
Faculty of Environmental Sciences Institute for Cartography

Master Thesis

Design and implementation of an automated workflow to

provide a zoomable web mapping application using artistic

styles

in fulfilment of the requirements for the degree of

Master of Science

Submitted by: Maximilian Konrad Hartl

Date of birth: 30.12.1987

Matriculation number: 3516979

Date of submission: 25.08.2015

Supervisor: Prof. Dr.-Ing. habil. Dirk Burghardt

Faculty of Environmental Sciences Institute for Cartography

Task of Master Thesis

Course of Studies: Cartography

Name of the Graduand: Maximilian Hartl

Topic: Design and implementation of an automated workflow to provide a

zoomable web mapping application using artistic styles

Goals of this Study:

Currently web maps are often used with standardised styles developed for orientation and
navigation purposes. The aim of the work is to develop an automated workflow for the
derivation of web maps with an individual, theme related look and feel. A literature review
should include current approaches of non-photorealistic image rendering in computer
graphics. Based on that, concepts for customised styles with either artistic or application
related styling should be developed. An analysis of vector and raster based approaches
should be carried out in regard to the derivation of custom styled maps depending on in-
fluencing factors such as geo data and image processing, geometry type, etc.
Aim of the practical work is the further development towards automation of existing inter-
active workflows for the derivation of maps with artistic styling. This requires the identifica-
tion of currently necessary interactive processing steps during data preparation, prepro-
cessing and image processing. In addition, initial investigations should be carried out to
develop a processing chain for application related labelling. Furthermore a workflow for
scale dependent rendering and map presentations should be designed. Final aim is the
creation of an interactive web mapping application using standardised client-server archi-
tecture and a Web Map Tile Service.
There should be submitted two printed versions together with the digital version on CD.
The digital version should include the text description and all required data and software
to run the prototype. It is encouraged to publish the thesis on the publication server Quco-
sa of SLUB. The major findings will also be presented in the form of an A2 colour poster.

Supervisors: Prof. Dr.-Ing. habil Dirk Burghardt (TU Dresden)

Beginning of thesis: 27.1.2015
Date of submission: 30.6.2015

 Prof. Dr-Ing. habil Dirk Burghardt

Abstract

Although proprietary and free web map applications have become an important part of

the daily life, individual map styling has been neglected for a fairly long time. With the

latest possibilities of custom adjustment provided by many services and some interesting

artistic experiments, this is about to change. In the context of artistic cartography and

custom map styling, this work explores the possibilities of employing an automated process

for the generation of WMTS compatible map tiles with an artistic styling. Web mapping

standards and techniques of non-photorealistic rendering (NPR) are considered as well as

traditional cartographic representations. Furthermore, existing vector- and raster-based

processes are analyzed including an interactive workflow with the open-source image edit-

ing software GIMP, which is examined with respect to its drawing capabilities. Based on

that, a concept for an automated rendering process is developed and influencing factors

along with input parameters are discussed. An experimental automated processing is im-

plemented using GIMP and its Python scripting interface to create single maps and seam-

less map tiles for the use in a WMTS application. Different drawing techniques of GIMP

like brushes, dynamics and masks are applied during the rendering process. Geodata is

taken from the freely available OpenStreetMap project and it is stored in a geodatabase.

Furthermore, the GIS capabilities of the database are used to implement custom query

procedures for the creation of seamless tiles, feature simplification and generalization that

makes a preprocessing of the data unnecessary. Additionally randomization methods for

the estrangement and abstraction of its geometry to emulate a hand-drawn appearance

are created and tested based on SVG vector graphics and non-photorealistic rendering

techniques. The rendering and abstraction results are evaluated and discussed regarding

their contribution to an artistic appearance. The generated tiles are generated in a WMTS

compatible way and presented in a web mapping application.

V

Declaration of authorship

I hereby declare that the thesis I am submitting on the subject

Design and implementation of an automated workflow to provide a zoomable web mapping

application using artistic styles

is entirely my own unaided work. All direct or indirect sources used are acknowledged as

references.

Dresden, August 25th 2015

Maximilian Hartl

VII

Acknowledgements

I would like to express my deepest gratitude to Professor Dirk Burghardt for his guidance

as well as critique and feedback. He was always an inspiration in the various discussions

we had about my thesis.

Furthermore I would like to thank my friend Mariko for her support with the English

language, my brother Ferdinand for his advice with many technical questions and Latex,

and Sebastian for various discussions and tips. Additionally, I would like to express my

appreciation to all the people who offered me a place to stay during the times I came to

visit Dresden for my thesis. Thank you Aaron, Daniel and Rico for your hospitality and

flexibility. And finally, I would like to thank all the people who showed their manifold

support during my studies.

And last but not least, thanks to all the OpenStreetmap contributors and open-source

developers. Whitout the data and many versatile tools, this work would have been much

harder.

IX

Contents

Task Description III

Abstract V

Declaration of authorship VII

Acknowledgements IX

Table of Contents XIII

List of Figures XVI

List of Tables XVIII

Glossary XX

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Structure of the work . 2

2 Cartographic context and NPR 5

2.1 Definitions . 5

2.2 Non-photorealistic rendering . 7

2.2.1 NPR in computer graphics . 7

2.2.2 Hand-drawn rendering . 11

2.3 Cartographic communication and visualization 12

2.4 Cartography and art . 15

2.5 Web Mapping . 17

XI

XII CONTENTS

3 Image editing and web map rendering 19

3.1 Image editing software . 19

3.2 Raster image editing with GIMP . 20

3.2.1 Interactive editing . 20

3.2.2 Plug-ins and scripting . 28

3.3 Map rendering . 32

3.3.1 Web map rendering techniques . 32

3.3.2 Comparison of vector and raster based approaches 35

3.3.3 An interactive workflow with GIMP 37

4 A concept for automated processing 41

4.1 Comparison of influencing factors of a vector and raster based approach . . 41

4.2 Requirements and goals of automation . 43

4.3 Definition of input parameters . 45

4.4 Concept for an automated process with GIMP 45

4.5 Technical components . 47

4.5.1 JSON . 47

4.5.2 OpenStreetMap . 48

4.5.3 Database environment . 49

4.5.4 SVG as exchange format . 50

4.5.5 Web map tile service . 51

5 Implementation of an automated process with GIMP 55

5.1 Geodata setup . 55

5.1.1 Data acquisition . 55

5.1.2 Data import and update . 56

5.2 Sketch rendering . 59

5.2.1 Displacement and randomization . 59

5.2.2 Hand-drawn emulation . 63

5.2.3 Hatching . 65

5.3 Automated processing . 68

5.3.1 Configuration files . 69

5.3.2 Script structure . 72

5.3.3 Feature Processing . 77

CONTENTS XIII

5.3.4 Image rendering . 82

5.3.5 Output and WMTS . 84

6 Processing results and evaluation 87

6.1 Results . 87

6.2 Limitations and potential . 93

7 Conclusion 99

7.1 Summary . 99

7.2 Outlook . 100

Appendix A Images and Tables 103

Appendix B Compact disc content 111

Bibliography 113

XIV CONTENTS

List of Figures

2.1 Tonal rendering examples . 8

2.2 Pen and ink rendering . 11

2.3 Sketchy style examples by Wood et al (2012) 12

2.4 Artistic map abstraction and stylization by Isenberg (2013) 17

3.1 GIMP Paint tool options . 22

3.2 GIMP brush types examples . 23

3.3 GIMP dynamics options . 24

3.4 GIMP dynamics example stroke . 25

3.5 GIMP path drawing . 26

3.6 GIMP mask example . 26

3.7 GIMP filter examples . 27

3.8 GIMP text drawing . 28

3.9 Schema seamless image creation with GIMP . 28

3.10 Mapbox map style examples . 34

3.11 Mapzen map style examples . 35

3.12 Stamen map style examples . 36

3.13 Embroid style by Dong (2015) . 38

4.1 Workflow of the concept . 46

4.2 WMTS Tile indexing grid . 52

5.1 Schema random curve controlpoints . 62

5.2 Schema line handy . 65

5.3 Polygon disjoin cut points . 66

5.4 Schema hatching . 67

XV

XVI LIST OF FIGURES

5.5 Sketchy polygon with hatching . 68

5.6 Project files structure . 69

5.7 Workflow script structure . 74

5.8 Simplified UML diagram of the core rendering classes 76

5.9 Workflow detail tiles . 78

5.10 Workflow detail map . 79

5.11 Tile bounding box buffering . 80

5.12 Polygon generalization schema . 80

5.13 Polygon generalization example . 81

5.14 Schema database functions . 81

5.15 Schema text rendering . 84

5.16 Schema tile naming . 85

6.1 Embroid tiles . 88

6.2 Chalk tiles . 89

6.3 Embroid map . 90

6.4 Sketchy map . 90

6.5 Text label rendering methods . 91

6.6 Text label rendering example . 92

6.7 Brush comparison . 94

6.8 Polygon union problem . 95

6.9 Polygon union problem example . 96

A.1 Full UML diagram of the rendering classes . 106

A.2 WMTS application OpenLayers . 108

A.3 WMTS application QGIS . 109

List of Tables

2.1 Categorization of NPR techniques . 9

3.1 GIMP brush types . 23

4.1 PostGIS to SVG conversion . 51

4.2 Zoom level and tile coverage dependency . 53

5.1 osm2pgsql command arguments . 57

5.2 osm2pgsql database schema . 57

5.3 Methods for random points on line . 61

5.4 Random curve controlpoints . 63

5.5 Line jittering . 64

5.6 Lines handy . 65

5.7 Polygon jittering examples . 66

5.8 JSON configuration file top-level properties . 70

5.9 JSON configuration file map properties . 70

5.10 JSON configuration file style properties . 71

5.11 JSON style file top-level properties . 71

5.12 JSON style file common feature properties . 72

5.13 JSON style file lines feature properties . 72

5.14 JSON style file polygons feature properties . 73

5.15 JSON style file stroke line properties . 73

5.16 JSON style file stroke hachure properties . 73

5.17 JSON style file polygons text properties . 73

5.18 JSON style file effect text properties . 74

A.1 Random distribution examples . 104

XVII

XVIII LIST OF TABLES

A.2 Random point displacement . 105

A.3 Selected OSM line features . 107

A.4 Selected OSM polygon features . 108

Acronyms

API Application Programming Interface.

DPI Dots per Inch.

DTM Desktop Mapping.

GIS Geographic Information System.

GPS Global Positioning System.

GUI Graphical User Interface.

KVP Key-Value Pair.

LOD Level of Detail.

NPR Non-photorealistic Rendering.

OGC Open Geospatial Consortium.

OSM OpenStreetMap.

PHP PHP Hyptertext Preprocessor.

PNG Portable Network Graphics.

SQL Structured Query Language.

SVG Scalable Vector Graphics.

UGC User Generated Content.

XIX

XX Acronyms

URL Uniform Resource Locator.

VGI Volunteered Geographic Information.

WMS Web Map Service.

WMTS Web Map Tile Service.

XML Extensible Markup Language.

1 Introduction

1.1 Motivation

Digital maps are ubiquitous today. Newspaper websites and social media platforms fea-

ture them as well as mobile applications or navigation systems. But despite their various

applications, possibilities for custom styling which is required by many users in various

contexts have not kept up with this development. Not all applications benefit from cus-

tomized styles of course, but some recent developments have shown the potential of such

individual styling. The creation of individual styles is driven by many different forces and

not only by people with an cartographic background. This demonstrates the relevance of

map design for an actually designed product with an highly individual or artistic look-

and-feel. These maps are not intended to communicate spatial information in a precise

way, but to convey a different meaning that is created by the applied styling. Their main

purpose is an appealing design that looks not computer generated but hand-made. Such

maps can be used in a specific context that is related to a theme or topic. For pictures

and photographs, image editing software provides many tools to modify existing images

or create new ones with a specific style that can be created using different painting tools.

These images can be crafted to be very close to hand-made created products. How these

capabilities from image editing can be used and incorporated into a cartographic process

of creating maps is therefore a relevant research question that should be examined in this

work.

1

2 1. INTRODUCTION

1.2 Objectives

The aim of this work is to implement an automated rendering workflow for the creation

of artistic styles that can be displayed on map tiles in a zoomable web mapping ap-

plication. Based on an existing interactive workflow and considering techniques from

non-photorealistic rendering, a concept for an automated process should be proposed and

implemented. As the existing interactive workflow is based on GIMP, the scripting inter-

face of this software should be examined to create an experimental scripted processing.

The processing should be scalable to any size of input data with as little as possible or no

processing. This allows the continuous updating of the data for a long-term use. Important

input parameters have to to identified and categorized in order to define them properly

for the rendering process. The results have to be analyzed regarding their use in a tile

based, seamless application. Furthermore, a solution to define the application of different

stylings should be developed. In addition, the text rendering capabilities of GIMP should

be examined regarding their styling options and potential for map tile creation. All of this

should demonstrate that it is possible to render custom styled maps with an open-source

image editing software.

1.3 Structure of the work

As an introduction in the topic, this work provides at first and overview of the field of non-

photorealistic rendering in computer graphics and relates it to the classical cartographic

context of communication and visualization. Furthermore, the connection of cartography

and art is taken into account and various opinions on the topic are discussed. In chapter

3, the focus is set on the field of image editing and different image editing softwares are

introduced. From this selection, the open-source software GIMP is picked and examined in

detail regarding its interactive drawing techniques like brushes, dynamics or image masks

as well as its scripting capabilities. In particular, the Python programming interface is

taken into further examination. Subsequently, techniques of web map rendering, especially

for custom styling are introduced with examples and different technologies are illustrated.

These approaches are then compared taking their nature as being either raster- or vector

based into account. Finally, an existing interactive workflow is analyzed and important

1.3. STRUCTURE OF THE WORK 3

steps are extracted as a base for an automated workflow.

A concept for such an automated rendering process is then developed in the following

chapter. First, influencing factors are identified with respect to a vector- or raster based

approach. Secondly the Requirements of such a workflow are defined based on the general

rules for web maps. Thirdly, a schematic concept is proposed and comprising technologies

are introduced, such as JSON, OSM, a PostGIS geodatabase environment, SVG and the

Web Map Tile Service specification. The following chapter 5 is then dealing with the

actual implementation of the automated workflow. At first, the data environment setup

is explained, including the acquisition of data and its import into the database storage

as well as its updating. That followed, various techniques for the estrangement of vector

geometry are introduced. Important functions for the displacement and randomization

are explained as they provide the base for the emulation of hand-drawn geometries as

well as hatching techniques. Eventually the automation process and its components are

illustrated. Important configuration parameters are introduced and the structure of the

Python script is clarified. Feature processing components which include the data queries

and generalization steps are accounted for in detail before the actual rendering techniques

are explained. To conclude, the structure of the output results and how tiles can be stored

in a WMTS compatible way is contained in the last section of this chapter. The results

are evaluated in the next chapter 6 which includes some examples, before limitations of

the process and involved components are discussed. Based on that, a conclusion is given

that sums up the results and gives an outlook on further research questions.

4 1. INTRODUCTION

2 Cartographic context and NPR

2.1 Definitions

Web Mapping

With the establishment of the World Wide Web as a new communication medium, the

field of Internet Cartography evolved from the classical cartographic disciplines including

geographic information science. Client-server interactions have started to play an impor-

tant role in modern cartography even for GIS applications. In addition, commercial web

mapping applications like Google Maps have become an important part of a digital life.

However, web mapping is strongly influenced by open standards and technology (Peterson,

2008). Today the development of web mapping is significantly driven by a large variety

of mapping services that provide an Application Programming Interface (API) which are

provided on a commercial and open-source base. Furthermore, the concept of Web 2.0,

which is still in a state of continuous evolution, plays an important role today. With user

generated content and other additional values provided, new sources for geodata as well

as social information emerges (Gartner, 2009).

Web Mapping Services

It is a common way to store geographic information in a GIS databases. These infras-

tructures became increasingly popular since the 1980s. With their increasing use, a stan-

dardized technology was required facilitate the distribution and serve this data to end

users displayed on a web map. For this reason, the Open Geospatial Consortium (OGC)

defined a set of standards for the distribution of data in 1999. Standards for services were

defined to supply geodata via the Web and extract information from the data stored on a

server (Peterson, 2012). All mapping services include a standard set of functions to obtain

5

6 2. CARTOGRAPHIC CONTEXT AND NPR

metadata and the actual data that is provided and served upon a client’s request. As an

OGC standard they are featured in most GIS applications and web mapping APIs.

Computer Graphics

The field of computer graphics can be described as “any use of computers to create and

manipulate images” (Ashikhmin et al., 2009). In general, the aspects of computer graphics

can be categorized in three areas: (1) The modeling that deals with the mathematical

description of geometric shapes in way that allows the storage in a digital format. (2) The

rendering which handles the creation of images from the model and (3) animation which

is a technique to create the illusion of motion using sequences of images. Furthermore,

fields like user interaction, virtual reality, visualization, image processing 3D scanning

and computational photography are related fields. A majority of applications employing

computer graphics can be found in the fields of video games, visual effects, animated

movies or information visualization (Ashikhmin et al., 2009). For the creation of digital

maps, the capabilities of computer graphics technology have always played an important

role. However, the focus in computer graphics is more on automated processes whereas

cartographic visualization cannot always be fully automated (Jones, 2013).

Non-photorealistic Rendering

Non-photorealistic computer graphics describes an area of scientific and technological in-

terest that deals with the generation of images which appear to be handmade. These

images are characterized by using randomness, ambiguity or arbitrariness rather than

completeness and coherence. Even though it coveres all aspects of computer graphics, it

mostly involves the rendering process which is referred to as Non-photorealistic Rendering

(NPR) (Strothotte and Schlechtweg, 2002). With such individual and abstract rendering,

NPR has applications in many different fields like technical manuals or medical illustra-

tions where non-photorealistic depictions offer a level of clarity or vitality that is difficult

to cover with photorealism (Winkenbach and Salesin, 1994). Therefore NPR can either

serve as an artistic abstraction or an efficient and concise simplification.

2.2. NON-PHOTOREALISTIC RENDERING 7

2.2 Non-photorealistic rendering

2.2.1 NPR in computer graphics

Photorealism has been the driving force behind computer graphics for a very long time.

With images being rendered from three-dimensional scenes with a simulation of physics and

light, they are assessed regarding how close to a photograph they are. Achieving acceptable

results can be considered as the main aim of photorealistic rendering in computer graphics.

Non-photorealistic rendering (NPR) however is following a different approach. Instead

of depicting the information about reality as it is, the focus is on communicating the

information contained in an image scene by creating an illusion of reality. Stimulating

the human perception by stylization and communication is in the center of this rendering

technique. This is achieved by adapting techniques that have been used by artists to

the field of computer graphics to emphasize or expose specific features and leave out

dispensable information. Whereas photorealistic images can be classified by a Level of

Detail (LOD) non-photorealistic ones are classified by level of abstraction. The level of

abstraction is aimed at the intended purpose which can either be an artistic appearance

or a simplification to convey relevant information. This could for example be the NPR

version of a medical X-ray or MRI image that should illustrate an injury for a layman

without a background in medicine (B. Gooch and A. Gooch, 2001). Aside from the

medical example, different purposes can be identified that constitute the need of a non-

photorealistic rendered image (Strothotte and Schlechtweg, 2002). The first one is the

simulation of human intelligence or the emulation of human facilities to create hand-

drawn graphics. An example is the application of different drawing techniques like lines

and hatching with one tool, e.g. a pencil to achieve a distinguishable effect. How to

make the computer decide which technique to use goes into the direction of artificial

intelligence (AI) research. Aside from this scientific challenge, the conveying of meaning

through communication of information is one of the most important qualities of NPR.

The superiority of such images has been proven by many studies but it has to be assessed

whether viewers are able to perceive the meaning that was intended to be transferred by

the image. Additionally, the relationship between language and pictures can be clarified.

The usage of images instead of words rather than using images as supplementary to words

is a subject that needs to be evaluated. Finally, NPR offers a range of opportunities for

8 2. CARTOGRAPHIC CONTEXT AND NPR

Figure 2.1: Tonal rendering examples by Rosin and Lai (2013)

new products and services for example for the emerging market of e-books. Many existing

books feature hand-drawn graphics and scanning them for digital copies is not always a

satisfying solution as they would lack possibilities for further editing or interaction.

According to Gooche and Gooche (2001) the research in NPR can be split into three main

fields. The first is artistic media simulation which focuses on modeling physical properties

of artistic mediums. This includes the medium itself, which could be described as the tech-

nique an artist employs to paint an image like oil, a pencil or watercolor. Additionally, an

applicator is defined which resembles the tool that the artist uses to apply the medium on

a substrate which could be a canvas for example.The second main field of research NPR

is user-assisted image creation which deals with enabling a software user to interactively

draw artistic images. No artistic skills should be required as the actual rendering tech-

niques are controlled by a software. Artistic tools are emulated by a computer and natural

components are added by random parameters for example.Thirdly automatic image cre-

ation deals with the automated creation of images that have a predefined communication

goal. Example applications for a tonal artistic minimal rendering using lines and blocks

are explained by Rosin and Lai (2013) some examples are shown in figure 2.1.

Tateosian and Healey (2004) describe NPR as a two-staged process. The general workflow

is that an imput imagery is chosen first which is then processed and rendered in some

artistic style. The variety of NPR is based on the decisions that are made in these stages.

The processing is not only depending on the style of art that is simulated but on the

2.2. NON-PHOTOREALISTIC RENDERING 9

Stylized lightning Silhouettes and

Edges

Pen-and-ink,

Hatching and

Engravings

Volume Illustra-

tion

Tone Shading,

Cartoon Render-

ing

Edge Classifi-

cation, Object

Space Methods,

Image Space

Methods, Hybrid

Approaches

Textures, Direc-

tion Fields

Traditional

Paradigms, Alter-

native Approaches

Table 2.1: Categorization of NPR techniques by Sayeed and Howard (2006)

question if simulating the act of creating artwork, the physical behavior of the media or

the visual characteristics of an artistic style in in the focus. Drawing with different brush-

strokes can be considered belonging to the first category, whereas the second category

covers the modeling of physical properties of the drawing tool. The third category is

exemplified in the field of pen-and-ink drawing in NPR.

The techniques of NPR can be further distinguished into pixel or raster-based approaches

and geometry based approaches. Whereas raster based approaches are applied in two-

dimensional space, geometry based approaches are relevant for three-dimensional non-

photorealistic rendering. However, many two-dimensional techniques are actually based

on renderings from three-dimensional geometric data. Many applications of NPR are

abstractions of existing photography or rendered three-dimensional scenes in computer

graphics. An approach of an categorization has been made by Sayeed and Howard (2006)

is shown in the following table 2.1.

Stylized lightning methods can be used for shading of technical or volume rendered illustra-

tions or highlighting of colored surfaces. Silhouette and edge techniques are constructed

from line strokes and can express information in a concise manner. These are used to

influence perception, the aesthetic value or an imitation of an artistic human drawing

style. Whereas edge and image space approaches are raster-based techniques using image-

processing methods, object space methods are directly operating on the underlying 3D

geometry. Hybrid approaches are combining both techniques. Pen-and-ink is the tradi-

tional human illustration method using only pen strokes and has been mentioned before.

10 2. CARTOGRAPHIC CONTEXT AND NPR

For filling different applications of hatchings can be used which can be applied as stroke

textures or direction fields to indicate the orientation of an object. For volumetric datasets,

two approaches can be identified which are the feature enhancement through traditional

volume rendering and alternative reconstruction techniques.

Semmo et al. (2015) analyze the aspects of NPR in three-dimensional cartographic spaces

and visualization techniques for basic feature types are identified and categorized. These

include buildings, water surfaces, green spaces, road networks and digital terrain models.

Furthermore, a visualization pipeline is described that involves generalization of three-

dimensional geodata. Different illustration techniques are discussed regarding their use

for cartographic design and parameters and algorithms that can contribute to a hand-

drawn cartographic rendering in 3D are presented. This demonstrates the potential that

NPR has in cartography and its relevance to the traditional visualization techniques.

Based on these findings, scientific theories of art using NPR tools can be defined. The

human vision is able to understand and interpret new styles of representation without

effort. New stroking techniques can be constructed by skilled artists in a way that they

are clear and unambiguous. Making use of that, messages can be transferred without

information about the encoding (Hertzmann, 2010). However, it has been shown that

users can very well distinguish between real hand-drawn and computer generated imagery.

Therefore it is important that the creators of these images consider some rules in order

to avoid ambiguity. They should know what they are aiming for with their work and be

aware of the audience. Furthermore it is crucial to seek high quality results, to focus on

NPR techniques that represent material properties, to know and work with the object

models, to avoid obvious patterns and regularities and to pay attention to line and dot

placement as well as the used tools and their parameter definitions (Isenberg et al., 2006).

With the focus of NPR being on emphasis of certain features and their abstraction at

variable ranges, Cartography in general can be considered as a NPR technique for the

depiction of spatial data as well. Instead of displaying all available information, maps are

usually a simplified selection of features that were selected from an actual image of an area

or recorded using technologies like GPS. Communicating data is one of the main aims of

maps, however the artistic stylization is a field that has not found too much respect in

research yet.

2.2. NON-PHOTOREALISTIC RENDERING 11

Figure 2.2: Pen and ink rendering by Winkenbach and Salesin (1994)

2.2.2 Hand-drawn rendering

The most famous hand-drawn rendering technique in NPR is probably pen-and-ink draw-

ing. This approach has first been introduced by Winkenbach and Salesin (1994), defining

algorithms and techniques to achieve a certain artistic styling. “Stroke textures” for the

creation of tone and texture are used as well as “controlled-density-hatching” for free-

form-surfaces. These renderings can be considered as simplification of the original im-

age content and are often preferred in technical drawings. “Indication” can be used, a

technique that focuses on rendering of details along existing features tho make it more

interesting (Tateosian and Healey, 2004). Figure 2.2 shows two renderings of a polygonal

model with indication and without.

The generation of hand-drawn styles is not restricted to brush and stroke renderings

though. Another approach is the use of textures in a 3D object space. It is based on

texture generation and a pigment based lightning mode which has been proven as a suit-

able technique to imitate watercolor images using Perlin-Noise images even though it does

not mimic the actual painting process very well (Lum and Ma, 2001). Artistic rendering

effects can be applied to given images and achieved using sophisticated image processing

algorithms for simplification. The result are abstract images that contain sufficient infor-

mation from the original images. These images have been proven to beneficial for the task

of memorizing faces for example. However, a unique answer for artistic rendering cannot

be given and the algorithm is influenced by various parameters. Aside from the tonal

balance, the total number of tone and the retainment of general lines play an important

role (Rosin and Lai, 2013).

A framework for a vector-based hand drawn rendering technique was developed and evalu-

ated by Wood et al (2012). For the visualization of information, a sketchy rendering style

12 2. CARTOGRAPHIC CONTEXT AND NPR

Figure 2.3: Sketchy style examples by Wood et al (2012)

was implemented as a library for the visual arts programming language Processing1. This

style named Handy is applicable to drawing primitives like lines, polygons and ellipses. It

is intended to enhance the idea of imprecision, the aesthetics and the narrative qualities

of a visualization. This is of special interest for rapid digital prototyping of interfaces for

example, where it is crucial to suggest that the design process is not yet finished. Further-

more, the “sketchyness” is considered as a visual variable that can be altered and carry

information. Eventually, the a hand-drawn rendering can be a tool to set this style apart of

ordinary computer generated designs and its visual appeal is used in various applications

as it reinforces the perception of simplicity. An example of the Handy rendering technique

is shown in figure 2.3.

2.3 Cartographic communication and visualization

Cartographic communication has always played an important role in cartography and

modern trends have made the communication with maps more feasible. Nevertheless, a

basic understanding of the processes and methods of cartographic model generation and

the efficient and accurate communication of spatial data is required. This enforces the

fulfillment of obligations for both, the creation of cartographic presentation forms and

1https://processing.org/

https://processing.org/

2.3. CARTOGRAPHIC COMMUNICATION AND VISUALIZATION 13

the cartographic communication process. The map is the central information carrying

element in the cartographic communication schema which describes the information flow

going from the map maker via the map to the map user who is receiving a mental image

of reality that influences his behaviour (Lechthaler, 2010).

With the automation in modern Cartography, new purposes of communication and visual-

ization of spatial relationships have emerged. Computer graphics have played an important

role in this process by providing opportunities for the interaction with graphic displays.

This enables the user to define parameters for a visualization but requires awareness for

cartographic design (Jones, 2013). However, the role of the designer is defined by abili-

ties an automated process can not completely emulate. This includes the definition and

structuring of a problem in a specific context as well as the evaluation and the stage of

decision-making (C. H. Wood and Keller, 1996). Hence, no or only little guidance can

be provided by the computer regarding the map design but the power of cartographic

communication strongly depends on choices being made in terms of selecting parameters

for symbolization, colors and many other aspects. An important role in map design play

cartographic symbols and their effects on maps achieved by their manipulation (Jones,

2013).

In graphic symbology, symbols are classified according to the type of two-dimensional spa-

tial object that is represented. This can be any of the graphic primitive types which are

point, line and area. The representation of an object often depends on the level of general-

ization and can be modified to communicate different types of information (Jones, 2013).

These graphic variables have been pointed out by Bertin (1983) who has established the

cartosemiotic foundations that are still of major concern for modern Cartography. They

include hue, lightness or value, size, shape, texture orientation and location in the context

of point, line or area symbols. In the following paragraph, the variables with relevance to

the non-photorealistic rendering of geodata are introduced and discussed.

Hue means the use of different colors as they are defined by name. It is the major variation

of color, mostly used for the representation of qualitative information. A large number

of different colors however may imply the risk of confusion for the map reader. Minor

variations of color are understood to relate to similar categories. Another aspect of color

is the lightness or value as it may be referred to. It describes a value that can be continu-

ously varied from light to dark and is most suitable for the representation of ordinal and

14 2. CARTOGRAPHIC CONTEXT AND NPR

numerical data. Too many different levels should be avoided as it is hard for the user to

memorize them. They should be naturally allocated for interpretation if possible. Similar

to the lightness, the saturation defines the actual value of color that is used or the color

intensity. Size is predominantly used for the variation of point and sometimes also for line

objects. It can vary between as a visualization of ordinal, numerical or nominal data, e.g.

by relating the size of a symbol to an actual value that is represented. Applying variations

in size for areas is not easy as it results in location distortion. Like the size, the shape

is also mostly referring to point objects. Variations in shape are usually communicating

information about the quality of an object at a location in the map. Textures or patterns

on the other hand are of most use for area objects, though sometimes used for line symbols

as well. It describes the internal graphical structure of an object which can be composed

of a distribution of other graphic primitives. Examples would be hatching with lines as a

area fill or a sequence of dashes for lines. The graphic variable of orientation can either

be used to represent a qualitative attribute or a spatial property like direction. It is also

mostly applied to point objects as the orientation of lines and areas is usually enforced by

their location. This is the last of the graphic variables and can be considered as the one

with the least amount of cartographic freedom. Variations are usually the result of map

generalization or another projection that is being used (Jones, 2013).

With respect to the technique of NPR which was introduced in chapter 2.2, the graphical

variables have to be evaluated from another perspective. Maps can of course already be

considered as non-photorealistic depictions but the focus that NPR has on abstraction

is not taken into account. The artistic abstraction or simplification of image data has

a significant impact on the map rendering and the cartographic design. It is a striking

characteristic of NPR that the graphic variables are mixed and strongly influenced by

randomization. Most of the variables are therefore uncoupled from their traditional ef-

fects, meanings or initial use. The use of color hue is a method to create more abstract

appearances of an actual map image. Variations in saturation and lightness can contribute

to a rendering that is far from the natural properties. This could for example provide the

styling for a drawn or comic like rendering. Lightness of a brush or area can simulate

brush behavior that is depending on the applied pressure while drawing for example. The

size is no longer used as a quantitative factor but as a random component that can suggest

different drawing speeds or brush pressures as well. This relates more to small variations,

strong variations may still be perceived as a qualitative attribute. Shapes of objects are

2.4. CARTOGRAPHY AND ART 15

subject to randomization which can dramatically change the outline of areas for example.

Variations in shape are no longer obligatory related to an objects attributes but may be

intended to simulate a hand-drawn nature. Textures or patterns can be mixed or ran-

domized for artistic or hand-drawn effects, for example hachure lines. The orientation is

also another factor that contributes to a hand-drawn appearance by randomization and

can strengthen the effects of a suggested artistic drawing method. Finally the location

of an objects becomes less important as it can be randomly displaced. The amount of

randomization or displacement is always supposed to be related to the degree of abstrac-

tion.

2.4 Cartography and art

There is a consent in Cartography that aside from technological and scientific approaches,

the artistic approach has always played an important role as well (Cartwright, 2009;

MacEachran, 1995). However, with the emerging of digital technologies and a result-

ing shift into the direction of scientific visualization, the aspect of art has been neglected

in favor of technology (Cartwright et al., 2009). According to Field (2009), “a good map is

a product of design and a pleasing map takes on an aesthetic appearance”. He argues that

this originates from the experience people have with historic maps which were actually

crafted by hand.

Today, the use of maps has become ubiquitous and with it map art as a part of graphic

media. As maps are a prominent part of the daily life, they are for example extensively

featured in newspapers as a medium for information. The flood of maps has introduced

many aspects that are not originally connected with the making of maps and many map

artists have been influenced by different kinds of geographic data visualizations. As a

result, various artists have engaged the map as an expressive medium. Thus map art

was established that has itself detached from an university-educated elite of cartographers

(D. Wood, 2006). Furthermore, maps have made their way into contemporary art as an

evidence for investigations that are communicated from the artist to the user. This is

influenced by a crossover in mapping techniques that is greater today than it was ever be-

fore (Watson, 2009). Therefore Cartwright (2009) addresses that Cartography is different

from other scientific disciplines as it can create products with “an art a technology or a

16 2. CARTOGRAPHIC CONTEXT AND NPR

science ’flavor’”. How to make art as relevant as the other fields is considered important

to be brought up in the discussion about the direction of Cartography. The dualism of sci-

entific and artistic aspects of Cartography has been discussed and summarized by Krygier

(2000). He demands a critical view on the automation of map design as well as as on the

subjective view on Cartography as a craft which neglects the importance of methodologies

that allows to create accurate and objective maps. This requires a reconsideration that is

demanded to be accounted for by cartographers today.

The process of map design needs to be reconsidered in terms of aesthetics and visual ex-

pression which is strongly interlinked with artistic aspects. Aesthetics have been ignored

due to their minor role in the process of cartographic design and its existence independent

from geographic information. Decreasing cartographic standards as a result of the reduc-

tion to the output of a Geographic Information System (GIS) have been subject to many

complaints (Kent, 2005). Nevertheless, “the art of Cartography is in the doing” (Field

and Demaj, 2012), in the process of creating a map for someone. Therefore, what is really

missing is the awareness for the human activity of design that is involved in map making.

This is something that technology is not able to solve in the same way as a human being.

Unveiling the purpose of a map product is communicated though the art of applying all

elements of map design in a meaningful way. This can be summarized as map design be-

ing therefore the central aspect of cartography, comprising all scientific, technological and

artistic aspects. Finally, this is embraced by the definition the International Cartographic

Association has devised for Cartography. It is specified as “the discipline dealing with the

art, science and technology of making and using maps”1.

An example of a map design process that focuses on map abstraction with applied aes-

thetics is given by Isenberg (2013) who describes a process of artistic map alteration. It is

supposed to be an experimental play involving map abstraction and no precise cartographic

depiction. However, it can be seen as a symbiosis of a technical and an artistic claim. Sci-

entific techniques of data generalization need to be combined with illustrative techniques

of NPR to achieve a result that can be considered as appealing in terms of aesthetics

and art. A watercolor-like styling was chosen based on a substrate-simulation technique.

Figure 2.4 shows an example of geodata that was rendered using this approach.

Art in cartographic representations has always be evaluated in the context of the map.

1http://icaci.org/mission

http://icaci.org/mission

2.5. WEB MAPPING 17

Figure 2.4: Artistic map abstraction and stylization by Isenberg (2013)

Sometimes it can support conveying a message from the map maker or map artist. How-

ever, sometimes the correct depiction of geodata is the main concern of a map and too

much artistic styling can make it hard for the map user to focus on the actual content.

Furthermore, abstraction always introduces an amount of uncertainty which might be de-

sired but this effect needs to be considered seriously against the loss of information. With

artistic abstraction being one of the aims of non-photorealistic rendering the application of

art in Cartography can most certainly be considered as a rendering technique but Cartog-

raphy by nature always includes abstraction that depicts the world as a non-photorealistic

image.

2.5 Web Mapping

Web mapping can be defined as “the process of designing, implementing, generating and

delivering maps, geospatial data and web map services on the World Wide Web” (S. Li

et al., 2011). Maps and visualisations of geospatial data that are delivered via the Web

require a different design and production approach compared to other digital screen maps

or paper maps, the traditional cartographic medium (Cartwright, 2003). However, with

the invention of the World Wide Web, the Internet, access to map data for end users

has become much easier. Additionally, the term Web GIS is used for applications that

18 2. CARTOGRAPHIC CONTEXT AND NPR

provide a set of functionality for spatial data analyis and data exploration (S. Li et al.,

2011). The technology of web mapping or online mapping is strongly driven by Application

Programming Interfaces (APIs) (Peterson, 2012). Many commercial map providers have

developed APIs to integrate their data in a variety of web applications. When Google

established their service Google Maps in 2005 and added a map-based search to their

Internet search engine many other providers followed this approach.

Today a variety of map types exists from normal maps to satellite imagery and 3D-maps

(Schmidt and Weiser, 2012). Many mapping APIs combine geographic data in so called

mashups to create multi-scale panable maps interlinked with Web 2.0 content. Popular

mapping APIs include the services from Google (Google Maps), the Bing Maps API or the

OpenStreetMap (OSM) API. Furthermore, powerful JavaScript libraries exist like Open-

Layers or Leaflet which provide more generic APIs to create client based web applications.

These APIs have been evalutated in terms of their performance in previous work and one of

the most significant differentiation criteria is most certainly the avaliability. Commercial

providers all require payment for their services once you reach a certain amount of data

traffic (Peterson, 2015). Furthermore, one is dependent on the companies infrastructures

and the data may not be under your control.

Web 2.0 is another trend that is playing a role in web mapping. As Gartner (2009)

defines is as Web mapping 2.0, the impact of this principle in cartography is obvious. An

essential idea of the concept of Web 2.0 was to allow users more than just the retrieval of

information. More characteristics are a rich user experience, user participation, dynamic

content, metadata, Web standards and scalability. Furthermore, openness, freedom and

collective intelligence by user participation have to be mentioned as well. This contributes

to the development of the so called semantic Web with defined meta data that extends the

functionality of applications on the Internet. In web mapping possible applications include

spatial search engines, geotagging, or geoblogging and mashups created with different APIs

(Gartner, 2009). Furthermore, OSM is a great example for spatial user-generated content

(UGC) with a collaborative approach. It is set up as a free editable map of the world where

users can upload collected geo data and add annotations to it (Cartwright, 2008).

3 Image editing and web map render-

ing

3.1 Image editing software

As image editing has many different fields of application, a huge variety of different soft-

ware is available for the editing and creation of digital images. Many of these raster

image based programs are used for the enhancement and digital editing of photographs

and therefore feature a lot of methods to optimize photographic images. Operations that

affect the color like balancing, contrast and brightness adjustment or the saturation are

mainly used in editing as well as different filters based on image processing methods or

artistic effects. But image editing software can also be used to create new images and the

techniques for drawing with the assistance of a computer are also available in many image

editing softwares. The scope of functionalities varies greatly from comprehensive and pow-

erful applications like Photoshop1 or GIMP to more rudimentary ones like Paint.NET2 or

Pinta3. Photoshop is probably the most famous image editing software, developed and

published by Adobe and used in many commercial and academic applications. It features

many editing and drawing functions and has many available plug-ins and a scripting in-

terface. A license needs to be purchased from Adobe for the current version CC 2015 but

the version CS2 which is more that ten years old is also available for free download. An

open-source alternative to Photoshop that runs on all major operating system platforms

is GIMP4. It is an acronym for GNU Image Manipulation Program and the software is

looking back on a long history with the first version being deployed in 1995. Many devel-

1http://www.photoshop.com/
2http://www.getpaint.net/index.html
3http://pinta-project.com/
4http://www.gimp.org/

19

http://www.photoshop.com/
http://www.getpaint.net/index.html
http://pinta-project.com/
http://www.gimp.org/

20 3. IMAGE EDITING AND WEB MAP RENDERING

opers have contributed to the raster graphics editors for photo and image manipulation.

Aside from GIMP, a lot of open source software is available for digital paintng or drawing,

e.g. Krita1 or MyPaint 2. These applications feature tools especially for the creation of

digital images by drawing or painting on a screen canvas. The focus is mainly on artistic

brushes and input drawing devices like graphic tablets are supported to create hand-drawn

appearing graphics. However, these applications are optimized for on screen drawing and

lack any interfaces for automation.

3.2 Raster image editing with GIMP

The source code for GIMP is freely available and the software is included as a standard

application in many Linux distributions. It is published under the General Public License

(GPL) which allows users to access and alter the source code without restrictions. GIMP

provides a wide range of capabilities that include using it as a paint program for image

creation as well as image manipulation tasks like photo retouching, image composition, and

image conversion. A large number of drawing tools, image processing and color filters are

available and the software is equipped with powerful layer ordering and masking features.

Furthermore it provides functionality for batch processing and it can be expanded by a

variety of plug-ins that are also freely available or custom scripts that are accessing the

internal GIMP functions 3. Having such an advanced scripting interface made the software

the choice for the aim of this work as it is relatively simple to create an extension using

the available functionalities. The working principle of the interface will be analyzed in

section after the interactive drawing editing are presented.

3.2.1 Interactive editing

The following section focuses on the different interactive editing capabilities of GIMP.

These can be performed by a user inside the graphical user interface on new or exist-

ing images. For the aim of this work, there are particularly techniques which will be

examined:

1https://krita.org/
2http://mypaint.intilinux.com/
3http://docs.gimp.org/2.8/en/introduction.html

https://krita.org/
http://mypaint.intilinux.com/
http://docs.gimp.org/2.8/en/introduction.html

3.2. RASTER IMAGE EDITING WITH GIMP 21

• Drawing techniques which include the use of painting tools and brushes

• Filters and masks that affect the entire image or a selected area

• Text editing

• Creation of seamless images

Drawing techniques

Painting tools are the most important tools for interactive drawing. They include different

stroke painting tools like the pencil, the paint brush or the airbrush which make use of

different brush types. Also tools for cloning and erasing are provided, as well as tools

for lighten- or darkening, smudging or gradients. In contrast to pixel value modifications

like filters that are applied to the entire image or selected areas, the painting tools enable

the user to modify the color of desired pixels on the canvas. All tools can be employed

using an input device like a computer mouse or a graphics tablets and applied to an image

that is opened in the application’s canvas for editing. The user is able to define drawing

properties like the color, brush size or other variable parameters in in the tool options

dialog which is shown in figure 3.1.

To draw with a painting tool, it is essential to have a brush that defines how pixels are

colored along the painting trajectory. A brush is defined in a separate raster image file

called pixmap and parameters like size, color, spacing and drawing behavior are set in the

toolbox options of the paint tool that is using the selected brush. The depiction of the

brush is painted on the canvas at the position of the drawing tool pointer each time the

the input device’s control button is clicked. To be painted repeatedly along a movement

trajectory the control button has to be continuously held down during the movement

of the stylus across the image. A set of brushes comes with the default installation of

GIMP and custom brush image files are stored within the application data folder of the

operating system’s user directory where brushes from other sources (e.g. websites) can be

stored as well. All brushes are editable in GIMP and new brushes can easily be created

by drawing a greyscale image with different levels of black between zero and 255 defining

the opacity of the brush and serving as a substitute to the color that is selected later in

the toolbox. There are different types of brushes existing in GIMP which are different in

their composition. All brush types are compared in the following table 3.1 and example

22 3. IMAGE EDITING AND WEB MAP RENDERING

Figure 3.1: GIMP Paint tool options

strokes using the GIMP standard brushes are demonstrated in figure 3.2.

Brushes can be further parameterized by using Dynamics which define the rendering be-

havior of a brush when it is drawn along a trajectory. They provide the possibility to

modify the brush appearance and apply a more “realistic” looking rendering to a brush

stroke. It is for instance possible to let the size or opacity of the brush vary according to

the pressure that is applied to a pen on a graphics tablet or to the speed of the mouse

pointer. Combinations of available brush effects like size or opacity and defining parame-

ters like pressure or velocity are displayed in a table as a mapping matrix inside the Paint

Dynamics editor dialog inside GIMP. Each column in this table represents a stylus action

except for the fade and random options. For each combination, a designated curve that

can be modified for a custom adjustment of the rendering effect exists. These dialogs are

shown in figure 3.3.

For the case that a drawing device like a graphics tablet is not available to get decent

input effects, GIMP comes with the option to emulate the Dynamics when stroking along

a predefined path. Emulating simulates a natural movement of the stylus with varying

pressure at the beginning and the end of a stroke or different drawing speeds depending

3.2. RASTER IMAGE EDITING WITH GIMP 23

Type Description Format

Ordinary

brushes

Pixmap brush with greyscale values substituted

by selected color

.gbr

Color brushes Similar to ordinary brushes but works with a

raster image that is drawn as it is

.gbr

Image

hoses/pipes

Animated brush, can consist of multiple image

layers. Parameters for the layer rendering, like

random selection of single layers can be set

.gih

Parametric

brushes

Created from basic geometric shapes with the

GIMP brush editor, parameters like radius,

hardness angle can be set

.vbr

Table 3.1: GIMP brush types

Figure 3.2: Brush type examples (ordered as in Table 3.1) using the GIMP standard

brushes Oils 01, z Pepper, Chalk 03 and Star

24 3. IMAGE EDITING AND WEB MAP RENDERING

Figure 3.3: GIMP dynamics options

3.2. RASTER IMAGE EDITING WITH GIMP 25

Figure 3.4: GIMP dynamics example stroke with brush Chalk 03

on the curvature of the stroke line. The process of creating such kinds of paths will

be explained in the next paragraph. A range of dynamics are already available in a

GIMP standard installation and creating Dynamics by oneself requires some practice and

experience. In figure 3.4, a sample stroke is depicted using the standard Dynamics called

“Basic Dynamics” which is available in a standard GIMP installation. For this illustration,

the brush Chalk 03 which is also the third in figure 3.2 is used but with emulated Dynamics

applied.

For the drawing of shapes, GIMP provides two options. Basic geometric shapes like

rectangles or circles can be drawn using the selection tools for rectangles or ellipses. Other

shapes can be drawn using the Free Select Tool which allows the user to select any area

on the image. Both approaches are working on a raster base and it is possible to define

a outline stroke using either a solid color or a brush as well as a fill color. To each shape

that was created with a selection tool, a fill and a stroke can be applied. The fill can be

selected from the fore- and background color or an available fill pattern. Stroking offers

two options, either stroking as a simple line with a specified line width or stroking using

a paint tool like the paint brush. The latter also provides the possibility to emulate brush

dynamics.

It is also possible to draw vectors inside GIMP using the Paths Tool which also allows

the creation of Bezier curves. Paths that are drawn on the canvas are stored in a layer

that is separated from the image layers. It is also possible to create paths from the raster

selections that have already been introduced. Furthermore options exist for exporting the

created vectors into a Scalable Vector Graphics (SVG) image file and import vectors from

a SVG file generated with a software that creates standard SVG graphics. The stroking

options for paths are the same as for selection shapes. Figure 3.5 shows the original vector

path, stroking using the line option and stroking using the paint tool option with the

26 3. IMAGE EDITING AND WEB MAP RENDERING

Figure 3.5: GIMP path drawing: vector path (left), line stroke (center), Brush stroke with

emulated dynamics (right)

Figure 3.6: GIMP mask example

Chalk 03 brush and emulated brush dynamics.

Masks and filters

All these shapes can be drawn into different layers and a common way to define which

segment of a layer should be finally rendered is using layer masks. A mask is defined

by the area of a layer that has non zero raster cell values. This layer is connected to

another underlying image layer and as a result only the raster cells of the underlying layer

are rendered in the final image which have a corresponding value in the mask. This is

a everyday tool in image editing, especially for photo editing and allows the creation of

creative image compositions by using it for selective colorization for example. This use of

layer mask is illustrated in figure 3.6.

Another important feature of GIMP is the application of filters on entire images or se-

lections. Filters are raster-based operations which employ methods of image processing

to achieve a specific effect. GIMP has many different filters pre-installed and more can

be added through plug-ins. Most filters are actually implemented as a plug-in. Filters

are available from the Filters menu inside the GIMP user interface and ordered into cat-

egories. For artistic effects, GIMP has an own category that implies filters for cartoon,

3.2. RASTER IMAGE EDITING WITH GIMP 27

Figure 3.7: GIMP filter examples (top row, left to right): Cubism, Clothify, Oilify, Canvas,

Weave (GIMPressionist); bottom row, left to right: Van Gogh, Embroidery (GIMPression-

ist), Cartoon, Obama Hope, Predator.

oil or glass effects on the one hand. Some filters on the other hand are adding a texture

that suggest a classic artistic canvas like structured paper. Most filters are working with a

random component that produces an irregular appearance for the effect. For this reason,

however, they are not deterministic and not reproducible. Figure 3.7 shows some examples

of GIMP’s artistic filters.

Text

GIMP has a text tools that allows to place text directly on the canvas in a separate layer

inside a rectangular frame. Options are available on a toolbar to change the font, font size

or the alignment of the text. The typed text is automatically rendered in a pixel raster.

An important feature of text layers is that their outline can be converted to a vector path.

This offers the same editing possibilities as for shapes which is described in a previous

paragraph. Image 3.8 shows an example text frame and the resulting outline paths.

Seamless images

For the rendering of tiles it is utterly important to have seamless images which can be

positioned repeatedly adjacent to each other. This contributes to a borderless texture

that can be used over all tile images without visible margins. GIMP also provides an

option to achieve that. The first step is to apply an offset to the image (grey) which

is a half of its width in X- and a half of its height in Y-direction. This results in a

28 3. IMAGE EDITING AND WEB MAP RENDERING

Figure 3.8: GIMP text drawing

Figure 3.9: Schema seamless image creation with GIMP

rearrangement of the four image parts that are shown in figure 3.9 in their initial (left)

and new position (center). These image parts are the result of splitting the original image

along a horizontal and vertical centerline which is represented by the dotted line. After

this operation is finished the edges that were on the inside first are now on the outside and

are seamlessly fitting with other versions of the original image that have been processed

the same way. However, there are new visible transitions inside the new image now along

the split lines (right). This area (dark grey) has to be edited manually e.g. with the clone

tool to make them less obvious or even hide them completely which does require some

effort and practice.

3.2.2 Plug-ins and scripting

As comprehensive as the interactive possibilities of GIMP are, so is its plug-in interface.

The flexible architecture of GIMP allows a simple integration of extensions and the avail-

able functions can either be automations that are triggered from the user interface and

via a console or plug-ins and scripts written in a high-level programming language that

3.2. RASTER IMAGE EDITING WITH GIMP 29

can perform complex image processing tasks. In fact, many of the functionalities that are

available through the GIMP user interface are actually plug-ins. They are implemented in

C as GIMP is itself or as scripts which do not require compliling. Scripts can be written

in Python, Perl or Scheme, a Lisp dialect and experimental packages are also existing for

Ruby and C#. Many plug-ins developed by other users can be found online at the official

GIMP plug-in repository or at other websites.

For this project, the Python script interface of GIMP was chosen which is called Python-

Fu. It offers a almost the same scope of functionalities as the C plug-ins without the

need of diving into the entire software’s architecture. The Scheme interface which is

called Script-Fu and the most popular way that GIMP scripts are created was not used

because Python is more versatile and does also provide packages for database access and

geometry processing which are used in the script. It is also much faster than Scheme.

The only drawback of the GIMP Python module is its setup on a Windows operating

system as it is not bundled with the standard GIMP installation package. However, as

the implementation was carried out in a Linux environment, required packages are easy

to install additionally (Peck, 2008).

The Python-Fu interface consists of a set of Python modules acting as a wrapper to the

GIMP Python package called libgimp for Ubuntu Linux. It is imported via the gimpfu

module at the beginning of a script file and enables access to the GIMP module and the

procedural database registry (PDB). The GIMP module provides procedures and functions

like constructors, configuration information and other operations as well as GIMP object

types. These include image objects and methods which operate on so called drawables

like channels and layers as well as other functions. The procedural database is a registry

of GIMP and plug-in procedures that can be accessed. All procedures are listed in the

Procedure Browser that can be explored from the GIMP Graphical User Interface (GUI).

A Python-Fu script always has the same structure which consists of the import of the

gimp module, the definition of the main method and the register function which connects

the script function with GIMP. Along with the registration parameters which include

information like the plug-in name, the author or the menu path, input parameters can be

defined in this part as well. Arguments like an existing image, a specific drawable or other

variables can be passed to the script for operating with it. All common variable types like

Integer, String or Boolean are availabe aside from the GIMP objects.

30 3. IMAGE EDITING AND WEB MAP RENDERING

The following code shows an example “Hello World” Python-Fu GIMP script which takes

an input String that has “Hello World” as its default value and prints it to the con-

sole:

1 #! /usr/bin/env python

2 from gimpfu import *

3

4 def echo(input):

5 print "echo:", input

6

7 register(

8 "console_echo",

9 "A console echo test",

10 "A console echo test taking an input String parameter",

11 "Test Author",

12 "Test Author",

13 "2015",

14 "<Toolbox >/Xtns/Languages/Python -Fu/Test/Console Echo",

15 "",

16 [(PF_STRING , "input", "Input String", "Hello world")],

17 [],

18 echo

19)

20

21 main()

First the register function is called that connects the script with GIMP. It takes the

following parameters:

• Name of the plug-in for external use (command-line)

• Short description*

• More detailed description*

• Author*

• Copyright*

• Date*

• Menu path

3.2. RASTER IMAGE EDITING WITH GIMP 31

• Image types*

• Parameter list (parameters are defined by type, name, display name and default

value)

• Return values

• Function to call inside the script as the main function

* optional (can be left blank)

After that, the main function is called which runs the plug-in. The function defined in the

register function is serving as the entry point which is the echo function in this case. Plug-

ins and scripts have to be stored in a directory that GIMP is aware of. This can either

be the default directory in the system’s user directory or any other location that is known

by GIMP. Additional locations can be added to GIMP in the Preferences menu and are

scanned for files after a restart of the program. Scripts can then be executed either from

inside the GIMP GUI or from the system console command-line interface. The example

script could be started inside GIMP from the menu path that is defined in the second row

of the register function. A dialog would then appear that allows the user to enter a value

for the input string parameters. A command line call that would invoke the script and

print the String ”This is a Python-Fu script” on the console is for example:

1 python -fu -console -echo RUN -NONINTERACTIVE "This is a Python -Fu script"

Comparison of functionalities

The functions and procedures that are available are very comprehensive and most of the

interactive drawing techniques from chapter 2.2 have an equivalent scripting function.

However, there are some limitations in scripting that need to be mentioned. As GIMP is

an open-source software, it is under continuous development and not yet complete. Some

of the scripting procedures are behaving unpredictable, for example the path stroking

function did not work properly with the applied styling in GIMP version 2.8.12 which

was the stable release at the time this project started. Therefore version 2.8.14 was used

but this version still does not implement interface functions for the emulation of brush

dynamics which is available from the user interface since version 2.6 and is explained

32 3. IMAGE EDITING AND WEB MAP RENDERING

in a previous section. With this function, a more irregular and hand-drawn appearance

of image elements, especially stroke outlines would be possible and an improved artistic

rendering could be achieved in the future. Furthermore, the layer capabilities of the user

interface are more flexible than the scripting procedures which do now allow renaming of

layer groups for example. This can be useful, especially in a project like this with a highly

complex layer structure.

3.3 Map rendering

The rendering of cartographic information is one of the most important fields of cartog-

raphy. All cartographic tools used in Desktop Mapping (DTM) or in the context of GIS

software provide a wide range of styling capabilities mainly based on vector data. While

these tools are primarily used by users with an expert background in the geographic field,

many of the techniques used for the rendering of web map applications are more diverse

and end user friendly. Some of these techniques will be introduced in the following sec-

tion.

3.3.1 Web map rendering techniques

At the beginning of the development towards web map applications, the styling of the

services was all based on pre-rendered raster tiles (Schmidt and Weiser, 2012). Today, a

variety of rendering techniques exist that allow a custom styling by users or developers.

Taking standards that are defined by the Open Geospatial Consortium into consideration,

Styled Layer Descriptor (SLD) has to be mentioned for the styling of geo data that is

provided as a Web Map Service (WMS). WMS is another OGC standard that generates a

map in an image format via the Web. The markup language SLD is based on Extensible

Markup Language (XML) and used to symbolize the map layers of an WMS (Cerba and

Cepicky, 2012). Different styles can be defined and it is possible to enable the map user

to select which style should be used in a mapping application. The style information

can be stored on the server along with the geo data or sent by the client for a WMS

request (Burdziej, 2011). However, the application of SLD for a WMS requires a more

sophisticated geo data infrastructure running a server software like GeoServer and can be

considered as software that is mainly used in a cartographic or GIS context for the visual

3.3. MAP RENDERING 33

representation of map data.

Also providers of proprietary map data like Google offer possibilities to apply an individual

styling to their maps for the end user. This allows users to modify the presentation of the

standard Google Maps base map by changing the visual display. Level of variation differ

from selecting various base maps to a style syntax which is available from the API. Basic

visual parameters like the fill or stroke color of specified map features can be defined using

this syntax1. This is possible since Google introduced the use of vector tiles in 2010 for

their mobile mapping API for performance reasons and today it is used for all of their

map products (Peterson, 2014). Another provider for custom maps is CartoDB which also

offers different base map styles. But the actual styling possibilities are restricted to the

thematic content which can be added to own projects through their web interface or by

employing an API.

An approach that is based on the technology of vector tiles is implemented by Mapbox,

an “open source company” that provides a mapping platform for “anyone to design and

publish custom maps”2. Mapbox developed a specification for these tiles based on Google’s

data exchange format Protocol Buffers3. Featuring this technology, custom map styles can

be defined using CartoCSS, a map styling language also developed by Mapbox to define

the visual appearance of a map in a similar way like Cascading Style Sheets (CSS) is

used for web pages. With Mapbox Studio, an open-source desktop application is provided

to generate vector tiles with a custom styling defined in CartoCSS. Geo data served by

Mapbox which is based on OSM data can be used along with custom data from various

sources. The resulting tiles are uploaded to Mapbox and presented in a web map using

their Javascript API and the Mapnik renderer which is also used for the OSM project.

Users are paying for the amount of styles they create and different data storage capacities

but a free pricing plan with limitations is also available for test cases (Mauldin, 2015).

Many map styles are available from Mapbox itself which can be used as base maps for

own projects and also extended or modified. They also include some artistic styles like

a comic-like or pencil drawn appearance. Some selected styles are shown in figure 3.11

which contains images of the same area of the inner city of Dresden (Mapbox map styles

n.d.).

1https://developers.google.com/maps/documentation/javascript/styling
2https://www.mapbox.com/about
3https://www.mapbox.com/developers/vector-tiles/

 https://developers.google.com/maps/documentation/javascript/styling
https://www.mapbox.com/about
https://www.mapbox.com/developers/vector-tiles/

34 3. IMAGE EDITING AND WEB MAP RENDERING

Figure 3.10: Mapbox map style examples

Another provider of custom styled web maps is Mapzen, also open-source mapping com-

pany. Their vector tile service is also based on Mapbox vector tile specification but with

Tangram they are using their own map engine based on OSM data. The maps can be

dispayed as two- or three-dimensional and some of their demo styles also include artistic

approaches. These are displayed in images shown in figure 3.11, again for the same area

of Dresden (Mapzen map styles n.d.).

A famous example for a map with a very strong artistic effect is provided by Stamen,

a design studio that is specialized on interactive design and data visualization projects,

including maps1. It is the watercolor map, which features a styling that imitates a water-

color painting. The tiles for the map are created in a raster-based process that is described

on their website2. The source data is rendered as raster images using Mapnik which are

then processed using masks, image processing operations and different filter techniques.

It is not described how the data is stored, however due to the fact that the single tiles

can be obtained from an Uniform Resource Locator (URL) and the depicted geographic

1http://stamen.com/studio
2http://content.stamen.com/watercolor_process

http://stamen.com/studio
http://content.stamen.com/watercolor_process

3.3. MAP RENDERING 35

Figure 3.11: Mapzen map style examples

data is not up-to-date with the current OSM data it can be assumed that the tiles are

pre-rendered and provided as a Web Map Tile Service (WMTS). Along with the water-

color style, Stamen provides another set of tiles which is called Toner. Example images of

both styles can be see in figure 3.12 (Stamen map styles n.d.).

3.3.2 Comparison of vector and raster based approaches

Geographic data that is not satellite imagery is most commonly stored as vector data.

So the source data of web maps can be considered to be stored in a vector format. The

different methods of representing this data in a web application that were already discussed

are now compared in this section.

The technique of using vector tiles for the rendering of web maps has a number of advan-

tages compared with raster-based approaches which are indentified by Gaffuri (2012) and

summarized in the following list:

• Users can retrieve thematic and semantic information for map objects

36 3. IMAGE EDITING AND WEB MAP RENDERING

Figure 3.12: Stamen map style examples

• Geoproessing can be performed

• Map content can be personalized

• Cartographic methods like generalization can be performed on the client side

• True integration of data from different servers is possible (no layer mash-ups)

• Improved interaction between data providers and data users

• No preprocessing/caching of raster tiles necessary, support for “live” data

• New innovative cartographic visualization techniques

Another advantage is the separation of text from the underlying layers. This allows for

easy switching between labels displayed in different languages as it is implemented in

Google Maps for example (Peterson, 2014). However the greatest disadvantage of vector

tiles is performance. Factors such as client device memory or processing and connection

capacities need to be considered. This is the main reason why pre-rendered raster tiles have

been preferred for a long time. However, with improving technological capabilities and

maturing digital mapping methods, vector tiles are becoming an increasingly acceptable

approach. Nevertheless, existing frameworks are mainly dealing with raster data and there

is a need to establish standardized and integrated approaches to support efficient vector

web mapping (Gaffuri, 2012).

Pre-rendered tiles do not consume a significant amount of performance as they are gen-

erated in a separate process. But storing pre-rendered tiles has high demand regarding

the capacity for server-side storage. It is almost impossible to store a full-scale map of

the entire world as pre-rendered raster tiles (Peterson, 2012). Furthermore the rendering

3.3. MAP RENDERING 37

of the tiles can be a time-consuming process that can involve complex image processing

operations. Also, the rendered images are representing the data at the time the image was

rendered. An update of a tile requires the entire rendering process to run again.

A hybrid approach is the rendering of raster images from vector data directly on the server

once a tile is requested. This method allows to serve image tiles only upon request and at

the current state of the data. For performance reasons, tiles can be cached so they are not

created each time a user requests an area but are stored in a chache on the server (Sample

and Ioup, 2010). This is a technique that is also implemented for the OSM map tiles in

the mod tile PHP Hyptertext Preprocessor (PHP) module along with the map rendering

software Mapnik.

In conclusion it can be said that all three rendering methods have their use case. However,

with the ongoing development towards infrastructural improvements like computation ca-

pacities and Internet bandwidth and emerging technologies that are pushed further by

uprising mapping companies like Mapbox, a trend to vector tiles is obvious. Nevertheless,

the most individual styling can be achieved by applying elaborate image processing op-

erations. The creation of the watercolor map from Stamen is a striking example for this

postulation.

3.3.3 An interactive workflow with GIMP

A concept for an interactive workflow to create custom styled maps with GIMP was

developed by Dong (2015) at the Institute of Cartography at the TU Dresden. An approach

is described how to create a map with a styling that imitates Chinese embroidery. This

embroid styled map is derived from OSM-based Shapefiles provided by Geofabrik that were

preprocessed with the proprietary GIS software ArcGIS applying selection, classification

and categorization operations. Following this step, the geo data is transformed into the

SVG format using the open-source software TileMill which is provided by Mapbox. A

preliminary styling is also applied to the different SVG layers at this stage to get a raster

image with a color fill of the polygon areas. These areas are used for the definition of

image masks later. Finally, the SVG layers are imported into GIMP and rendered using

the path stroking or mask functions. Before the final rendering, some preparations have to

be done in GIMP. At first, custom brushes were created to imitate a needle-like stroking

of lines as well as custom brush dynamics. Furthermore, images for the background and

38 3. IMAGE EDITING AND WEB MAP RENDERING

Figure 3.13: Embroid style by Dong (2015)

polygon fill are produced beforehand making use of the custom brushes (Dong, 2015). A

final version of the map is shown in figure 3.13.

The embroid styling demonstrates the feasibility of artistic map rendering with GIMP and

is using the drawing techniques that were introduced in the previous section 3.2. However,

as described in the previous paragraph, it requires many manual and interactive processing

steps to carry out a map creation. Especially the fact that the map creation is taking place

in a multi-software environment with three different software tools makes the interactive

processing long and cumbersome. Storing the original geo data in a Shapefile format

has several disadvantages. First, it is necessary to obtain Shapefiles from a data source,

in this example OpenStreetMap. Secondly, only selected features and areas are already

preprocessed and freely available on the Internet, e.g. from Geofabrik. Nevertheless, using

Shapefiles as input format enables the processing to make use of other geo data sources

than OSM if the data is availabe in this format. The preprocessing, which is carried out

using ArcGIS could also be performed with an open-source tool like Quantum GIS (QGIS)

that does not require to purchase a software license. The geometry of the geo data is not

processed at all which would be necessary for small scale maps that require some sort of

simplification to avoid cluttered outlines for example. TileMill is currently no longer in

active development by Mapbox and was succeeded by their new software Mapbox Studio.

This software offers the same styling possibilities as TileMill along with some new features

and could be used instead. However, the intermediate step of using TileMill could be

3.3. MAP RENDERING 39

avoided by making use of the “Path to Selection” function in GIMP and using the SVG

exporting capabilities in QGIS for example. Finally, there is no text displayed on the

map that is related to the content or linked to the original data. Text can only be added

manually in GIMP using the text tool that renders any text the user is typing onto the

canvas.

40 3. IMAGE EDITING AND WEB MAP RENDERING

4 A concept for automated processing

The main goal of this work is to develop a automated process for the derivation of artistic

styled maps based on principles of non-photorealistic rendering. For this purpose, a con-

cept is developed in the following chapter which takes the aspects that have been discussed

previously into account. Influencing factors of a possible vector or raster based approach

are examined, requirements and goals are specified and input parameters are identified.

Based on that, a schema for a concept employing the open-source software GIMP is in-

troduced followed by an explanation of key technologies that support an implementation

of the postulated concept.

4.1 Comparison of influencing factors of a vector and raster

based approach

At first, several factors that influence a possible automated rendering process for the

derivation of custom styled maps need to be considered. Based on the examination of

map rendering techniques in section 3.3.1, aspects of a vector and raster based approach

are taken into account and compared in the following sections.

Geographic data that is used in maps is usually stored as vectors as it is a common standard

format in geo science. Geometric calculations and spatial operations can be performed well

on vector data employing mathematic functions and topological relations can be defined.

Furthermore, many tools exist to store and manage vector data e.g. using GIS software

and a large number of sources for geographic vector data exist. Geographic raster data

is either a depiction of visible or non-visible natural characteristics in satellite or aerial

imagery or derived from vector data that was rendered as an image using a certain styling

for the geometric primitives points, lines and polygons. Unless a processing is based on

41

42 4. A CONCEPT FOR AUTOMATED PROCESSING

raster data derived from natural influences, a vector to raster conversion has to take place

first to generate raster data. For all data, the data quality is an important issue. This

includes aspects of accuracy, completeness and level of detail.

The further processing steps are highly distinguishable as well. Vector data on the one

hand allows a direct modification of the source geometry. Therefore generalization or

simplification processes are based on vector operations. However, vector data can serve as

a skeleton for subsequent raster based operations like stroking with defined styles or even

brushes. This is often used in applications of non-photorealisitc rendering as seen in section

2.2. For a raster based approach, image processing operations could be employed, which

are available in many different software packages and offer a large variety of techniques as

it makes up an entire field of science itself. Some examples include, filters like Gaussian-

blurring, erosion and dilatation for a raster based generalization or more sophisticated

techniques like the application of a Perlin-Noise image (see link to the processing of the

Stamen Watercolor map, section 3.3.1). An advantage of raster based processes is that

they are deterministic unless they include a random component, like some GIMP filters

or NPR techniques for example. Deterministic processes are especially important for the

generation of tiles and mosaicing them together. Randomization would require the option

to define a seed which is possible in many programming languages but is not always

implemented for operations that are available in software products.

Taking the geometry types into account, vector data allows for a more distinct styling as it

is possible to define more specific rendering techniques and style options. Furthermore, the

appearance of vector data is easier to change and principles from the variations of graphic

variables can be employed easily. In contrast, Raster based approaches allow only pixel

related operations and therefore geometry types cannot be efficiently distinguished during

the rendering process. For raster images, it is a practical technique to apply pixel based

masks rather than geometry type specific rendering. Masks can then serve as a selection

of pixels to which a filter or simply a fill can be applied. Text rendering is not included

in many applications but also an important issue for maps. A label is usually associated

with a certain feature and placed on the map image according to some constraints. This is

usually a vector based method where a text is placed along a path, e.g. street names.

In conclusion, vector based approaches can be considered as more specific and allow more

processing options. This might however, also require more processing steps and resources

4.2. REQUIREMENTS AND GOALS OF AUTOMATION 43

than image processing operations that can have a better computing performance. As the

end product of a rendering process is always a raster image, keeping to a raster processing

chain might also be reasonable. A direct vector based rendering of map tiles is possible (see

Mapbox, section 3.3.1) but common standards for such an aproach have still to be devised

yet for the geospatial world. To achieve an artistic rendering in a process that is based on

the scripting interface of GIMP, a combination of aspects from both approaches is applied.

The data is stored in a vector format and converted into raster graphics using the raster

based drawing techniques of GIMP. The processing is mainly operating on the vector data

but raster based operations are used for post-processing e.g. for label placement.

4.2 Requirements and goals of automation

Based on the influencing factors of an automated processing, requirements can be defined

that characterize a possible automated workflow, employing the capabilities of GIMP.

These requirements are summed up in the following list and solutions are proposed in the

subsequent paragraph:

• Non interactive processing

• Styling options

• Tile creation for deterministic mosaicing

• Artistic appearance

• Available geodata

• Data processing capabilities (selection, simplification, randomization)

• Platform independence (e.g. for server side implementation)

A non-interactive processing can be achieved employing the scripting interface of GIMP.

Using the Python-Fu capabilities, the rendering steps of the manual processing (described

in section 3.3.3) will be reproduced. Variable styles should relate to GIMP functionalities

like color, stroke size and used brush. Parameters like graphic variables and different mask

images should be possible to be defined by these options. Tile creation is the most crucial

point in the rendering process. For a satisfying mosaicing of the generated tiles, their

boundaries must not be visible in the final map image. This can be achieved by paying

44 4. A CONCEPT FOR AUTOMATED PROCESSING

attention to the following aspect: the rendering of each tile must always take adjacent

tiles into account, thus the rendering of the content must be deterministic for each tile.

A possible solution to this problem is the concept of metatiles which is implemented in

GeoWebCache 1. GeoWebCache is a tiling server that is integrated in GeoServer, an

open-source server software for publishing geodata as WMS for example. This is however,

mostly used for the label placement and for the rendering with GIMP, a simple buffering

around the requested area of the tile is also sufficient. Adjacent geometric features are

incorporated in the tile rendering process and guarantee seamless transitions between tiles.

At this point it needs to be mentioned that no drawing functions of GIMP can be used

that have a random component like some filters or parameters for dynamics. An artistic

appearance can be achieved using GIMP as it provides a variety of drawing techniques

that have an artistic application. The example of the interactive process can already be

interpreted as an artistic rendering approach and using different styling parameters, a

variety of artistic renderings are possible to implement. Geodata used for a rendering

process should be easy to obtain, store and being used in a public application. Therefore,

no legal constraints in working with the data should exist to limit the freedom of modifying

and publishing the data Online. Keeping in mind the scalability of a web application, the

data should also be available for the entire world with an adequate density. For the data

processing, GIS capabilities can be used which allow for common cartographic operations

like selection or simplification. Possible randomization techniques need to have a defining

component that can make them reproducible for the tiling problem mentioned before.

Finally, platform independence is guaranteed by using GIMP, a software that is available

for all common platforms including its scripting capabilities.

Taking these requirements into account, the goals of an automated process can be de-

fined and will be listed in the following. First, an implementation with GIMP should be

achieved, using the scripting interface. Second, variable styling should be realized using

input parameters that are defined in a human and machine readable format and relate to

the GIMP functions. Third, the generation of seamless tiles should be possible that can

be incorporated into a Web Map Tile Service and finally, a test of GIMP’s text rendering

capabilities should be included. To compare the automation with the interactive process,

two modes for rendering are desired. One for web map compatible tiles and one for the

rendering of a single map, as it is created in the interactive workflow.

1http://geowebcache.org/docs/current/concepts/metatiles.html

http://geowebcache.org/docs/current/concepts/metatiles.html

4.3. DEFINITION OF INPUT PARAMETERS 45

4.3 Definition of input parameters

Based on the foregoing investigations, the input parameters necessary to control an auto-

mated processing can be defined. These input parameters have to be stored in a human

and machine readable format so that it can be modified by the user and parsed by the

automation script. In general there are two categories of input parameters that can be

differentiated, parameters for the scripting and parameters for the styling.

Scripting parameters cover all input arguments that are required for the scripting pro-

cedure. These include specifications like the spatial extent, defined as a bounding box

with upper left and lower right geographic coordinates, inside which geodata should be

rendered. Additionally, the scale for single maps or the desired zoom levels for tiles are de-

fined. Furthermore, the database connection credentials should be stored as well to avoid

hard coding them inside the script. It is also important to have the selection parameters

for geodata features provided for the database querying but these have to be associated

with the styling parameters already. They must also include information about the zoom

level at which a feature should appear in a map or not.

The styling parameters are stored along with the feature rendering information separately

and define the rendering stlye. Styling parameters encompass all parameters that are

essential for the rendering. This contains general styling specifications like the name of the

style or whether the geometry should be abstracted or not. Furthermore, a background

image for the map can be set. For the features, the GIMP related parameters can be

defined. Each feature type class has a distinct set of parameters that can be specified.

These include settings like color, brush size, brush name and other drawing options for

geometric primitives. Polygons can be defined to be either rendered filled with the mask

on a predefined image, with a fill color or a customized fill that can consist of hatching

with lines.

4.4 Concept for an automated process with GIMP

Having the influencing factors, requirements, goals and input parameters defined, a con-

cept for the realization of an automated processing featuring GIMP can be proposed based

on the findings previously discussed in this chapter.

46 4. A CONCEPT FOR AUTOMATED PROCESSING

Figure 4.1: Workflow of the concept

As the main component of an non-interactive rendering process with GIMP, a Python-Fu

plug-in script manages all important operations. Input parameters must be specified and

available in a data format that is both, human and machine readable. Users should be

enabled to set different parameters for variable styling and the processing script needs to

be able to parse these. The script needs to have access to a specified data source that

can provide usable geodata in an exchange format that GIMP can interact with. Based

on the available geodata and the input parameters, a single map or map tiles should be

rendered using the GIMP interface functionalities. At this point different techniques for

the rendering of tiles or single maps must be implemented, taking into account that tile

extents need to be calculated from a tile grid scheme to be georeferenced. The geodata

should be obtained from a GIS enabled data source (geodatabase) and processed using

cartographic (generalization) and non-photorealistic (abstraction) operations. With this

setup the NPR techniques are restricted to vector based sketching and brush stroking

techniques. The final map is either composed of line and polygon geometries that are

rendered into a single map which is intended for using in print or just on screen, or

seamless tiles that can be served on the web via a standardized service that allows the use

of the data inside a web application. Figure 4.1 illustrates the structure of the concept

that was described in this paragraph. For an analysis of the text rendering capabilities

of GIMP, an experimental processing should be able to print feature-related texts on the

map canvas.

4.5. TECHNICAL COMPONENTS 47

To realize the implementation of such an automated process, the following technologies

and specifications are chosen for an implementation that employs a vector based approach

with the GIMP scripting interface:

• JSON as exchange format for the configuration

• OpenStreetMap (OSM) as a data source for geographic vector data

• PostgreSQL and PostGIS for the data storage with data processing capabilities

• SVG as interchange format for the geometry of geographic data

• The Web Map Tile Service (WMTS) standard for the serving of tiles

Nevertheless, the processing does include manual steps as well but these are reduced to a

minimum. At first, custom brushes and seamless textures have to be created by hand in

GIMP as described in 3.2. Second, the configuration files have to be edited manually and

thirdly, the import and update of data requires interaction. These steps could be scripted,

though. Finally, the results have to be transferred on a server with an WMTS installed

which may not be necessary if the rendering is already performed on a server.

The components of the proposed technical environment are introduced and described

in the following sections and an experimental implementation is described in the next

section.

4.5 Technical components

In this section, practical solutions for all components that are involved in the conceptual

design except GIMP are introduced and justified.

4.5.1 JSON

For a human and machine readable parameter configuration, the Javascript Object No-

tation (JSON) is a suitable data interchange format. As such it can be defined as a text

format that is used to exchange data between different platforms. It is independent from

any programming language and similar to XML which is also used for data exchange (Bas-

sett, 2015). However, JSON has some significant benefits when it comes to performance

and data storage. It needs less code than XML to define elements which reduces the

48 4. A CONCEPT FOR AUTOMATED PROCESSING

file size quite significantly. In addition its performance when being parsed is much faster

compared to XML due to its universal data structure. It is based on literals containing a

collection of name and value pairs, similar to an object, list or array in various languages1.

All these reasons make JSON a suitable format to configure the input parameters of an

automation script. JSON files can be edited by users to modify these parameters and

they can simply be parsed as input arguments to a code file. Furthermore, it is possible

to validate JSON files based on a schema to test if it has all necessary attributes.

4.5.2 OpenStreetMap

As a source for geodata, OpenStreetMap (OSM) is often chosen by many academic and

commercial projects. OSM is considered as the main driving-force in challenging the

traditional geodata business. It was launched in 2004 and is often referred to as “the

Wikipedia map of the World” (Ramm et al., 2011) as the collection of geodata is no

longer limited to specialists from a field related to geosciences. Data can be collected using

portable satellite navigation devices like the Global Positioning System (GPS) which is

an inexpensive technology that is available to many people with the wide-spread use of

smartphones today. The goal of the project is to set up a free editable map database

covering the whole world and make the data available under an open content license.

In fact, the Open Data Commons Open Database Library (OdbL) is used which allows

to copy, distribute, transmit and adapt the data, as long as an obvious credit to OSM

and its contributors is added 2. For researchers, it offers an unique dataset covering

the entire world (Arsanjani et al., 2015). The data that is collected is considered as

Volunteered Geographic Information (VGI) which is a special form of User Generated

Content (UGC). UGC is greatly driven by the advances of the Internet, social media,

smart device technology like smartphones and telecommunication. It has an impact on

how peaple are interacting today via the Internet and the most popular forms include

messaging and social media content like blogs or videos (Mooney and Corcoran, 2013).

However, even though the OSM data is collected in a collaborative manner there are

some shortcomings with this kind of data that need to be take into account. First of

all, there is no assurance of the data quality. OSM features are described by users using

tags of key-value pairs and there are no strict rules how they have to be used or in which

1http://json.org/
2http://www.openstreetmap.org/copyright

http://json.org/
http://www.openstreetmap.org/copyright

4.5. TECHNICAL COMPONENTS 49

combination. This is part of the collaborative principle that OSM is founded on (Ramm

et al., 2011). The crowd is supposed to act as the controlling mechanism to validate the

data. Furthermore, the positional accuracy and the completeness of the data can vary

significantly and mechanisms for quality assurance have been a subject of research where

a more detailed overview is provided (Goodchild and L. Li, 2012).

Since OSM data is used in many other projects that are related to this work and introduced

in section 3.3.1, is was decided to use it for this project as well. The free and simple access

to the data is considered as advantage which makes it easy to reproduce the processing

that is explained in this work on other platforms. Many tools exist to work with the data

and perform transformation or filtering processes which makes it a sufficient resource for

such a project. Furthermore, using the data in an application that is more focused on

an artistic representation rather than a precise depiction of geodata, OSM data can be

considered as suitable. For the processing, only line and area features were used which

provide a basic content of a map. These cover the road network, rivers and major areas

of landuse, including buildings.

4.5.3 Database environment

PostGIS is a commonly used tool and also used by the OSM project itself on the server

together with the Mapnik OSM tile renderer 1. It was initially developed by Refractions

Research and is now maintained by the Open Source Geospatial Foundation (OSGeo). As

an extension to the Structured Query Language (SQL) database language PostgreSQL, it

adds common GIS functionalities to edit geometry and perform spatial operations. Fur-

thermore spatial measuring can be carried out as well as spatial relationship analyses and

all geometry data is spatially indexed. The range of functionality is completed by cus-

tomized functions that can be implemented in the PL/PGSQL query language and stored

in the database which are performed on the database server. Many of the functionali-

ties are adopted from or based on other projects like the Geometry Engine Open Source

(GEOS) or the Geospatial Data Abstraction Library (GDAL) (Obe and Hsu, 2015).

As PostGIS is supported by OSM and many applications that deal with the data, it

provides a good solution to store the data and make GIS operations available. In this

project, it is used for exactly these two reasons. Exchange formats to transfer obtained

1http://wiki.openstreetmap.org/wiki/PostGIS

http://wiki.openstreetmap.org/wiki/PostGIS

50 4. A CONCEPT FOR AUTOMATED PROCESSING

OSM data to a spatial database are existing and the capabilities of PostGIS meet all the

requirements that were stated earlier for the data processing concept. Furthermore, it

could also be used as a storage for other datasets than OSM as most common geospatial

formats can be converted into a PostGIS database.

4.5.4 SVG as exchange format

With GIMP featuring the import of vector data in the SVG format, it has to be considered

how to make use of this data type efficiently. SVG is a markup format that is based on

XML to describe vector graphics. It is an open-source standard of the W3C consortium

and supported in all major web-browsers today. Many applications exist for the creation

or editing of SVG data, like Adobe Illustrator or Inkscape. The coordinates for the image

geometry are stored in a screen coordinate system which means that the origin is on the

top left. This is a difference to most geographic coordinate systems but the coordinates

can be easily transformed (Lienert et al., 2012).

For the realization of an automated workflow, the geodata from OSM needs to be converted

from geographic coordinates to screen coordinates. Furthermore, the coordinates defining

a geometry can either be stored in absolute coordinates relative to the screen coordinate

system or in coordinates relative to the first point of the feature. The latter is used

to reduce the actual disk size of large geometry (SVG W3C recommendation n.d.). A

conversion can be achieved using PostGIS, which was introduced in the previous chapter.

The SVG geometry is always returned as a path which is generally a representation of a

shape. However, a path can have different defining command elements which determine its

representation. SVG paths returned by PostGIS are either a straight line (L = lineto) for

(multi-)lines or a closed line (Z = closepath) for (multi-)polygons that start at a defined

position (M = moveto) 1. Table 4.1 compares the well-known-text (WKT) representation

of PostGIS and a SVG geometries (examples from Wikipedia 2).

For the geometry estrangement that was used to achieve a hand-drawn abstraction, the

paths are converted into curves. These are defined by the curve command (C = curveto)

and can also be open or closed. A cubic Bézier curve, which is composed of the line points

and the bezier control points is drawn on the canvas. To achieve a non-regular outline,

1http://www.w3.org/TR/SVG/paths.html
2https://en.wikipedia.org/wiki/Well-knowntext

http://www.w3.org/TR/SVG/paths.html
https://en.wikipedia.org/wiki/Well-knowntext

4.5. TECHNICAL COMPONENTS 51

PostGIS (WKT) SVG

Line LINESTRING (30 10, 10 30,

40 40)

M 30 -10 L 10 -30 40 -40

Multi-Polygon POLYGON ((35 10, 45 45, 15

40, 10 20, 35 10), (20 30, 35

35, 30 20, 20 30))

M 35 -10 L 45 -45 15 -40 10

-20 Z M 20 -30 L 35 -35 30 -20

Z

Table 4.1: PostGIS to SVG conversion

the control points can be displaced.

4.5.5 Web map tile service

The Web Map Tile Service is a standard defined by the Open Geospatial Consortium

(OGC). OGC Standards are intended to document in detail the technical aspects and

rules for implementations that provide solutions to geospatial interoperability problems.

They are defined, discussed, tested and approved by members of the OGC in a formal

process. Some of these standard have also been turned into international ISO standards.

The most commonly implemented OGC standards include the following:

• Web Map Service (WMS) for requesting map images from a database

• Web Feature Service (WFS) for feature access and manipulation on a database

• Web Coverage Service (WCS) for accessing geospatial images

• Web Processing Service (WPS) for geospatial processing

• Geographic Markup Language (GML), a XML-based interchange format

Typically, OGC standards are either interface (web services) or encoding (exchange for-

mats) standards (Reed, 2011). All interface standards feature two functions:

• GetCapabilities: Provides capabilities of the server like file formats, map layers

and display method

• GetMap: Handles the database request, creates a map based on the capabilities

Many services also support a set of other functions for e.g. feature information requests

or a map legend (Peterson, 2012)).

52 4. A CONCEPT FOR AUTOMATED PROCESSING

Figure 4.2: WMTS Tile indexing grid of a Mercator projection (after Clouston and Pe-

terson, 2014)

An OGC standard for an interface that is capable of serving predefined image tiles is the

Web Map Tile Service (WMTS) implementation which is a complementation to the WMS

interface standard. The difference is however that the WMS standard is delivering custom

maps with dynamic styling and content whereas the WMTS standard is designed for

scalability and serving static data (OpenGIS WMTS Specification n.d.). Furthermore it is

an advancement of the Tile Map Service (TMS) standard. Available tiles are advertised to

a client from the service metadata and specific tiles can be requested. The client is forced

to mosaic the requested tiles and clip them together to a final map image. This shifts

the most processing capabilities from the server to the client, if the tiles are pre-rendered.

They can also be rendered by the server on request and caching strategies can be applied

to reduce network bandwith usage (Kresse and Danko, 2012). The result can be viewed

in a web mappig application as a “Slippy map” (Palazzolo and Turnball, 2012).

To fulfill the requirements of a WMTS representation it is crucial that the generated tiles

have a default tile size of 256 by 256 pixel and are indexed in a structure that allows

georeferencing. For this aim a tile space is defined that consists of an indexing grid that

is specified for each zoom level as illustrated in figure 4.2. In the WMTS specification this

is called the tile matrix.

The tile grid is always covering the entire world and equal to the tile indexing technique

of Google and other major Online map providers, the origin of the tile grid is located in

4.5. TECHNICAL COMPONENTS 53

Zoom level Tile coverage Number of tiles

0 1 1

1 2 x 2 4

2 4 x 4 16

3 1n x 1n 22n

Table 4.2: Zoom level and tile coverage dependency (Source: openstreetmap.org)

the upper left corner. The tile next to the origin always has a X and Y coordinate of zero

and tile indices are increasing towards the right and the bottom of the grid. This is the

base for the naming convention applied to all tiles. The actual file name is the number of

the tile in Y-direction or its row number in the defined grid. All tiles of one column are

sitting inside this directory that is labeled by the tile number in X-direction. The column

directories are then stored in a directory that is named by the zoom level (Clouston and

Peterson, 2014). This results in a hierarchal image pyramid with the zoom level of zero

on the top. Each zoom level has a different tile grid and therefore the tile coverage and

number of tiles is significantly increasing with the zoom level. As the number oft tiles

in X and Y direction are doubled with progressing zoom levels, the number of tiles for

each zoom level is quadrupled which is illustrated in table 4.2, adapted from the OSM

website1.

1http://wiki.openstreetmap.org/wiki/SlippymaptilenamesZoomlevels

 http://wiki.openstreetmap.org/wiki/SlippymaptilenamesZoomlevels

54 4. A CONCEPT FOR AUTOMATED PROCESSING

5 Implementation of an automated pro-

cess with GIMP

5.1 Geodata setup

OpenStreetMap (OSM) data, which was described earlier in section 4.5, was chosen as the

source of geodata for the implementation of an automated map rendering process. The

dataset at the current state is freely available and can be obtained from various sources.

To edit, process and convert the data into GIS compatible formats like the proprietary

ESRI Shapefile or an PostGIS database, several open-source tools exist and were used for

the data processing in the described workflow. A PostGIS enabled PostgreSQL database

is used for the storage of the OSM data as it allows for performing GIS operations on

the data like basic generalization operations. It also allows to add custom functionality

to the database by implementing custom database functions. How to get, import and

update an OSM dataset into such a database environment is described in the following

sections.

5.1.1 Data acquisition

To obtain map data from the OSM database, a huge variety of download possibilities

exist. The easiest way is via the web map interface where it is possible to export data

by specifying a bounding box which determines the desired download area. This service

however is restricted by a maximum size of an area of 0.25 square degrees 1 but OSM offers

other alternatives for downloading the data. One of them is the download of the planet

file which is a complete and regularly updated dump of the OSM database. Another way

1http://wiki.openstreetmap.org/wiki/Xapi

55

http://wiki.openstreetmap.org/wiki/Xapi

56 5. IMPLEMENTATION OF AN AUTOMATED PROCESS WITH GIMP

is using the read-only OSM Extended API (XAPI) which is implemented in the Overpass

API. The APIs allow for the definition of a bounding box area for download and even

complex queries. Nevertheless, users are encouraged to use third party services which

provide custom extracts of the data like Geofabrik or Mapzen for downloading the data

to keep the load on the project servers to a minimum1). These datasets are mostly

preprocessed excerpts and do not contain all of the available geometry data which is the

reason the Overpass API was used for downloading the data used in this project. A sample

console command using WGET to get all the data inside a bounding box covering the city

of Munich would be for example:

1 wget -O munich.osm "http :// overpass.osm.rambler.ru/cgi/xapi_meta?*[bbox

=11.2 ,47.9 ,11.8 ,48.3]"

The -O parameter in the command defines the output file name which is following. As

the URL, the API query is passed with the desired bounding box lower left and upper

right coordinates. It is also possible to enter the URL directly in a web browser to trigger

the download. Data exported from these sources are provided in a human readable OSM

XML file meta format which has a .osm file ending. Alternatively the .pbf (Protocolbuffer

Binary Format) is used which has some performance and storage advantages to support

future extensibility and flexibility.

5.1.2 Data import and update

For the storage of the geodata, a PostGIS enabled PostgreSQL database is used. The

environment has to be set up with a database user having read permissions. For this

work, PostgreSQL 9.3.9 and version 2.1.4 of the PostGIS extension are used. Both are

readily available as standard packages for all Linux distributions.

Import

For the import of a downloaded OSM dataset into a PostGIS database, the tool osm2pgsql

was used which is also available as a package on a Ubuntu Linux system. The tool is

accessed from the command line and the command arguments are explained in table 5.1.

1http://wiki.openstreetmap.org/wiki/Downloading_data

http://wiki.openstreetmap.org/wiki/Downloading_data

5.1. GEODATA SETUP 57

Argument Effect

-s Slim mode, required for the ability to update the

dataset later

-c Create data, would remove existing data from the

database

-d Database name, following

-U Database user, following

-W Forces password prompt for the database user

-H Database host

Table 5.1: osm2pgsql command arguments

Table name Content

planet osm point Points (POIs, adresses, etc.)

planet osm point Lines (roads, route relations)

planet osm point Polygons (areas and multipolygons)

planet osm roads Simplified subset of the planet osm line table for

faster rendering

Table 5.2: osm2pgsql database schema

An import command to an emtpy PostGIS enabled database called osm munich would be

for example:

1 osm2pgsql -s -c -d osm_munich -U gis -W -H localhost munich.osm

The osm2pgsql database schema

The osm2pgsql tool creates four database tables which contain the geometry data as well

as a number of other columns. All tables have a similar structure and provide a column

osm id holding the original unique OSM id, a way column for the geometry and a z order

column for the vertical ordering of the features. Additionally, a large number of columns

containing the OSM tags as Key-Value Pair (KVP) are created which are populated with

NULL if no tag value exists. Table 5.2 gives an overview of the created tables.

58 5. IMPLEMENTATION OF AN AUTOMATED PROCESS WITH GIMP

With the slim-mode enabled for import to allow a later update of the database, additional

tables are created which contain OSM raw data that is not used for rendering (Ramm

et al., 2011).

Update

Data in a PostGIS database that was imported using the steps described before can be

updated so it is not required to create a new database each time the data should be set

to the current state. For an updating process it is necessary to have an OSM changeset

which contains only the differences of two datasets. These files are readily available for

the planet file or other subsets that are provided by third party services. For custom

datasets that were downloaded from the OSM API the changeset file can be created

using the tool osmosis. This is another command line tool available from standard Linux

packages that provides OSM processing functionalities like the filtering and extraction of

specific features from a dataset. It can also be used to import and update OSM data

into a PostGIS database. For the processing of the data in this project only the function

to create a changeset from two datasets was used. A sample command that creates a

changeset of two different datasets would be:

1 osmosis --read -xml file="munich_1.osm" --read -xml file="munich_2.osm" --

derive -change --write -xml -change file="munich_diff.osc"

This changeset can afterwards be processed with osm2pgsql to add all changes to an

existing database. A command for the execution of such a step for the changeset created

in the step before and the database osm munich that has already been used in the previous

examples is shown in the following line:

1 osm2pgsql -a -d osm_munich -U gis -W -H localhost -s munich_diff.osc

The only parameter that has not already been used in the import command is the -a

which stands for the append mode that is used here instead of import.

5.2. SKETCH RENDERING 59

5.2 Sketch rendering

A rendering to generate irregular shapes of the input geometry to achieve a more natural

and hand-drawn appearance of the original OSM data is taking place before the geometry

is passed to the GIMP module functionalities and works with the SVG format that has

been examined in section 4.5. This chapter will now provide a detailed explanation of the

methods and algorithms that deliver sketchy rendered versions of the input geometries.

All numeric values and geometry dimensions are given in screen resolution pixel units. At

first, different displacement methods will be presented that act on points or the nodes of

geometries consisting of points. After that, the randomization of these point composed

geometries, like lines and polygons will be illustrated using some examples. Lastly, the

technique to create hachure lines for a computed polygon fill will be explained and illus-

trated. The code that will be explained in this chapter can be found in the sketch.py

and emphrandomize.py Python modules in the sketching directory of the gimprenderer

project.

5.2.1 Displacement and randomization

Random distributions

The Python programming language features a collection of different functions for the

generation of pseudo-random numbers making use of various probability distributions.

These randomly created numbers serve as a viable resource for the alteration of geometric

coordinates in this implementation along with other parameters that can be specified 1. For

the aim of this work, two distribution types were identified as most suitable for the desired

purpose. The first distribution used is the Uniform distribution which is also the standard

method to quickly generate random numbers in Python. It provides values between zero

and one with a equal probability of each output value. The second distribution used is the

Beta distribution which also returns values between zero and one but with a probability

pattern that can be defined using the shape parameters Alpha and Beta. If not explicitly

mentioned, three is set as the standard value for Alpha and Beta in all further examples.

In appendix A.1, the probability density functions of selected distributions are listed with

1https://docs.python.org/2/library/random.html

https://docs.python.org/2/library/random.html

60 5. IMPLEMENTATION OF AN AUTOMATED PROCESS WITH GIMP

their input values. Additionally an example image of applying the method to a set of

10000 points that are randomly generated and placed inside a rectangular area along a

horizontal line is shown. Only the distribution along the x-axis is determined by the

particular random distribution, along the y-axis there is the Uniform distribution used for

all example images.

Displacement and randomization

The displacement of points is a main functionality of the random sketch rendering that

was implemented and used in the geometry processing of this project. Relocating points or

vertices of lines and polygons randomly using a small offset accounts for a more irregular

and thus a more naturally appearing outline. As a part of the sketching that makes use of

randomization functions, the code of the function emphdisplace point() can be found in

the randomize.py module file. This function computes a randomly displaced new position

of a given point inside a specified area using three different methods that can make use

of two different random distributions each. These methods are described and analyzed in

appendix A.2.

The computation time in table A.2 was determined by calculating the average computation

time of 1000 runs of calculating 10000 displacements of a point in one loop. For the

examples using a Beta distribution an Alpha and Beta shape parameter of the value

5 was chosen. Taking the computation time into account, using the polar coordinates

equation for the calculation of the circle is the fastest approach. This is an important issue

that needs to be considered as the calculation of tiles can be a time consuming process.

However, using a Beta distribution instead of an Uniform distribution is preferred and

selected as the method for the final rendering, mainly because it can be considered to

produce the most homogeneous appearance.

Randomization methods

Random functionalities have also been implemented for other purposes than calculating

the displacement of a single point. In order to apply a point displacement to a line it

is crucial to have sufficient line points that are available for displacement. However, this

is not guaranteed as the granularity of the input OSM geodata varies on a large scale.

For this reason a function was created that adds points to a simple line segment that is

5.2. SKETCH RENDERING 61

Method DistributionExample
Computation

time (in ms)

Equal None 147.496

Uniform Uniform 116.822

Equal uni-

form
Uniform 289.864

Equal beta Beta 395.178

Table 5.3: Methods for random points on line

defined by only two points. This function, called random points on line, is also part of the

randomization.py module and takes a line defined by two points, the number of points that

should be added and a definition of the method used for the distribution of the points as

input arguments. If a number is specified, the generated points are either homogeneously

distributed in equal distances from each other or randomly distributed. Random scattering

can either be relative to the entire line or line segments which are calculated according

to the number of specified points in the result. As an additional option the distribution

method can be chosen from uniform or Beta. In the final processing this function can be

combined with the point displacement function to change the positions of the randomly

generated points relative to the line. Example results are listed in table 5.3 with the

average computation time of 1000 runs adding 5 points to a line. In these images, five

points are added to an original line using different distribution methods. The “Equal”

and “Uniform” methods are applied to the entire line whereas the other two methods use

equally sized sub segments of the original line on which a point is randomly placed. Similar

to the point displacement function, a processing using Beta distribution delivers the most

homogeneous result and was chosen in the final processing chain in this project.

Another randomization method was implemented to convert a linestring into a curve with

a smooth and rounder outline. This contributes to a more hand-drawn look of a line and

is realized using the SVG curve commands for paths. For each point of the line string

that is not the start or the end point, two random curve control points are computed

and a valid SVG path with curve parameters is returned. Two methods have been tested

for the computation of these control points positions which take the value d as an input

62 5. IMPLEMENTATION OF AN AUTOMATED PROCESS WITH GIMP

Figure 5.1: Schema random curve controlpoints

parameter that determines the maximum orthogonal distance of a control point from the

line. The first approach uses orthogonal lines to determine the position of the control

points. A simple line that is defined by two points is split into two equal segments at

the center between the two points that define the line. The position of the random point

relative to the segment is then calculated using the defined random distribution, which

can be either Uniform or Beta. At this position, the final location is generated using the

defined random distribution again to shift the position that was calculated in the first step

orthogonally to the segment in negative or positive direction using the input parameter

as the maximum distance the new point can have relative to the segment. The second

approach features polar displacement and can also be split into two steps. At first, a

random position is generated on a segment that is constructed from the two points which

lie on the straight line between the two original points and are the given distance d away

from their respective closest original point. Again either Uniform or Beta distribution can

be used for the generation of the random location. In the second step, the position from

the first step is displaced using the polar point displacement function explained earlier in

this section with d as the displacement threshold. Nevertheless, there are two peculiarities

that need to be considered. The first is that the areas of potential placement for the

two generated control points are overlapping which creates peaks on the line that let the

curve appear more disturbed. Secondly, if the given distance is equal or larger than the

distance between the line points, a half of that distance is used for displacement instead

of the input value. This was implemented to reduce the disturbance of short line string

segments. Figure 5.1 explains the schema of the two methods applied on two points A

and B that make up a straight line. Areas of the probability distributions p in x and y

direction are colored in red and the given maximum distance threshold is labeled d. In

table 5.4, the methods are illustrated with some example results and compared using the

average computation time of 1000 function runs where 2000 control points are calculated

for each original point.

5.2. SKETCH RENDERING 63

Method DistributionExample
Computation

time (in ms)

Orthogonal Uniform 105.166

Orthogonal
Beta

(2,2)
178.452

Polar Uniform 99.251

Polar
Beta

(2,2)
156.406

Table 5.4: Random curve controlpoints

5.2.2 Hand-drawn emulation

To emulate a hand-drawn structure of the lines, not only points need to be randomly

disturbed but also more complex geometries like lines and polygons that are created using

points as their vertices. Furthermore it is desirable to transform these linestrings into

curves which look more similar to a manual human drawing style. Several functions have

been implemented in the sketching module and explained in the sections before which

achieve this aim. They are either used in the processing as they are or in combination with

other functions. The relevant functions will be described in the following section.

Lines

For the final processing of lines, an operation was implemented that achieves the effect of a

jittered line with a hand-drawn appearance. In the code, the functions add points to line(),

displace point() and random controlpoints() which have been explained in the sections be-

fore are combined in the function jitter line() which is part of the sketch.py module. It

takes a value for the maximum distortion as input parameter. As the first step, random

points are added to a linestring if the distance between two points is greater that the

squared value of the input threshold. Subsequently, the points are being randomly dis-

placed within a threshold distance before random curve control points are added for each

point of the linestring. Table 5.5 shows some examples of Figure 5.1 which are alienations

using this function with different input values on a line with a length of 300 pixels.

64 5. IMPLEMENTATION OF AN AUTOMATED PROCESS WITH GIMP

Name d=2 d=5 d=10

Orthogonal

Orth. Beta

Polar

Polar Beta

Table 5.5: Line jittering

Another function that renders lines is the line handy() function which was inspired by the

line rendering function used in the Handy library 1, a hand-drawn sketchy rendering library

that was introduced in section 2.2.2. The steps of this function have been implemented

in Python using own methods and they are used to process hachure lines to fill polygons

with. The generation of these lines will be explained later but the rendering of each single

line will be described in this part as it features random alteration as well to create irregular

and bowed lines. The process is dealing with simple lines only, that are constructed as a

straight line connecting two defining points and takes input parameters which are factors

for the maximum displacement distance, the roughness of the displacement and the bowing

of the central point. Two points are then added to the line, one at the center and one at

a random position between 65 and 85 percent of the line from A to B. The center point is

then shifted randomly along a orthogonal vector with the length l/200 in either positive or

negative direction. Similarly, the other added point is randomly shifted along a orthogonal

vector but here the input displacement parameter d is used to determine the length of the

vector. Additionally, the start and end point are displaced within a radius of d as well.

Finally the line is smoothed using a Catmull-Rom Bezier spline. Figure 5.2 illustrates the

working principle with the areas of the probability distributions p of the midpoint m and

the second point n on a straight line from A to B. These are located around the points A

and B, along an orthogonal line at the midpoint in y and in the area of point n in x and

y direction and they are indicated using a pale red color. The given maximum distance

threshold is d. Some rendering examples are listed in table 5.6 on a straight line from

point A to B with the varying input parameters d and b that have been used on a line of

length 300 pixel.

1http://www.gicentre.net/software/#/handy/

http://www.gicentre.net/software/#/handy/

5.2. SKETCH RENDERING 65

Figure 5.2: Schema line handy

d b=1 b=2 b=5 b=10

1

2

5

10

Table 5.6: Lines handy

Polygons

For processing polygons and multipolygons a separation of edge lines is required to use the

same functions as for linestrings adequately. This is implemented in the jitter polygon()

function and works in two steps. At first the outlines of the multipolygon are split into

segments at vertices where the angle between the two edge lines defined by the vertex to

the vertex behind and from the vertex to the vertex ahead exceeds a given threshold. The

relevant vertex positions where an example polygon was split two times using a threshold

angle of 90 and 120 degrees are illustrated in figure 5.3. The latter is used as the default

value in the processing. Afterwards the split segments are distorted using the jitter line()

method that is described before. In table 5.7 some example renderings of polygon shapes

are shown including the input distortion value d and the applied method for line jittering.

The disjoin angle was 120 degrees using the Polar Beta method on the polygon which

bounding box dimensions are 500 by 400 pixels.

5.2.3 Hatching

So far, only line alienation has been considered. However, for the filling of polygons

another technique was developed that was also inspired by the Handy rendering library.

66 5. IMPLEMENTATION OF AN AUTOMATED PROCESS WITH GIMP

Figure 5.3: Polygon disjoin cut points with disjoin angle 90 (left) and 120 (right)

Method d=2 d=5 d=10

Curve

Displace

curve

Table 5.7: Polygon jittering examples

5.2. SKETCH RENDERING 67

Figure 5.4: Schema hatching, angle = 60

The polygon is not filled with a specific color but a computed hatching or so called hachure

lines which substitute a shape filling. These hachure lines are parallel lines which are

aligned in a certain inclination and an equal distance from each other. They are computed

from the bounding box of the input shape and a specified angle that can be a value between

0 and 180 and is relative to the y-axis. At first the lines are generated for the bounding

box, covering the extent of the shape. After that, these lines are clipped with the shape of

the polygon to get only the lines which are inside of the polygon. Lines with a line length

below a threshold were omitted to avoid over-cluttering of the lines. For the geometric

calculations that were required in the code to perform the clipping, the clipping function

provided by the Shapely package was used which is equipped with specific functions to

perform spatial operations. Figure 5.4 shows the calculation example for a multipolygon

with a hole, using an angle of 60 degrees and a spacing s of 30 relative to the bounding

box dimensions of 500 by 400.

Sketching

The sketchy rendering of polygon shapes is now achieved by the combination of the two

techniques that were explained earlier in this section. There are two parts that require

alteration: the polygon outline and the hachure lines making up the polygon fill. An

alteration of the first is produced using the polygon disjoin with subsequent jittering as

shown in table 5.7. The hatching lines are alienated differently using the line handy()

68 5. IMPLEMENTATION OF AN AUTOMATED PROCESS WITH GIMP

Figure 5.5: Sketchy polygon with hatching

function, discussed in the section before. Figure 5.5 gives an example of the polygon from

figure 5.4 altered using the final processing.

5.3 Automated processing

This chapter deals with the use of the GIMP Python-Fu scripting capabilities that are

implemented to realize an automated workflow for the map and tile rendering. At first,

the script parameters that are defined in the configuration files and control the process are

explained. After that, a general overview over the script’s code structure is given including

an illustration of all the implemented Python classes and modules. Interfaces used by these

components and how they are connecting with the database and the configuration files are

described as well. Following this, the geometry processing chain and the rendering methods

are then explicated in detail before finally the format and structure of the output results

are explained. The processing was conducted on a Ubuntu 14.04 LTS Linux system with

GIMP version 2.8.14 and Python version 2.7.6 installed. Also Eclipse with the PyDev plug-

in was used as Integrated Development Environment (IDE). For the spatial functions the

Shapely 1 and for the SVG conversions, the svgwrite 2 Python packages were used.

1http://toblerity.org/shapely
2http://pythonhosted.org/svgwrite/

http://toblerity.org/shapely
http://pythonhosted.org/svgwrite/

5.3. AUTOMATED PROCESSING 69

Figure 5.6: Project files structure

Project structure

All files files that are introduced in the following sections are available on the compact

disc and online via Github 1. Figure 5.6 illustrates the general structure of the project

directory. The Relevant files are contained in a folder called gimprenderer which contains

the GIMP Plugin python script and two subdirectories. The first is named gimpmaps and

contains the rendering classes for tile and map creation along with additional directories.

These contain the configuration files (conf), other files like JSON schemas, and the style

files (style). The second folder sketching contains all Python classes that are used for the

geometry estrangement.

5.3.1 Configuration files

All parameters for the scripted rendering in the GIMP Python-Fu module are defined in

JSON files which are stored in the conf directory within the code or at any other location

that is specified when executing the script. For a map or tile rendering process, there are

two required JSON files which will be introduced in the following section.

Map configuration

The JSON file that defines the general properties and parameters that can be configured

for the rendering is located in the /conf directory of the gimpmaps root directory and can

have any name. The following tables 5.8 and 5.9 show the top-level and detail properties.

1https://github.com/mucximilian/gimpmaps

https://github.com/mucximilian/gimpmaps

70 5. IMPLEMENTATION OF AN AUTOMATED PROCESS WITH GIMP

Property Description

osm db Database connection credentials

map Map image(s) rendering options

style Redering style name (as named in the /styles di-

rectory)

out dir Output directory

Table 5.8: JSON configuration file top-level properties

Property Description

bounding box patial extent of the area to render as map or tiles.

Given as a bounding box with upper left and lower

right coordinates

tiles Map image(s) rendering options

image Style related rendering options

create xcf Defines if a GIMP .xcf image is created additionally

to the .png output(s)

Table 5.9: JSON configuration file map properties

A full example of a configuration file for an example rendering can be found on the compact

disc or Github.

Only one of the parameters tiles or image are parsed by the code for the rendering. This

depends on whether map tiles or a single map should be rendered.

Style configuration

The file style.json defines the rendering style of the the OSM features at specific zoom

levels and a background image for the map or tile images. It can either be placed in

the /style directory or at any other location that is defined in the configuration file.

Table 5.11 and the following show the top-level and detail properties. Again, full example

of a configuration file for an example rendering can be found on the compact disc or

Github.

The lines and polygons properties consist of an array of feature types and the assigned

5.3. AUTOMATED PROCESSING 71

Property Description

text Defines if text is rendered

sketchy Defines if sketch rendering is used

style path The path to the style definition JSON and image

files (default is in the /style directory within the

project)

style name Name of the style to use

polygon fill Defines the type (mask, hachure or fill), if the

fill color and whether an outline should be drawn

around polygons or not

image tile span Images used for masking must have a size that is

an integer multiple of 256 pixels (the default tile

size). This is the factor that defines how many tiles

one masking image covers

Table 5.10: JSON configuration file style properties

Property Description

name Name of the style

background The image used for the map background

features All OSM features that should have a visual rep-

resentation (Lines, Polygons). Has a lines and

polygons property.

text All OSM features (Polygons) that should have a

text label. Has a polygons property.

Table 5.11: JSON style file top-level properties

72 5. IMPLEMENTATION OF AN AUTOMATED PROCESS WITH GIMP

Property Description

z order Horizontal order of overlapping objects

zoom min The minimum zoom level at which a feature is

drawn

zoom max The maximum zoom level at which a feature is

drawn

osm tags A list of OSM key-value pairs

Table 5.12: JSON style file common feature properties

Property Description

stroke line The stroking options for the line

Table 5.13: JSON style file lines feature properties

rendering style. Tables 5.13 and 5.14 show each feature type’s property objects. The line

properties of the simple line and polygons are explained in the tables 5.15 and 5.16.

Currently the text rendering is only implemented for polygon features, therefore only a

polygons property is existing which consists of an array of feature types and the assigned

rendering style. Table 5.17 illustrates its property objects.

5.3.2 Script structure

Creating a script for the automated generation of web map tiles or single map images is one

of the main goals of this work. The Python-Fu scripting interface introduced in chapter

X is used to achieve this and with the script and the corresponding modules that are

implemented, the user is able to automatically generate tile images or a single map image

from OSM geodata. The code for the GIMP plug-in is split up into different components

which are illustrated in figure 5.7. It gives an overview of the code modules (dark green),

the processing steps (light blue) and their interactions with other components. A detailed

explanation of this diagram is provided in the following paragraphs.

As described in chapter X, a GIMP plug-in script file has to be stored either in the system

user’s GIMP plug-ins directory or at any other location that GIMP is aware of. For this

project, the file create gimpmap.py is the main script for the GIMP plug-in that is imple-

5.3. AUTOMATED PROCESSING 73

Property Description

stroke line The stroking options for the outline

stroke line The stroking options for the hatching

image The image that is used for masking

fill color The color with which the polygon is filled

Table 5.14: JSON style file polygons feature properties

Property Description

color Color for the line stroke

brush Name of the GIMP brush

brush size Size of the brush in pixel

dynamics GIMP dynamics applied to the brush

Table 5.15: JSON style file stroke line properties

Property Description

[same as for stroke line]

angle Angle of the hachure relative to the Y-axis

spacing Distance between two hachure lines

Table 5.16: JSON style file stroke hachure properties

Property Description

font size Size of the font

color Color of the font

stroke line Stroking options for the polygon outline

font Name of the font

effect Text rendering method

Table 5.17: JSON style file polygons text properties

74 5. IMPLEMENTATION OF AN AUTOMATED PROCESS WITH GIMP

Property Description

buffer size Size of the buffer around the text in pixel

name Name of the effect

buffer color Color of the buffer

Table 5.18: JSON style file effect text properties

Figure 5.7: Workflow script structure

5.3. AUTOMATED PROCESSING 75

mented using the Python-Fu scripting interface to add the map creation functionalities

to GIMP. It serves as the entry point of the process and can be triggered either from the

system console command-line interface using the following command

1 gimp -i -b ’(python -fu-create -gimpmap RUN -NONINTERACTIVE "config.json"

2 "tiles")’ ’(gimp -quit 1)’

or from inside the GIMP graphical user interface by navigating to Scripts¿CreateGIMPmaps

inside the GIMP window’s menu bar. This opens a dialog which requires the same input

parameters as the console command that can be defined in text fields. The execution of

the plug-in script to initiate the processing requires two input parameters that need to be

passed to the script:

• The location of the JSON configuration file which provides the required data for the

desired rendering. This includes the spatial extent and other variables like the style

definition file that should be used for the rendering style or the output directory

• The desired output format which is either a collection of tile images or a single map

image

Depending on whether tiles or just a single map should be rendered, the plug-in script is

instantiating the respective class that implements the rendering method which are TileRen-

dererGimp for tile rendering and MapRendererGimp for map rendering. The classes are

components of the gimpmaps Python module which is available in the same folder as the

GIMP script. These renderer classes inherit common functionalities like the parsing of con-

figuration files or feature querying from their abstract parent classes named TileRenderer

and MapRenderer which are also depending on the Renderer class (renderer.py). This

class is the base class for the entire process. As the first step, the configuration JSON

file is parsed to get all necessary input parameters using the functions from the Renderer

class. For the subsequent rendering of images, the TileRenderer or MapRenderer classes

are calling their render() method that defines the steps for the image creation. This is the

main differentiation during the rendering process for tiles or a single map and at this point,

the draw() function is used to manage the image rendering. The map tiles are generated

inside a loop for each tile extent that is calculated from on the full spatial extent defined

in the configuration file and the zoom levels (see slippy maps tiling scheme, chapter X).

76 5. IMPLEMENTATION OF AN AUTOMATED PROCESS WITH GIMP

Figure 5.8: Simplified UML diagram of the core rendering classes

For a single map, the zoom level that is equivalent to the defined scale is calculated for

the styling as well as the pixel dimensions of the output map image. This is calculated

from the full extent in meters, the given scale and the output print quality which is set to

300 Dots per Inch (DPI) by default. At this point, the map or tile image is created in a

non-interactive GIMP session employing mainly GIMP Procedural Database (PDB) func-

tions which are provided by the GimpRenderer class. Tile images are uniformly created

with the standard tile size of 256 pixels. The class dependencies are implemented in this

way because there are tile and map rendering classes that do not use the GIMP rendering

module but create SVG files. This was implemented for test reasons as the debugging of

the functionalities was challenging due to the fact that it can only be started from inside

GIMP and not in an IDE. Figure 5.8 gives an overview of the classes in a simplified UML

class diagram. A more detailed diagram can be found in appendix A.1.

5.3. AUTOMATED PROCESSING 77

Now the map features are processed iterating the features that have an associated styling

defined in the style file for the given zoom level in the order of their z order value. For

each line and polygon feature the geometry that is contained inside the image bounding

box is queried from the geodatabase. Geometries are not split so the feature’s full ge-

ometry is returned which might also be mostly outside the bounding box extent. The

transformation from geographic coordinates to image coordinates is taking place inside

the PostGIS enabled database and this data can then be modified applying estrangement

methods described in the previous section 4.5. The geometry is then added to the image

through PDB functions again with the drawing parameters for the styling applied. A more

detailed description of the feature processing and image rendering is provided in the next

section. After all features have been processed, the image is rendered in GIMP and saved

as an image file. The tile images are stored in a WMTS compatible directory structure

that was already introduced in 4.5.

5.3.3 Feature Processing

As described in the previous section, the map features are processed in an iteration loop.

All geometric features declared for rendering by the zoom level value in the styling file

are consecutively processed in the ascending order of their specified z order value. Based

on the spatial extent that is calculated for the tile image or given for the full image, the

geometry features are queried from the PostGIS enabled OSM geodatabase. Simplification

of geometry, generalization of polygons and coordinate transformation steps are performed

inside the database and are described in the next section in detail. The returned geometry

data is then modified applying the estrangement methods which are explained in chapter

section 5.2.3. Lines and polygon outlines are altered using jittering and the hatching is

computed for the polygon fill if no mask image is selected. Before the feature processing,

an image was created in a non-interactive GIMP session that is now accessed from the

components of the processing to perform the rendering of the features. Once the feature

processing iteration is finished, the image is saved as an image file. An overview of this

process for the derivation of tiles is shown in figure 5.9.

The feature processing for the single map is similar to the tile processing except for two

aspects. First, the image extent has to be computed as it is not predefined like for tiles.

Furthermore no loop is required to calculate the tile bounds that define the image but

78 5. IMPLEMENTATION OF AN AUTOMATED PROCESS WITH GIMP

Figure 5.9: Workflow detail tiles

only the print resolution is calculated. Secondly, the rendering of text labels is added

which requires another database access that is a different from the line and polygon query.

This is only implemented for the map rendering and not for the tile rendering as the

determination of text extents and placement is separate field of research that could not

be covered within the scope of this work. However, a simple approach was developed that

demonstrates the capabilities of GIMP with respect to this topic but it can only be used

with polygon features. The label text is taken from the name of the OSM polygon feature

in the database. Additionally, the centroid or another point on the surface if the centroid

is outside the polygon is computed and returned in the text feature query instead of the

actual geometry. Geographic coordinates are also transformed into image coordinates and

only the X and Y image coordinates for the point are returned. Figure 5.10 illustrates the

processing for a single map with the additional text drawing functionality.

Database functions

A significant amount of processing takes place directly inside the database and not within

the actual automation script in Python. Several stored procedures in the PostgreSQL

procedural language PL/pgSQL have been added to the database to execute operations for

the bounding box computation, generalization and coordinate transformation. This is also

caused by the fact that the GIS-capabilities of the functions available in PostGIS enabled

database provide some general performance benefits. OSM Key-value tags included in the

5.3. AUTOMATED PROCESSING 79

Figure 5.10: Workflow detail map

style file are used as a filter condition in the selection queries performed on the database

tables. Based on the spatial extent defined for a map image or calculated for tiles, a buffer

depending on the styling is added to the extent which is used for the spatial query. This

is important to realize tile mosaicing later as some features might not consistently appear

on adjacent tiles. All geometry features that intersect this bounding box area defined by

upper left and lower right coordinates are selected in the query for the feature type. The

tile or map extent is computed in meters during the first part of the rendering process and

then passed to the feature processing. For every feature type, the buffer is then calculated

in meter depending on the stroke size that is specified in the style configuration file. It is

equivalent to a half of the stroke size in pixel and added to the extent of the tile to get

the bounding box for the query. This is necessary as the stroking of the geometry line

can also overlap with neighbouring tiles depending on the size of the line stroke which is

illustrated in figure 5.11.

The PostGIS geometry of polygon features is also processed during the query with a

number of generalization steps being executed. Similar to the erosion/dilatation principle

in image processing, the ST Buffer method is applied on every polygon with a buffer

radius that depends on the actual size of one image pixel in meter. The function is

80 5. IMPLEMENTATION OF AN AUTOMATED PROCESS WITH GIMP

Figure 5.11: Tile bounding box buffering

Figure 5.12: Polygon generalization schema

executed four times, at first with a negative radius for shrinking (erosion), then two times

with a positive radius (dilatation) for growing and then again with a negative radius

(erosion). This removes small holes and outlines with too much detail and the defined

mitre option for the joining of corners preserves an angular outline. If an outline stroke

is defined, a fifth negative buffering is applied with half of the stroke brush size as the

radius. This procedure is illustrated in figure 5.12 with the general steps (1 to 3), the

result of these (4) and the alternative additional processing for the negative outline buffer

(5,6). An example of the generalization process is shown in figure 5.13 for the inner city

of Dresden comparing the OSM geometry before the process and after.

5.3. AUTOMATED PROCESSING 81

Figure 5.13: Polygon generalization example

Figure 5.14: Schema database functions

Geometries are also simplified using the ST SimplifyPreserverTopology function of Post-

GIS which implements the Douglas-Peucker algorithm. Polygons are simplified after their

generalization, whereas lines are only simplified. Following that step, all spatial coordi-

nates of geometry features are transformed from the database coordinate reference system

into image coordinates inside the database employing the ST Translate and subsequently

the ST Scale function. Finally, the PostGIS function ST AsSVG is used to return the

geometry in the SVG format which is used for further processing. Figure 5.14 gives an

overview of all the database functions that were implemented and the used PostGIS func-

tions. They can be found in the file gimpmaps functions.sql which is stored in the directory

/sql/functions/ on Github or inside the rendering directory on the compact disc.

82 5. IMPLEMENTATION OF AN AUTOMATED PROCESS WITH GIMP

5.3.4 Image rendering

The experimental rendering is restricted to two feature types for map tiles and three feature

types for a map image. These are lines, polygons and text labels for the single map which

have been mentioned earlier. In this section the rendering of these objects is described

after they have been queried from the database and processed. GIMP functions that

are provided via the Python-Fu scripting interface from the GIMP Procedural Database

(PDB) are used for this purpose. An overview of the script functions has been given in

the previous section 3.2 which is the reason why the focus of this section is on the actual

rendering of the final results. The first step is always the creation of an image in a non-

interactive GIMP session. After a new image is created, a background image is added to

the image first which has either the standard size of the tile (256 pixel) or integral multiples

of that (512, 768, 1024 pixel etc.) which requires a image span value in the configuration.

This parameter is defined for all images so all images used must have the same integral

multiple size. The background image has to be seamless as it is used repeatedly for tiles

and also in most cases for single maps. For each feature a layer group is added that serves

as a container for the canvas and other drawing objects like masks. After that, first the

polygons are drawn, then the lines and finally the text for the single map images, all into

separate layers as mentioned before. Geometric data of lines and polygon outlines are

imported from the geodatabase using the SVG import and stroking capabilities for paths

in GIMP. The drawing order of features is specified in the style configuration file.

Lines

Line geometry is the basic feature that can be rendered using SVG formatted data. The

SVG path defining the line string is imported as a text string containing the SVG path

information. Multiple paths can be imported at once but it is important to notice that

all the imported paths are also drawn at the same time. Paths cannot be stored in

different layers and have to be removed from the image session after they have been

drawn. The drawing of the line paths is taking place applying the style parameters which

are set as the so called context of the image. Context information includes the following

information:

• Name of the brush

5.3. AUTOMATED PROCESSING 83

• Name of the paint method (e.g. Pencil, Airbrush, etc.)

• Stroke size (in pixel)

• Foreground and background color

• Name of the brush dynamics to use

Once the context is set to the desired parameters, the paths can be drawn using the vector

stroking functionality of GIMP that was already explained in chapter X.

Polygons

Outlines and the computed hatching are rendered in the image in the same way as regular

lines which is described in the paragraph before. However, polygons can also be drawn

differently than that using masks or just a fill color. A mask can also be defined using a

SVG vector path and a PDB function is available to apply the vector outline as a selection

of image pixels that provide a mask in a raster format. The mask can then be used on

an imported image that has the same characteristics as a background image. Like the

background, it has to be seamless for tiling and have an image size that is 256 pixel or an

integral multiple of it. The interactive creation of images that meet these requirements

using GIMP is described in chapter 3.2.

Text

Text characters are also defined by their vector outline with its fill drawn on the image in

a raster format which is similar to a mask selection. These outline vectors can be obtained

from every text area that was added to the image by a PDB function. Aside from that,

the text drawing basically makes use of the methods that have already been explained

in various combinations that are offered for the image rendering. In this experimental

project, text can only be added for areas i.e. for polygon features. Its name is queried

from the database along with the coordinates of the centroid that have been transformed

to coordinates relative to the image dimensions.

Two different methods can be considered to render the text. One option is that it is drawn

with a specified fill color, a font and a font size as a text area which is then rendered in

a raster on the image canvas. Or alternatively, the outline of the text vectors that are

84 5. IMPLEMENTATION OF AN AUTOMATED PROCESS WITH GIMP

Figure 5.15: Schema text rendering

defined by a font and size can be stroked like a path using a brush and appropriate styling

parameters. Of course both methods can also be combined using different colors, for

example with the outline being drawn on top of the regular text fill. However, adding

solely the text on top of the other feature layers which have been added before makes it

hard to distinguish from these features as the density of objects in the map increases. For

this reason, the possibility to add a buffer around the text is also added using a PDB

function for the growing and shrinking of a pixel selection on the image. The selection is

produced utilizing the vector outline as a raster pixel selection. A number of pixels can be

specified to perform a growing of this area to get a buffer around the initial text characters.

This selected area can then either be filled with a color or used as a mask again. Using

the buffer as a mask on the background image for example produces a buffer that appears

homogeneously with the background and makes the image appear less cluttered. Figure

5.15 shows the different elements of a text label that can be rendered.

5.3.5 Output and WMTS

The final output format of the images that are rendered during the process can be specified

in the configuration file as described before. Results can either be stored as a Portable

Network Graphics (PNG) image file or a XCF GIMP file which preserves all elements

of the rendering e.g. layers and masks and therefore allows supplementary editing with

GIMP. An output location can either be defined in the configuration file or left blank

which stores the generated files within a results folder along inside the project directory

that is named by the process and the system time at the start of the rendering process.

However, a few things need to be considered regarding the tile generation. The tile images

are already stored in a WMTS compatible directory structure and by default only PNG

graphics are created. Inside the defined output directory a tree structure of folders is

created based on the tilename scheme for slippy maps that was introduced in section 4.5.

5.3. AUTOMATED PROCESSING 85

Figure 5.16: Schema tile naming

A directory is created for each zoom level to which subdirectories are then added. These

subdirectories are named after the tile position in horizontal direction (column) which is

calculated from the geographic bounds. In these folders, the actual image files are stored

with the vertical position (row) of the tile as the filename. Figure 5.16 illustrates this

structure of the tile images that are georeferenced in this manner.

Tile images that are stored in a directory structure like that can easily be used in a web

mapping application. To make the tiles that are created in this rendering process available

via the Internet in such an application, the Web Map Tile Service (WMTS) standard is

used. It is introduced in section 4.5 and provides a common way to serve map tiles in a

client-server architecture. GIS software and mapping libraries like OpenLayers or Leaflet

can handle and display this data. For the realization of a WMTS server for pre-rendered

tiles in this project, the open-source software TileServer PHP was used 1. It is developed

and maintained by Klokantech and makes use of an standard Apache PHP web server

that meets certain requirements. These are the support of .htaccess and the mod rewrite

rules that can be configured for every Apache webserver installation. A single PHP script

is placed on a server and all available tile layers are displayed in a browser interface.

Tiles are stored within a designated directory and a JSON file with spedifications about

the extent called metadata.json needs to be stored along with the zoom level directories.

Additionally, a password protection can be set to restrict the access to the service.

1https://github.com/klokantech/tileserver-php

https://github.com/klokantech/tileserver-php

86 5. IMPLEMENTATION OF AN AUTOMATED PROCESS WITH GIMP

6 Processing results and evaluation

In this chapter, the results of the processing that was implemented as described in the

previous chapter are presented and evaluated. This includes map and tile images on

the one hand and text rendering on the other. Problems that occurred concerning the

rendering parameters are discussed in the evaluation.

6.1 Results

Maps

Example renderings based on the embroid style map that was developed as a interactive

process are presented along with a different style that is based on other painting parame-

ters. Furthermore examples of an additional sketchy or hand-drawn styling are presented.

For all examples a single map and a solution with tiles that are conform with the WMTS

standard are given. In addition, the capabilities of the text rendering that is possible with

GIMP are shown. In the processing, only line and area OSM features were used which

provide sufficient content for a sample map. These cover the road network, rivers and ma-

jor areas of landuse, including buildings. Relevant OSM tags for line and polygon features

that provide enough content to fill a map of a urban area are listed in the appendix (table

A.3 and A.4).

The aim of the work was to provide an automated solution to the interactive map ren-

dering process that was explained in section 3.3.3. In this context, a styling inspired by

Chinese embroidery was developed and as a first step, this style had to be prepared for

the automation. At first, the used background and fill images for the area masks had

to be created by hand as the interactive processing could not be adequately automated.

Furthermore, this technique can be used for other styles as well. Cutouts of the originals

87

88 6. PROCESSING RESULTS AND EVALUATION

Figure 6.1: Embroid tiles at zoom level 14 (left), 15 (center) and 16 (right)

were transformed to seamless and tileable images for the filling masks as described in sec-

tion 3.2. Furthermore, the styling parameters had to be stored in the JSON style format

that was introduced in section 5.3.1. The files that define the styling can be found in the

style directory of the gimpmaps application and is called embroid. It can be found on the

compact disc that is handed in with this thesis.

The styling parameters like the colors have been slightly changed due to the adjustments

that had to be made. In addition, a different data source was used and therefore the

selection tags of the map features are not exactly the same. This results in a different

classification of some features but a generally similar categorization is achieved. Based on

this styling, the tiles are rendered and a result is shown in figure 6.1 where screenshots of

the web application tiles are shown for three different zoom levels. It can be seen that dif-

ferent features are displayed at each zoom level and the building polygons are generalized.

Additionally, only buildings of a minimum size are rendered for each zoom level according

to the definitions in the style configuration file. And even though the brush that is used

has a random component in its brush dynamics, significant visible inconsistencies at tile

borders do not occur. This can be contributed to the disturbance effect that is a result of

the random brush angle which covers possible visible inconsistencies.

These tiles are provided in a WMTS which can be accessed via the Internet URL (http://

wwwpub.zih.tu-dresden.de/~s4410781/ma/tiles_embroid/). Screenshots of the web

application and the tiles displayed in an OpenLayers web application and QuantumGIS

are displayed in appendix A.2 and A.3. For this example application, an area arount the

city center of Dresden was rendered for the zoom levels 14 to 18. The resulting 2606 tiles

occupy approximately 350 megabytes of disk space and the rendering of these took around

http://wwwpub.zih.tu-dresden.de/~s4410781/ma/tiles_embroid/
http://wwwpub.zih.tu-dresden.de/~s4410781/ma/tiles_embroid/

6.1. RESULTS 89

Figure 6.2: Chalk tiles at zoom level 14 (left), 15 (center) and 16 (right)

90 minutes.

Additionally, another style was created which is based on the chalk-like brushes which

GIMP has already integrated. The brush Chalk 02 was used for the stroking, polygons

are filled with a simple color and a freely available chalkboard like seamless image from the

website patternlibrary1 is applied as the background. Examples of the web application tiles

are displayed in figure 6.2 for three different zoom levels like for the embroid style.

Aside from the tiles, an option to render a single map is provided. In the configuration,

the desired scale can be defined along with the extent. For the defined extent, which is

1700 by 1200 meters, with a given scale of 1:1000 and a desired print quality of 300 DPI

the resulting image has a resolution of 1295 by 914 pixel.

Finally the results of the hand-drawn emulation have to be presented. Figure 6.4 shows

the rendering with sketchy lines, polygon outlines and hachures for different disturbance

factors. The GIMP Brush Oils 02 was used for this result along with a hatching angle of

35 degrees and a spacing of 8 pixel.

Text

To analyze the text rendering capabilities of GIMP, experimental text rendering techniques

are implemented. As the placement of labels on maps is an own field of research that

requires various parameters, in the scope of this work the focus was reduced on rendering

possibilities with GIMP. Based on the available text functions of GIMP, methods were

implemented to add labels of areas. The positioning was restricted to a simple point-on-

1http://thepatternlibrary.com/#chalkboard

http://thepatternlibrary.com/#chalkboard

90 6. PROCESSING RESULTS AND EVALUATION

Figure 6.3: Embroid map with polygons as masks plus outlines

Figure 6.4: Sketchy map renderings with factor 1, 2 and 5 (left to right)

6.1. RESULTS 91

Figure 6.5: Text label rendering methods: fill,fill and outline, outline (left to right) and

no buffering, buffering with fill color and buffering with background image mask (top to

bottom)

polygon approach as it is provided by PostGIS functions. Therefore, the labeling has only

been tested for the single maps and not for the tiles. This would require a full meta tiling

technique that has to be added to the existing workflow.

With the available functions some example renderings for single map images were achieved.

Examples for a cutout of the inner city of Dresden are shown in figure 6.5 for the label

’Altstadt’ (German for ’old city’). The label is derived from the OSM value name for

polygons which have a value of 9 or 10 for the admin level key. It illustrates the technique

which is based on the outline vectors that can be used as a vector path (see section 3.2).

The freely available font ’Short Stack’ provided by Google Fonts1 was used for these

examples. Figure 6.6 shows an example of the rendered map with the fill-plus-buffer effect

(1st column, 2nd row) used for the inner city of Dresden for the OSM key-value pair

tourism=attraction.

The text rendering capabilities are limited to drawing a text that is rendered in a predefined

font and its outlines. This is a basic functionality which can be compared to other DTM

tools and GIS software. The additional option to draw and outline employing a custom

brush adds some artistic value to the rendering. Using random dynamics on the outline

also results in a hand-made appearance. Also, the technique of creating a buffer that is

melted with the background image is a technique to create an artistic effect. However, the

labeling depends on other influencing factors like the positioning or multiple tile covering

that can not be controlled by GIMP and the functions that are provided via the Python-

1https://www.google.com/fonts/specimen/Short+Stack

https://www.google.com/fonts/specimen/Short+Stack

92 6. PROCESSING RESULTS AND EVALUATION

Figure 6.6: Text label rendering example for the OSM KVP tourism=attraction

6.2. LIMITATIONS AND POTENTIAL 93

Fu scripting interface. This needs to be implemented using GIS capabilities or custom

code.

6.2 Limitations and potential

In general, GIMP with its utilities offers a wide range of possible style variations that

could be applied. One requirement is however the creation of seamless images by hand

if it is desired. Custom brushes or dynamics can be created by the user and linked with

the scripted rendering. The use of JSON files enables the user to define the styling in

detail but it is necessary to get familiar with the basics of the syntax. Large style files

contain much information that can also be confusing on a first glance and requires some

familiarity for the user to keep an overview. However, the JSON files have proven as a

reliable format to add additional scripting parameters during the continuous development

of the software.

One of the major drawbacks of the scripting interface is the lack of an option to emulate

brush dynamics. This is an option in the GUI but not available via the scripting interface

yet as this feature was first introduced with version 2.61 of GIMP. A possible benefit of this

function for a more artistic and hand-drawn rendering is shown in figure 6.7. A sample

road network is imported as a path in GIMP and drawn using the Stroke Path option. On

the Left Side is the rendering result as it can be achieved using scripting on the right side

the result with emulated dynamics. These include factors line Pressure, velocity or the

direction of the pen and are usually determined by a input device like a computer mouse

or graphics tablet.

The coverage of functionality provided via the PDB is in general not fully equivalent with

the capabilities of GIMP. The interface is not very well documented and still lacks some

functions and has a few bug. For example the function pdb.gimp context set opacity to

set the opacity of a brush is not working. Another shortcoming is the lack of parameters

for random elements like brushes, dynamics or filters in GIMP. An option for specifying

a seed value would be a possible solution to this problem. Especially the artistic filters

would provide great opportunities for a custom styling but they are not usable for tile

creation as they are not deterministic. Satisfactory effects on single map images can be

1http://docs.gimp.org/2.6/en/gimp-introduction-whats-new.html

http://docs.gimp.org/2.6/en/gimp-introduction-whats-new.html

94 6. PROCESSING RESULTS AND EVALUATION

Figure 6.7: Brush comparison: without (left) and with emulated dynamics

achieved though.

A major problem of the hand-drawn emulation with the sketching module occurred with

the unification of polygons that are touching, intersecting or contained by others. The

unification is carried out during the generalization and is necessary to create more ho-

mogeneous polygon areas. If a polygon is on one tile and has a relation to a polygon

that is on another tile, the other polygon is not taken into account for further processing.

This is sometimes the case, e.g. in the way that OSM treats large polygons like Rivers.

They are not stored as a single polygon but of a series of adjacent polygon parts. As

the result, different polygon outlines for adjacent polygons are generated in different tiles

after the polygons are unified in the last step. This problem illustrated in figure 6.8 and

and examples is shown in figure 6.9. In consequence of that, outlines and hachures are

computed differently for different outlines and are therefore not consistent for all tiles,

Due to that, the hand-drawn emulation is only working properly for lines in the map tiles.

A possible solution would be a preprocessing of the geodata or the implementation of a

recursive polygon union function that aggregates connected features. This would require

additional effort in customization of the geodatabase functions and it is not guaranteed

6.2. LIMITATIONS AND POTENTIAL 95

Figure 6.8: Polygon union problem

that PostGIS can provide such a procedure in a way that it can be used as an additional

query in this workflow.

Another reason for preprocessing the dataset is the fact that a decrease of processing

time for the actual rendering process could be achieved. The rendering involves many

different steps and the GIMP interface as well as the database connections for various

queries can be considered as time consuming processes. Possible preprocessing could in-

clude a zoom-level independent simplification with preserved topology or a common low

level generalization progress. This would however make the maintenance of the OSM

geodata more complex as the import and updating cannot be carried out in the way it

is possible with the existing implementation. A limitation concerning the labeling is the

lack of a vectorized text skeleton. Only the outline is a available but for a more custom

rendering, the possibility to stroke the text skeleton with a custom brush as well would

be a valuable additional feature. This could contribute to a more artistic appearance as

it would enable the hand-drawn rendering for text as well. However, this would require a

complete new approach to the vector-based text rendering that cannot be realized inside

GIMP but with additional implemented technology. Research has already been carried

96 6. PROCESSING RESULTS AND EVALUATION

Figure 6.9: Polygon union problem example: The green area north of the river and the

river are correctly spanning the tiles towards the center of the image but there is an

inconsistency on the right

regarding this field but not with respect to cartographic representation. What needs to

be considered as well is the fact that the OSM data does not include world wide data

about coastlines and country boarders. These are added to the standard OSM Mapnik

rendered map using Shapefiles from the Natural Earth website1. However, the data is

not contained in an OSM dump that was used for this processing and did not appear

in any of the renderings because the extents did not cover coastal areas. In general it

is not possible to work with other sources than OSM as the entire database querying

approach is strongly tailored to OSM. A possibility to handle other data sources as well

would be desirable but would require the entire process to be re-structured. Taking the

non-photorealisitc hand-drawn rendering into account, a huge potential for possible addi-

tional techniques exist. More seed-controlled random components could be implemented

to achieve different line alterations in addition to the existing ones. Some improvements

in the line smoothing would also be desirable and the amount of possible approaches is

unlimited. Furthermore, even more artistic painting techniques like multiple line repre-

sentations of the same line or the splitting of lines into many short lines to simulate single

brush marks could be implemented additionally. A possible approach would also be to

reduce lines to single points for a punctiform abstracted rendering. Geometric shapes are

1http://www.naturalearthdata.com/downloads/

http://www.naturalearthdata.com/downloads/

6.2. LIMITATIONS AND POTENTIAL 97

also not implemented yet. This would require standardized outline rendering techniques

for geometric shapes like squares, rectangles, circles or ellipses. A possible application of

these primitives would be the generation of hand-drawn looking map symbols that would

add more point related information to the maps. Finally, the filling of the polygons could

be realized in many different ways. Aside from parallel hatching which is implemented,

other hatching techniques could be created like zig-zag or cross hatching. It would also

be worth analyzing how hatching could be used as an option to add three-dimensional

information to the rendering as stylized shadows for example. Alternatively, completely

different fillings are imaginable, consisting of random or curly lines or randomly placed

primitives like circles.

98 6. PROCESSING RESULTS AND EVALUATION

7 Conclusion

7.1 Summary

The aim of this work was to implement an automated artistic rendering workflow which

could be realized using the open-source image editing software GIMP. As a result of this

work it can be stated that the automation with the GIMP scripting interface has the

potential to create adequate results. Example maps were rendered that feature different

styles, an experimental text rendering was implemented and an approach to create web

map tiles was described. However, the scripting interface lags behind the possibilities

that are available for interactive image editing inside the GIMP GUI and therefore it

is worth to consider the further development of GIMP by its community in the future.

It could be demonstrated that custom styled web application compatible tiles can be

generated based on freely available OSM geodata without preprocessing which enables a

continuous updating of the data as it keeps changing. These tiles can be displayed in

a WMTS application but for some rendering options, there are shortcomings that are

impeding the realization of seamless tiles. Techniques of non-photorealistic rendering can

be implemented using different randomization approaches with SVG and custom brushes.

This offers a wide range of visual abstraction techniques which are supporting an artistic

and hand-drawn rendering of geodata. Randomization techniques however require strict

rules for the rendering of tiles and have to be implemented with great care regarding

deterministic results. To sum it up, GIMP can be adequately employed as a tool for

cartographic rendering but there are some restrictions that are disadvantageous compared

to other tools from the GIS or DTM field.

99

100 7. CONCLUSION

7.2 Outlook

For the further development of the implemented workflow, it is at first important to see

how the evolution of the image editing software GIMP is continuing. Looking back on a

twenty year long history of advancement, it is remarkable that it provides a valuable open-

source alternative to proprietary software product with such a wide range of functionality.

Many features have been implemented recently and it can be assumed that the capabilities

will be extended continuously. For this reason, it is likely that the scripting interface

will become more comprehensive and more elaborated. This may of course also require

some maintenance of the existing code and adaption to possible new standards. Further

improvements of GIMP could also contribute to its use as a cartographic tool to create

maps based on a raster approach and not vector-based like DTM or GIS applications.

Additionally, other software could be taken into account and its automation potential

could be evaluated. Adobe Photoshop for example, an even more powerful proprietary

image editing software lends itself to a detailed examination regarding its automation

capabilities for map and tile creation.

Another field of interest that offers great potential for hand-drawn rendering is the mean-

ingful use of random components. Some approaches of abstraction were introduced in sec-

tion 2.2.2 and some have been developed for this work. The different approaches though

offer a wide range of combination possibilities and possible applications for different results

are as versatile as art itself. Developing these techniques further can be considered as a

main goal of non-photorealistic rendering approaches and as an ongoing challenge in this

field of research. The meaningful abstraction of data for simplification or artistic reasons

is a claim that will require future investigations. In this context, the raster editing capa-

bilities of GIMP could be examined and a workflow could be added for a further raster

based processing of the rendered tiles that is not restricted to vector based sketching and

brush stroking techniques. These processes have to be deterministic to ensure a valid tiling

result but NPR techniques are not always depending on random calculations and so are

the GIMP filters.

Taking the latest developments on the market for custom styled wep maps into account

it is obvious that this is a field on increasing interest. Many people have a desire for a

map styling that goes beyond ordinary map purposes like data visualization and naviga-

7.2. OUTLOOK 101

tion. However, the generation and serving of pre-rendered tiles is a resource consuming

process that could be avoided using vector tiles for example. On the other hand, the best

way to create real artistic rendering results is probably the raster approach with image

processing functionality that works only on existing or pre-rendered tiles. With increasing

technological possibilities though, it might be possible to perform a raster based image

processing on a web server upon client request. Until then, vector tiles can be considered

as the most adequate solution to provide customized styling. For this reason, standards

for the serving of geodata with custom styling need to be developed on the base of vector

tiles and it would be of general interest to have an official standard for that implemented

by the OGC to make it more easy for people to create custom maps, tailored to their

needs or satisfying their artistic and creative desire.

102 7. CONCLUSION

Appendix A Images and Tables

103

104 APPENDIX A. IMAGES AND TABLES

Distribution Density function Example

Uniform

Beta (2,2)

Beta (3,3)

Beta (5,5)

Beta (3,1)

Table A.1: Random distribution examples

105

Name & Distri-

bution
Perimeter shape Example

Computation

time (in ms)

square, Uniform

Square with equal sides be-

ing twice the length of the

given radius

39.294

square beta,

Beta
same as square 191.130

circle, Uniform

circle around original point

with given radius using

Cartesian coordinates

45.396

circle beta, Beta same as circle 194.234

polar, Uniform

circle around original point

with given radius using Po-

lar coordinates

35.705

polar beta, Beta same as polar 121.374

Table A.2: Random point displacement

106 APPENDIX A. IMAGES AND TABLES

Figure A.1: Full UML diagram of the rendering classes

107

Type Tags Description

Road network highway=’motorway’

highway=’motorway link’

highway=’trunk’

highway=’trunk link’

highway=’primary’

highway=’primary link’

highway=’secondary’

highway=’secondary link’

highway=’unclassified’

highway=’tertiary’

highway=’tertiary link

highway=’residential’

highway=’living street’

highway=’service’

Road types in hierarchical or-

der, resembled by different

brush sizes

Paths/Tracks highway=’pedestrian’

highway=’footway’

Major footways

Rivers waterway=’river’ Small rivers and streams

Table A.3: Selected OSM line features

108 APPENDIX A. IMAGES AND TABLES

Type Tags Description

Landuse highway=’motorway’

landuse=’forest’

landuse=’village green’

landuse=’grass’

landuse=’recreation ground’

leisure=’park’

Areas with a vegetation land

cover

Water waterway=’riverbank’

natural=’water’

Water areas, e.g. large rivers

and lakes

Buildings building IS NOT NULL All buildings

Other areas area=’yes’ Areas, e.g. bridges or pedes-

trian areas

Table A.4: Selected OSM polygon features

Figure A.2: WMTS application OpenLayers

109

Figure A.3: WMTS application QGIS

110 APPENDIX A. IMAGES AND TABLES

Appendix B Compact disc content

master thesis.txt: The pdf version of the thesis

data:

• database: A dump of the OSM database for the Dresden area

• gimp files: Created GIMP files (bruhes and dynamics)

• gimprenderer: Code for the GIMP map and tile rendering

gimpmaps: Tile-/Maprenderer modules

conf: Configuration files

div: Simple HTML map viewer and JSON schema files

styles: Style files

create gimpmaps.py: GIMP Plug-in script

sketching: Sketching modules

• map examples: Example map renderings

• sql: SQL Script with database functions

• tileserver: TileServer PHP example

111

112 APPENDIX B. COMPACT DISC CONTENT

Bibliography

Literary references

Arsanjani, J. J. et al. (2015). “An Introduction to OpenStreetMap in Geographic Infor-

mation Science: Experiences, Research and Applications”. In: OpenStreetMap in GI-

Sciene: Experiments, Research and Applications. Ed. by J. J. Arsanjani et al. Springer

Science and Business Media, New York.

Ashikhmin, M. et al. (2009). Fundamentals of Computer Graphics, Third Edition.

O’Reilly Media, Sebastopol CA, pp. 1–3.

Bassett, L. (2015). Introduction to JavaScript Object Notation: A to-the-point Guide to

JSON. O’Reilly Media, Sebastopol CA, pp. 1–5.

Bertin, J. (1983). Semiology of Graphics: Diagrams Networks Maps. The University of

Wisconsin Press, Madison, pp. 84–86.

Burdziej, J. (2011). “Using Web Map Service (WMS) with Styled Layer Descriptor (SLD)

for creating dynamic and user oriented maps”. In: roceedings of the 11th International

Symposium on Location-Based Services. Ed. by G. Gartner and H. Huang. Research

Group Cartography, Vienna.

Cartwright, W. (2003). “Maps on the Web”. In: Maps and the Internet. Ed. by W.

Cartwright. Elsevier Science, London.

113

114 BIBLIOGRAPHY

Cartwright, W. (2008). “Delivering geospatial information with Web 2.0”. In: Interna-

tional Perspectives on Maps and the Internet. Ed. by M. P. Peterson. Springer-Verlag,

Berlin Heidelberg.

— (2009). “Art and Cartographic Communication”. In: Cartography and Art. Ed. by W.

Cartwright and G. Gartner. Springer-Verlag, Berlin Heidelberg.

Cartwright, W., Gartner, G., and Lehn, A. (2009). “Maps and mapping in the

Eyes of Artists and Cartographers – Experiences from the International Symposium

on Cartography and Art”. In: Cartography and Art. Ed. by W. Cartwright, G. Gartner,

and A. Lehn. Springer-Verlag, Berlin Heidelberg.

Cerba, O. and Cepicky, J. (2012). “Web Services for Thematic Maps”. In: Online Maps

with APIs and WebServices. Ed. by M. Peterson. Springer-Verlag, Berlin.

Clouston, A. and Peterson, M. P. (2014). “Tile-Based Mapping with Opacity”. In:

Developments in the Theory and Practice of Cybercartography: Applications and indige-

nous mapping, Second Edition. Ed. by D. R. F. Taylor and T. P. Lauriault. Elsevier,

Amsterdam.

Dong, L. (2015). The Derivation of Digital Embroid Styled Maps. TU Dresden, Master

thesis.

Field, K. (2009). “Editorial Preface - Art in C’art’ography”. In: The Cartographic Journal

Vol. 46 No. 4 Art & Cartography Special Issue. The British Cartographic Society.

Field, K. and Demaj, D. (2012). “Reasserting Design Relevance in Cartography: Some

Concepts”. In: The Cartographic Journal Vol. 49 No. 1. The British Cartographic

Society.

Gaffuri, J. (2012). “Toward web mapping with vector data”. In: Geographic Information

Science: 7th International Conference, GIScience 2012, September 18-21, Proceedings.

Ed. by N. Xiao et al. Columbus, OH, USA.

LITERARY REFERENCES 115

Gartner, G. (2009). “Web mapping 2.0”. In: Rethinking maps: New frontiers in carto-

graphic theory. Ed. by M. Dogde, R. Kitchin, and C. Perkins. Routledge, New York.

Gooch, B. and Gooch, A. (2001). Non-photorealistic rendering. A K Peters Ltd, Natick,

pp. 1–28.

Goodchild, M. and Li, L. (2012). “Assuring the quality of volunteered geographic

information”. In: Spatial Statistics 1.

Hertzmann, A. (2010). “Non-Photorealistic Rendering and the Science of Art”. In: Proc.

Int’l Symp. Nonphotorealistic Animation and Rendering (NPAR).

Isenberg, T. (2013). “Visual Abstraction and Stylisation of Maps”. In: The Cartographic

Journal Vol. 50 No. 1. The British Cartographic Society.

Isenberg, T. et al. (2006). “Non-photorealistic rendering in context: an observational

study”. In: Proceedings of the 4th international symposium on Non-photorealistic an-

imation and rendering, June 05-07, 2006, Annecy, France.

Jones, C. (2013). Geographical Information Systems and Computer Cartography. Rout-

ledge, New York, pages.

Kent, A. J. (2005). “Aesthetics: A Lost Cause in Cartographic Theory?” In: The Car-

tographic Journal Vol. 42 No. 2. The British Cartographic Society.

Kresse, W. and Danko, D. (2012). Springer Handbook of Geographic Information.

Springer-Verlag, Berlin Heidelberg, pp. 549–556.

Krygier, J. B. (2000). “Cartography as an art and science?” In: The Cartographic Jour-

nal Vol. 32 No. 6. The British Cartographic Society.

116 BIBLIOGRAPHY

Lechthaler, M. (2010). “Interactive and Multimedia Atlas Information Systems as a

Cartographic Geo-Communication Platform”. In: Cartography in Central and Eastern

Europe. Ed. by G. Gartner and F. Ortag. Springer-Verlag, Berlin Heidelberg.

Li, S., Dragicevic, S., and Veenendaal, B. (2011). “Advances, challenges and future

directions in web-based GIS, mapping services and applications.” In: Advances in Web-

based GIS, Mapping Services and Applications. Ed. by S. Li, S. Dragicevic, and B.

Veenendaal. Taylor & Francis Group, London.

Lienert, C. et al. (2012). “Current Trends in Vector-Based Internet Mapping: A Tech-

nical Review”. In: Online Maps with APIs and WebServices. Ed. by M. Peterson.

Springer-Verlag, Berlin.

Lum, E. and Ma, K.-L. (2001). “Non-Photorealistic Rendering using Watercolor In-

spired Textures and Illumination”. In: IEEE Transactions on Visualization and Com-

puter Graphics, 5(01).

MacEachran, A. M. (1995). How Maps work: Representation, Visualization and Design.

Guilford Publications, New York, pp. 8–12.

Mauldin, S. (2015). Data Visualizations and Infographics. Rowman & Littlefield, London,

pp. 27–29.

Mooney, P. and Corcoran, P. (2013). “Understanding the Roles of Communities in

Volunteered Geographic Information”. In: Progress in Location-Based Services. Ed. by

J. Krisp. Springer-Verlag, Berlin Heidelberg.

Obe, R. and Hsu, L. (2015). PostGIS in Action. Manning Publications Co., Shelter

Island, pp. 4–9.

Palazzolo, A. and Turnball, T. (2012). Mapping with Drupal. O’Reilly Media, Se-

bastopol CA, p. 20.

LITERARY REFERENCES 117

Peck, A. (2008). Beginning GIMP: From Novice to Professional (Expert’s Voice in Open

Source) 2nd Edition. Springer Science and Business Media, New York.

Peterson, M. P. (2008). “International Perspectives on Maps and the Internet: An In-

troduction”. In: International Perspectives on Maps and the Internet. Ed. by M. P.

Peterson. Springer-Verlag, Berlin Heidelberg.

— (2012). “Online Mapping with APIs”. In: Online Maps with APIs and WebServices.

Ed. by M. P. Peterson. Springer-Verlag, Berlin.

— (2014). Mappping in the Cloud. The Guilford Press, New York, p. 31.

— (2015). “Evaluating Mapping APIs”. In: Modern Trends in Cartography: Selected Pa-

pers of CARTOCON 2014. Ed. by J. Brus, A. Vondrakova, and V. Vozenilek. Interna-

tional Publishing, Switzerland.

Ramm, F., Topf, J., and Chilton, S. (2011). OpenStreetMap: Using and Enhancing

the Free Map of the World. UIT, Cambridge, 3–5 and 307.

Reed, C (2011). “OGC Standards: Enabling the geospatial web”. In: Advances in Web-

based GIS, Mapping Services and Applications. Ed. by S Li, S. Dragicevic, and B.

Veenendaal. Taylor & Francis Group, London.

Rosin, P. L. and Lai, Y.-K. (2013). “Artistic minimal rendering with lines and blocks”.

In: Graphical Models Volume 75, Issue 4. Elsevier.

Sample, J. and Ioup, E. (2010). Tile-Based Geospatial Information Systems: Principles

and Practices. Springer Science & Business Media, New York, pp. 127–129.

Sayeed, R. and Howard, T. (2006). “State of the Art Non-Photorealistic Rendering

(NPR) Techniques”. In: Theory and Practice of Computer Graphics M. McDerby, L.

Lever (Editors), EG UK.

118 BIBLIOGRAPHY

Schmidt, M. and Weiser, P. (2012). “Web Mapping Services: Developments and

Trends”. In: Online Maps with APIs and WebServices. Ed. by Peterson M. P. Springer-

Verlag, Berlin.

Semmo, A. et al. (2015). “Cartography-Oriented Design of 3D Geospatial Information

Visualization – Overview and Techniques”. In: The Cartographic Journal.

Strothotte, T. and Schlechtweg, S. (2002). Non-Photorealistic Computer Graphics:

Modeling, Rendering and Animation. Elsevier Science, San Francisco, p. XVII.

Tateosian, L. G. and Healey, C. G. (2004). “NPR: Art Enhancing Computer Graphics.

Technical Report TR-2004-17”. In: Knowledge Discovery Lab Department of Computer

Science, North Carolina State University.

Watson, R. (2009). “Mapping and Contemporary Art”. In: The Cartographic Journal

Vol. 46 No. 4 Art & Cartography Special Issue. The British Cartographic Society.

Winkenbach, G. and Salesin, D. H. (1994). “Computer-Generated Pen-and-Ink Illus-

tration”. In: Department of Computer Science and Engineering, University of Wash-

ington.

Wood, C. H. and Keller, C. P. (1996). “Design: Its place in Cartography”. In: Carto-

graphic Design: Theoretical and Practical Perspectives. Ed. by C. H. Wood and C. P.

Keller. John Wiley & Sons Ltd, Chichester.

Wood, D. (2006). “Map art”. In: Cartographic Perspectives, Number 53.

Wood, J. et al. (2012). “Sketchy rendering for information visualization”. In: IEEE

Transactions on Visualization and Computer Graphics, 18(12).

INTERNET REFERENCES 119

Internet references

Mapbox map styles. Accessed: 03.08.2015. url: https://www.mapbox.com/editor/

#style.

Mapzen map styles. Accessed: 03.08.2015. url: http://tangrams.github.io/carousel/.

OpenGIS WMTS Specification. Accessed: 05.08.2015. url: http://www.opengeospatial.

org/standards/wmts.

Stamen map styles. Accessed: 03.08.2015. url: http://maps.stamen.com.

SVG W3C recommendation. Accessed: 03.08.2015. url: http://www.w3.org/TR/SVG/.

https://www.mapbox.com/editor/#style
https://www.mapbox.com/editor/#style
http://tangrams.github.io/carousel/
http://www.opengeospatial.org/standards/wmts
http://www.opengeospatial.org/standards/wmts
http://maps.stamen.com
http://www.w3.org/TR/SVG/

	Task Description
	Abstract
	Declaration of authorship
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Motivation
	Objectives
	Structure of the work

	Cartographic context and NPR
	Definitions
	Non-photorealistic rendering
	NPR in computer graphics
	Hand-drawn rendering

	Cartographic communication and visualization
	Cartography and art
	Web Mapping

	Image editing and web map rendering
	Image editing software
	Raster image editing with GIMP
	Interactive editing
	Plug-ins and scripting

	Map rendering
	Web map rendering techniques
	Comparison of vector and raster based approaches
	An interactive workflow with GIMP

	A concept for automated processing
	Comparison of influencing factors of a vector and raster based approach
	Requirements and goals of automation
	Definition of input parameters
	Concept for an automated process with GIMP
	Technical components
	JSON
	OpenStreetMap
	Database environment
	SVG as exchange format
	Web map tile service

	Implementation of an automated process with GIMP
	Geodata setup
	Data acquisition
	Data import and update

	Sketch rendering
	Displacement and randomization
	Hand-drawn emulation
	Hatching

	Automated processing
	Configuration files
	Script structure
	Feature Processing
	Image rendering
	Output and WMTS

	Processing results and evaluation
	Results
	Limitations and potential

	Conclusion
	Summary
	Outlook

	Appendix Images and Tables
	Appendix Compact disc content
	Bibliography

