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Abstract

With the rapid development of the urbanization, the city transportation system exposes

more and more unreasonable planning and congestion problems. To solve these prob-

lems, the Floating Car Data (FCD), including the city-wide driving data of vehicles, plays

an important role in studying and analyzing Intelligent Transportation System (ITS). Map

matching, which serves the purpose of recovering the original route on a road network

from a sequence of noisy GPS observations, is one of the most significant prerequisite pro-

cedure of using FCD. The FCD usually contains huge amount of noisy data and is updated

frequently, but most of the map matching algorithms published in the last few decades

were only tested on prepared small and smooth test data that is not as noisy and sparse-

ness as FCD. In this thesis, new map matching algorithms called Fusion Map Matching

(FMM) algorithms are presented. The FMM algorithms comprehensively use the two most

important map matching technology branches, global and incremental map matching al-

gorithms, and make use of the strong points and avoid the shortcomings of them. Through

the tests on FCD in Shanghai, China with different scenarios, the FMM algorithms show

better performances on both the accuracy and efficiency perspective compared with other

existing global algorithms. In addition, a work flow is proposed for map matching FCD,

which can be directly deployed in the map matching project.

Keywords: map matching, floating car data, intelligent transportation system
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1 Introduction

Nowadays, the amounts of vehicles rapidly increase with the acceleration of the urban-

ization process in cities. While providing convenience to people, the city transportation

system also exposes a lot of unreasonable planning and congestion problems. With the

rapid development of the positioning technologies, more and more movement data are be-

ing collected nowadays. In particular, Global Positioning System (GPS)-based positioning

technology has become a standard in transportation, which help to capture huge amount

of movement data of vehicles in the road networks. And there is lots of on-going research

to make better use of this data.

Floating Car Data (FCD), which includes the city-wide driving data of vehicles, is one of

the most advanced sources to analyze the transportation system in the Intelligent Trans-

portation System (ITS). The basic idea of FCD is to connect it with the city road network in

the aspects of time and space based on the location, direction and speed information. This

data can be recorded by the GPS devices installed in the vehicles, and then get the traffic

information of the road network. Taxis, which has the best spatial and temporal coverage

of the urban road traffic, are the ideal agents for collecting floating car data for city-wide

applications.

The GPS data, which contains latitude, longitude and timestamps informations, is not pre-

cise due to including various measurement errors. Therefore, the map matching procedure

should be done before the GPS data is used in the further analysis. The map matching

techniques, which integrate positioning data with road network data, are developed to

provide accurate and reliable positioning information. To be more specific, map matching

is to assign each GPS trajectory point to the correct road segment with given information

and algorithm. Since the concept of map matching was put forward, various researches

([12][13][15][17][18] [21][23][24]) have been done to design map matching algorithms for

different scenarios.

As one of the preprocessing procedures, the result of map matching has significant in-

fluence on the performance of FCD analysis. It is always a challenge to map matching
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1 Introduction

FCD due to its two characteristics: huge date volume and quickly updating. The FCD is

gathered from the actual complex scenarios, and is usually noisy, sparseness and not well

organized. To the best of our knowledge, previous works have focused on map matching

either experimental data with a data collection under control or small real world dataset

with arbitrary spatial distribution[21]. In addition, none of the previous work has pro-

posed a complete and clear work flow of map matching. Therefore, a map matching algo-

rithm that can efficiently and accurately get the matching results, and can also be achieved

on FCD, is required.

In this thesis, we present two new map matching algorithms that meet the requirements

of map matching FCD, and evaluate the performances of our algorithms through com-

paring them with other existing map matching algorithm on the city-wide taxi FCD in

Shanghai, China. In addition, we propose a complete and clear work flow of dealing with

map matching FCD from the GPS data handling to the result representation, which can be

directly deployed in the map matching project.

2



2 Overview of Map Matching

Map matching is the process that serves the purpose of recovering the original route on a

road network from a sequence of noisy GPS observations[23]. From 1970s, various map

matching algorithms based on different techniques have been developed. In this chapter,

we will introduce the map matching problem, the principles and characteristics of some

typical map matching algorithms.

2.1 Definitions

In this thesis, the definitions relate to map matching are described as below:

GPS Log: A GPS Log is a set of information of GPS points. The basic fields in GPS log are

the geographical information (longitude and latitude) and the corresponding timestamps

(T ).

GPS Trajectory: A GPS trajectory is defined as a set of successive GPS points (P ) with

specific condition(s), such as same vehicle, or (and) continues timestamps. Trajectory Ji

with n GPS points (P1 to Pn) is defined as Ji{{P1, T1}, {P2, T2}, . . . , {Pn, Tn}}.

Road Segment: A road segment (R) is composed with two vertexes and the edge between

them, and the basic fields in each road segment is id and geometry (Figure 2.1).

Road Network: A road network is a set of road segments{R1, R2, . . . , Rn} within specific

conditions (area, city range, etc).

Map Matching Results: Following a specific map matching algorithm, the points on the

GPS trajectories are assigned on road segments as the map matching results (M ).

Ground Truth Data: In map matching category, ground truth data (G) is the set of trajectory

points and the corresponding road segments, and it can be recorded during the GPS data

collection or labeled by human after the collection.

3



2 Overview of Map Matching

Figure 2.1: Road Segments(R) and Vertexes

Figure 2.2 shows the difference between the map matching results and ground truth data.

Figure 2.2: GPS Trajectory(P ), Map matching results(M ) and Ground truth data(G)

2.2 Problem Statement

As shown in Figure 2.3, every trajectory point has several potential candidates, and it is

easy for human to distinguish the actual route in this example (sometimes it is also hard

4



2 Overview of Map Matching

for human to decide the actual routes). To deal with large amount of GPS data, a suitable

map matching algorithm is necessary. In this case, if directly choose the closest candidate

as the matching result, points P1, P2, P3 will all be matched to the incorrect road segments.

Therefore, map matching algorithms need to consider more factors to get more reliable

results.

Figure 2.3: Map matching problem

2.3 Classification of Map Matching Methods

There are several perspectives to classify map matching algorithms. From the executing

time, map matching algorithms can be divided into real-time and post-processing algo-

rithms; the former one can be used for car navigation, and the latter one can be served

in the transportation system analysis with large amount of data. According to the cal-

culation factors, the algorithms can be classified into topological and probabilistic based

algorithms. Another perspective is the range of GPS trajectory points that are considered

in each calculation, and depend on this, the algorithms can be divided into incremental

and global algorithms.

2.3.1 Topological and probabilistic methods

The topological map matching algorithm makes use of the geometry of the links as well

as the connectivity and contiguity of the links[19]. In the concept of Geographical in-

5



2 Overview of Map Matching

formation system (GIS), topology is used to describe the relationships between entities

(points, lines and polygons), and the relationships include touch, cross, intersect and dis-

joint. In the concept of map matching, the entities and their relationships specifically refer

to the connectivity of the road segments. Besides these basic topological information, to

improve the performance of the algorithms, some additional informations, such as road

level classification and turn restriction, are also be used in some of topological based map

matching algorithms. The advantage of topological algorithms are ”fast, simple and very

efficient”[20], but it needs to get very detailed of road topological information, and some

of them are not available in every case.

The probabilistic algorithm requires the definition of an elliptical or rectangular confidence

region around a position fix obtained from a navigation sensor[19]. The most simple prob-

abilistic map matching algorithm is to choose the nearest road segment of each trajectory

point, which only considers the GPS measure error distribution. Other possibilities, such

as the transition possibility based on the relationship between the shortest path and great

circle distances of successive trajectory points, are also used in some probabilistic map

matching algorithms.

2.3.2 Incremental and global methods

The incremental algorithm iteratively calculates the next max-weight candidate based on

the current best candidate or a summary of all previous samples[21]. Several factors can

be used to calculate the weights of the candidates.

Different with incremental algorithms, the global algorithm tries to calculate the max-

weight values of the whole trajectory, and iteratively go back to get the candidates that

can get the max-weight values[21], and then get the map matching results for the whole

trajectory. Global map matching algorithm can also be used in the navigation scenario

when limiting the number of trajectory points participated in each calculation.

Compare the performances of the incremental and global algorithms, generally speaking,

the incremental algorithm has better efficiency due to less computation needed, and the

global algorithm has better accuracy.

6



2 Overview of Map Matching

2.3.3 The state of art

Practically, the existing map matching algorithms integrally have the characters mentioned

in the last section. In this section, we will introduce some typical examples that can repre-

sent current development of map matching algorithms.

Nagendra[20] publishes an incremental weighted-based topological map matching algo-

rithm, which considers four factors: heading, proximity, link connectivity and turn restric-

tion, and a weight value is assigned to each factor. Based on Nagendra’s research, Yang

[22] publishes an enhanced weighted-based topological map matching algorithm. In this

research, three scenarios of the city, dense area, common area and sparse area, are de-

fined according to the road densities. For each scenario, different weight values of the four

factors are designed to improve the map matching accuracy. In these kind of topologi-

cal algorithms, the determination of the first trajectory point is very important, and only

comparing the distances of the first trajectory point to the road segments and choosing the

smallest one is not robust enough in some scenarios. In addition, a road network with

comprehensive informations is an essential precondition.

Brakatsoulas[6] introduces a global topological map matching algorithm that compares the

similarity between the curves of road segments and each trajectory through calculating the

Fréchet distance. The Fréchet distance is described as following: imagine a dog walking

along one curve and the dog’s owner walking along the other curve, connected by a leash.

Both walk continuously along their respective curve from the prescribed start point to the

prescribed end point of the curve. Both may vary their speed, and even stop, at arbitrary

positions and for arbitrarily long. However, neither can backtrack[5]. The Fréchet distance

between the two curves is the length of the shortest leash. The smaller the Fréchet distance,

the bigger the similarity of the two curves.

Liu[14] presents an incremental topological map matching algorithm, which considers the

intersection relationship between the trajectory and the road segment to simplify the cal-

culation and improve the accuracy. The basic consideration of this algorithm is that if the

GPS trajectory has intersection with a road segment, the vehicle’s position can be matched

to this road segment. A Passby algorithm is designed to carry out the map matching pro-

cess with three cases. The first case is that the trajectory passes by both intersections of a

road, and this road segment can be chosen as the map matching result without individual

check; the second case is that the trajectory only passes by the starting intersection of a

road, and the candidate edges that next point may move on can be generated; the last case

7



2 Overview of Map Matching

covers the remaining points, and a traditional incremental algorithm will be used.

Griffin[10] proposes a global topological map matching algorithm, which firstly identifies

key waypoint in GPS trajectory using a modified Peuker curve reduction algorithm, and

then sends the key waypoints to a black-box driving directions service, which returns a

route utilizing each of the key waypoints. After validating checking, the route will be

chosen as the map matching result for the whole trajectory.

Mazhelis[17] proposes a probabilistic map matching algorithm, which estimates the pos-

sibility of each road segments with recursive Bayesian estimation, and the road link is

identified using maximum a posteriori probability principle. In this method, three factors

are took into account: the distance between the trajectory point and road segment, the

discrepancy between the measurements-driving heading and the road segment heading,

and the circle distance between the candidates of two successive trajectory points. The

advantage of this algorithms is that it doesn’t need the topological information of the road

segments, thus it can be used with the imperfect road network data.

Hidden Markov Model (HMM) is a typical theory used in global probabilistic based map

matching algorithm. In HMM based algorithms, the basic elements are the measurement

(observation) and transition possibility.

Lamb and Thiébaux[13] are the earliest authors who start to use HMM in map matching

application. In their research, they use several Kalman filters to track the vehicle along

different hypothesized paths, and then use HMM to choose between all the paths.

In Hummel’s[11] HMM based map matching algorithm, the measurement possibility re-

lates to the circle distance between the trajectory point and the road segment, and the tran-

sition possibility relates to the road topology (candidates that adjacent with the current

road segment) and road restrains (one way road, U-turn).

Krumm’s [12] algorithm has similar measurement possibility definition with Hummel[11],

and the transition possibility is the relationship between the estimated and actual traversal

times between each two successive trajectory points: the smaller the difference, the bigger

the transition possibility.

Newson[18] publishes a HMM based map matching algorithm that is similar to Krumm’s

research[12], but modify the transition possibility to the value differences between the

shortest path and the circle distances of each two trajectory points, which are not that

sensitive to the traffic conditions compared with time differences.

8



2 Overview of Map Matching

Lou[15] proposes a ST (Spatial and Temporal) algorithm that focus on the study for low-

sampling-rate GPS trajectory. It adds a temporal analysis on the basic HMM based algo-

rithm. The basic idea of the temporal analysis is to take the speed limitations of the road

segments into account.

Wei’s algorithm[21] combined the advantages of the algorithms from Newson[18] and

Lou[15] in the performances of different sampling rates, and the performance is robust

against varying sampling rates.

Yuan[24] proposed an interactive-voting based map matching algorithm, which considers

the mutual influence between GPS points by given influence weight values according to

the distances between GPS trajectory points.

The HMM based map matching algorithm will be detailed subsequently since it is also

used in the algorithms proposed in this thesis.

Table 2.1 shows the map matching data and road network used in each algorithm.

9
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3 Hidden Markov Model Based Map

Matching Algorithm

Hidden Markov Model (HMM) is a typical theory which can be used in probabilistic map

matching algorithm, and several related algorithms have been published. In this chapter,

the principle of HMM and the detailed HMM based map matching algorithm is discussed.

3.1 Introduction of Hidden Markov Model

A HMM is a statistical Markov model in which the system being modeled is assumed to

be a Markov process with unobserved (hidden) states. In simpler Markov models (like a

Markov chain), the state is directly visible to the observer, and therefore the state transition

probabilities are the only parameters. In a hidden Markov model, the state is not directly

visible, but output, dependent on the state, is visible. Each state has a probability distri-

bution over the possible output tokens. Therefore the sequence of tokens generated by an

HMM gives some information about the sequence of states. Figure 3.1 shows the general

architecture of an instantiated HMM. Each oval shape represents a random variable that

can adopt any of a number of values. The random variable x(t) is the hidden state at time

t (with the model from Figure 3.1, x(t) ∈ {x1, x2, x3}). The random variable y(t) is the

observation at time t (with y(t) ∈ {y1, y2, y3, y4}). The arrows in the diagram (often called

a trellis diagram) denote conditional dependencies[4].

Figure 3.1: General architecture of an instantiated HMM[4]
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3 Hidden Markov Model Based Map Matching Algorithm

From Figure 3.1, it is clear that the conditional probability distribution of the hidden vari-

able x(t) at time t, given the values of the hidden variable x at all times, depends only on

the value of the hidden variable x(t − 1): the values at time (t − 2) and before have no

influence. This is called the Markov property. Similarly, the value of the observed variable

y(t) only depends on the value of the hidden variable x(t) (both at time t)[4].

3.2 Hidden Markov Model Based Map Matching

In probabilistic map matching, the basic work flow is firstly choosing candidates with

specific conditions, then determining the result from the candidates. The HMM based map

matching is to determine the map matching result in the frame of Hidden Markov Model

definitions. In map matching category, the states of the HMM are the individual road

segments, and the state measurements are the geographical locations measured by the GPS

sensor, and the vehicle’s movement along the road segments from point to point describes

the states transition. There are several ways to evaluate the measurement possibilities and

transition possibilities.

3.2.1 Candidates preparation

The candidate is defined as the projection point of the trajectory point on the road segment;

if the projection point is not on the extend of the road segment, then the candidate will be

set on the closest vertex of the road segment to the trajectory point. As one of the typical

probabilistic map matching algorithms, preparing candidates is the prerequisite in HMM

based algorithm. Theoretically speaking, for each trajectory point, every road segment

has the possibility to be the true road segment that the vehicle was running on; thus the

candidate number can be equal to the number of the road segments. But in practice, we

know that the road segments whose distances to the trajectory point are larger than a value

will have a very little possibilities to be the true matching result, and can be ignored. This

value is called candidate searching radius, and one of the tasks in candidate preparation

progress is to define the suitable value for the searching radius.

As shown in Figure 3.2, trajectory point Pt has 7 candidates that are located on 7 road

segments if no candidate searching radius is set (assume that there are only these 7 road

segments in the whole road network ). It can be seen that for road segmentsR3, R4, R7, the

candidates C3
t , C

4
t , C

7
t are located on the vertexes. With the searching radius r1, only can-
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3 Hidden Markov Model Based Map Matching Algorithm

Figure 3.2: Searching radius and candidates

didate C1
t is chosen as the candidate that will participate in calculation, but with radius r2,

three more candidate R2, R3, R4 will be added. The chosen of search radius has sufficient

effect on the accurate and efficient performances of the map matching algorithm. We will

discuss the selection procedure in the later chapter.

3.2.2 Measurement possibility

As we know, the location information obtained from the GPS devices contains errors, es-

pecially from the GPS devices that are built inside the vehicles, which are continuously

moving and only have use a very short time to calculate the location information. The

errors come from the GPS devices itself, the ephemeris and clock errors caused by the

satellites, the atmospheric effects, and the multi-path effects caused by the environment at

the point. Thus, the GPS errors are the composition of errors come from various sources,

and vary with the changing of time and locations.

In probabilistic map matching, for each trajectory point Pt, every road segment Ri has a

measurement possibility pt(Cit). This measurement possibility, which represents the GPS

errors, is related to the circle distance from the trajectory point to the road segment (Figure

13



3 Hidden Markov Model Based Map Matching Algorithm

Figure 3.3: Measurement Possibility

3.3). Generally speaking, the closer the road segment to the trajectory point, the bigger the

possibility for the road segment to be chosen as the map matching result (Figure 3.4). Base

on VanDiggelen’s research[7], the GPS errors can be modeled as zero-mean Gaussian, and

the measurement possibility can be defined as:

pm(C
i
t) =

1√
2πσp

e
−0.5( |Pt−C

i
t |

σp
)2

(1)

where Cit is the projection of trajectory point Pt on road segment Ri, and |Pt − Cit | is the

circle distance between them. σp is the standard deviation of the GPS measurements. Be-

cause the model of the GPS device and the surrounding environment are unknown, thus

the σp is an unknown value, but it can be evaluated by the previous measure results. We

will discuss the evaluation of σp in the experimental chapter later.

Figure 3.4: GPS measurement possibility distribution[6]
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3.2.3 Transition possibility

In HMM, the transition possibility is the possibility of changing from one state to another

one. In map matching, transition possibility means the possibility of a vehicle to choose

to move to next road segment (or same segment) from current road segment between GPS

sampling time. Various methods of defining transition possibility have been proposed by

different researchers. Hummel[11] uses road topology, and Krumm[12] uses the route time

differences, while other researches try to use the relationship between the route distance

and circle distance to define the transition possibility. Here route means the trajectory of a

vehicle moves along the road segments with restrains, such as one-way road and turning

prohibition, etc. Through comparing the routes distance and circle distances in the ground

truth data, Newson[18] pointed out that these two distances are about the same with the

correct matching, because the relatively short distance traveled on the road(s) between

a pair of correct matches will be about the same as the distance between the measured

GPS points. This conclusion also fits the fact that drivers tend to choose the shortest route

between two points in reality (there are also exceptions, such as the traffics, the road is

temporary disabled, etc). Based on the ground truth data, Newson[18] created a histogram

which indicated the difference between the circle and route distances , and they found that

histogram fit well to an exponential probability distribution:

pm(C
i
t → Cjt+1) =

1

β
e
−dt
β (2)

Where dt is the difference between circle and route distances:

dt =
∣∣∣|Pt+1 − Pt|great circle − |Cit+1 − C

j
t |route

∣∣∣ (3)

Lou[15] uses the ratio of the circle distance to the route distances to calculate the transition

possibilities. The formula is defined as:

p(dt) =
|Pt+1 − Pt|great circle
|Cit+1 − C

j
t |route

(4)

Wei[21] uses the same definition of transition possibility as Newson[18], but simplified

it to not consider the great circle distances, because they will all be counteracted in the

comparison.

Through analyzing, we can see that in Newson and Wei’s formulas, the smaller the dif-

ference between the circle and route distances, the larger the transition possibility; in Lou’

formula, the smaller the route distance, the larger the transition possibility. In another
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Figure 3.5: Great circle and route distance

word, Newson[18] tries to find the route most close to the circle distance, and Lou[15] tries

to find the shortest route.

Besides, Lou[15] takes the speed limitation into account, and add another possibility called

temporal analysis, which partly helps decide the true road segments, especially among the

parallel ones with different speed limitations. In this thesis, due to the lack of speed limi-

tation information, we do not consider this temporal factor when using Lou’s algorithm.

3.2.4 Weights of measurement and transition possibilities

Measurement and transition possibility need to be combined together to get the ultimate

possibility to evaluate the final output candidate sequence. It is a very important task to

decide the weight of each element, which means how many role of each possibility plays

in the result road segment decision.

Although HMM based map matching algorithms are not that sensitive to the influence

of the uncertain choice of one point as incremental algorithm, which is the advantage of

global algorithms, but the weight choosing of each possibility is still very important to

the matching results. As shown in Figure 3.6, C1
2 and C3

2 are two candidates of P2; C1
2
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has bigger measurement possibility, but smaller transition possibility than C3
2 , therefore,

in different algorithms, or different weight parameters setting in the same algorithm, the

matching result could be different.

Figure 3.6: The wight of measurement and transition possibility

From the definitions of the measurement and transition possibility in the HMM algorithms

from Newson[18], Lou[15] and Wei[21], we can see that they have used different strategies

in the consideration of weights. All the algorithms think that the ultimate possibility for

each trajectory point is the product of the measurement and transition possibility, and as

global map matching algorithms, Newson[18] and Wei[21] use product to connect the pos-

sibilities of sequence, and Lou[15] use addition. Besides, Wei[21] considers the sampling

intervals in the measurement possibilities, which means the bigger the sampling intervals,

the smaller the measurement possibility.

To be more specific, Newson’s map matching algorithm[18] is defined as:

argmax
n∏
t=0

Ç
1√
2πσp

e
−0.5( |Pt−C

i
t |

σp
)2 1

β
e
−dt
β

å
(5)

and in the practical terms, the measurement and transition possibility are very likely to

be very small values. To avoid the underflow in the result, the logarithm of Newson’s

formula is used:

argmax
n∑
t=0

Ç
− 0.5

Ä |Pt − Cit |
σp

ä2 − dt
β

å
(6)
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Lou’s algorithm[15] without considering temporal analysis is defined as:

argmax
n∑
t=0

Ç
1√
2πσp

e
−0.5( |Pt−C

i
t |

σp
)2 |Pt+1 − Pt|great circle
|Cit+1 − C

j
t |route

å
(7)

The logarithm of Wei’s algorithm[21] is defined as:

argmin
n∑
t=0

Ç
t2i |Pt − Cit |2 +

2σ2p
β
|Cit+1 − C

j
t |2route

å
(8)

where ti is the time difference between points Pt and Pt+1.

3.2.5 Solving HMM via Viterbi algorithm

The Viterbi algorithm is a recursive optimal solution to the problem of estimating the state

of a discrete-time finite-state Markov process observed in memoryless noise[8].

In HMM based map matching, the goal is to find the most likely candidates sequence

through the measurement and transition possibility, or with other possibility if used. The

initial possibilities for the candidates of first point are only the measurement possibilities.

From the second points of each trajectory, the ultimate possibility will be the product of the

measurement and transition possibility. During the procedure, the candidates which lead

to the largest possibility values of the candidates of next successive trajectory points are

recorded as parents. In the end of the calculation, the candidate with largest possibility of

the last trajectory point will be chosen as the map matching result, and then trace back to

find the candidate of previous trajectory point that lead to this largest possibility, and this

candidate will be chosen as the map matching result of the second to last trajectory point.

The rest will be done in the same manner, until reaching to the first trajectory point. The

algorithm of using Viterbi algorithm to find the most likely candidate sequence is shown

in Algorithm 1.

Algorithm 1: Finding most likely road sequence via Viterbi

Input: NT {number of trajectory points}
N(Pt) {candidate number of trajectory point Pt}
pm(C

i
t) {measurement possibility of candidate Cit}

pt(C
i
t−1 → Cjt ) {transition possibility between candidates Cit−1, C

j
t }

Output: X {Most likely candidate sequence list};
{Initialization}

1: for i = 1 to N(P1) do
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2: p(Ci1)← pm(C
i
1);

3: X.add(0);

4: end for

{Recursion}
5: for i = 1 to NT do

6: for j = 1 to N(Pt) do

7: temp← 0;

8: s id← 0;

9: for k = 1 to N(Pt−1) do

10: ptemp ← p(Ckt−1)× pt(Ckt−1 → Cjt );

11: if ptemp > temp then

12: temp← ptemp;

13: s id← k;

14: end if

15: end for

16: p(Cjm)← temp× pm(Cjm);
17: X.add(s id);

18: end for

19: end for

20: return X ;

Here we use Newson’s HMM based algorithm to explain the principle of Viterbi algorithm.

As shown in Figure 3.7, we define a trajectory with only 3 GPS points, and each of the three

successive GPS points has several candidates within the searching radius; each candidate

has a measurement possibility based on the circle distance to the GPS point; Each pair

of candidates of two GPS points has a transition possibility based on the shortest path

between each other. The measurement and transition possibilities are listed in Table 3.1

(the sum of the possibilities are not necessarily equal to 1). It can be seen that C1
3 has the

largest possibility value, then look back to check the parents that lead to this possibility

value. The parent of C1
3 is C1

2 , and the parent of C1
2 is C1

1 , and finally the whole candidate

sequence is determined: C1
1 → C1

2 → C1
3 .
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Figure 3.7: Example of finding most likely candidate sequence

(a) Measurement possibility

C1
1 0.80 C1

2 0.92 C1
3 0.75

C2
1 0.60 C2

2 0.90 C2
3 0.74

C3
1 0.30

(b) Transition possibility

C1
2 C2

2 C1
3 C2

3

C1
1 0.90 0.70 C1

2 0.80 0.60

C2
1 0.60 0.40 C2

2 0.90 0.58

C3
1 0.70 0.50

Table 3.1: Measurement and transition possibility
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P1 :

p(C1
1 ) = pm(C

1
1 ) = 0.80

p(C2
1 ) = pm(C

2
1 ) = 0.60

p(C3
1 ) = pm(C

3
1 ) = 0.30

P2 :

p(C1
2 ) = max(0.80× 0.92× 0.90︸ ︷︷ ︸

C1
1→C

1
2 (parent)

, 0.60× 0.92× 0.60︸ ︷︷ ︸
C2

1→C
1
2

, 0.30× 0.92× 0.70︸ ︷︷ ︸
C3

1→C
1
2

) = 0.6624

p(C2
2 ) = max(0.80× 0.90× 0.70︸ ︷︷ ︸

C1
1→C

2
2 (parent)

, 0.60× 0.90× 0.40︸ ︷︷ ︸
C2

1→C
2
2

, 0.30× 0.90× 0.50︸ ︷︷ ︸
C3

1→C
2
2

) = 0.504

P3 :

p(C1
3 ) = max(0.6624× 0.75× 0.80︸ ︷︷ ︸

C1
2→C

1
3

, 0.504× 0.75× 0.90︸ ︷︷ ︸
C2

2→C
1
3

) = 0.39744

p(C2
3 ) = max(0.6624× 0.74× 0.60︸ ︷︷ ︸

C1
2→C

2
3

, 0.504× 0.74× 0.58︸ ︷︷ ︸
C2

2→C
2
3

) = 0.2941
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4 Fusion Map Matching Algorithm

In general, because the global algorithms take all the trajectory points into account, they

can achieve better accuracy than the incremental ones. Accordingly, global algorithms

have higher computation complexities, thus the efficiency are worse than incremental al-

gorithms. The FCD, which is collected to analyze the traffic model and the passenger’s

behaviors in ITS, normally includes tens of millions data. To map matching such large

amount of data, the efficiency is also very important. Therefore, we propose two new map

matching algorithms that have better performance than the current algorithms, which suit

for large scale map matching project.

4.1 Principle of Fusion Map Matching Algorithm

From the principle of incremental algorithm, it can be seen that the map matching result

of the current trajectory point has significant influence on the matching result of the next

trajectory point, because part of the weight values are based on the current result. There-

fore, the beginning of each trajectory is very important for the matching accuracy of the

whole trajectory. But unfortunately in practice, the first point is the most fragile part of

the trajectory, because for that point, no previous point can be used as reference, and the

only criterion is the circle distance to the candidate points (measurement possibility). This

causes a much bigger chance to get incorrect matching result for the first point of each tra-

jectory, and then lead the following points also get wrong map matching results. Besides,

during the precess of incremental algorithm calculation, once the trajectory is already been

matched to the wrong road segment, it will be very difficult for the map matching result to

go back to the correct road segment, especially when the transition possibility is the major

factor of the whole possibility, and this will also lead a large range of map matching mis-

takes. These are the reasons that the current incremental map matching algorithms show

not ideal accuracy performance.

To partly overcome these disadvantages of incremental algorithm and improve the per-
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formance of the incremental algorithms , we propose a Fusion Map Matching algorithm

(FMM) in this thesis, which synthetically combines the global and incremental map match-

ing algorithms together.

The characteristic of ”fusion”, which means the alterations between the global and incre-

mental algorithms, are occurred in two scenarios. The first alterations are occurred at the

beginning of each trajectory, where the global map matching algorithm is firstly used to

get more confident matching results for the first few points, and then start the incremental

algorithm, which uses the result of the last previous point to calculate the weight values

of candidates for next point. The second alternations are happened during the running of

incremental algorithm. In this scenario, the shortest route between the last matching point

and all the current candidates will be calculated. If the lengths of all the shortest routes

are lager than a reasonable value, which is related to longest distance a vehicle can run in

the sampling time with the fastest speed, the algorithm will enlarge the candidates search

radius to get more candidates. If the new candidates still can not fit the condition, then the

algorithm will judge that the correctness of the last matching result can not be fully deter-

mined, and will make a break here. Then the algorithm will start to map matching the next

few trajectory points with global map matching algorithm, and then goes to incremental

algorithm. The whole algorithm runs like this until it reaches the end of the trajectory.

The work flow of FMM algorithm is shown in Figure 4.1 and Figure 4.2.

Figure 4.1: The alternations of global and incremental algorithms in FMM algorithm

4.1.1 Candidate search radius

As mentioned in section 3.2.1, the selection of the search radius has significant influence

to the performance of the map matching algorithm. In most of exist algorithms, the search

radius is defined either by a fixed maximum value (normally from 50m to 200m), or by the
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4 Fusion Map Matching Algorithm

Figure 4.2: The work flow of FMM algorithm

24



4 Fusion Map Matching Algorithm

maximum number of candidates, or both. This kind of definition is direct and simple, but

has some potential problems: if the search radius or the maximum number of candidates

are defined too small, it is possible that no candidate is found or the true road segment is

not selected as candidate, and the later situation could occurs more often especially in the

urban area, where the road density is big; oppositely, if the two values are defined too big,

irrelevant road segments may be chosen as candidates, and this will effect the efficiency of

the algorithm.

In the FMM algorithm, a flexible search radius is proposed, which means the search radius

will change according to different situations. To be more specific, the initial search radius

is defined as 50m, and if there is no candidate found, then enlarge the value by 50m, until

at least one candidate is found. Besides, the maximum distance for a vehicle is able to

travel in a sampling interval can be calculated by estimating a max speed of a vehicle.

Then the algorithm checks the shortest routes between the previous matching result and

the candidates, if all the shortest routes are bigger than the maximum distance and the

search radius is smaller than 200m, then enlarge the search radius by 50m, until at least

one candidate that can fit this requirement is found or altering to the global algorithm.

4.1.2 Global calculation

As discussed in Chapter 3, HMM is a typical theory used in global probabilistic based

map matching algorithm, and several HMM based map matching algorithms have been

proposed. Therefore, in our FMM algorithm, we also choose an HMM based algorithm in

the global calculation part. More specifically, we propose a new HMM based algorithm

based on Lou’s[15] algorithm, and make several modifications on it.

Firstly, we modify the relationship between the possibilities of successive trajectory points

from addition to multiply, because we think multiply fits the HMM model better, and has

better accuracy performance.

Secondly, we modify the definition of shortest route. In our definition, the shortest route

is not only consider the route distance shown in Figure 3.5, but also includes the circle

distance between the trajectory points to the candidates road segments. This means we

also take the distance to the road segment as a factor in the transition possibility (Figure

4.3), and the larger of this distance, the smaller the transition possibility.

In addition, we introduce the azimuth possibility to improve the performance of the algo-
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Figure 4.3: A shortest route with circle distance between the trajectory points and road

segments

rithm. An azimuth is an angular measurement in a spherical coordinate system[1]. The az-

imuth possibility is used to describe the azimuthal difference between the trajectory point

(driving direction) and road segment. The smaller the difference, the bigger the azimuth

possibility. The formula of azimuth possibility is defined as:

pa(C
i
t) = cos5 θ (9)

Where θ is the azimuth difference between the driving direction and road segment, and an

uneven number of the power value of the cos θ means that this azimuth possibility can get

negative value when the difference of the azimuth is in the region of (π2 ,
3π
2 ).

The direction of the vehicle can be directly read from the GPS log, and the direction of the

road segment at the candidate point is the direction of the tangent line in the point, but this

tangent line can not be got directly. In this thesis, we design a method to approximately

calculate the direction of the tangent line (road segment). As shown in the Figure 4.4,

we create a point on the same road segment with the candidate point, and the distance be-

tween the two point is very short, and in the thesis, this distance is set to 0.001∗ length(Ri).
Then we calculate the azimuth value of the line that connect these two points and follow

the direction of the road segment, and this azimuth value can approximately be seen as
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Figure 4.4: Calculation of the azimuth of the road segment

the azimuth of the road segment at the location of the candidate. It should be noted that

the two-way road segments have two azimuth which are 180 difference with each other,

and in this situation, the direction that can get bigger azimuth possibility (more similar to

the driving direction) will be chosen.

Therefore, the original formula of our HMM based algorithm is defined as:

argmax
n∏
t=0

Ç
1√
2πσp

e
−0.5( |Pt−C

i
t |

σp
)2 |Pt+1 − Pt|great circle
|Cit+1 − C

j
t |route

cos5 θ

å
(10)

To avoid the underflow problem, we also need to transfer the original algorithm to a loga-

rithm type. In addition, because the azimuth possibility have negative value, the product

of the azimuth possibilities values may get opposite result, and damage the comparison

result of the whole ultimate possibilities. Therefore, the azimuth possibility can not be

simply conversed without prejudice. In this thesis, we define the logarithm formula of

azimuth possibility as:

pa(C
i
t) = −10× ln(cos5 θ + 1) (11)

and the logarithm of our HMM based algorithm is then defined as:

argmin
n∑
t=0

Ç
0.5
Ä |Pt − Cit |

σp

ä2 − logÄ |Pt+1 − Pt|great circle
|Cit+1 − C

j
t |route

ä
− 10× ln(cos5 θ + 1)

å
(12)
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4.1.3 Incremental calculation

In FMM, the incremental calculation uses the same definitions as our HMM based algo-

rithm for measurement, transition and azimuth possibility. The incremental algorithm is

designed to find the candidate that has the maximum ultimate possibility among all the

candidates of the same trajectory point:

max(i=0 to n)

Ç
1√
2πσp

e
−0.5( |Pt−C

i
t |

σp
)2 |Pt+1 − Pt|great circle
|Cit+1 − C

j
t |route

cos5 θ

å
(13)

4.2 Forward-looking Incremental Algorithm

Compared with global algorithms, incremental algorithms only consider the matching re-

sult of the previous points, thus it is easy to have matching mistakes in the Y-split area. As

shown in Figure 4.5, here assume that road segments R1, R2, R3 are all one-way road. For

human it is very easy to label the trajectory to road segments R1 and R2, but in incremen-

tal algorithm, point P6 is much closer to R3 than R2, then the measurement possibility is

larger for the candidate on R3, and the transition possibilities for candidates on R2 and R3

are similar, thus the incremental algorithm will choose the candidate R3 as the matching

results. Because R3 is one-way road, there will have a big possibility for the following

points all be matched on R3 based on the matching result of P6.

To partly solve this kind of problem, we propose a forward-looking incremental algo-

rithm. As shown in Figure 4.6, P1, P2, P3 are three successive trajectory points, and C1
1

already be chosen as the matching result of P1, and now need to find the best candidate

for P2. Compared with normal incremental algorithm, the forward-looking incremental

algorithm takes the subsequent point(s) into consideration. P2 has two candidates C1
2 , C

2
2

located on R3, R2 respectively. If C1
2 is the matching result, then based on this point to cal-

culate the weight values of the three candidates of P3, and C2
3 has the biggest possibility.

Similarly, if C2
2 is the matching result, based on this point it is also able to find one candi-

date of P3 that get the biggest possibility, C1
3 for example. Then the final possibilities of C1

2

and C2
2 are p(C1

2 ) × p(C2
3 ) and p(C2

2 ) × p(C1
3 ), and the one with bigger possibility will be

chosen as the map matching result of P2. This algorithm can also consider more than one

subsequent points, but the computation time will also increase accordingly. The formula

of forward-looking incremental algorithm is defined as:

p(Cit) = argmax
n∏
d=0

p(Cjt+d) (14)
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Figure 4.5: Map matching errors on Y-split road segments

Figure 4.6: Forward-Looking FMM algorithm
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Where n is the maximum number of forward-looking points.

Although forward-looking incremental algorithm dose not have such serious underflow

problem like HMM based algorithm due to its smaller computation complexity, but to

drastically avoid the influence of the underflow problem to the map matching result, just

like what has been done in the transformation of the HMM based algorithms, the formula

of forward-looking incremental algorithm is also be transformed to a logarithm type. The

logarithm form forward-looking incremental algorithm is defined as:

p(Cit) = argmin
n∑
d=0

Ç
0.5
Ä |Pt+d − Cit+d|

σp

ä2−logÄ |Pt+d+1 − Pt+d|great circle
|Cit+d+1 − C

j
t+d|route

ä
−10×ln(cos5 θ+1)

å
(15)

4.3 Handling Special Cases

To improve the efficiency and the accuracy of the map matching, several special situations

are considered in the FMM algorithms.

4.3.1 Only one candidate found

If there is only one candidate be found within the searching radius, and the shortest route

to the previous point is less than the maximum allowed distance, this candidate point will

be directly chosen as the matching result.

4.3.2 Successive points within a distance

Due to the errors of GPS, when the vehicle stops for a while or moves in a very slow speed,

the locations recorded by the GPS are normally not same, but very close to each other. The

distances between the points depend on the precision of the GPS device, the surrounding

environment of the vehicle, and the distribution of the GPS satellites at that time. These

points are recorded at the same or almost same location, thus the map matching results

for these points should be same, which means after using map matching algorithm to

calculate the first point of this kind of points group, the matching results for other points

can be directly assigned to the same road segment with the first one, and this procedure

can save calculation time.
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Figure 4.7: Close points lead to matching errors

Besides improving the efficiency, this procedure can also avoid some matching errors. As

shown in Figure 4.7, Pt, Pt+1, Pt+2 are three successive trajectory points, and it can be easily

labeled that the vehicle was driving along road segment R1 by human, and Pt, Pt+1, Pt+2

should be matched to R1. Because of the GPS error, the location of Pt+2 was recorded

behind of Pt+1. C1
t+2, C

2
t+2, C

3
t+2 are three candidates of Pt+2, which locate on road segment

R1, R3, R4 respectively. C1
t+1 and C1

t+2 should be the correct matching results for Pt+1 and

Pt+2, which are both on R1. R1 is a single direction road, thus after C1
t+1 is assigned to the

matching result for Pt+1, when try to use the FMM algorithm to get the matching result for

Pt+2, the shortest route between C1
t+1 and C1

t+2 has to pass through R1, R2, R2, and clearly

C1
t+2 will be out of the selection due to small transition possibility, and the matching result

for Pt+2 will become C3
t+2 on R3, which is not correct. This mistake will not only affect

point Pt+2, but also possibly affect the matching result of next point that is based on this

wrong matching result of Pt+2. In FMM algorithm, two successive trajectory points within

ω meters will be assigned to same road segment, and we will discuss the value of ω in the

later chapter.
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Figure 4.8: Candidates on the vertexes of the road segment

4.3.3 Candidates on the vertexes of the road segment

As shown in Figure 4.8, pointP2 has 7 candidates within the searching radius, andC3
t , C

4
t ,C

6
t , C

7
t

locate on the vertexes of the road segments. It is clearly that these four candidates are im-

possible to be the correct results. Generally speaking, there are only two scenarios that the

true matching results could locate on the vertexes of the road segments:

1. The trajectory point was recorded just on the vertex of a road segments;

2. The trajectory likes Figure 4.9, and in this scenario the candidate C3
t on the vertex

should be the correct map matching result.

In practice, the possibility is very small to meet the above situations. In our test data

which includes 24482 trajectory points, only 86 points (0.35 %) meet the second scenario,

and the ground truth result are located on the vertexes; none of trajectory point locates on

the vertex. After checking the candidates distribution of training data, which is limited

to at most 5 candidates of each trajectory point, we found that 47257 of 108426(43.58%)

candidates are located on the vertexes of the road segments, which means over 40% of

candidates are located on the vertexes, but only less than 0.2% of them are correct results.

But these candidates need a lot of calculation time, especially in HMM algorithm, which is

more sensitive to the number of candidates.
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Figure 4.9: Matching result on the vertex of the road segment

Figure 4.10: Incorrect choosing candidates on the vertex

Besides, delete the candidates on the vertexes will not only improve the efficiency, but

also the accuracy. With the current FMM/HMM algorithm, sometimes the candidates on

vertexes get bigger possibility values than other candidates, and as we mentioned above,

most of them are not the correct matching results. As shown in Figure 4.10, trajectory point

P2 has two candidates, and C2
2 is located on the vertex; after checking the driving direc-

tion, we know that C1
2 should be the correct matching result, but C2

2 has bigger transition

possibility because the shortest routes is almost equal to the circle distance between P1

and P2, and the map matching algorithm may choose C2
2 as the matching result with some

settings of weights.

Take the FMM algorithm as example, the accuracy of considering and without considering

candidates on vertexes are shown on Figure 4.11. It can be seen that without considering
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the candidates on the vertexes, there are over 1% accuracy improvement. Therefore, in our

FMM algorithm, we consider the candidates on the vertexes only if the trajectory point

itself is located on the vertex.

Figure 4.11: Accuracy performances of map matching algorithm of with and without con-

sidering the candidates located on vertexes
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5 Calculating Shortest Route

5.1 Principles of Shortest Route Calculation

The shortest route calculation is a significant operation of computing the transition pos-

sibility. In the FMM algorithm, the shortest route calculation is carried out via an exten-

sion called pgRouting in PostgreSQL. pgRouting can be used to analysis the road network

and calculate the shortest route between two vertexes of roads, and it contains a series of

routing related functions. In this thesis, the core function of shortest route calculation is

pgr kdijkstraPath. To use this routing function, several preparation works need to be done

firstly.

pgr nodeNetwork: The function reads edges from a not ”noded” network table and writes

the ”noded” edges into a new table. Two attributes called ”source” and ”target”, which

indicate the vertexes and the direction of one-way road, are added into the road table. As

shown in the Figure 5.1, in one way-road, the road direction always follows the order from

”source” to ”target”, and two-way road does not follow this order. Besides, an additional

table called ”vertives pgr” that saves all the information of vertexes will be used later.

pgr createTopology : The function builds a network topology based on the geometry in-

formation.

pgr kdijkstraPath: The function returns the paths for K shortest paths using Dijkstra al-

gorithm.

With pgRouting, only the shortest routes between the vertexes of the roads can be calcu-

lated; but in most of the cases, the candidates do not fall on the vertexes. Thus in this

thesis, a new function is created to calculated the lengths of the shortest routes between

any two candidates located on the arbitrary positions of the road segments. The functions

of pgRouting used in our function is listed below:

ST LineLocatePoint: Returns a float between 0 and 1 representing the location of the clos-
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Figure 5.1: Source and target vertexes of road segments

est point on LineString to the given Point.

ST Line SubString: Return a linestring being a substring of the input one starting and

ending at the given fractions of total 2d length.

ST Length: Returns the 2d length of the geometry if it is a linestring or multilinestring.

ST Linemerge: Returns a (set of) LineString(s) formed by sewing together a multilinestring.

ST MakeLine: Creates a Linestring from point or line geometries.

ST Buffer: Returns a geometry that represents all points whose distance from this Geom-

etry is less than or equal to distance. Calculations are in the Spatial Reference System of

this Geometry.

8 parameters used in this shortest route calculation function are listed in Table 5.1.

There are several scenarios when dealing with shortest route calculation, and we use dif-

ferent strategies to deal with these scenarios in our shortest route calculation function.

1. Cit and Cjt+1 locate on the same road segment;

2. Cit and Cjt+1 locate on two connected road segments;

36



5 Calculating Shortest Route

3. Cit and Cjt+1 locate on two non-connected road segments.

Parameter Description

start line the geometry of the line where Cit located

end line the geometry of the line where Cjt+1 located

start point the geometry of Cit
end point the geometry of Cjt+1

start target the ”target” value of the road segment where Cit located

end source the ”source” value of the road segment where Cjt+1 located

cost file the name of the attribution of cost

reverse cost file the name of the attribution of reverse cost

*Cit and Cjt+1 are the candidates of two successive points respectively.

Table 5.1: Parameters in shortest route calculation

As shown in Figure 5.2, C1
t , C

1
t+1, C

1
t+2, C

1
t+3 are the candidates of trajectory points Pt, Pt+1,

Pt+2 and Pt+3, and locate on road segments R1, R2, R2, R4 respectively. C1
t and C1

t+1 lo-

cate on two connected road segments R1 and R2; C1
t+1 and C1

t+2 locate on the same road

segment R2; C1
t+2 and C1

t+3 locate on two non-connected road segments R2 and R4. The

function of our shortest route calculation is described in Algorithm 2.

Figure 5.2: Candidates locate on same,connected,non connected road segments
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Algorithm 2: Calculate the length of shortest route between Cit and Cjt+1

Input: 8 parameters in Table 5.1

Output: the length of the shortest route between Cit and Cjt+1;

{Cit and Cjt+1 locate on the same road segment;};
1: if start line=end line then

2: perStart← ST Line Locate Point(start line, start point);

3: perEnd← ST Line Locate Point(start line, end point);

4: if perStart<perEnd then

5: shPath← ST Line SubString(start line,perStart,perEnd);

6: Length← ST Length(shPath);

7: else

8: if start line is a two-way road then

9: shPath← ST Line SubString(start line,perEnd,perStart);

10: Length← ST Length(shPath);

11: end if

12: else

13: res← pgr kdijkstraPath;

14: res← ST Linemerge(start line,res);

15: Length ring← ST Length(res);

16: Length = ST Length(shPath);

17: Length = Length ring-Length;

18: end if

{Cit and Cjt+1 locate on two connected road segments;};
19: else

20: if start target=end source then

21: res← ST Linemerge(start line,end line);

22: perStart← ST Line Locate Point(start line, start point);

23: perEnd← ST Line Locate Point(start line, end point);

24: shPath← ST Line SubString(start line,perStart,perEnd);

25: Length = ST Length(shPath);

26: end if

{Cit and Cjt+1 locate on two non-connected road segments.};
27: else

28: res← pgr kdijkstraPath;
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29: res← ST Linemerge(start line,end line);

30: perStart← ST Line Locate Point(start line, start point);

31: perEnd← ST Line Locate Point(start line, end point);

32: if perStart<perEnd then

33: shPath← ST Line SubString(start line,perStart,perEnd);

34: else

35: shPath← ST Line SubString(start line,perEnd,perStart);

36: end if

37: Length = ST Length(shPath);

38: end if

39: return Length;

5.2 Optimizing Shortest Route Calculation

The shortest route calculation is the most time consuming procedure in the HMM and

FMM algorithms. When using pgRouting to do the shortest route calculation, the pgRout-

ing will use all the possible permutations and combinations of the road segments in the

whole road net work to find the shortest route between two given vertexes. To accelerate

this procedure, we can limit only the road segments that are close to the trajectory will

be considered as the possible set of the shortest route result. In this thesis, a buffer of the

trajectory is used. To be more specific, the first step is to use ST Makeline to connect all the

Figure 5.3: Buffer zone of trajectory
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GPS points in the same trajectory by time series, then according to this trajectory line, use

ST buffer to get a buffer zone; the last step is to only keep the road segments inside the

buffer zone, and use this new set of road segments to do the shortest route calculation.

The size of the buffer zone is significant to the accuracy and efficiency performance, and

we will discuss the size of the buffer zone in the experimental chapter.
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6 A Work flow of map matching FCD

Not like map matching the data prepared for algorithm designation, map matching FCD

is a much more difficult task, due to the big amount and the complexity of the data. There-

fore, we propose a work flow to show the full procedure of map matching FCD, from the

data preparation to the presentation of the map matching result. The work flow is shown

in Figure 6.1.

6.1 Trajectory Data Preparation

6.1.1 Overview of Shanghai FCD

In this thesis, we use the floating car data in Shanghai, China to explain the work flow,

and the original data is saved in a .txt file. The File records 20703863 GPS trajectory points,

which contains the GPS logs of 6973 taxis in Shanghai for 24 hours, from 20:30:00 31.03.2010

to 20:00:00 01.04.2010. The original intervals of the GPS points is 10 seconds. The attributes

of the points are shown in Table 6.1.

6.1.2 Data validation

In this thesis, we choose PostgreSQL to save the FCD, which is convenient for calculating

the shortest routes between trajectory points later. Because the original data has some

errors, data validation is necessary before importing the FCD into database. We define

three levels of data validation in this thesis.

Errors like missing or invalid formats of attributions, which cannot be saved into database,

can be dealt with the first level of data validation. A Visual Basic program is designed to

scan the completeness of the attributions and transfer the original csv format (.txt) into SQL

statements. After this step, 20233886(97.73%) pieces of data remains, and can be imported

into database.
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Figure 6.1: The work flow of map matching FCD

The second level of data validation is designed to deal with the implicit errors of GPS

information. As shown in Figure 6.2, some GPS points are located on the sea area, which

are obviously out of the range of Shanghai city area. This kind of error is caused during

the procedures of recording or uploading GPS information. After checking the city area of

Shanghai on map, we delete the GPS points outside the coordinates {(120.29, 30.0),(121.98,

31.93)}.
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Fields Description

date Date of GPS measurement.In format of ’2010-03-31’

time Time of GPS measurement.In format of ’20:37:16’

car owner string code of taxi company. ie.’QS’

car id unique ID of the car, ie. 18384

longitude longitude in degress, with precision length of six decimal

latitude latitude in degree,with precision length of six decimal

velocity instant velocity of the taxi in km/h. ie.39.5

driving direction
deiving direction of the car, ranges from 0 to 355, with

0 pointing north, and increase clockwisely

car status binary code, 1 means driving with passenger, otherwise 0

signal status
binary code indicate the validation of gps measurement.

1 for validate, 0 otherwise

record time time when data is collected to datacenter

Table 6.1: Floating Car Data in Shanghai

Figure 6.2: Floating car data out of city area
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To simplify the calculations, especially the ones to get circle distances and shortest routes,

it is better to convert the sphere geographic coordinate system, which is WGS84 in the orig-

inal GPS data, to a local plane coordinate system. In addition, the data type ”Geometry” in

PostgreSQL, which include the location information (longitude and latitude) and the co-

ordinate system information, is more convenient to be used. Consider Shanghai is located

in China, and the meridian crosses close to the middle of the city is about 120 east, thus

we choose the EPSG:2385 Xi’an 1980 /3-degree Gauss-Kruger CM 120E[2] (Table 6.2) as

the coordinate system in this thesis, and transfer all the GPS points in the geometry type

with the above local plane coordinate system, and then save them into the PostgreSQL

database.

EPSG:2385 Xian 1980 / 3-degree Gauss-Kruger CM 120E

WGS84 Bounds: 118.5000, 21.9300, 121.5000, 53.3300

Projected Bounds: 345017.9483, 2426808.3104, 654982.0517, 5912397.9623

Scope: Large scale topographic mapping, cadastral and engineering survey.

Last Revised: June 22, 2002

Area: China - 118.5°E to 121.5°E

Table 6.2: EPSG: 2385 Xian 1980 / 3-degree Gauss-Kruger CM 120E

This thesis focuses on map matching based on HMM algorithm, thus we only need few

fields in the original data. After the second level of data validation, the fields saved in

PostgreSQL are listed in Table 6.3.

Fields Type Description

id integer unique ID of the trajectory point,ie. 1

car id integer unqiue ID ededof the car,ie. 18384

time
timestamp without

time zone

Date and time of gps measurement.In format of

’2010-03-31 22:28:00’

geometry gemotry(point,2385) geometry value of the GPS points

driving

direction
integer

driving direction of the car, ranges from 0 to 355,

with 0 pointing north, and increase clock wisely

Table 6.3: FCD after validation and simplification

The third level of data validation is designed to accelerate the map matching process. We
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notice that there exist a big of amount of successive GPS points with speed of 0, which

may be created when the taxi was stopped in one location for a long time without turning

off the GPS. These points cannot be served to analyze the states of taxis, but it will bring

negative influence to the efficiency performance of map matching. To delete these points,

we execute a SQL query with the following definition:

Delete GPS points with same car ids, same geometry locations, and speeds equal to 0, except the

ones with smallest row ids.

After the second and third data validations, 13986856(69.12%) points remain, and can be

used to do the further analysis.

6.2 Road Network Data Preparation

The road network is gathered from Open Street Map, which is an openly licensed map

of the world being created by volunteers using local knowledge, GPS tracks and donated

sources[3]. The original road network file is in the term of .shp, and imported into Post-

greSQL with being converted to the geometry type and the EPSG:2385 local plane coordi-

nate system. The fields in the road network is shown in Table 6.4.

Fields Type Description

id integer Unique local id of each road polyline. ie.1

length double precision The length of the road polyline. ie.100.25

reverse

cost
double precision

The reverse cost indicate whether the road is two-way

road or not.if the road is two-way road,then reverse

cost=length; otherwise 100000000000

geometry
geometry

(linestring,2385)

The geometry of the road polyline, includes coordinate

system information

Table 6.4: Fields of Open Street Map

In this thesis, instead of using osm id, which is a worldwide unique id given by Open

Street Map for each road segment, we choose to use the unique local id, and it can help

calculate the accuracy of the algorithm more precisely. As shown in Figure 6.3, osm id is

corresponding with the name of the road, and several road segments may have same osm

id, but local id is corresponding to the segmentation of the road.
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Figure 6.3: Comparison of OSM id and local id

6.3 Algorithm Implementation Environment

The FMM algorithm is coded in C++ in Visual Studio, and the C++ program is connected

to the PostgreSQL via LIBPQ library, which is a set of library functions that allow client

programs to pass queries to the PostgreSQL backend server and to receive the results of

these queries. The detail test and runtime environment is shown in Table 6.5.

Operaction System Windows 7 64bit

CPU Intel Core i7 2.67GHz

RAM 8 GB DDR3

Storage 128 GB SSD

Coding Platform C++ via Visual Studio 2010

Database PostgreSQL 9.3

Table 6.5: Test and runtime environment
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FCD

Due to the large amount of FCD, we choose part of the data from Shanghai FCD as test

data, to evaluate the feasibility of the map matching work flow and the performances of

the algorithms.

7.1 Test Data

Test data is defined to evaluate the performances of the map matching algorithms in the

perspectives of accuracy and efficiency, and the following requirements should be re-

served:

1. Represent the whole area, from the perspective of distribution and density;

2. Suitable quantity, which means it should be large enough to give credible result, but

runs within an acceptable time.

To choose the appropriate test data for evaluating the performance of the map matching

algorithms, we define three scenarios based on the road density: dense area, common area,

and sparse area. Then for each scenario, we extract an amount of GPS points with the same

proportion of the whole area. The detail choosing procedure works as below:

1. We illustrate grids with equal size on the whole range covered by the GPS points, and

in each grid, we calculate the road density(km/km2)=total road length(km)/total

area(km2);

2. We define the range of each scenarios as: the dense areas road density is more than

8 km/km2, the sparse areas is less than 3 km/km2 and the rest parts are common

areas. The distribution of the grids and the corresponding road densities are shown

in Figure 7.1;
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Grid Number Training Area (km2) Original Points Test Points

Dense Areas 7 30.76 1675638 13884

Common Areas 52 230.01 1121043 9749

Sparse Areas 119 524.18 118831 849

Table 7.1: Distribution of the test points in three scenarios

3. We choose the test areas with the same proportion of the grids, and to not damage

the completeness of the trajectories, we try to make the expressway or arterial road

as the boundaries of each area;

4. We randomly choose the final test trajectories in each scenario with the same propor-

tion of the total points in each scenario, and try to make all the roads in the chosen

areas be covered. The borders of each area and the distribution of the test points are

shown in Table 7.1 and Figure 7.2.

5. We manually label the test data, and for the blurry trajectories, we delete them or

mark both candidate road segments correct, which is much common when the tra-

jectory is in the middle of two parallel road segments and both of them are looked

correct.

The original sampling intervals of FCD is 10s. To evaluate the algorithm performance in

low sampling rates, we create the bigger sampling intervals sets of points based on the

original FCD data. We choose 20s, 30s, 60s and 120s as our new sampling intervals. We

do not do the new sampling intervals on sparse area, because the lower sampling rate sets

will have only few points, and the result will not be reliable. The lower sampling rates

points for dense and common area is shown in table 7.2.

20s 30s 60s 120s

Dense Area 7995 5802 3301 1807

Common Area 5625 4108 2315 1261

Table 7.2: Trajectory points in low sampling rates

Labeling test data by human is a very time consuming and tedious procedure, and also

very easy to make errors due to losing attention of human. In addition, some complex

trajectories are very difficult for human to identify the correct road segments, especially

the ones travel on the parallel road segments in the city center. Based on our experience,
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Figure 7.1: Road network densities in girds
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Figure 7.2: Borders of test areas and distribution of points
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human can label about 1000 points each day, which does not include the time to check the

errors.

In this thesis, we propose a improved efficiency test data labeling method , which focuses

on labeling the entire trajectory at one time. As we know, every trajectory follows a serious

successive road segments and most time it follows the shortest route between the origin

and destination, especially in this FCD Shanghai data recorded by taxis. Therefore we use

an open source project called Open Source Routing Machine (OSRM), which uses the road

network data of Open Street Map, and can quickly get the shortest route between every

two points. The OSRM has the option to save the path into a GPX file, which includes

the line geometry information of the paths, and exchanges it between programs. In addi-

tion, the OSRM supports setting route markers on the path, and dragging them arbitrarily,

and this can help make the path become totally same with the trajectory that need to be

matched. The OSRM can be run on personal computer after a series of set up, and in this

thesis, we use an on-line website[16] created by the author of OSRM.

Figure 7.3: Route on OSMR

The procedure of the method goes like this: firstly a route is created in OSRM with the

same shape of the trajectory, as shown in Figure 7.3. Then the GPX can be used to find
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the corresponding road segments with local ids in the road network. Next, each trajectory

point can be assigned to a local id of the closest road segment by a program automatically.

At last, we check the labeling result and fix the errors manually, which is much easier

than doing it from the beginning. With this method and our experiences, more than 80

trajectories can be finished in a day, and about another one day is needed to check and the

fix the errors.

After checking by human, there still a big possibility that existing errors in the labeled

ground truth data. To partly solve this, we check the shortest routes between each two

successive ground truth points. As we know, the speed of vehicle in a city area is limited,

and if the shortest route between two successive ground truth points is much bigger than

the longest distance that a vehicle can run within the sampling interval, then there is big

chance that this area exists labeling errors. After this procedure, the ground truth data is

more reliable and can be used to evaluate the performances of map matching algorithms.

7.2 Parameters Estimation

7.2.1 Trajectory segmentation

Trajectory is defined as the collection of continues GPS points from the same vehicle. For

the FCD in Shanghai, the car id attribute can be used to distinguish different taxis, but the

driving path of each taxi is not a continuous trajectory in most of the time, and it has break

points. Therefore, we need to separate the GPS points from the same taxi into several

trajectories based on the break of the time sequence, or the distance between successive

GPS points, or both. What need to be pointed out is that because of the huge amount

of data and the complex situations of different trajectories, none of these two fields can

divide the trajectory 100% correctly. But overall, this procedure can make the trajectories

more close to the real situations.

In this thesis, we choose both the time and distance as the judgments of breaking tra-

jectories. To be more specific, for two successive GPS points from same taxi, if the time

difference is bigger than 1 hour, or the distance is larger than α, the two points will be seen

as the last and the first point of two trajectory.

In the Shanghai city, the biggest allowed driving speed is 120km/h, which is about 35m/s.

Therefore, we define α =35m/s ×t× 2, where t is the sampling interval.
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Accordingly, we use 35m/s ×t as the threshold parameter of alternating global and incre-

mental algorithms in our FMM algorithms.

7.2.2 Buffer zone size for shortest route calculation

As mentioned in section 5.2, the determination of the buffer zone for shortest route cal-

culation is a key procedure that effects the performance of the algorithm in the aspects of

accuracy and efficiency. The priority consideration of the buffer size is the influence on the

accuracy, which means the buffer zone must cover the correct candidate road segments of

the trajectory. In this thesis, to decide the most suitable buffer zones for the HMM and

FMM algorithms, we make a series tests on the test data, which has been labeled with

ground truth data, to find the most suitable buffer size for shortest route calculation. In

these tests, we calculate the shortest route between each two successive trajectory points

in two situations: with and without buffer zone setting. In addition, the maximum cir-

cle distance between the trajectory point and the corresponding road segment is around

180m, which means the buffer zone must bigger than 180m to make sure the correct road

segments is included, and the shortest route should be the same in these two situations.

Since the smaller the buffer zone, the faster the calculation, the goal of the tests are to find

the minimum size of the buffer zone which have the same accuracy with the no buffer zone

situation. After testing several buffer zone values in the test data with different sampling

intervals. The most suitable buffer zone sizes for different sampling intervals are shown

in Table 7.3.

Sampling interval 10s 20s 30s 60s 120s

Buffer zone size 200m 200m 300m 400m 800m

Table 7.3: Buffer zone sizes for different sampling intervals

The efficiency performance of the buffer zone setting is evaluated through counting the

running time of calculating shortest routes. When using buffer zone, the needed time is

composed of two parts: creating buffer zone for each trajectory and calculating the shortest

route within the buffer zone. The performance is shown in Figure 7.4, and it can be seen

that using buffer zone can saving over 40% of calculation time.
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Figure 7.4: The efficiency performance of using buffer zone

7.2.3 Standard deviation of the GPS measurement

In HMM and FMM algorithms, the standard deviation of the GPS measurement σp need to

be estimated. From the labeled test data, which can be seen as the ground truth data, the

circle distances from each trajectory point to its location on the road segment can be calcu-

lated, and these values indicate the error distribution of the GPS measurement. According

to Newson’s research[18], σp could be estimated by using the median absolute deviation

(MAD), which is a robust estimator of standard deviation:

σp = 1.4826(|Pt − Cit |great circle) (16)

Average (m) Median (m) Maximum (m)

Dense area 7.09 4.54 127.06

Common area 6.00 4.19 181.17

Sparse area 5.23 3.80 39.32

Total 6.60 4.37 181.17

Table 7.4: Average, median and maximum disperses of three scenarios

Table 7.4 shows the trajectory points disperses situation in the dense, common and sparse

area. The results indicate that the disperses in dense area is more serious due to the com-

plex surrounding environment. Figure 7.5 shows the distribution of the disperses. It can
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Figure 7.5: Disperses of trajectory points of ground truth data

be seen that most of the disperses are within 10 meters. The maximum circle distance be-

tween the trajectory points and the road segments in ground truth data is 181.17m, which

fits the configuration of the search radius (50m to 200m) in our FMM algorithms.

In this thesis, σp is estimated with value 6.48m, and the ω for determining the distance

between trajectory points that are recorded in the location is 6.60m.

7.2.4 Parameter in transition possibility

In the HMM based algorithms from Newson[18] and Wei[21], the parameter β from the

exponential distribution in equation (2), which describes the differences between the circle

distances and shortest routes, need to be estimated. Newson’s research[18] proposed that

β could be estimated by using a robust estimator suggested by Gather[9]:

β =
1

log(2)
median(|Pt+1 − Pt|great circle − |Cit+1 − C

j
t |route) (17)

Figure 7.6 shows the differences between the circle distances and shortest routes in dif-

ferent sampling time intervals. It can be seen that with the increasing of the sampling

time interval, the disperses get larger, which means the performance of transition possi-

bility get worse with bigger sampling time intervals in map matching. A larger value of

β, represents more tolerance of non-direct routes. Therefore, in this thesis, the β value is

various with different time intervals, and we choose the values in Figure 7.6 as the β in the

algorithms of Newson[18] and Wei[21].
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Figure 7.6: Differences between circle distances and shortest routes in various sampling

intervals

7.2.5 Parameters in forward looking algorithm

In our forward-looking FMM algorithm, through experiments, we notice that when setting

the number of forward looking point bigger than 1, the accuracy of the algorithm can only

get a very tiny improvement, but will significantly increase the calculation time. There-

fore, in our forward-looking algorithm, we set the forward looking point number to 1. In

addition, to accelerate the calculation, we limit the largest number of candidates for this

forward looking point to 3.

7.3 HMM Based Algorithms Comparison

To choose the suitable HMM based algorithm for the global operation in our FMM algo-

rithms, we compare the accuracy performances of three existing algorithms and our HMM

based algorithm. In this thesis, we define the accuracy performance of a map matching al-

gorithm as:

number of trajectory points assigned with correct local road segment id

number of total trajectory points
(18)

The accuracy performances of the algorithms are checked in two scenarios.

The first one is the post-processing scenario, which use all the continues points in one
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trajectory to get the map matching results, and the results are shown in Figure 7.7. It can be

seen that our algorithm has the best and stable performances in all the sampling intervals;

Newson’s algorithm [18] also has a stable accuracy performance; Wei’s algorithm [21] has

better performance in high-sampling-rate, but seriously decrease with the increasing of

the sampling intervals; Without considering the temporal possibility, Lou’s algorithm [15]

shows an unaccountable results, but it does has better performance in low-sampling-rate

data.

Figure 7.7: Accuracy performances of HMM based algorithms with full trajectory

Because the FMM algorithm only takes 5 trajectory points to do the global calculation at

the beginning and in the middle of the trajectory when needed, thus we design the second

scenario to use every 5 successive trajectory points to get the map matching results. In

addition, take 5 points is a reasonable amount when HMM based algorithms are used in

real-time navigation scenario. From Figure 7.8, we can see that all the algorithms show

reduced accuracy performance compared with the results with full trajectory, but our al-

gorithm has the lowest amount of decreasing, and still have the best and most stable per-

formance among the four HMM based algorithms. This indicates that our HMM based

algorithm also has the best performance in the real time navigation scenario. The algo-

rithms from Newson [18] and Wei [21] show deteriorative performance in short trajectory

with small sampling intervals, and we speculate this relates to the values of β. Following

Newson’s assumption of β, which are very small in high-sampling-rate, it requires a very
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Figure 7.8: Accuracy performances of HMM based algorithms with 5 points limitation

strict equality between the shortest routes and circle distances, and makes the transition

possibility influences too much to the final matching result. With bigger β selection, the

performances of these two algorithm can be improved.

Figure 7.9: Accuracy performances of HMM based algorithms in the whole test area
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The accuracy performances of HMM based algorithms in the whole test area are shown in

Figure 7.9. The detail data of accuracy performances of HMM based algorithms is shown

in Table 7.5.

7.4 Experiment Results

7.4.1 Accuracy and efficiency performances of the FMM algorithms

The performance of an map matching algorithm can be shown in two perspectives, accu-

racy and efficiency. To evaluate these two performances of the FMM algorithms, we use

the HMM based algorithms with best performances as baselines. For different sampling

intervals, we choose the HMM based algorithms with the best accuracy performances,

since the accuracy is the major focus in this thesis. Therefore, our baselines are made by

the following HMM based algorithms:

Dense area Common area Sparse area

10s 20s 30s 60s 120s 10s 20s 30s 60s 120s 10s

W W N N N W W W N N W

*W = Wei[21], N = Newson[18]

Table 7.6: Baselines made by HMM based algorithms

Figure 7.10 shows the accuracy performances of two kinds of FMM algorithms in three

scenarios. It can be seen the forward-heading FMM algorithm has the best performances

in most of the sampling intervals, and normal FMM algorithm has 1% lower performances

than forward-heading FMM algorithm. Compared with the baselines made by HMM

based algorithms, both FMM algorithms have a much better accuracy performances.

As we described, the shortest route calculation is the most time consuming procedure in

the map matching algorithms. Therefore, we use the amount of shortest routes calculation

as the main factor of evaluating the calculation complexities. To simply describe the com-

plexity, here we take a trajectory with m (m > 5) trajectory points as example, and each

trajectory has n (n >= 3) candidates. Our FMM algorithms are more complex to calculate

the complexities because it use the global and incremental algorithm dynamically, and the

proportions of each algorithm used in FMM algorithms are depended on the specific cir-

cumstances of trajectories. In our experiments on our test data, 9.63% (2354) of trajectory
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Figure 7.10: Accuracy performance of FMM algorithms in three scenarios

points are map matched by HMM algorithm, thus we use 10% to approximately evaluated

the proportions of the usages of HMM algorithm in FMM algorithms. The computation

complexities of the map matching algorithms are:

HMM Normal incremental F-L incremental Normal FMM F-L FMM

mn2 mn 4mn 0.1mn2 + 0.9mn 0.1mn2 + 3.6mn

Table 7.7: Calculation complexities of map matching algorithms

Besides using calculation complexities, we also do experiments to compare the efficiency

performances of all the map matching algorithms. We try to use the same environment

(same CPU and RAM occupancy rates before running the algorithms) to test different al-

gorithms and record the running time. To indicated the efficiency performances, instead of

using the absolute time results, we choose to use the relative results, because different con-

figuration of the running environment could have different absolute time results. In the

presentation of results, we compare the algorithm running times with the one has longest

running time in the same sampling rate and scenario, and set this longest running time as

100%. The relative efficiency performances are shown in Figure 7.11. It can be seen that

the HMM based algorithms have the worst efficiency performances, and the normal FMM

algorithm has the best efficiency performances among the three algorithms, and it only use

20% of time of HMM based algorithms. The forward-looking FMM algorithms can save
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about 60% of running time.

Figure 7.12 and Figure 7.13 show the accuracies and efficieies of FMM algorithms com-

pared with baselines in the whole test data area. The detail data of the accuracy and effi-

ciency performances of FMM and HMM algorithms is shown in Table 7.8.

Figure 7.11: Efficiency performance of FMM algorithms in three scenarios

Figure 7.12: The accuracies of FMM algorithms
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Figure 7.13: The efficiencies of FMM algorithms

7.4.2 FMM algorithms map matching improvement examples

In this section, we use some examples from the test data to describe the accuracy improve-

ment in the FMM algorithm.

Figure 7.14 shows that with considering the trajectory points within a distance, the accu-

racy of the algorithm is improved. The trajectory has a group of intensive GPS points, and

there are ”abnormal” points from id 144 to 148, which against the driving direction. As a

result, the HMM algorithms will match this part of points to the closest vertex, but FMM

algorithm will consider these points are created in the same location, thus match the points

to the same road segment with point 143, which are correct.

Figure 7.15 shows that the map matching accuracy improves with considering the driving

direction. Trajectory point 5725 is more close to horizontal road segment, therefore the

measurement possibility is bigger than the candidate on the vertical road segment. The

transition possibilities of the candidates on the two road segments are similar. But the

driving direction in the GPS log is 341°, which indicates the vehicle was driving on the

vertical road segment. If not consider the driving direction in the map matching algorithm,

it will give wrong map matching result to map it on the vertical road segment.

Figure 7.16 shows that FMM algorithm have a better accuracy performance in the parallel

road segments. As what we can see, the HMM based algorithm matched these points to
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Figure 7.14: Map matching results comparison (1)

Figure 7.15: Map matching results comparison (2)

64



7 Case Study: Map Matching of Shanghai FCD

Figure 7.16: Map matching results comparison (3)

the side road, which does not fit the driving habit so much, because before and after these

part of trajectory points, the vehicle was traveling on the viaduct; besides, most of the

trajectory points are more close to the viaduct.
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8 Conclusion and Future Work

8.1 Conclusion

As floating car data becomes an important source of intelligent transportation system for

studying the behaviors of the vehicles and solving the increasingly serious problems in the

city transportation system, it is important to have an accurate and efficient map matching

algorithm and a corresponding complete work flow to deal with the city wide FCD. In

this thesis, we propose two fusion map matching algorithm derived from one new HMM

based global algorithm and two incremental algorithms designed by us. In addition, we

introduce a work flow of map matching FCD from data reduction to the result presenta-

tion. To check the performances of the algorithms, we use the test data selected from the

real city wide FCD in Shanghai. Moreover, to detect the algorithm performances in differ-

ent situations, we separate our test data into dense, common and sparse scenario. Then

for each scenario we choose the data amount by the proportion of the distribution of FCD,

in order to simulate the constitution of the real city transportation system.

Our test results show that our fusion map matching algorithms can reach 95.31% (with

forward-looking 1 trajectory point) and 95.16% (normal FMM algorithm) accuracies for

the original sampling rate in FCD, and have a more constant performance in the low sam-

pling rate data. Having less computation complexities, our FMM algorithms have over

2% accuracy improvement, and only need around 32% (with forward-looking 1 trajectory

point) and 14% (normal FMM algorithm) of running time compared with existing HMM

based map matching algorithms. Furthermore, With considering the distribution of the

FCD in different scenarios, we believe that our test results is robust for the city-wide data.
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8.2 Future Work

In this thesis, we have been focusing more on improving the accuracy performances of the

map matching algorithms, but as already mentioned, the efficiency is also important for

map matching FCD. Although our algorithms has better efficiencies than existing HMM

based algorithms from the perspective of computation complexities and running time,

they can still be improved through various speedup techniques, such as the efficiency

improvement of the shortest paths calculation, which is the most time consuming proce-

dure in the algorithm; and fully using the potential of calculation by using multi-cores of

computer and parallel calculation techniques. This part of work will be the next research

target of this study.
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