Cesium
API using "The Cesium Terrain Builder", an open source tool developed by University of
Southampton, GeoData institute. [58]

Cesium Terrain Builder is a C++ library and an associated command tools that creates
terrain tiles, the generated tile sets can be provided by a server to be requested in Cesium.
The output of this tool is a set of tiled files in heightmap format ".terrain" stored in different
zoom levels.

The raster-based DEM files were edited and processed to meet the input requirements of the
tool, first, the empty raster cells or the noDATA values -also called holes or gaps- can not be
handled by the Cesium Terrain Builder, hence, noDATA gaps of the raster image were filled
with ESRI ArcMap software, using Map Algebra analysis tool each noDATA cell were given
the mean value of neighboring cells using a 10x10 mask. In addition, the edges of the raster
were clipped to get rid of the no data values in the image edges, finally the images were ready
to be used by The Cesium Terrain Builder.

The tool was executed using a virtual machine running on Linux, the tool can gener-
ate from any Geospatial Data Abstraction Library (GDAL)-based raster Digital Elevation
Model(DEM),the result was a terrain tile-set saved in a directory and ready to be served via a
server, the tool calculated the maximum zoom level associated with the native rater resolution
and then generated tiles for all zoom levels between that maximum and zoom level 0 where
the tile extents overlap the raster extents.

3.2.2 3D Models

The 3D models were prepared to be suitable for Cesium and to fulfill the design require-
ments of the application using the 3D modeling software CINEMA 4D (see section3.3). The
application design requires that every 3D object in the scene(e.g. house, bridge..etc) must be
defined as single node, the "Tuekta" 3D model has a hierarchical schema where the model is
divided into seven nodes (tags), each one represents a class, and each one of the seven "par-
ent" nodes has children "nodes", the children nodes represents the houses, using CINEMA
4D the children nodes were given names that are concomitant with the data base records(see
section3.4). The "karakol" Model on the other hand has all the objects of one type wrapped
in a single node, using CINEMA 4D objects were manually selected and separated into an
independent tag(node) for each object and named in similar matter to "Tuekta".
Finally, the interior objects of the burial chamber were textured to give them more realistic
appearance. New materials were created and added the materials library, and were textured
using images, then they were wrapped around the chamber’s objects.

Among the many 3D formats that CINEMA 4D can export, COLLADA is the XML based
format that is compatible for web representation, however, Cesium natively supports 3D mod-
els using GLTF format, the open source collada2gltf tool was used to convert the COLLADA
files to GLTF, the GLTF files and their associated textures -image files- were saved in a direc-
tory on the server to be served as a static content.

3.3 Design

The two main consideration for the system design of the "Uch Enmek" application are the
available data sources and the objectives of the application itself. The proposed design and
implementation aim to fulfill the basic required aspects mentioned in chapter two(see 2.2.4)

27

and to provide solutions for the known issues. These issues are mainly related to the 3D virtual
models. One of the proposed usages of 3D models in archaeology is data sustainability, this
can be achieved by making the relevant data accessible and reusable by users [43], at the same
time integrating VGI with the 3D model in a joint visualization requires adapting an efficient
standard. One approach is the use of CityGML , which is a promising solution [34], however,
since CityGML is originally designed for urban related applications, adapting it in archaeology
cannot follow a predetermined path [42].

The application provides a similar approach, which is to store all the information of the 3D
model objects in a database and to use the 3D model visualized in Cesium as an interface to
interact with the relevant data. The same functionality can allow users to generate and edit
the data. The architecture of the database is not one of the thesis objective, so the use of a
flexible database seems reasonable, a simple schema-less noSQL database will be used for the
application, a schema can be added to the noSQL database in the future if a database design
is determined.

Another major consideration is the underground objects which may considered the most
valuable feature in the entire model. The Kurgans burial mounds models consist of furnished
chambers which means to view them the user should be able to navigate inside the chambers.
Virtual globes -including "Cesium"- are designed generally to navigate in the geographic space,
in addition "Cesium" does not support subsurface navigation naturally.However, Cesium API
allows the control of the navigation in the scene.Therefore, an approach to visualize the sub-
surface features through Cesium API is going to be used.

The system architecture of the application (figure 3.3) can be divided into two compo-
nents.(1) A server side which consists of a set of applications that handle most of the dynamic
content (terrain, 3D objects information) as well as the static content. (2) A client side script
which makes up the front end application. the client side will provide The main HTML
web pages, where the main visualization canvas and user interface will be presented, and the
interaction functionalities will be applied.

Server-side Application

The server side of the application is responsible for serving the dynamic and the static con-
tent of the project -except the WMS which can be requested from the cloud through Cesium
API -. The application performs the database queries based on the Asynchronous JavaScript
And XML(AJAX) requests from the client. The terrain data are served using an open source
tool, while a tool written in javaScript was developed to serve the database content.

Ubuntu which is an open source operating system software and one of the distribution
systems of Linux is installed on the server machine. The Apache HTTP Server software is
installed in the server to serve the static content of the application "HTML files, javaScript
files,css files, and the associated data such as 3D models (GLTF), GIS (Geojson),Satellite
imagery...etc"

Client-side Application

The client side application is developed using Cesium alongside with some additional javascript
libraries(see table 3.3.1) , the application consist of three HTML pages, one contains the can-
vas where the whole 3D landscape is visualized and the user-interface where the user is able to

28

Figure 3.3: The System architecture of the web application

select and filter between different data types,and interact (navigate, zoom in, etc) with the 3D
landscape, the second HTML page provides database queries, specifically the update "PUT"
requests. The third HTML page is created as the an introductory page, it includes an abstract
description about the "Uch Enmek" project, the user can navigate from this page to the "3D
Model" to run the visualization application.

3.3.1 Used Software and Applications

The set of software, applications and programming languages/ frameworks are listed in table
3.3.1.

Used programming Languages:

Javascript is a high-level, dynamic, untyped, and interpreted programming language, the
overwhelming majority of modern websites use JavaScript, and all modern web browsers,
desktops, game consoles, tablets, and smart phones—include JavaScript interpreters [24].

Used frameworks and libraries:

Node.js is a runtime system for creating (mostly) server-side applications. It’s best known
as a popular means for JavaScript coders to build real-time Web APIs. [53]Nodes basic modules

29

Software / Framework Functionality
ESRI ArcGIS The software used for 2D data processing
Cinema 4D The software used for 3D data processing
Visual Studio Code The code editor for building and debugging the application
Apache HTTP Server Web server software used to host the application
Cesiumjs The main visualization environment
MongoDB Database that stores the 3D objects Archaeological information
Nodejs The framework used to develop the server-side application
jQuery A library used to build the user interface and the AJAX requests
Bootstrap A Framework used to build for the responsiveness of the HTML page

Table 3.3: Used Software packages and Frameworks with their purpose

are mostly written in JavaScript, and developers can write new modules in JavaScript. The
runtime environment interprets JavaScript using Google’s V8 JavaScript engine.

jQuery is a cross-platform JavaScript library designed to simplify the client-side scripting
of HTML. [29] It is free, open-source software.jQuery’s is designed to make it easier to navigate
a document, select DOM elements, create animations, handle events, and develop Ajax appli-
cations. The modular approach to the jQuery library allows the creation of powerful dynamic
web pages and Web applications.

MongoDB is a non SQL "NoSQL" database management system released in 2009. It
stores data as JSON-like documents with dynamic schemas (the format is called BSON).
MongoDB has its focus oriented to flexibility, power, speed and ease of use. The reason for
choosing MongoDB as the noSQL datatbase for the project that it supports replicated servers,
indexing, geospatial indexing and it offers drivers for multiple programming languages [8].

30

3.4 Implementation

Having the data prepared and with consideration of the system design, the process of build-
ing the web application started. As explained in the previous section, the application consists
of two components, the client side and the server side.

3.4.1 Server-side application

Figure 3.4: Workflow of the back-end services

The server side (back-end) application runs on a Virtual Cloud Server. The operating sys-
tem of the server is the Linux distribution Ubuntu. Four applications are running on the sever
as services making up the server side application. APache HTTP server, MongoDB, Ce-
sium Terrain Server and Uch Enmek Server. The services provide static and dynamic
content of the application to the client side (see figure 3.4).

The services are ruining using Systemd. Systemd is a Linux initialization(init) system and
system manager. The main functionality of an init system is to initialize the components that
must be started after the Linux kernel is booted [23]. The init system is also used for service
management.

Systemd can perform a set of tasks targeting a "unit" (service). The tasks are stored in a
’.service’ file. After configuring the unit (.service) file, running systemd commands will start
the service, stop the service, and enable the service, enabling the service will automatically
run the service when the machine is rebooted .
Below is an example of "tuekta.service" file, it contains the configurations of "Cesium Terrain
Server" that is serving the "Tuekta" terrain tile set:

31

1 [Unit]
2 Description=tuekta terrain srever − serving terrain tiles for tuekta village
3 Documentation=
4 After=network.target
5

6 [Service]
7 Type=simple
8 User=baloola
9 WorkingDirectory=/home/baloola/work/bin

10 ExecStart=/home/baloola/work/bin/Cesium−terrain−server −dir /home/baloola
/terrain/tuekta −port 8888

11 Restart=on−failure
12

13 [Install]
14 WantedBy=multi−user.target

The [Unit] section contains the variables "Description" and "Documentation", which de-
scribes the service functionality and purpose. The ’network.target’ value of the "After" vari-
able tells systemd to start the service when the server boots up, but it should run only after
the server is connected to the internet.
The [Service] section contains the main configurations of the service. The most interest-
ing variables in this section are "ExecStart" which contains the command that should run to
launch the application, and "Restart" which specify the condition of restarting the application.

The script bellow shows the commands used to run the tuekta service after configuring the
tuekta.service file. Other services - except Apache HTTP sever - where initialized in a similar
manner:

1 $ sudo systemctl daemon−reload
2 $
3 $ sudo systemctl start tuekta
4 $
5 $ sudo systemctl enable tuekta

The four applications running as services in the server are:

Apache HTTP Server

The Apache HTTP Server software was installed on the machine to host the client side
application files (HTML,JavaScript, css, images...etc). The "Uch Enmek" web page content
is located in the APACHE public directory where it is served when the IP address is typed in
the browser. The Apache service runs in the server by default when the software is installed
and configured.

Cesium Terrain Builder

The Cesium Terrain Builder [59] is an open source basic server for serving file based tilesets
representing terrain models. The tool is created by the GeoData institute of University of
Southampton specifically for testing the terrain tiles created using "Cesium Terrain Builder".

The tool is written in GO programming language and requires Go to be present in the
system to be installed. Therefore, version 1.6 of GO was installed on the server, and using

32

the command "GO get" the terrain server was installed on the machine. The terrain server
provides a set of command line options, the commands were used to specify the path to the
tilesets, and the port number. The "Tuekta.service" example above describes the steps taken
to run this application as a service.

MongoDB

MongoDB database was installed on the server and is also running as a service, it is respon-
sible of the creation,management and hosting the physical database of the application project.
MongoDB can be communicated from the "Server" application and perform the requested
queries.

Uch Enmek Server

The "uch Enmek" server application is a Representational state transfer (RESTful) API,
it was developed in nodejs framework and then deployed in the server. Running as a ser-
vice called "server", the node application allows the client to communicate with the project’s
database through HTTP requests. The development process of the "server" application is
described in the section below.

The RESTful API Server

"Uch Enmek" server is a basic RESTful API application developed to implement -on the
server side-the joint visualization (3D model and associated information) approach of the
project. The application is written in nodejs and is designed to function as a server and as a
database management application, figure 3.5 demonstrates the functionality of the application.

Applications developed in nodejs can include a third party packages ("modules"), the pack-
ages that were used in this application are:

• Express: Express is a nodejs framework that provides a set of features to develop a web
application, it’s functions were used to set up the server.

• mongodb: The MongoDB API allows the application to interact with the MongoDB
service.

• cors: This framework is used to enable Cross-origin resource sharing (CORS).

• body-parser: A framework that reads the HTTP "PUT" data and parse it into a json
object.

The Application can be divided -based on functionality- into two parts: the server, and the
database manager.

The server:

The server (Appendix.2.1) is the main application , it listens to all HTTP requests on a
specified port (3000), and performs the reactions whether it is "GET" requests or "PUT"
requests. The HTTP "GET" method is used to retrieve (read) data from the database. The
HTTP "PUT" is used to update existing records in the database, the new data is included
in the request’s body. The server uses the "body-parser" package to convert the "PUT" data

33

Figure 3.5: "Uch Enmek" web server functionality

in the request body into a json object. The server also calls internally the database manger
which is written as module and performs its functions to retrieve or update the data.

The Database Manager:

The Database Manager is developed as a Module (Appendix.2.2), it consists of a set of
functions and it is called by the server. The Database manager performs the following tasks:
Database Creation, Database Connection, Fetching Data and Updating data

-Database Creation:

The created database has no pre-specified framework, it is aim to work as a prototype to
implement the application’s VGI / joint visualization approach. Other reasons for creating a
structure-less database are:
• The Project objective is not related directly to the use of Database in archaeology.

• There is no archived archaeological data in the "Uch Enmek" geodatabase.

The "Uch Enmek" database (see figure 3.6) consists of one collection "buildings", which
contains four documents, each one archives the information of one of the 3D model’s objects
group -parent node-. The documents are: Tuekta for Tuekta buildings, Karakol for Karakol
buildings, Archaeo for the burial mounds and Indoor which contains the furniture and the
relics inside the burial chamber.
Each document consist of three fields: "object id", "description" and "image url". Since the

34

Figure 3.6: "Uch Enmek" Database

3D models were derived from the 2D GIS data -except the kurgan interior-, the database can
also be generated from the 2D GIS data. Therefore, the "database creation" function loops
in the associated Geojson files (see figure 3.5) and parse the GIS attributes into the Database
records, the "Class Code" attribute value is assigned to "Description". The "object id" values
were added to the shapefiles in ArcGIS before exporting them in Geojson. "Object id" plays
the same role of the key-value in relational database. The interior of the burial chamber (
Dießner 2013) 3D reconstruction was not modeled based on the 2D geodata, so the "indoor"
fields were created manually and saved in a json file to be generated by the "database creation"
the rest of documents. Additionally , all the "image url" fields were given a unified image path.

-Database Connection:

The connection function connects the application to the "buildings" collection. first, it
checks if the database exists if not it runs the "database creation" function, then it connects
the application to the created database. This procedure insure that "create" function runs
only when the database does not exist, so it is called the first time the application is running,
and/or when the database is deleted. This functionality was implemented to ease the appli-
cation’s deployment in new machines. After the connection is initialized, the application can
finally act as a middleware.

-Fetching Data:

35

This task is performed by "find by id " function, this functions is exported to be called in the
main (server) application. using MongoDB API It fetches the filed information ("description"
and "image url"). First,it perform a search where the "object id" value is equal to the request
"id" value, the response function is to send back the resulted information.

-Updating Data:

The "update building description" performs data updating task, it first apply the same
search mechanism as "find by id ", but it response differently. Instead , it parses the request
body into an object, the object consist of "description" and "image url", then it replaces the
filed records with this object if the field exist, if not, it adds this object which means that
a new field was created. This function is also exported as module and is called in the main
application.

3.4.2 Client-side application

Figure 3.7: Workflow of the front end application

The client-side (front-end) web application represents the primary component of the project,
it carries out the two main functionalities of the application: visualization and interactivity.
the front-end application runs on top of the browser as a user interface allowing users to perform
desired functionalities.
Figure (3.7) illustrates the general processing of the application, which is explained in the
following sections:

36

Initial interface

the application is initialized when the user requests the main.html file from the server Then,
the javascript program (Appendix .3.1)start running and main.html body elements are ren-
dered in the browser window. The main body elements are: a canvas to view and interact
with the visualization, and a side menu which acts as a user interface(UI). The side menu
(UI) provides three site visits: "UCH Enmek" which is an overview of the natural park, and
two sites "Karakol" and "Tuekta", additionally the UI allows the user to interact with different
data types of each selected site.
The initialization processes performed by the program running in main.html are:

- Using Cesium.js the program renders the main scene, which is the virtual globe. The
visualization canvas style is customized to fit the design of the HTML page, the program uses
a plug-in called "Cesium-navigation" [2] to add a compass and a distance scale to the canvas.

- The program runs a set of background process, thy load the data sets (imagery, 3D models
and geojson) and store them in the client machine(cache). After the processes are complete,
the data can be visualized when requested.

- From the three site visits, the program runs the "Uch Enmek" visit. "UI interaction"
section will include an explanation on how the "visit" works.

Background Processes:

The program runs a set of functions that uses Cesium.js provided functions to request and
prepare the data-sets to be viewed by the user. These functions run only on initialization, the
user then shows or hide the data-sets through the UI interface, this mechanism reduces the
load of requesting / removing data-sets. The implemented functions add the following :

- Base imagery : using "Single Tile Imagery Provider" function, the satellite IKONS images
and the topographic map are imported and georeferenced, but not added to the visualization
(imagery layers).

- Labels and billboards : they are added as entities, and their visibility is set to hidden.

- Vector data : using "GeoJson Data Source" function the geojson files are loaded and
configured as a "Data Source" and it awaits to be added to an entity to be visualized. The
geojson color is assigned based on the layer class.

- 3D model: the GLtf files are added to the application as an entity, specifying the position
of the model’s center in the globe will place the model in the required place. after adding the
models, their visibility is set "hidden".

UI interaction

The user interface consists of a javascript program (Appendix.3.2) and an HTML side menu
with clickable items and buttons, they perform the tasks of sites visits, show/hide (Satellite
imagery),(3D features),(Vector data), base map selection, and indoor Mode initialization. The
"switchable" data sets are:

Imagery:All images are initially loaded to the scene, georeferenced(since they are no longer
GeoTIFF) and are hidden. upon "switch on" request, the image is set to be visible and on

37

top of other imagery layers, when "switch off" the layer is set to be hidden.

GIS Layers: the geojson layers are loaded and stored in as an object called "datasource"
which is a collection of entities. "switching on" a layer will add it to the scene entities, and
will be then visualized, switching off the layer will remove it from the scene entities but not
from the "datasource" collection.

3D features : there are two types of 3D features: The 3D model and the terrain. When
the application is initialized the 3D models are loaded and positioned and set to be "hidden",
and it will be visualize by resetting their visibility. The terrain is requested with the "Cesium
Terrain Provider" which requests the terrain tiles from the "Cesium Terrain Server" service in
the server.

The base map selection process is a requested using "imagery providers", the two provided
OGC web map services are: Bing maps, and open street map OSM. The third base map option
is the topographic map which is a single tile image, it is loaded in similar way to the satellite
imagery.

The data sets are provided separately for each site. When the user requests a "switchable"
data set, the program visualizes the data-set of the current visited site. And when the user
requests a new site, the program visualized the "switched" data- sets of the newly visited site,
and remove the data of the previous site. Figure 3.8 demonstrates the workflow of the program
when the user requests a site visit.

Figure 3.8: The UI execution flow

After visualizing the selected data-sets of a site, the camera moves "Fly" to a predefined
location and orientation to have an overview of the site. When the user requests a site visit
while in the site, the camera "Fly To" is the only function that is executed. This design
allows the addition of a new sites to the application in the future without the need to add new
functions.

38

Canvas interaction

The canvas performs the visual interactivity tasks and, the entire visualization tasks of
the application. After the application is initialized and the scene is rendered, the user can
interact with the virtual globe and the visualized features using Cesium API default interactive
functions. Using the mouse or the touch the user can navigate the virtual globe by panning,
zooming - in/out-, and rotating the view.
Cesium API allows the user to interact with the geojson files by default, clicking on a vector
feature will create a box that includes attributive data of the selected feature.

The program, however runs a set of functions to give the user the ability to interact with
the 3D model, this procedure is explained in diagram (3.9).
When the user clicks on an a 3D object, the program responses by viewing two type of informa-
tion panels: a small billboard contains the geographic coordinates of the selected point, and
a small HTML document embedded inside the canvas (iframe) that contains the 3D object’s
information. This procedure is implemented as the following:

- The "mouse left click" is registered as an event, which means every time a click happens,
the following tasks are executed.

- The program stores the position of the point that the mouse have picked in the scene
(Cartesian x,y,z).

- The program checks if this point is defined " belongs to an identified 3D object in the
scene -e.g. ground, 3D model-". It then proceed if this 3D object is a node that belongs to
a 3D model (gltf). The program execute these two tasks: "billboard creation" and "iframe
creation" :

- Billboard :
The program convert the Cartesian coordinates into cartographic coordinates (longitude, lat-
itude, elevation). Then it creates and configures a billboard by (1) locating the billboard at
the clicked "picked" position, (2) add with the values of the cartographic coordinates as labels
to the billboard .

- Iframe:
Using Cesium API, one can create an iframe and assign it as a "description" of an entity. Ev-
ery time the entity is selected, the iframe will be rendered on the screen. Hence, the program
creates a HTML template (iframe), the template has three elements making up the content of
the iframe:(1) an image element with a variable value of the image’s URL,(2) a description
paragraph that is also a variable, and a link "update" that launches a new HTML page.
The content (variables) of the iframe is filled using the following steps.
iframe content: First, the program stores the id of the selected node in a variable called
"id". Then, the program sends an AJAX "GET" request to the server to fetch the associated
information of the record "id". The server response by sending two objects : "image url" and
"description". After retrieving the 3D object’s information. the program assign these values
to the corresponding variables in the iframe.The program then creates a new entity, and then
assign the iframe as the entity’s description, and "select" the entity.

AJAX Requests

39

The client-side application uses AJAX framework provided by jQuery to communicate with
the server. It uses two requests :(1)"GET" where "id" value is added to the request’s url,
after the data is received the program executes the previously mentioned tasks. (2) "PUT",
where the the request uses the same url method as "GET", additionally, the request "body"
contains the user input, the server response by updating the database with data embedded in
the "body".

Update.html

The Update.HTML acts as an interface for the database. the user can only update the
database content through update.html. The main elements of the page are tow input ele-
ments(text boxes) for the image url and the 3D object information respectively, and a submit
button that will launch the "PUT" request. When the page is initialized the application exe-
cutes a "GET" request, and fill the input boxes with the retrieved data.

The page is launched (appendix.3.3) when the user clicks on the "link" element in the iframe.
The page needs the 3D object id to perform the AJAX requests, but due to the security policy
that is enforced by the different web browsers (Same-origin policy), the browser prevents
the application from passing variables to a new domain (or even to the parent window in some
browsers). The way the program overcome this issue is by passing the node’s id to a query
string, then attaches the query string to the "link" element . Below is the url of the "link"
element that navigates to update.HTML,

1 www.update.html?id=${id}

In the url text, the query string is the part that comes after the question mark. When up-
date.html is launched the program retrieves the query string value using JavaScript’s Browser
Object Model (BOM), and then proceeds with the previously described tasks.

Indoor Mode

One of the most important features in the "Uch Enmek" 3D landscape are the underground
reconstructions of the burial chambers, which known as "Kurgans". These tombs are consid-
ered to be the main focus of the archaeological activities in the park [10]. However, it is not
an easy task to provide a navigable visit to these chambers. There are two factors making
the visualization of Kurgan interiors such a challenge in Cesium:(1) They are under the sur-
face,(2) The burial tombs are an indoor features. Since Cesium is a virtual globe, the default
navigation events like: Left click and drag (camera rotation around the globe) and middle
wheel scrolling (zoom in/out) are developed to appropriate outdoor navigation. Additionally,
the camera cannot penetrate surfaces.

One of the proposed approaches was to use the Cesium "Ground-Push" plug-in [16], which
"excavates" the terrain of a defined rectangle. However, The tool is not maintained anymore
and is not supported in the recent releases of Cesium.
The implemented approach was to develop a navigation "mode", where the user control in-
puts(events) are different than the default ones. Inspired by the Cesium "Camera" tutorials [4],
a module "Indoor" (appendix.3.4) was developed to initialize a visit to the inside of the Kur-
gans and to provide new control events to navigate inside the tomb.

Once the mode is initialized, five HTML buttons are set to be visible: UP, Down, Balance,
Exit and Help. The program disable all of the navigation events, and define the new indoor
navigation events. The new events are (1) Mouse/Touch drag"mouse left down (press),
mouse move, and mouse up (release)": when the user drags the mouse, the view direction

40

changes based on the dragged distance and direction. (2) UP arrow/ UP button: moves
the camera forward (towards the camera looking direction) using keyboard’s UP arrow or the
UP screen button. (3) Down arrow/ Down button: moves the camera backwards. The
camera move speed "move rate" is proportional to the camera height. Since the Kurgans
height values are more than 800 m , the single move event would move the camera outside the
tomb. There fore the move rate is multiplied by 0.1 to appropriate the camera movement.

After defining the new navigation events, the program renders the 3D model, then "fly
to" the chamber and sets the orientation angles (Heading,Pitch,Roll) so that the camera is
looking at the horizon. The Balance button executes a "fly to" method to the camera’s
current position and orientates the camera with the current heading while sets the Roll and
Pitch values to zero. This procedure will balance the camera around the z and x axis making
it looking at the horizon while maintaining the same azimuth. The EXIT button re-sets the
application’s navigation events and "fly to" the previously visited site.

HTML Design :

The introduction HTML page was created using Mobirise, a free website builder software
that uses bootstrap framework (see table ??). This introductory HTML page was used as an
HTML template for the main application page, and the update page, which were designed
using own developed css script and bootstrap framework. Additionally, Cesium css script was
hacked to alter Cesium’s canvas style(e.g. infobox, help button) to harmonize HTML design
of the application.

41

Figure 3.9: Canvas interactivity algorithm

42

4 Results and Discussion
This chapter presents the final results of the thesis, it demonstrates the functionality and
performance of the final product and discusses the related research aspects in a critical manner.

4.1 Results

A domain name was pointed to the virtual cloud server hosting the application, users can
access the introductory page by visiting www.baloola.eu, the web page (see figure 4.1) is
a prototype for the project’s Home web page, it is designed to have an introduction and a
description about the project. The navigation menu on the top of the page consists of a logo
that links to the website of the Institute of Cartography, a title Uch Enmek that links to the
main page and three buttons: "Home" which is a links to the home page, "3D Model" that
links to the web application, and "Options" which is disabled in the main page. Clicking on
"3D Model" will initialize the main web application.

Figure 4.1: www.baloola.eu home page prototype

4.1.1 Web Application

The application interface (4.2) consists of Three main elements: The navigation menu, the
canvas and a side menu. The navigation menu can be used to navigate from/to the application

43

www.baloola.eu
www.baloola.eu

and to "toggle" the side menu by clicking the "Option" button.

Figure 4.2: initialized view of the application, the "Uch Enmek" Etno-Nature Park

The canvas interface has two Cesium’s default buttons located at the top right corner of
the canvas :"Help", which opens a navigation instruction box, and Cesium "Geocoder" for
finding addresses and landmarks, and flying the camera to them.Beneath the default buttons,
Cesium-navigation tools are located on the right side of the canvas. They are a Compass,
Zoom in/out buttons and a distance scale on the bottom right corner of the canvas. The
bottom left corner of the canvas contains a set of organizations logos (Cesium, TUD, GeoEye
and bing).
The (UI) panel is a side menu that slides from/to the left side of the canvas, it contains four
sub-menus and a button, the user can use this menu to perform the visits, filter data, and
switch modes. Additionally, the project’s data authorship information is mentioned in the
bottom of the side menu.

User Interface

The side menu has four "dropdown" panels: "Site Visits","Base Map","Thematic Over-
lays" and "2D/2D Depiction", and a button "Schematic Models".

• Site Visits:

The application provides three site visits, "Karakol" and "Tuekta" for the two archaeolog-
ical sites, and"Uch Enmek" which is an overview of the whole "Uch Enmek" Ethno-Natural
Park. The application preforms "Uch Enmek" visit when it gets initialized (see figure 4.2), it
layers the topographic map of the Karakol valley with an outline of "Uch Enmek" park and
two rectangular frames for Tuekta and Karakol sites respectively. When in this state (visit),
the user cannot view the different data-types (e.g. Vector layers, 3D models) since no site is
specified (Tuekta and Karakol).
When the user switches between the two sites (Tuekta and Karakol), the "switched-on" data-
types of the newly visited site will replace the data of the previously visited site.

• Base Map:

44

Figure 4.3: The Four base layers covering (Karakol)

The base map dropdwon panel contains the available base maps/imagery for the application
(see 4.3). The application provides two web map services "Bing Maps" and "OpenStreetMap",
and two single tile base layers: The topographic map which covers the area of "Uch Enmek"
and the IKONOS imagery . The Two "IKONOS" images are provided separately for each site
(Tuekta and Karakol). When requested, the IKONOS image is layered on top of the globe’s
imagery layers.

• Thematic Overlay:

The "Thematic Overlays" panel consists of three buttons: "Natural Features", "Man-
Made Features" and "Archaeological Sites". Each button represents a feature type.
When The user switch on any of the layers, a map legend slides from the right side of the
canvas (see figure 4.4).

Figure 4.4: Thematic layers and the legend (Karakol)

45

• 2D/3D Depiction:

The "2D/3D Depiction" button provides the 3D landscape visualization. When switched
on, it visualizes the 3D prototypes of the "current" site, additionally it requests the terrain
tiles of the site from the server and renders them based on the zoom level (see figure 4.5).

Figure 4.5: 3D landscape of Karakol

• Schematic Models:

The "schematic models" dropdown provides a list of the 3D reconstructions. In this
project, the burial mounds is the available schematic model. Clicking the "Kurgan (Burial
Mound)" link will initialize the indoor mode, and the camera will fly to the interior of the
burial mound underground. The camera orientation will be altered so that it looks at the
horizon, the user will be able to interact properly with the Kurgan’s 3D model features.

When the indoor mode is initialized (see figure 4.10), the side menu (UI) is disabled, and new
five buttons appear in the canvas: "exit mode","help","down","up" and "balance". Addi-
tionally, the navigation inputs are disabled(e.g. mouse wheel/zoom, left click+drag/ pan, etc).

The indoor mode provides a different navigation functionality. The user is able to change
the camera direction (look around) by clicking the left button, then drag the mouse around.
Using the keyboard up/down or the screen up/down buttons the user can move forward and
backward. The constant movement and changing of the direction might tilt the camera view,
which may confuse the user .Therefore, the balance key resets the camera orientation to look
at the horizon again (see figure 4.7).

Canvas Interface

In addition to the visualization task, the canvas provides a portion of the application’s interac-
tivity functions. The user can interact with the visualization by navigating in the canvas scene
using Cesium default tools(mouse controls), "Cesium-Navigation" plug-in tools (e.g. compass,
zoom in/ out button), or the indoor mode customized navigation tools.

46

Figure 4.6: The interior of the Kurgan schematic model (Karakol)

Figure 4.7: The Balance button resets the tilted camera axis (left) and balances the camera
view(right)

Cesium provides joint visualization for the vector data. When the user clicks on a geojson
feature, the application creates an infobox that contains the attributive data of the feature
(see figure 4.8)

The user can also interact with the 3D model objects. The application provides the ability
to view the associated information of the selected object and the spatial information of the
selected point on the object’s surface (clicked point). When the user clicks on a 3D object (see
figure .13), an infobox contains a small image and a description is created, and a small billboard
is visualized at the picked position, it contains the cartographic coordinates(longitude, latitude
and elevation) of the picked point on the 3D object’s surface.

• Update Page:

The user can also interact with the infobox content. The link "Update Description" will
navigate to a new HTML page (see figure 4.10).The user can add/replace the description arti-
cle, and can add a URL for the description image. When the user click the button "Update",
the application sends a "PUT" request to the database, once the content is updated a Suc-
cess" button appears on the screen, clicking on it will close the update page.

47

Figure 4.8: Selected Building feature (Karakol)

Figure 4.9: Infobox and coordinates panel (Tuekta)

48

Figure 4.10: Update.html

Figure 4.11: Updated description (Tuekta)

49

4.2 Discussion

This section discusses the final output of the thesis, it includes critical assessment of the project
in terms of meeting the thesis objective, and provides the answers to the research questions.

4.2.1 Critical issues Clarification

Spatial reference systems other than the one used in the Virtual Globe?

Cesium default spatial reference system is "WGS 84". According to Cesium documenta-
tion, customized ellipsoids can be defined and then override the default WGS84 in the scene
initialization process. However, Cesium developers do not have enough feed back from develop-
ers about the customized ellipsoids performance [39]. According to the OpenLayers - Cesium
integration library "Ol-Cesium" developers, Cesium only works properly with WGS84 [27].

Finally, the terrain generation tool used in the project cannot properly process data sources
in spatial reference systems other than WGS 84.

Flexibility in respect to customized digital elevation models and image data?

Cesium API provides the ability to request terrain tiles from multiple datasets: (1)Cesium
STK World Terrain,(2) Cesium Small Terrain,(3) Esri ArcGis Image Server and (4)
VT MAK VR-TheWorld Server. Additionally, Cesium API requests and visualizes ter-
rain tiles from third party servers, as long as the formats of the elevation dataset are supported.

The main challenge in the project was to produce terrain tiles in a a format supported by
Cesium. The open source tool that was used to generate the terrain dataset accepts as in-
put any (GDAL)-based raster Digital Elevation Models(DEM). Additionally, an open Source
server application was used to serve the terrain tiles in the server side.
Alternatively, a commercial solution provided by "Analytical Graphics, Inc (AGI)" is also
available to generate and serve customized DEM’s.

Cesium also provides multiple web map services (WMS). Customized imagery can be tiled,
and then requested by Cesium. However, the image data provided for the project, has relatively
Small coverage, so it was imported as a single tile to the scene.Since Cesium does support
Geotiff imagery, single tile images should be converted into another acceptable format, which
means that the geographic information will be lost and the resolution will be reduced, the
geographic information of the image extent must be provided to position the image correctly.
To conclude, Cesium requirements for customized imagery and DEM’s can be provided by any
GIS software and open-source tools.

Object-by-object import versus import of compact object groups

The core of gltf model is a JSON file with the following top-level elements : "scenes" (ba-
sic structure of the model). "nodes" (which contain meshes). "meshes" (3D geometries).
("buffers", "bufferViews", "accessors"). "materials" (defines how objects will be ren-
dered), ("textures", "images", "samplers") which defines the surface appearance of the
objects.

The "image" object refers to image files that contain the texture data (as URI or it can be
included directly in the JSON), every time a gltf file is rendered in the screen, the browser
requests the associated images and projects them (wrapping and scaling) on the objects sur-
faces.

50

This means if we imported several gltf files -even if they share the same image files- the browser
will repeat the process of requesting the image files with every gltf import. Therefore, the load-
ing time will increase with number of imported (textured) gltf files.
Thus, the compact object group seems to be the better choice.

Handling of surface and subsurface (Kurgan) objects

The 3D objects height values and the terrain tilesets were derived from the same elevation
data source. Therefore, there were no need for special processing for the 3D model features
to assure that they will be clamped to the ground accurately.On the other hand, the ability
to navigate in the scene was the key factor in the visual interaction with the surface and
subsurface features.

The performance of Cesium default navigation tools cannot be assessed without a user study.
However, (De Roo 2017 [19]) have noted that some of the usability problems in Cesium was
the standard zoom functionalities of the Cesium Viewer. additionally the lack of a compass
might make it difficult to re-orient. Therefore, the the application used "Cesium-Navigation"
plug-in to add additional tools in order to optimize the outdoor navigation.
As for the subsurface objects, the level of camera control provided by Cesium high-level API,

has enabled the development of the subsurface/indoor mode. Which allows the user to navigate
inside the kurgans using customized navigation functionalities. However, the implemented
approach is a experimental and needs to be further optimized. Perhaps an adaptation of the
First-person perspective concept which is used in 3D video game developments [33], would
provide the best possible navigation mode for the indoor features.

Parameters influencing the performance

As already discussed, the compact importing of a model will reduce the runtime of Cesium
applications. However, the use of non-pictorial materials (e.g. Karakol prototypes) increases
the size of the gltf file, as well as the cost of its visualization.
The 3D models that were visualized in the project were relatively small,. the size of Karakol gltf
file and the associated images (for texturing) are less than 8 MB, while Tuekta 3D model files
are around 20 Megabytes. Therefore there were no noticeable effect on the general performance,
and t was difficult to measure the influence of factors like the total mesh number, or node
hierarchy in "Karakol" and "Tuekta" 3D models. The integration of other type of 3D models
(point cloud, photo-generated) in the application would provide a better understanding for
the influence of the mentioned factors.
A test for the web application performance was conduced (https://www.webpagetest.org.
it shows that imagery data, have the most notable effect on the application performance
(Appendix.1).

Operating ability of the application in different browsers and on smart phones

The application operability in different browsers was evaluated by running the application in
four browsers (Chrome, Firefox, Microsoft edge, and Safari). The web page was requested in
each browser and main functions were executed. The application shows similar behavior in the
different browsers. The exception was a failure running the update functionality in Microsoft
Edge. The reason is that Microsoft Edge prevents the program which uses "location.search"
method from accessing the URL box and then retrieve the building id value to execute the
AJAX requests.

51

https://www.webpagetest.org

As for the smart phones, the application was tested in an iphone 7, Safari browser and a
Galaxy S6, Google chrome. The two tests shows two similar issues:

- The single tile imagery were not rendered (IKONOS imagery and the Topographic map)
see figure 4.12.

- In the indoor mode the (UP) and (Down) keys does not response which means that the
camera cannot move, while the direction changing (touch and drag) and the balance button.

Figure 4.12: Karakol 3D landscape on iphone 7 (left). IKONOS imagery of Karakol appears
as a black rectangle (right)

52

4.3 Conclusion and future work

The theoretical part of the thesis provides an overview of the current implementation of
virtual globes in the context of cultural heritage, and an assessment of the available open
source virtual globes.

An application was developed in Cesium virtual globe environment to provide accessible,
user-friendly 3D reconstruction. The application provides a prototype of VGI implementation,
and a joint visualization solution at the same time. The thesis provides a mechanism for pro-
cessing geodata to prepare it for Cesium environment visualization pipeline. A prototype was
developed to interact with subsurface features within the same visualization interface, which
can work as an approach to provide a full range of spatial dimension.

As an Environment, Cesium is a rapidly growing platform, which makes considerable promises
about the potentials of Cesium’s performance in archaeological representation. A proposal for
designing database would help further explore the linked visualization, user-generated data
and VGI approaches. Additionally, the use of the newly introduced Cesium’s 3D tiles speci-
fication could help rendering massive amount of data. Hence, high resolution photo-base 3D
models, point clouds could be integrated to the Geodata. Cesium’s API functionalities can be
further utilized to overcome some of the presents challenges. Tiling the base imagery data and
serve it as WMS could enhance the performance of the application in desktops smart phones.
Finally, the 3D reconstructions in the future should be developed with consideration of their
compatibility to work with Cesium.

53

Bibliography
[1] NASA Ames , Ames Research Center (ARC). nasa world wind.

[2] Alberto Acevedo. Cesium navigation , 2016.

[3] Kheir Al-Kodmany. Visualization tools and methods in community planning: from free-
hand sketches to virtual reality. CPL bibliography, 17(2):189–211, 2002.

[4] Inc Analytical Graphics. Cesium Camera Tutorials , 2015.

[5] Michael Auer, Giorgio Agugiaro, Nicolas Billen, Lukas Loos, and Alexander Zipf. Web-
based visualization and query of semantically segmented multiresolution 3d models in the
field of cultural heritage. ISPRS Annals of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, 2(5):33, 2014.

[6] Mark Barnes and Ellen Levy Fi nch. Collada – digital asset schema. pages 330–335, 2008.

[7] S Bleisch and S Nebiker. Connected 2d and 3d visualizations for the interactive exploration
of spatial information. In Proc. of 21th ISPRS Congress, Beijing, China, number 1999,
pages 1037–1042, 2008.

[8] Alexandru Boicea, Florin Radulescu, and Laura Ioana Agapin. Mongodb vs oracle-
database comparison. In EIDWT, pages 330–335, 2012.

[9] Larissa Bonfante. The Barbarians of Ancient Europe: Realities and Interactions. Cam-
bridge University Press, 2011.

[10] I BOURGEOIS, Wouter Gheyle, Rudi Goossens, Alain De Wulf, Eduard Dvornikov,
AV Ebel, Leon Van Hoof, Stéphanie Loute, Kaatje De Langhe, Anne Malmendier, et al.
Survey and inventory of the archaeological sites in the valley of the karakol (uch-enmek
park). report on the belgian-russian expedition in the russian altay mountains 2007-2008.
University of Gent/GASU: Gent, 2007.

[11] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and François Yergeau.
Extensible markup language (xml). World Wide Web Consortium Recommendation REC-
xml-19980210. http://www. w3. org/TR/1998/REC-xml-19980210, 16:16, 1998.

[12] MA Brovelli, P Hogan, M Minghini, and G Zamboni. The power of virtual globes for val-
orising cultural heritage and enabling sustainable tourism: Nasa world wind applications.
International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 4:W2, 2013.

54

[13] MA Brovelli, CE Kilsedar, and G Zamboni. Visualization of vgi data through the new
nasa web world wind virtual globe. International Archives of the Photogrammetry, Remote
Sensing & Spatial Information Sciences, 41, 2016.

[14] Manuel Burckhardt. Modellierung ländlicher Siedlungen aus hochauflösenden Satelliten-
bilddaten als Baustein einer dreidimensionalen Landschaftsmodellierung. Master’s thesis,
TECHNISCHE UNIVERSITÄT DRESDEN, Germany, 2011.

[15] Howard Butler, M Daly, A Doyle, S Gillies, T Schaub, and C Schmidt. Geojson specifi-
cation. Geojson. org, 2008.

[16] Chris Cooper. Cesium Ground-Push Plugin , 2015.

[17] Patrick Cozzi and Kevin Ring. 3D Engine Design for Virtual Globes. CRC Press, 1st
edition, June 2011.

[18] Douglas Crockford. The application/json media type for javascript object notation (json).
2006.

[19] Berdien De Roo, Jean Bourgeois, and Philippe De Maeyer. Usability assessment of a
virtual globe-based 4d archaeological gis. In Advances in 3D Geoinformation, pages 323–
335. Springer, 2017.

[20] Politecnico di Milano. Policrowd 2.0 The Social World Wind Platform , 2013.

[21] Politecnico di Milano. The Paths of Via Regina , 2013.

[22] Umberto Di Staso, Marco Soave, Alessio Giori, Federico Prandi, and Raffaele De Ami-
cis. Heterogeneous-resolution and multi-source terrain builder for cesiumjs webgl virtual
globe. World Academy of Science, Engineering and Technology, International Journal of
Computer, Electrical, Automation, Control and Information Engineering, 10(1):129–135.

[23] Justin Ellingwood. How To Use Systemctl to Manage Systemd Services and Units, 2015.

[24] David Flanagan. JavaScript: the definitive guide. " O’Reilly Media, Inc.", 2006.

[25] JA González-Delgado, AM Martínez-Graña, J Civis, FJ Sierro, JL Goy, CJ Dabrio,
F Ruiz, ML González-Regalado, and M Abad. Virtual 3d tour of the neogene palaeon-
tological heritage of huelva (guadalquivir basin, spain). Environmental earth sciences,
73(8):4609–4618, 2015.

[26] Help Google EarthEnterprise. .

[27] Beraudo Guillaume. Ol3-cesium: 3d for openlayers.

[28] Institut Cartogràfic i Geològic de Catalunya (ICGC). The Old Town of Girona as the
crow flies , 2015.

[29] jQury. What is jQuery , 2017.

[30] Jessica Keysers. Review of digital globes 2015. CRCSI: Victoria, Australia, 2015.

[31] Khronos. collada,wiki , 2008.

[32] The Khronos Group Inc. glTF Specification, 11 2016. version 1.0.

[33] Eric Laurier and Stuart Reeves. Cameras in video games: comparing play in counter-
strike and the doctor who adventures. Video at work. New York: Routledge, p. NYP,
2014.

55

[34] M Milanese. A novel approach to 3d documentation and description of archaeological fea-
tures. In Proceedings of the 38th Conference on Computer Applications and Quantitative
Methods in Archaeology, volume 38, pages 1–7. FJ Melero, 2010.

[35] Marco Minghini. Multi-dimensional GeoWeb platforms for citizen science and civic en-
gagement applications. PhD thesis, Italy, 2014.

[36] blog Nasa worldwind. , 2014.

[37] TU Dresden Department of Cartography. The Alti Project tu dresden.

[38] AGI Pattrick Cozzi. Graphics Tech in Cesium - The Graphics Stack , 2015.

[39] Hanna Pinkos. cesium-dev, 1999.

[40] Brandon Plewe. Web cartography in the united states. Cartography and Geographic
Information Science, 34(2):133–136, 2007.

[41] N Prechtel, S Münster, C Kröber, C Schubert, and S Sebastian. Presenting cultural
heritage landscapes-from gis via 3d models to interactive presentation frameworks. ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-5
W, 2:253–258, 2013.

[42] Nikolas Prechtel and Sander Münster. Cultural heritage in a spatial context–towards an
integrative, interoperable, and participatory data and information management. In 3D
Research Challenges in Cultural Heritage II, pages 272–288. Springer, 2016.

[43] Heather Richards-Rissetto and Jennifer von Schwerin. A catch 22 of 3d data sustainability:
Lessons in 3d archaeological data management & accessibility. Digital Applications in
Archaeology and Cultural Heritage, 2017.

[44] Marcel Schmid. The Paradox of Overfitting. Master’s thesis, TECHNISCHE UNIVER-
SITÄT DRESDEN, Germany, 2011.

[45] Olaf Schroth, Ellen Pond, Cam Campbell, Petr Cizek, Stephen Bohus, and Stephen RJ
Sheppard. Tool or toy? virtual globes in landscape planning. Future Internet, 3(4):204–
227, 2011.

[46] Christian Schubert. Vom 3D-Landschaftsmodell zu einer integrativen Web-basierten In-
formationsapplikation für ein archäologisches Schutzgebiet (Uch Enmek, Republik Altai).
Master’s thesis, TECHNISCHE UNIVERSITÄT DRESDEN, Germany, 2013.

[47] Richard B Schultz, Joseph J Kerski, and Todd C Patterson. The use of virtual globes as
a spatial teaching tool with suggestions for metadata standards. Journal of Geography,
107(1):27–34, 2008.

[48] Shirish C Srivastava, Shalini Chandra, and Hwee Ming Lam. Usability evaluation of e-
learning systems. In Encyclopedia of Information Science and Technology, Second Edition,
pages 3897–3903. IGI Global, 2009.

[49] Klokan Technologies. WebGL Earth JavaScript API, 2015.

[50] D Tiede and S Lang. Analytical 3d views and virtual globes-putting analytical results into
spatial context. In ISPRS, ICA, DGfK-Joint Workshop: Visualization and Exploration
of Geospatial Data, Stuttgart, 2007.

[51] Stefan Tilkov and Steve Vinoski. Node. js: Using javascript to build high-performance
network programs. IEEE Internet Computing, 14(6):80–83, 2010.

56

[52] Jennifer von Schwerin, Heather Richards-Rissetto, Fabio Remondino, Giorgio Agugiaro,
and Gabrio Girardi. The mayaarch3d project: A 3d webgis for analyzing ancient archi-
tecture and landscapes. Literary and Linguistic Computing, 28(4):736–753, 2013.

[53] Ben Wen. 6 things you should know about Node.js , 2013.

[54] OpenGL Wiki. Opengl shading language — opengl wiki,, 2015. [Online; accessed 16-
March-2017].

[55] OpenGL Wiki. Main page — opengl wiki,, 2017. [Online; accessed 16-March-2017].

[56] WebGL Public Wiki. Getting started — webgl public wiki,, 2011. [Online; accessed
16-March-2017].

[57] Sebastian Zimmermann. Vom GIS-Modell zur 3D-Landschaft – Ergänzungen und Work-
flowreview im „Uch-Enmek-Modell“. Master’s thesis, TECHNISCHE UNIVERSITÄT
DRESDEN, Germany, 2015.

[58] Homme Zwaagstra. cesium-terrain-builder , 2015.

[59] Homme Zwaagstra. cesium-terrain-builder , 2015.

57

.1 Web Application Performance Test

Figure .13: A screen shot from the performance test shows the load time of the imagery data
"purple" and geojson data "grey" (http://www.webpagetest.org)

.2 Server-Side Application

.2.1 "server.js": Uch Enmek Server

1
2 var express = require(’express ’),
3 // requesting wines.js the database managment module
4 wine = require(’./ routes/wines’);
5 var path = require(’path’)
6 var bodyParser = require(’body -parser ’);
7 var cors = require(’cors’);
8 var app = express ();
9

10
11 app.configure(function () {
12 // app.use(allowManyDomains);
13 app.use(express.logger(’dev’)); /* ’default ’, ’short ’, ’tiny ’, ’dev’

*/

58

http://www.webpagetest.org

14 app.use(express.bodyParser ());
15 app.use(cors());
16 app.use(bodyParser.json());
17 });
18
19 app.get(’/’, function(req , res) {
20
21 res.sendfile(path.join(__dirname + ’/index.html’));
22
23 });
24
25
26 app.get(’/buildings /:id’, wine.findById);
27 app.put(’/buildings /:id’, wine.updateBuildingDescription);
28
29 app.listen (3000 , ’0.0.0.0 ’);
30 console.log(’Listening on port 3000... ’);

.2.2 "wines.js": Database Management Module

1 var mongo = require(’mongodb ’);
2
3 var Server = mongo.Server ,
4 Db = mongo.Db;
5
6 var server = new Server(’localhost ’, 27017, {
7 auto_reconnect: true
8 });
9 db = new Db(’tuektadb ’, server);

10 // establish a connection with the database
11 db.open(function(err , db) {
12 if (!err) {
13 console.log("Connected to ’buildings ’ database");
14 db.collection(’buildings ’, {
15 strict: true
16 }, function(err , collection) {
17 if (err) {
18 console.log("The ’buildings ’ collection doesn ’t exist. Creating it

with sample data ...");
19 populateDB ();
20 }
21 });
22 } else {
23 console.log("Cannot connect to tuektadb database");
24 }
25 });
26
27
28 // fetching records
29 exports.findById = function(req , res) {
30 var id = req.params.id;
31 console.log(’Retrieving building description: ’ + id);
32 db.collection(’buildings ’, function(err , collection) {
33 collection.findOne ({
34 ’object_id ’: id
35 }, function(err , item) {
36 res.send(item);
37 });
38 });
39 };
40
41
42 // updating records
43 exports.updateBuildingDescription = function(req , res) {

59

44 var id = req.params.id;
45 var building = req.body;
46 console.log(req.params);
47 console.log(’Updating building: ’ + id);
48 console.log(JSON.stringify(building));
49 db.collection(’buildings ’, function(err , collection) {
50 if (err) {
51 console.log(’Error while opening collection buildings: ’ + err)
52 } else {
53 collection.findOne ({
54 ’object_id ’: id
55 }, function(err , item) {
56 item.description = building.description;
57 item.image_url = building.image_url;
58 collection.update ({
59 ’object_id ’: id
60 }, item , {
61 safe: true
62 }, function(err , result) {
63 if (err) {
64 console.log(’Error updating building: ’ + err);
65 res.send({
66 ’error ’: ’An error has occurred ’
67 });
68 } else {
69 console.log(’’ + result + ’ document(s) updated ’);
70 res.send(building);
71 }
72 });
73 });
74
75 }
76 });
77 }
78
79 /*

--
*/

80 // Populate database with sample data -- Only used once: the first time the
application is started.

81 // this is usable only if the application is deployed in a new machine and
there is a need for a new database.

82 var populateDB = function () {
83 var fs = require(’fs’);
84 var obj ,ds;
85 var files = [’data/kara_arch.geojson ’,’data/kara_build.geojson ’,’data/

tuek_build.geojson ’,’data/indoor.json’];
86 for (var i = 0; i < files.length; i++) {
87 ds=files[i];
88
89 fs.readFile(ds , ’utf8’, function(err , data) {
90 if (err) throw err;
91 obj = JSON.parse(data);
92 var buildings = []
93 for (var index = 0; index < obj.features.length; index ++) {
94 item = obj.features[index];
95 object = {
96 object_id: item.properties.id ,
97 description: item.properties.ClassCode ,
98 image_url: ’data/tuekta/house.jpg’
99 }

100 buildings[index] = object
101 }

60

102 db.collection(’buildings ’, function(err , collection) {
103 collection.insert(buildings , {
104 safe: true
105 }, function(err , result) {
106 if (err) {
107 console.log("something is wrong man!!");
108 }
109 });
110 });
111
112 });
113 }
114 };

.3 Client side Application

.3.1 "main.js": The core program of the client side application

1 Cesium.BingMapsApi.defaultKey = ’
AovQCWpnauHAxG1dQkX69IJyrXUHqCWGdG1xafecdti7Trv9aAn49GABW4umeIqJ ’;

2 var viewer = new Cesium.Viewer(’CesiumContainer ’, {
3 selectionIndicator: false ,
4 baseLayerPicker: false ,
5 fullscreenButton: false ,
6 homeButton: false ,
7 sceneModePicker: false ,
8 timeline: false ,
9 animation: false

10
11 });
12 // viewer.extend(Cesium.viewerCesiumInspectorMixin);
13
14 viewer.extend(Cesium.viewerCesiumNavigationMixin , {});
15 viewer.infoBox.frame.sandbox = ’allow -same -origin allow -top -navigation allow -

pointer -lock allow -popups allow -forms allow -scripts ’;
16 viewer.infoBox.frame.removeAttribute(’sandbox ’);
17 viewer.scene.globe.depthTestAgainstTerrain = true;
18 viewer.scene.frameState.creditDisplay.addDefaultCredit(new Cesium.Credit(’

CesiumContainer ’, ’assets/images/tud -128 x62.png ’, ’https ://tu -dresden.de/
bu/umwelt/geo/ifk’));

19 viewer.scene.frameState.creditDisplay.addDefaultCredit(new Cesium.Credit(’
CesiumContainer ’, ’assets/images/geo.png’, ’http :// www.geoeyefoundation.
org/’));

20
21 var scene = viewer.scene;
22 var camera = scene.camera;
23 var handler = new Cesium.ScreenSpaceEventHandler(scene.canvas);
24 var logoUrl = ’data/billboards/goat.jpg’;
25 var model_im , other_im , current , labelEntity , current_mode , IkonosIsOn ,

BuildingsIsON , uchIsOn;
26 IkonosIsOn = BuildingsIsON = uchIsOn = false;
27 var layers = viewer.scene.imageryLayers;
28 var topo_image = new Cesium.ImageryLayer(new Cesium.SingleTileImageryProvider

({
29 url: ’data/imagery/topo_map.jpg’,
30 rectangle: Cesium.Rectangle.fromDegrees (85.6209426986409312 ,

50.3921250959869140 , 86.1110566586886108 , 50.9892180403075112)
31 }));
32 var t = viewer.entities.add(new Cesium.Entity ());
33 var k = viewer.entities.add(new Cesium.Entity ());
34 var tuekta_terrainProvider = new Cesium.CesiumTerrainProvider ({
35 url: ’ http ://207.154.237.111:8888/ tilesets/tiles/’
36 });

61

37 var tuekta_cent = Cesium.Cartesian3.fromDegrees (85.88383177000060 ,
50.83765943000035);

38 var tuekta_hpr = new Cesium.HeadingPitchRoll(Cesium.Math.toRadians (-0.90),
0.0, Cesium.Math.toRadians (0));

39 var tuekta_orientation = Cesium.Transforms.headingPitchRollQuaternion(
tuekta_cent , tuekta_hpr);

40 var tuekta_image = new Cesium.ImageryLayer(new Cesium.
SingleTileImageryProvider ({

41 url: ’data/imagery/tuekta_ikonos.jpg’,
42 rectangle: Cesium.Rectangle.fromDegrees (85.8460710132402056 ,

50.8080086113231388 , 85.9226210132402031 , 50.8511286113231407)
43 }));
44 var karakol_terrainProvider = new Cesium.CesiumTerrainProvider ({
45 url: ’ http ://207.154.237.111:8000/ tilesets/tiles/’
46 });
47
48 var karakol_image = new Cesium.ImageryLayer(new Cesium.

SingleTileImageryProvider ({
49 url: ’data/imagery/karakol_ikonos.jpg’,
50 rectangle: Cesium.Rectangle.fromDegrees (85.9238437666018200 ,

50.7927500947573805 , 86.0044637666018303 , 50.8442500947573777)
51 }));
52 var karakol_cent = Cesium.Cartesian3.fromDegrees (85.95298 , 50.81486 , 884.4);
53 var karakol_hpr = new Cesium.HeadingPitchRoll(Cesium.Math.toRadians (-0.76),

0.0, Cesium.Math.toRadians (0));
54 var karakol_orientation = Cesium.Transforms.headingPitchRollQuaternion(

karakol_cent , karakol_hpr);
55 var bing_source = new Cesium.ImageryLayer(new Cesium.BingMapsImageryProvider ({
56 url: ’https ://dev.virtualearth.net’
57 }));
58
59 var osm_source = new Cesium.ImageryLayer(Cesium.

createOpenStreetMapImageryProvider ({
60 url: ’https ://a.tile.openstreetmap.org/’
61 }));
62
63 // "Uch Enmek" frames and outline
64 var outline = new Cesium.GeoJsonDataSource ();
65 var park = new Cesium.GeoJsonDataSource ();
66
67 outline.load(’data/GIS/main_frame.json’, {
68 fill: Cesium.Color.BLUE.withAlpha (0.3),
69 clampToGround: true
70 });
71 park.load(’data/GIS/uch_enmek.json’, {
72 fill: Cesium.Color.WHITE.withAlpha (0.4),
73 clampToGround: true
74 });
75
76 var gisLayers = [’manMade ’, ’natural ’, ’arc’];
77
78 var laylay = [{
79 name: ’kara_archeo ’,
80 path: ’data/GIS/kara_archeo.geojson ’,
81 alpha: 0.7,
82 fill: ’#f970f5 ’
83 }, {
84 name: ’tue_archeo ’,
85 path: ’data/GIS/tuek_archeo.geojson ’,
86 alpha: 0.7,
87 fill: ’#f970f5 ’
88 }, {
89 name: ’tuek_muni ’,

62

90 path: ’data/GIS/tuek_muni.json’,
91 alpha: 0.7,
92 fill: ’#fcb05f ’
93 }, {
94 name: ’kara_muni ’,
95 path: ’data/GIS/kara_muni.json’,
96 alpha: 0.7,
97 fill: ’#fcb05f ’
98 }, {
99 name: ’tue_build ’,

100 path: ’data/GIS/tuek_buildings.geojson ’,
101 alpha: 0.7,
102 fill: ’#ff0000 ’
103 }, {
104 name: ’kara_green ’,
105 path: ’data/GIS/kara_green.json’,
106 alpha: 0.7,
107 fill: ’#cbf7bb ’
108 }, {
109 name: ’tue_green ’,
110 path: ’data/GIS/tuek_green.json’,
111 alpha: 0.7,
112 fill: ’#cbf7bb ’
113 },
114 {
115 name: ’kara_build ’,
116 path: ’data/GIS/kara_buildings.geojson ’,
117 alpha: 0.7,
118 fill: ’#ff0000 ’
119 }, {
120 name: ’kara_forest ’,
121 path: ’data/GIS/kara_forest.geojson ’,
122 alpha: 0.7,
123 fill: ’#2c9107’
124 }, {
125 name: ’tue_forest ’,
126 path: ’data/GIS/tuek_forest.geojson ’,
127 alpha: 0.7,
128 fill: ’#2c9107’
129 }, {
130 name: ’kara_road ’,
131 path: ’data/GIS/kara_road.geojson ’,
132 alpha: 0.7,
133 fill: ’#858687 ’
134 }, {
135 name: ’tue_road ’,
136 path: ’data/GIS/tuek_road.geojson ’,
137 alpha: 0.7,
138 fill: ’#858687 ’
139 }, {
140 name: ’kara_river ’,
141 path: ’data/GIS/kara_river.geojson ’,
142 alpha: 0.7,
143 fill: ’#3077e8’
144 }, {
145 name: ’tue_river ’,
146 path: ’data/GIS/tuek_river.geojson ’,
147 alpha: 0.7,
148 fill: ’#3077e8’
149 },
150 {
151 name: ’kara_stone ’,
152 path: ’data/GIS/kara_stone.geojson ’,

63

153 alpha: 0.7,
154 fill: ’#c2c3c4 ’
155 }, {
156 name: ’tue_stone ’,
157 path: ’data/GIS/tuek_stone.geojson ’,
158 alpha: 0.7,
159 fill: ’#c2c3c4 ’
160 }, {
161 name: ’kara_stone_2 ’,
162 path: ’data/GIS/kara_stone_2.geojson ’,
163 alpha: 0.7,
164 fill: ’#6e9b74’
165 }
166];
167
168 // adding the GIS layers to Cesuim GeoJsonDataSource collection
169 laylay.map(function (laylay) {
170 this[laylay.name] = new Cesium.GeoJsonDataSource ();
171 this[laylay.name].load(laylay.path , {
172 fill: Cesium.Color.fromCssColorString(laylay.fill).withAlpha(laylay.alpha)

,
173 clampToGround: true
174 });
175 return laylay.name;
176 });
177
178
179 var karakol = {
180 camera: {
181 destination: Cesium.Cartesian3.fromDegrees (85.95115667356953 ,

50.78042115209972 , 3079.575032013868) ,
182 orientation: {
183 heading: 0.0,
184 pitch: Cesium.Math.toRadians (-35.0),
185 roll: 0.0
186 }
187 },
188 other_image: tuekta_image ,
189 other_model: tuekta ,
190 other: t,
191 parent: k,
192 cent: karakol_cent ,
193 orientation: karakol_orientation ,
194 terrainProvider: karakol_terrainProvider ,
195 image: karakol_image ,
196 scale: 1,
197 uri: ’data/3d/kara.gltf’,
198 manMade: [kara_road , kara_build , kara_muni],
199 natural: [kara_stone , kara_river , kara_green , kara_forest , kara_stone_2],
200 arc: [kara_archeo]
201
202 };
203
204
205 var tuekta = {
206 camera: {
207 destination: Cesium.Cartesian3.fromDegrees (85.88276761171318 ,

50.80612402131404 , 2787.550547062463) ,
208 orientation: {
209 heading: 0.0,
210 pitch: Cesium.Math.toRadians (-35.0),
211 roll: 0.0
212 }

64

213 },
214 other_image: karakol_image ,
215 other: k,
216 other_model: karakol ,
217 parent: t,
218 cent: tuekta_cent ,
219 orientation: tuekta_orientation ,
220 terrainProvider: tuekta_terrainProvider ,
221 image: tuekta_image ,
222 scale: 100,
223 uri: ’data/3d/tuekta.gltf’,
224 manMade: [tue_build , tue_road , tuek_muni],
225 natural: [tue_stone , tue_river , tue_green , tue_forest],
226 arc: [tue_archeo]
227
228 };
229
230
231 var bing = {
232 source: bing_source ,
233 other: osm_source ,
234
235
236 };
237 var osm = {
238 source: osm_source ,
239 other: bing_source
240 };
241
242
243 // karakol Kurgans billboards
244 viewer.entities.add({
245
246 parent: k,
247 position: Cesium.Cartesian3.fromDegrees (85.935161405039807 ,

50.819749536016246 , 950),
248 billboard: {
249 image: logoUrl ,
250 scaleByDistance: new Cesium.NearFarScalar (1.5e2 , 2.0, 1.5e7 , 0.5),
251 scale: 0.03
252 }
253 });
254 viewer.entities.add({
255 parent: k,
256 position: Cesium.Cartesian3.fromDegrees (85.952872864512827 ,

50.817814523725225 , 920),
257 billboard: {
258 image: logoUrl ,
259 scaleByDistance: new Cesium.NearFarScalar (1.5e2 , 2.0, 1.5e7 , 0.5),
260 scale: 0.03
261 }
262 });
263 // "Karakol" and "Tuekta" lables
264 viewer.entities.add({
265 position: Cesium.Cartesian3.fromDegrees (85.94 , 50.81, 1000),
266 label: {
267 text: ’KARAKOL ’,
268 translucencyByDistance: new Cesium.NearFarScalar (15e3, 0, 18e3 , 1.0),
269 fillColor: Cesium.Color.fromCssColorString(’#fff7f7 ’),
270 font: ’20px sans -serif ’
271 }
272 });
273 viewer.entities.add({

65

274 position: Cesium.Cartesian3.fromDegrees (85.88 , 50.84, 1000),
275 label: {
276 text: ’TUEKTA ’,
277 translucencyByDistance: new Cesium.NearFarScalar (15e3, 0, 18e3 , 1.0),
278 fillColor: Cesium.Color.fromCssColorString(’#fff7f7 ’),
279 font: ’20px sans -serif ’
280 }
281 });
282
283 // uch Enmek visit
284 function uch() {
285
286 if (! uchIsOn) {
287 viewer.dataSources.removeAll ();
288 viewer.dataSources.add(outline);
289 viewer.dataSources.add(park);
290 }
291 var topo_camera = {
292 destination: {
293 x: 298421.54756878485 ,
294 y: 4102622.049784298 ,
295 z: 4985542.956093062
296 }
297 };
298 moding(topo_image);
299 viewer.camera.flyTo(topo_camera);
300 uchIsOn = true;
301 current = uchIsOn;
302 return uchIsOn;
303 }
304
305
306
307 function flyto(model) {
308 viewer.camera.flyTo(model.camera);
309 }
310
311
312 // adding the site datasets without shiwing them
313 function render(threeD) {
314
315 viewer.entities.add({
316 name: ’Loading ’,
317 parent: threeD.parent ,
318 orientation: threeD.orientation ,
319 position: threeD.cent ,
320 model: {
321 scale: threeD.scale ,
322 uri: threeD.uri
323 }
324 });
325 layers.add(threeD.image);
326 threeD.image.show = false;
327 threeD.parent.show = false;
328 current = threeD;
329 }
330
331 // initializing the site visit
332 function launch(model) {
333
334 uchIsOn = false;
335 if (IkonosIsOn) {
336 ikonos(model);

66

337 }
338 GIScheck(model);
339 if (BuildingsIsON) {
340 create(model);
341 }
342
343 flyto(model);
344 }
345
346
347 // adding imagery of the current site ’if swithced ’ and remove the prevouis

one
348 function moding(mode) {
349
350 if (current_mode != mode) {
351 if (current_mode = topo_image) {
352 layers.remove(topo_image , false);
353 }
354 if (!mode.source || !mode.other) {
355 layers.add(topo_image);
356 } else {
357 layers.remove(mode.other , false);
358 layers.add(mode.source);
359 }
360 if (IkonosIsOn) {
361 ikonos(current);
362 }
363 current_mode = mode;
364 return current_mode;
365 }
366 }
367
368
369 function TerrainBuild(model) {
370
371 if (model != current) {
372 viewer.dataSources.removeAll ();
373 }
374 viewer.terrainProvider = model.terrainProvider;
375 }
376
377
378
379 function GIScheck(model) {
380
381 if (current != model) {
382 viewer.dataSources.removeAll ();
383 current = model;
384 gisLayers.map(function (layers) {
385 draw(layers);
386 })
387
388
389 }
390 return current;
391 }
392
393
394 function ikonos(model) {
395
396 if (! uchIsOn) {
397 if (model != current) {
398 model.other_image.show = false;

67

399 }
400 model.image.show = true;
401 layers.raiseToTop(model.image);
402 IkonosIsOn = true;
403 return IkonosIsOn;
404 }
405 return IkonosIsOn;
406 }
407
408 //3D model visualization
409 function create(model) {
410
411 model.parent.show = true;
412 model.other.show = false;
413 TerrainBuild(model);
414 BuildingsIsON = true;
415 return BuildingsIsON;
416 }
417
418 // sending the request using the picked object id
419 function get_description(id , onsuccess) {
420
421 var url = ’http ://207.154.237.111:3000/ buildings/’ + id;
422 var query = {};
423 var type = ’get’;
424 var content_type = ’application/json; charset=utf -8’;
425 var data = JSON.stringify(query);
426
427 jQuery.ajax({
428 url: url ,
429 type: type ,
430 contentType: content_type ,
431 data: data ,
432 success: function (response) {
433 // response
434 onsuccess(response.description , response.image_url);
435 },
436 error: function (data) {
437 // error
438
439 }
440 });
441 }
442
443 // label shows coordinates of the picked object
444 labelEntity = viewer.entities.add({
445 label: {
446 show: false ,
447 showBackground: true ,
448 font: ’14px monospace ’,
449 horizontalOrigin: Cesium.HorizontalOrigin.LEFT ,
450 verticalOrigin: Cesium.VerticalOrigin.TOP ,
451 pixelOffset: new Cesium.Cartesian2 (15, 0)
452 }
453 });
454
455 // picking
456 handler.setInputAction(function (movement) {
457 // var foundPosition = false;
458 var cartesian = scene.pickPosition(movement.position);
459 var pickedObject = scene.pick(movement.position);
460
461 if (Cesium.defined(pickedObject)) {

68

462 closeNav ();
463 if (Cesium.defined(pickedObject.node) && Cesium.defined(pickedObject.mesh)

) {
464
465 var id = pickedObject.node.name;
466 get_description(id, function (description , image_url) {
467
468 var entity_1 = new Cesium.Entity ({
469 name: ’THIS IS Object NO ’ + ’"’ + id + ’"’
470 });
471 var des = description;
472
473 // setting the infobox content
474 entity_1.description = ‘
475 <div >
476 <img
477 width="50%"
478 style="margin: 0 1em 1em 0;"
479 src="${image_url}"/>
480 <div >
481 Description
482 </div >
483 <div >
484 <p>
485 ${des}
486 </p>
487 </div >
488 <div >
489 Update Description
490 </div >
491 </div >
492 ‘;
493 viewer.selectedEntity = entity_1;
494
495 });
496
497 if (Cesium.defined(cartesian)) {
498 var cartographic = Cesium.Cartographic.fromCartesian(cartesian);
499 var longitudeString = Cesium.Math.toDegrees(cartographic.longitude).

toFixed (4);
500 var latitudeString = Cesium.Math.toDegrees(cartographic.latitude).

toFixed (4);
501 var heightString = cartographic.height.toFixed (3);
502
503 labelEntity.position = cartesian;
504 labelEntity.label.show = true;
505 labelEntity.label.text =
506 ’Lon: ’ + (’ ’ + longitudeString).slice(-7) + ’\u00B0’ +
507 ’\nLat: ’ + (’ ’ + latitudeString).slice(-7) + ’\u00B0’ +
508 ’\nAlt: ’ + (’ ’ + heightString).slice(-7) + ’m’;
509
510 labelEntity.label.eyeOffset = new Cesium.Cartesian3 (0.0, 0.0, camera.

frustum.near * 1.5 - Cesium.Cartesian3.distance(cartesian , camera.
position));

511
512 // foundPosition = true;
513 }
514
515 // TODO: highlight material on event
516 // var primitive = pickedObject.primitive;
517 // var meshh = pickedObject.mesh._materials;
518 // var r =[];
519 // var newOne = primitive.getMaterial(’Material .18’);

69

520 // r.push(newOne);
521 // r=meshh;
522 // console.log(meshh);
523 // console.log(r);
524
525 }
526
527 } else {
528 // foundPosition = false;
529 labelEntity.label.show = false;
530 }
531 }, Cesium.ScreenSpaceEventType.LEFT_CLICK);

.3.2 "ui.js": The user interface code

1 var jj = false;
2 var mq = window.matchMedia("(min -width: 765px)");
3
4 $(document).ready(function () {
5 jj = true;
6 tog();
7 render(tuekta);
8 render(karakol);
9 uch();

10
11 });
12
13
14 function toggle () {
15 if (jj) {
16 labelEntity.label.show = false;
17 viewer.selectedEntity = undefined;
18 tog();
19 }
20 }
21
22
23 function tog() {
24 if (open) {
25 closeNav ();
26 } else {
27 openNav ();
28 }
29 }
30
31 function openNav () {
32 document.getElementById(’mySidenav ’).style.width = ’300px’;
33 open = true;
34 }
35
36 function closeNav () {
37 document.getElementById(’mySidenav ’).style.width = ’0’;
38 open = false;
39 }
40
41
42
43 function draw(T_layer) {

70

44 if (! uchIsOn) {
45 var lay = current[T_layer];
46 var leg = document.getElementById(T_layer).checked;
47 show()
48 for (var i = 0; i < lay.length; i++) {
49 if (leg) {
50
51 viewer.dataSources.add(lay[i]);
52 } else {
53 viewer.dataSources.remove(lay[i]);
54 }
55 }
56 }
57 }
58
59
60
61 function IkonosCheck () {
62
63 if (document.getElementById(’ikonos ’).checked) {
64
65 ikonos(current);
66 IkonosIsOn = true;
67 } else {
68 if (! uchIsOn) {
69 current.other_image.show = false;
70 current.image.show = false;
71 }
72 IkonosIsOn = false;
73 }
74 return IkonosIsOn;
75 }
76
77 function buildingcheck () {
78 if (document.getElementById(’Buildings ’).checked) {
79 if (! uchIsOn) {
80 create(current);
81 }
82 BuildingsIsON = true;
83 } else {
84 t.show = false;
85 k.show = false;
86 if (BuildingsIsON) {
87 viewer.terrainProvider = new Cesium.EllipsoidTerrainProvider ();
88 }
89
90 BuildingsIsON = false;
91 }
92 return BuildingsIsON;
93 }
94
95 // initialize indoor mode
96 function grave () {
97 document.getElementById(’kurgans ’).style.visibility = ’visible ’;
98 toggle ();
99 jj = false;

100 viewer.dataSources.remove(outline);
101 viewer.dataSources.remove(park);
102 uchIsOn = false;
103 launch(karakol);
104 create(karakol);
105 hideDefaultBar ();
106 kurgan ();

71

107 viewer.terrainProvider = new Cesium.EllipsoidTerrainProvider ();
108
109 }
110 // exit indoor mode
111 function back() {
112 labelEntity.label.show = false;
113 viewer.navigationHelpButton.container.hidden = false;
114 viewer.selectedEntity = undefined;
115 document.getElementById(’kurgans ’).style.visibility = ’hidden ’;
116 reset();
117 buildingcheck ();
118 jj = true;
119 }
120
121
122
123 // legend show/ hide
124
125 function show() {
126
127 if (document.getElementById(’manMade ’).checked
128 || document.getElementById(’arc’).checked
129 || document.getElementById(’natural ’).checked) {
130 if (mq.matches) {
131 // window width is at least 500px
132 document.getElementById(’my -legend ’).style.left = ’78%’;
133 } else {
134 // window width is less than 500px
135 document.getElementById(’my -legend ’).style.left = ’55%’;
136 }
137
138
139 } else {
140 document.getElementById(’my -legend ’).style.left = ’100%’;
141
142 }
143
144
145 }
146 document.getElementById(’osm’).addEventListener(’click’, function () {
147 moding(osm);
148 }, false);
149
150 document.getElementById(’bing’).addEventListener(’click’, function () {
151 moding(bing);
152 }, false);
153
154 document.getElementById(’topo’).addEventListener(’click’, function () {
155 moding(topo_image);
156 }, false);
157
158 document.getElementById(’uch’).addEventListener(’click’, function () {
159 document.getElementById(’Buildings ’).checked = false;
160
161 buildingcheck ();
162 uch();
163 }, false);
164
165 document.getElementById(’tuekta ’).addEventListener(’click ’, function () {
166 viewer.dataSources.remove(outline);
167 viewer.dataSources.remove(park);
168 uchIsOn = false;
169 launch(tuekta);

72

170 }, false);
171
172 document.getElementById(’karakol ’).addEventListener(’click ’, function () {
173 viewer.dataSources.remove(outline);
174 viewer.dataSources.remove(park);
175 uchIsOn = false;
176 launch(karakol);
177 }, false);
178
179 document.getElementById(’grave’).addEventListener(’click’, function () {
180 grave();
181
182 }, false);

.3.3 "update.js": The Update Page Interface

1 function update_article(id) {
2
3 var description = $(’#desc’).val();
4 var image = $(’#basic -url’).val();
5 var url = ’http ://207.154.237.111:3000/ buildings/’ + id;
6 var query = {
7 ’description ’: description ,
8 ’image_url ’: image
9 };

10 var type = ’put’;
11 var content_type = ’application/json; charset=utf -8’;
12 var data = JSON.stringify(query);
13
14 jQuery.ajax({
15 url: url ,
16
17 type: type ,
18 contentType: content_type ,
19 data: data ,
20 success: function(response) {
21 // reponse
22
23 $(’#myModal ’).modal(’toggle ’);
24
25
26 },
27
28 error: function(data) {
29 // error
30
31 }
32 });
33 }
34
35 // sending the request using the picked object id, this will give back the

description from MongoDB
36 function get_description(id , onsuccess) {
37
38 var url = ’http ://207.154.237.111:3000/ buildings/’ + id;
39 var query = {};
40 var type = ’get’;
41 var content_type = ’application/json; charset=utf -8’;

73

42 var data = JSON.stringify(query);
43
44 jQuery.ajax({
45 url: url ,
46 type: type ,
47 contentType: content_type ,
48 data: data ,
49 success: function(response) {
50 // response
51
52 onsuccess(response.description , response.image_url);
53
54 },
55 error: function(data) {
56 // error
57
58 }
59 });
60 }
61 // A $(document).ready() block.
62 $(document).ready(function () {
63 var id = location.search.split(’id=’)[1];
64
65 get_description(id, function(description , image_url) {
66 $(’#desc’).val(description);
67 $(’#basic -url’).val(image_url);
68
69 });
70 $(’#update ’).click(function () {
71 update_article(id);
72
73 });
74
75
76 });

.3.4 "indoor.js": The indoor navigation mode

1 var canvas = viewer.canvas;
2 var ellipsoid = scene.globe.ellipsoid;
3 var controller = scene.screenSpaceCameraController;
4 var startMousePosition;
5 var mousePosition;
6 var looking = false;
7 var moveForward = false;
8 var moveBackward = false;
9

10 var handler = new Cesium.ScreenSpaceEventHandler(canvas);
11
12 function update(value) {
13 value = 0;
14 return value;
15 }
16 handler.setInputAction(function(movement) {
17 looking = true;
18 mousePosition = startMousePosition = Cesium.Cartesian3.clone(movement.

position);
19 }, Cesium.ScreenSpaceEventType.LEFT_DOWN);

74

20
21 handler.setInputAction(function(movement) {
22 mousePosition = movement.endPosition;
23 }, Cesium.ScreenSpaceEventType.MOUSE_MOVE);
24
25 handler.setInputAction(function(position) {
26 looking = false;
27 }, Cesium.ScreenSpaceEventType.LEFT_UP);
28
29 // TODO: wheel zoom indoor
30 // var gg=false;
31 // var ff =false;
32 // handler.setInputAction(function(delta ,g) {
33 //
34 // if (delta < 0){
35 // gg=g;
36 //
37 // }else if (delta > 0){
38 // ff=g;
39 //
40 // }
41 //
42 //
43 //
44 // }, Cesium.ScreenSpaceEventType.WHEEL);
45
46
47 function setKey(event , isOn) {
48
49 if (event.keyCode == 38) { // Up.
50 moveForward = isOn;
51
52 } else if (event.keyCode == 40) { // Down.
53 moveBackward = isOn;
54
55 } else {
56 //for other movement setters
57 // return true;
58 }
59
60
61 }
62
63 function keyDown(event) {
64
65 return setKey(event , true);
66 }
67
68 function keyUp(event) {
69 return setKey(event , false);
70
71 }
72 var d = function indoor(colck) {
73
74
75 if (looking) {
76 var width = canvas.clientWidth;
77 var height = canvas.clientHeight;
78
79 // Coordinate (0.0, 0.0) will be where the mouse was clicked.
80 var x = (mousePosition.x - startMousePosition.x) / width;
81 var y = -(mousePosition.y - startMousePosition.y) / height;
82

75

83 var lookFactor = 0.05;
84 camera.lookRight(x * lookFactor);
85 camera.lookUp(y * lookFactor);
86 }
87
88 // Change movement speed based on the distance of the camera to the surface

of the ellipsoid.
89 var cameraHeight = ellipsoid.cartesianToCartographic(camera.position).height

;
90 var moveRate = cameraHeight / 10000.0;
91
92 if (moveForward) {
93 camera.moveForward(moveRate);
94 }
95 if (moveBackward) {
96 camera.moveBackward(moveRate);
97
98 }
99 };

100
101 function hideDefaultBar () {
102 viewer.navigationHelpButton.container.hidden = true;
103
104 }
105
106
107 function kurgan () {
108
109 camera.flyTo({
110 destination: Cesium.Cartesian3.fromDegrees (85.95286679336539 ,

50.81761313448716 , 887),
111 orientation: {
112 heading: 0.0,
113 pitch: 0.0,
114 roll: 0.0
115 }
116 });
117 // disable the default event handlers
118 navigate(controller , false);
119 }
120
121
122 function balance () {
123 camera.flyTo({
124 destination: viewer.camera.position ,
125 orientation: {
126 heading: viewer.camera.heading ,
127 pitch: 0.0,
128 roll: 0.0,
129 }
130 });
131
132 }
133
134
135
136 function reset () {
137 navigate(controller , true);
138 launch(current);
139 }
140
141
142

76

143 function navigate(options , set) {
144 options.enableRotate = set;
145 options.enableTranslate = set;
146 options.enableZoom = set;
147 options.enableTilt = set;
148 options.enableTilt = set;
149 if (set) {
150 viewer.clock.onTick.removeEventListener(d);
151 } else {
152 viewer.clock.onTick.addEventListener(d);
153 }
154
155 }

77

	Title page
	Task
	Contents
	Introduction
	Motivation
	Objective
	Critical Issues
	Structure

	Literature and Standards review
	Fundamental Concepts
	3D web graphics
	XML
	JSON

	Theoretical considerations
	Virtual Globes
	Web Globes
	Classification
	Virtual Globes in Cultural Heritage

	Methodology and Technical Implementation
	Data Sources and Study Area
	Data Processing
	Digital Terrain Model
	3D Models

	Design
	Used Software and Applications

	Implementation
	Server-side application
	Client-side application

	Results and Discussion
	Results
	Web Application

	Discussion
	Critical issues Clarification

	Conclusion and future work
	Web Application Performance Test
	Server-Side Application
	"server.js": Uch Enmek Server
	"wines.js": Database Management Module

	Client side Application
	"main.js": The core program of the client side application
	"ui.js": The user interface code
	"update.js": The Update Page Interface
	"indoor.js": The indoor navigation mode

