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Abstract

Social media is a platform where people are sharing their views, ideas, sentiments, and
emotions. The popularity of social media has been growing over the past few years.
Extracting and interpreting information from user-generated content is a trending topic in
the scientific community and the business world. Numerous web applications that deal
with processing and the visualization of user-generated content have proved the
importance of spatial-temporal data.

In this thesis, the (€, k, t )-density-based spatial temporal clustering algorithm is proposed
for extracting local hot topics discussed among the social media users in georeferenced
documents. The (g, k, t) neighborhood of geo-referenced documents is defined to extract
semantically similar spatial and temporally separated clusters. Real world events are
manually verified from the detected local hot topics.

The (€, k, t )-density based spatial temporal clustering algorithm is an extension of the DSC
algorithm from Tamura et. al. (2013). From this algorithm, the existing parameters spatial
radius ‘€, timestamp ‘t" and minimum number of documents (MinDoc) are extended by a
new dimension. The cosine similarity constant ‘k’ is added as an additional criteria to the
algorithm in order to find new clusters. The cosine similarity concept is used to compare
the similarity between two text sentences. This new dimension kK’ helps localizing the
semantically similar highly discussed local hot topics among different social media users,
which are located in a particular small radius of geographical area and time. In addition, the
definition of MinDoc is changed to the minimum number of documents of different users
(MinDocpifferentusers), which has a significant impact to get more meaningful cluster results.
The input parameters of the proposed algorithm are configurable by the user in order to
receive refined clusters of different local hot topics under discussion among social media
users. The detected local hot topics are then visualized in 3D-scatter diagram.

In this thesis, an experiment is done on geo-tagged tweets from Twitter from the Munich
area recorded during 9 weeks. For the validation of the clustering results, the data mining
tool WEKA is used. For benchmarking of the proposed algorithm, the clustering result is
compared with the base Density-based spatial clustering of applications with noise
(DBSCAN) algorithm’s cluster result. The comparison shows that the proposed (g, k, t)-
density-based spatial temporal clustering algorithm produces very promising results in
comparison to DBSCAN. The three promising results are: (1) It is able to reveal all the
events from the datasets on the bases of user defined algorithm input parameters. The
input parameters have a decisive impact on the cluster result. (2) It can extract spatial,
temporal and semantically separated clusters. (3) It is suitable for any text based social
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media dataset to reveal the local hot topics and further revealing the events. Certain extra
preprocessing might be required for some input datasets other than Twitter and Instagram
in order to remove the noise.

The detected local hot topics discussed among the social media users are visualized using a
3D-scatter diagram, text visualization, Google Maps and the CartoDB online tool.
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1 Introduction

1.1 Introduction and Background

Extracting and interpreting information from user generated content is a trending topic in
the scientific community and the business world. Among user generated information,
spatial-temporal data have a greater value. This is proved by the numerous web
applications that deal with processing and visualization of user-generated content.

The rapid development of social networks has enticed much attention all over the world.
This paradigm has attracted the attention of researchers that wish to study the
corresponding social and technological problems. Social media is a platform where people
are sharing views and ideas, sentiments and emotions. Facebook, Twitter, YouTube,
Instagram, Foursquare, LinkedIn, etc. are popular examples of social media.

Social media data are readily available through application programming interfaces (API),
which motivates researchers to explore data streams that help to look inside the trend of
data. The use of a reasonable clustering algorithm to find events is challenging due to the
complexity of clustering algorithms that require a broad knowledge of data mining and
data analysis. This master thesis focuses on the spatial and temporal analysis of social
media data for event detection to visualize them for further exploration.

1.2 Purpose and Motivation

The purpose of this thesis was to get an insight into social media data to detect any type of
significant changes named as “Event or topic under discussion among users” in the data set.
According to (Polous et al. 2013) an event may be defined as any anomalous user activity,
which happened at a time or within a particular period at a particular location. Local hot
topics can be perceived as a superset, which consists of topics under discussion among
social media users which are classified as events and others which are not classified as
events. For example topics under discussion at a real world event, e.g. job fair, football
match, music concert, festival are classified as events, while topics like weather discussions
are not likely to be classified as events. To achieve the thesis’s objective a literature review
related to the topic is done and the DSC clustering algorithm (Tamura et al. 2013) is
selected for further modification and implementation. The modified (e, k, t)-DBSCAN
clustering algorithm (section 6.4) is used to detect the local hot topics under discussion
among users on the real world social media data set.
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Besides the research of finding an optimal clustering algorithm to achieve the objective, a
personal motivation was also to discover what people are talking about. Such information
might be useful for many applications for example marketing, advertisement, news etc.

1.3 Workflow of the Thesis

Following are the workflow steps to achieve the thesis objective of detecting the local hot
topics under discussion among social media users from a real world dataset.

Figure 1 shows the workflow of this research work. It is divided into 6 levels from work
point of view:

- First step was to identify the existing clustering algorithms for spatial temporal datasets
that can detect the local hot topics under discussion among social media users from the real
world dataset. To achieve the above described objective, the theoretical literature review
was done from various scientific research papers of similar domain (clustering algorithm).
Subsequently, the best suitable research papers were selected. The selection of the
algorithm was based on the advantages and disadvantages of different investigated
algorithms.

- In the second step, the chosen algorithm was optimized to bring it in line with the thesis's
objective for receiving a better clustering result in order to detect local hot topics under
discussion among users on the chosen social media platform. The optimization was
primarily done in the algorithm’s functionality and its input parameters. (More details are
available in Chapter 6 for this topic.).

- In the third step, the optimized algorithm is implemented in Python language. The
proposed algorithm is an extension of the Tamura et al (2013) base algorithm, where
another new dimension is introduced. The cosine similarity constant ‘k’ is added as an
input to the algorithm along with the change of the parameter “MinDoc” to get the desired
result.

- In fourth step, the “local hot topics under discussion among social media users” are
extracted automatically by the implemented framework from of the dataset as a clustering
algorithm output. After that, the events are detected from the extracted local hot topics.
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Optimized
algorithm
Implimentation

Figure 1 Workflow of master thesis

- The fifth step involves the cross cluster validation. This is accomplished via the WEKA
machine learning tool whose input is the cluster result generated by the proposed
clustering algorithm.

- The last step involves the visualization of the detected events.
At the beginning of the master thesis, the following research questions were identified:

e Which clustering methods are available and which ones are the most suitable for event
clustering?

e Can a suitable algorithm be identified for extracting local hot topics by reviewing
scientific research literature?

* How can the main local hot topics be extracted from spatial temporal data?
e How to evaluate the clustering result?

e How to visualize spatio-temporal event clusters in a way that will make them easy to
understand for the user?
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