Visual Analysis of Origin/Destination Time Patterns of Travellers

Katre Karja

Supervised by Dr. Jahnke Mathias

Thesis Defence Presentation 2016

Outline

Outline

- Introduction
- Background
- Methods
- Results
- Conclusion

Introduction

Introduction

Objective of Thesis

- Taxi FCD to detect popular places in the city
 - High density O/D hotspots on street scale
- Identify places near the detected hotspots
- Exploring temporal patterns for these hotspots
- With the support of created visualisation application

Clustering Methods

Partitioning	Hierarchical	Density-based
Distance based	Distance based	Density based
 Knowledge of resulting number of clusters Assigns all points into clusters Spherical-shaped cluster (k-means) (Agrawal et. al, 1998) 	 Hierarchical decomposition Compact cluster Also clusters with only a few points Spherical-shaped cluster (AGNES) 	Detects noise points Detects natural shaped clusters (DBSCAN) (Esther et al. 1996)

Chang et. al, 2008

Visualising Spatio-Temporal Data

- Complexity
 - Multidimensional
 - dynamic (time)
- Classification (Andrienko et al.,2003)
 - Existential changes
 - Spatial changes
 - Thematic changes

Visualising Spatio-Temporal Data

- Methods
 - Different dimensional representations (3D, 4D, 2D)
 - Multiple views for different dimensions
 - Interactivity
 - Animations
 - Plots of different time moments

Visualising Spatio-Temporal Data

- Interactivity
 - Focusing
 - Linking views
 - Linked brushing
 - On-demand-visualisation
 - Scale-based data sub-selection
 - Time sliders

(Andrienko et al., 2003), (Resch, 2013)

Overview of the Study

Data and Pre-Processing

ł

- Database
 - Importing
 - indexing
 - Sorting
 - Cleaning
 - filtering
 - O/D extraction

"_id" : ObjectId("53319c06653603217fbdd010"), "timestamp" : ISODate("2010-05-22T04:49:16.000Z"), "car_id" : 10003, "lon" : 121.4239120, "lat" : 31.3497069, "car_status" : 0

Figure 8 The relevant variables for this study

Clustering

- High intensity areas on street level
- Spatial clustering
- 3-hour interval basis data collections
- Each interval with different distribution
 - Different number of resulting clusters expected
- Only a subset of data items could form clusters
 - High density areas

DBSCAN (Esther et al. 1996)

Density-based clustering algorithm DBSCAN

MinPts = 6

Parameter tuning for DBSCAN

b) *eps* = 100m, *MinPts*=10

Parameter tuning for DBSCAN

Density-based clustering algorithm DBSCAN

• *Eps* and *MinPts*

eps	MinPts	scale
300 m	10	Blocks level
200 m	10	Blocks level
100 m	10	Blocks level
25 m	6	Street level

Results and conclusions

Results

Post-processing and Semantic tagging

- Joining clustering results
- POIs from OpenStreetMap + Internet search

• Geo-queries and semantic tagging

Square

Crossfilter

mongoDB

Fast Multidimensional Filtering for Coordinated Views

Methods

APP DEVELOPMENT

Map Views

- The locations of hotspots
 - Heat layer
- The proportions of tagged POIs for each hotspot
 - Donut symbols with counts
- The proportions of occurring time intervals for each hotspot
 - Pie-charts

Demonstration

Case Study: Shanghai

- Time Period
 - Seven days of a week 17.05.2010 23.05.2010
- Four sample areas
 - I. Shanghai New International Expo Centre (NIEC)
 - II. Shopping street West Nanjing Road
 - III. Shanghai Exhibition Center
 - IV. Century Commercial and Trade Plaza

Demonstration

The visualisation application

Results and conclusions

Results

- Different number of clusters for O/D
- The Application enables
 - Visual queries on three dimensions
 - Spatial, temporal, thematic
 - Exploration in different zoom levels
 - Map symbols adapt to zoom levels
 - Filtering:
 - Time (days, hours, intervals)
 - Space (selected area)
 - Thematic (Districts)
- A demonstration of the use of application with 4 sample areas

Results and conclusions

Future work

- Future work
 - Addressing strategies for uncertainty issues in semantic labelling and visualisation
 - Detecting unusual hotspots
 - Usability studies

Thank you!

References

- ANDRIENKO, N., ANDRIENKO, G. & GATALSKY, P. 2003. Exploratory spatio-temporal visualization: an analytical review. *Journal of Visual Languages & Computing*, 14, 503-541.
- CHANG, H., TAI, Y., CHEN, H. AND HSU, JANE Y. iTaxi: Context-Aware Taxi Demand Hotspots Prediction Using Ontology and Data Mining Approaches. The 13th Conference on Artificial Intelligence and Applications (TAAI 2008), 2008.
- RESCH, B., HILLEN F., REIMER, A., SPITZER, W., 2013. Towards 4D Cartography Fourdimensional Dynamic Maps for Understanding Spatio-temporal Correlations in Lightning Events. *The Cartographic Journal*, 50, 266-275.
- HALLAHAN, N. 2014. q-cluster [Online]. [Accessed 16.11 2015].
- AGAFONKIN, V. 2011. Leaflet an open-source JavaScript library for mobile-friendly interactive maps [Online]. [Accessed 22.01 2016].
- AGAFONKIN, V. 2014. Leaflet.heat [Online]. [Accessed 10.10 2015].
- ESTER, M., KRIEGEL, H.-P., SANDER, J. & XU, X. A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd, 1996. 226-231.