

Technische Universität München

Faculty of Civil, Geo and Environmental Engineering

Department of Cartography

Prof. Dr.-Ing. Liqiu Meng

Procedural 3D modeling and visualization

of geotypical Bavarian rural buildings in

Esri CityEngine software

Ieva Dobraja

Master’s Thesis

Submitted: January, 2015

Study Program: Cartography (Master)

Supervisors: Dr.-Ing. Mathias Jahnke (TUM)

Dr.-Ing. Özgür Ertac (Esri Deutschland GmbH)

Cooperation: ESRI Deutschland GmbH

2015

Declaration of Authorship

I hereby declare that the thesis submitted is my own unaided work. All direct or indirect sources

used are acknowledged as references.

This paper was not previously presented to another examination board and has not been

published.

Place and date (Signature)

Abstract and Key Words

i

Abstract

The aim of the Master’s Thesis “Procedural 3D modeling and visualization of geotypical

Bavarian rural buildings in Esri CityEngine software” is to establish a 3D model library for

rural Bavarian buildings and to create a 3D model of geotypical buildings for the case study

area. The purpose of this thesis is to test if the software CityEngine, which is based on

procedural modeling and mainly used for creating a 3D content of urban areas, can be

applied for the 3D modeling of rural areas.

As the area of interest with typical Bavarian buildings chosen for this thesis was Seefeld, a

municipality in the district of Starnberg, located southwest of Munich. It lies on the northern

coast of the Pilsen Lake.

The task of the thesis is to create a 3D model of geotypical Bavarian rural buildings for the

case study area by using procedural modeling. This task includes four main steps. The first

step is the collection of all necessary data and attributes of buildings to create a database

for modeling. This step includes also the photo collection of typical façade textures. The

second step is to generate CGA rule file. The next step is the creation of the 3D model in

Esri CityEngine software, using the rule files created. At the end, the final results of the 3D

model generated are published as CityEngine WebScene.

The final result is a procedurally generated 3D model of the case study area.

Key Words

3D modeling, Procedural modeling, CityEngine, CGA, rule file, WebScene, Bavarian rural

buildings

Table of Contents

ii

Table of Contents

Abstract ... i

Key Words ... i

Table of Contents .. ii

List of Figures ... iv

List of Tables ... vi

Abbreviations .. vii

1 Introduction ... 1

1.1 Motivation ... 1

1.2 Objectives .. 1

1.3 Structure of the Thesis ... 1

2 Fundamentals and Applications of 3D Modeling ... 3

2.1 Related Work ... 3

2.2 Definition of 3D modeling .. 8

2.3 Procedural 3D modeling .. 8

2.4 Esri CityEngine as a tool for procedural 3D modeling ... 10

3 Case Study Area .. 15

3.1 Description of the case study area ... 15

3.2 Description of necessary data .. 19

4 Data Processing ... 22

4.1 Data preparation before import into Esri CityEngine .. 22

4.2 Data import into CityEngine .. 27

4.3 Steps of procedural modeling using CityEngine ... 28

4.4 Problems during the modeling process .. 30

5 Results ... 37

6 Summary ... 40

6.1 Conclusion ... 40

6.2 Problem overview .. 40

6.3 Future work .. 41

7 References ... 42

Table of Contents

iii

Appendix .. 45

Appendix A: Rule file for buildings ... 46

List of Figures

iv

List of Figures

Figure 1-1: Structure of the thesis .. 1

Figure 2-1: Image-Based Modeling and Rendering (IBMR) (Luan et al. 2008) 4

Figure 2-2: The pipeline of the city creation tool. The dark boxes show the results and data

structures of the tools in the white rectangles (Parish & Müller 2001) .. 5

Figure 2-3: The scope of the shape (Müller et al. 2006) .. 5

Figure 2-4: A typical workflow of CityEngine (Watson et al. 2008)... 6

Figure 2-5: Principle of the procedural modeling (Radies 2013a) ... 7

Figure 2-6: 2D zoning plan (Radies 2013a) ... 7

Figure 2-7: 3D zoning plan (Radies 2013a) ... 8

Figure 2-8: Principles of the procedural modeling (Schubiger 2012) ... 9

Figure 2-9: Efficiency of a procedural modeling in comparison with a manual modeling (Schubiger

2012) ... 9

Figure 2-10: Overview of import and export data formats in the CityEngine software (Radies

2013b) ... 10

Figure 2-11: The CityEngine user interface (Esri 2014b) .. 11

Figure 2-12: Example of 2D data (Esri n.d.(a)) ... 12

Figure 2-13: A graphical representation of a rule file in CityEngine ... 13

Figure 2-14: Application possibilities of 3D city models created in CityEngine (Schubiger 2012)

 .. 13

Figure 2-15: Creation steps of a 3D city model in the CityEngine software (Esri n.d.(b)) 14

Figure 3-1: Location of Seefeld (Google 2014) ... 15

Figure 3-2: Case study area .. 16

Figure 3-3: Seefeld Palace (Seefeld24.de 2000) .. 17

Figure 3-4: Church in Seefeld (Gemeinde Seefeld 2012) .. 17

Figure 3-5: Town hall of Seefeld ... 18

Figure 3-6: Examples of typical buildings in Seefeld .. 19

Figure 3-7: Attribute table of buildings .. 20

Figure 3-8: Imagery base map .. 20

Figure 3-9: Height map .. 21

Figure 3-10: Examples of vegetation models (Esri 2014c) .. 21

Figure 4-1: Attribute table of buildings with the calculated values ... 22

Figure 4-2: Building footprints in ArcMap before the simplification .. 23

Figure 4-3: Building footprints before the simplification in CityEngine 23

Figure 4-4: Generated buildings in CityEngine before the simplification of footprints 24

Figure 4-5: Building footprints after the simplification in ArcMap ... 24

Figure 4-6: Buildings generated in CityEngine after the simplification of footprints 25

Figure 4-7: Generated points for the locations of trees .. 25

List of Figures

v

Figure 4-8: Bavarian church model downloaded from 3D Warehouse (Goesgen 2014) 26

Figure 4-9: Bavarian Church model edited for the Seefeld project ... 26

Figure 4-10: The 3D model of Bavarian church imported into the CityEngine scene 27

Figure 4-11: The building footprints and the street network imported into CityEngine scene 28

Figure 4-12: Representation of rule files .. 29

Figure 4-13: Standard CityEngine workflow (Viinikka 2014) .. 29

Figure 4-14: Doors of the buildings on the wrong façade .. 30

Figure 4-15: “Set First Edge” function .. 31

Figure 4-16: Result after changing “the First Edge” .. 31

Figure 4-17: Complex shape buildings with too many doors .. 32

Figure 4-18: Result of complex shape buildings .. 32

Figure 4-19: Building and street network mismatch .. 33

Figure 4-20: Result after moving the streets .. 33

Figure 4-21: Windows at the intersections of buildings .. 34

Figure 4-22: Buildings after avoiding window creation at intersections 34

Figure 4-23: Roof overhang problem ... 35

Figure 4-24: Building with created roof overhangs ... 36

Figure 5-1: 3D model of the case study area .. 37

Figure 5-2: Final results of the 3D model of the case study area ... 39

Figure 5-3: A car model and models of people added to the final result 39

List of Tables

vi

List of Tables

Table 4-1: Overview of the data imported ... 27

Abbreviations

vii

Abbreviations

CAD – Computer Aided Design

CE – CityEngine

CGA – Computer Generated Architecture

DTM – Digital Terrain Model

DXF – Drawing Interchange File Format

GIS – Geographic Information Systems

JPEG – Joint Photographic Experts Group (a method used of lossy compression for digital images)

KMZ – Zip-compressed KML (Keyhole Markup Language) file

LoD – Level of Details

OBJ – a 3D format that describes 3D geometry

OSM – OpenStreetMap

SHP file – Shape file

TIFF – Tagged Image File Format (a computer file format for storing raster graphics images)

1 Introduction

1

1 Introduction

1.1 Motivation

Nowadays 3D modeling and visualization of large cities have become more and more popular.

Accordingly there are new solutions to make these processes faster and cheaper. The reason for

their growing popularity is the wide variety of usage areas for 3D city models. They can be

used further not only for research and education purposes in urban planning and design, but

also for virtual reality in the movie and gaming industries (Parish & Müller 2001).

The best method for need to create a large size 3D city model in a short time and with low

expenses is procedural modeling, which is a 3D model creation using rules and algorithms. It

is a cost-effective solution for generating 3D urban contents (Watson et al. 2008).

Procedural modeling in the software Esri CityEngine has been mainly used for creating a 3D

model of urban areas. The modeling is based on CGA (Computer Generated Architecture) rules.

CGA is a scripting language quite appropriate for generating architectural 3D content (Parish

& Müller 2001).

Previous researches in this field have showed that the software CityEngine is appropriate for

modeling cities. The purpose of this Master’s thesis is to test if these procedural modeling

principles can be applied for modeling a 3D content of rural areas as well.

1.2 Objectives

The aim of the thesis is to establish a 3D model library for rural Bavarian buildings and to create

a geotypical 3D model of the chosen case study area using procedural modeling.

To achieve the aim of the thesis following tasks were completed:

 Literature review of related work in 3D modeling and procedural modeling

 Data collection for the case study area

 Data preparation for the modeling process

 3D model creation of the case study area

 Publication of the results as CityEngine WebScene

By means of the above mentioned steps, we can obtain an overview of typical Bavarian rural

buildings in the chosen case study area.

1.3 Structure of the Thesis

This Master’s Thesis consists of introduction, a theoretical part, a practical part, results and

summary (figure 1-1).

Figure 1-1: Structure of the thesis

1 Introduction

2

The thesis starts with the introduction, which gives an overview of the topic, stated aim and the

structure of the thesis.

The theoretical part of the thesis describes fundamentals and applications of 3D modeling. It

includes an overview of related work in this field, a general explanation of 3D modeling,

advantages of procedural modeling in comparison to manual modeling and an overview of Esri

CityEngine as a tool for procedural 3D modeling.

The practical part of this thesis is focused on 3D modeling of rural areas. As the final result of

the practical part, a 3D model of Seefeld, a municipality in the district of Starnberg located

southwest of Munich, has been created using Esri’s ArcGIS software for data preparation and

CityEngine for the modeling process. This part of the thesis starts with a chapter about the case

study area. It includes a description of the chosen area and of the data which were used for

modeling.

The next chapter explains the data processing and the modeling process. It covers the steps of

the data preparation before the import into modeling software and the data import, then explains

the steps of procedural modeling and describes the problems which occurred and their solutions.

After the practical part of the thesis comes a chapter which gives an overview of the results

achieved and describes publishing the results on the Web.

The last chapter of this Master’s Thesis is the summary. It consists of conclusion, problem

overview and future work. This part summarizes the results achieved in the thesis and gives

suggestions for improvements and further research.

2 Fundamentals and Applications of 3D Modeling

3

2 Fundamentals and Applications of 3D Modeling

2.1 Related Work

As a 3D modeling is being used in different application areas, such as animation, archeology,

architecture, engineering and others, Luan et al. (2008) in their research have stated it as a key

technique for many researches and applications.

Research by Luan et al. (2008) gives an overview of the process of 3D modeling which includes

3D data acquisition, modeling and rendering steps. There are given application possibilities of

the 3D modeling as well.

In the 3D data acquisition section authors introduced with advantages and disadvantages of two

methods which can be used to collect 3D data. One of the methods is Laser scanning system

which can be applied to collect the 3D data of objects’ surface as point clouds. The advantages

of this method are its high scanning speed and accuracy. The disadvantages of this method

include required equipment which is expensive and may be dependent on the weather

conditions, for example, it may not work properly in the sun or rain. Another disadvantage of

this method is the required post-processing of the data acquired. Post-processing step is needed

for a better final result and usually has to be done manually. The second method of the data

acquisition is Close Range Photogrammetric System which can be used for 3D data acquisition

of the objects using calibrated cameras. Cameras can be fixed or hand-held. Calibration process

(acquisition of camera’s internal and external parameters) and image matching is easier for

fixed camera system but systems with hand-held cameras can get object’s 3D data of all sides.

The advantage of this method is its relatively low costs.

To introduce with 3D modeling and rendering process, authors have described Image-Based

Modeling and Rendering (IBMR) method which can model objects with different sizes and get

the information of depth and texture at the same time. Figure 2-1 shows the steps of this method

to create a 3D model from 2D images. The first step after the acquisition of range images is

camera calibration by feature extraction and matching. This step is done by selecting and

matching at least 7 pairs of points which are corresponding between two images to calculate a

fundamental matrix and get a projection matrix. The next step in the modeling process is to

estimate the depth information from a curvature information which is further used to reconstruct

the surface of a model. Usually it is constructed by polygon mesh. After the surface

reconstruction, the rendering process can be applied. There are several Image-Based Rendering

methods available, for example, viewpoint interpolation, light field rendering, view morphing

and others. This step is important for improving the final 3D model (Luan et al. 2008).

2 Fundamentals and Applications of 3D Modeling

4

Figure 2-1: Image-Based Modeling and Rendering (IBMR) (Luan et al. 2008)

There are several researches in the field of procedural modeling for cities and buildings already

made. For example, research by Parish and Müller (2001) in which they introduce the system

“CityEngine” which is appropriate for modeling the whole city using comparatively small set

of statistical and geographical input data. This system is highly controllable by the user and

uses a procedural approach based on L-systems to model cities. Figure 2-2 shows the pipeline

of the creation of city models using CityEngine system tools. At the beginning the roadmap has

been created using L-system according to input data. Various image maps, for example, land-

water boundaries and population density, can be used as input data. In the next step, the areas

between the roads are subdivided and defined as the lots of buildings. After the lots of buildings

have been defined, the generation of the buildings can be done by applying L-system. They are

generated as a string representation of boolean operations on solid shapes. In the last step, a

parser interprets all the results for the visualization software which should be able to process

polygonal geometry and texture maps. Additionally, the mechanism to generate the façades of

buildings can be incorporated into pipeline.

2 Fundamentals and Applications of 3D Modeling

5

Figure 2-2: The pipeline of the city creation tool. The dark boxes show the results and data structures of

the tools in the white rectangles (Parish & Müller 2001)

Research paper describes two different L-systems which can be used for the creation of the

complete city. One L-system for a street creation and other one for a building generation (Parish

& Müller 2001).

The other research related to the field of procedural modeling of cities and buildings is made

by Müller et al. (2006). It gives an overview and a detailed description about the creation

process of buildings using the shape grammar (CGA shape) and compares it with the L-systems.

CGA shape is a shape grammar used for procedural modeling of CG architecture to produce

building shells including high visual quality and geometric details. It is based on production

rules to develop a design by creating more and more details of the shapes which consist of

symbol, geometry (geometric attributes) and numeric attributes. Geometric attributes such as

the position P, the coordinate system describing orthogonal vectors X, Y, Z and the size define

an oriented bounding box called scope (figure 2-3). Scopes are used in the rules to make

modifications, for example, a rotation, of the shapes.

Figure 2-3: The scope of the shape (Müller et al. 2006)

The procedural modeling process of buildings starts with the creation of a mass model which

is a crude volumetric model of a building, and then the details of façades and roof are created.

2 Fundamentals and Applications of 3D Modeling

6

In comparison to the L-systems that capture a growth over time, the CGA shape is a sequential

grammar and is suitable for characterization of the structure of a shape, for example, its spatial

distribution of features and components. In their research Müller et al. (2006, p.622) have found

out that: “a direct application of L-Systems to architecture overemphasizes the idea of growth,

a concept that is often counterproductive for the procedural modeling of buildings.” The reason

for this statement is that originally the L-systems were invented to simulate the growth of plants

and they do not relate well to the modeling of buildings.

There are mentioned and explained issues which should be taken into account when modeling

the buildings, for example, overlap (occlusion) and snapping. The purpose for the occlusion

query is to test if there are intersections between shapes. It helps not to place façade elements

such as doors and windows on the part of the façade which is occluded. The main function of

snapping is to improve the layout of a façade structure. It can be implemented by altering the

existing shape rules to snap to a dominant face or line in the repeat and subdivision rules.

There are described modeling strategies for a simple building model, an office buildings and

single family homes in this paper (Müller et al. 2006).

Research by Watson et al. (2008) describes the typical workflow (figure 2-4) and the

applications of CityEngine, and how the created models can be used in game industry. A typical

workflow in the CityEngine begins with an idea or a concept. The idea can be stemmed from a

photograph, a drawing, an architectural figure or it can be a completely new design concept.

When the idea of a project is defined, analyses of a design to find the most important parameters

for the creation of model elements and textures are made. In the next step, design rules with the

previously collected parameters and elements can be encoded. After that randomization of

parameters for stochastic rules to generate the whole city can be done. It is important to add

randomness gradually to avoid a chaotic and uninteresting design. After these steps the 3D

models can be generated (Watson et al. 2008).

Figure 2-4: A typical workflow of CityEngine (Watson et al. 2008)

To create a better and more realistic 3D urban content, several suggestions should be taken into

account because as Watson et al. (2008, p.19) have stated: “Urban content is something more

than building placement and shape”. To create more realistic urban content weathering and

2 Fundamentals and Applications of 3D Modeling

7

wear elements can be applied to materials and models, for example, rust and dirt accumulation.

Created city model looks more real if it populated with cars and pedestrians.

3D models created in the CityEngine have different applications, for example, in a cultural

heritage, urban planning and in a movie industry. Procedural modeling can be applied in the 3D

urban content creation for video games as well (Watson et al. 2008).

Research by Radies (2013a) describes 3D building modeling principle of using procedural

modeling in the software CityEngine. Procedural modeling principle (figure 2-5) is based on

shape grammars with production rules to generate detailed 3D objects out of simple initial

geometric features. It starts with the extrusion of the initial shape to a block model which is

later divided into shapes, for example, facades and a roof. To create a high level detailed model,

created shapes are split into elements, for example, windows and doors, and textures or colors

are added to these elements.

Figure 2-5: Principle of the procedural modeling (Radies 2013a)

There is given an example of procedurally generated 3D dynamic model of a zoning plan. 2D

zoning plan (figure 2-6) which was used as a basic information for the generation of this plan

in 3D, includes information of floor and space ratio, maximum permitted height, building types

and other parameters. Zoning plans are used for planning a development of a city (Radies

2013a).

Figure 2-6: 2D zoning plan (Radies 2013a)

Taking into account information from the 2D zoning plan and using procedural modeling in the

software CityEngine, the 3D zoning plan (figure 2-7) was created as the final result.

2 Fundamentals and Applications of 3D Modeling

8

Figure 2-7: 3D zoning plan (Radies 2013a)

2.2 Definition of 3D modeling

According to Govil-Pai (2004), modeling is the first and the most critical pillar of 3D graphics.

It can be defined as (Govil-Pai 2004, p.83) “the process of creating a 3D model in the

computer”.

The process includes three main steps. The first step is a 3D data acquisition, the next step is

modeling and the last step is rendering. In the data acquisition step, data about object’s size and

depth are collected. There are two main methods of data acquisition – contact (for example,

measurements using tape) and non-contact (for example, laser scanning and measurements

taken with total stations). The modeling step includes refinement of the initial shape, for

example, surface construction. Main elements of this process are the shape of an object, spatial

layout and connectivity of components that compose the object. The rendering of the model

includes smoothing, morphing and other processing methods to make the final result look more

natural (Luan et al. 2008). The model created in this process is a representation of a concrete or

abstract entity to visualize the structure of it.

There are different types of representation possible:

 Quantitative representation in which equations are used to represent and describe system

behavior

 Organizational representation when hierarchies are being used to represent

classification schemes

 CG (Computer Graphics) in which models refer to geometrical representation of the

entity

(Govil-Pai 2004)

Nowadays the applications of 3D modeling are used in a wide range of areas, for example,

animation, architecture, education, design, movies, engineering and others. It allows to model

and simulate the real world (Luan et al. 2008).

2.3 Procedural 3D modeling

Procedural modeling is a 3D model creation process using rules and algorithms. It consists of

a base geometry, for example, building footprints with the information about building heights

2 Fundamentals and Applications of 3D Modeling

9

and roof types, and procedural rules. It allows progressively and iteratively to refine the model

(Figure 2-8) (Esri 2012). In the process of generating a building procedurally, firstly the

production rules create a primitive volumetric model (a mass model), secondly a façade is being

structured and finally in the last steps, details for windows, doors and ornaments are added

(Müller et al. 2006).

Figure 2-8: Principles of the procedural modeling (Schubiger 2012)

According to Müller et al. (2006), modeling of large size 3D environments requires a lot of

financial resources and several man years’ worth of labor. For this reason in creation of a large

sized city model saving time and money is important. To fulfill these requirements, procedural

modeling is one of the solutions. As the figure 2-9 shows, there is a definite cost and time saving

benefit for using the procedural modeling when a lot of 3D modeling or design iterations are

needed (Esri 2012).

Figure 2-9: Efficiency of a procedural modeling in comparison with a manual modeling (Schubiger 2012)

Procedural modeling has several advantages. Firstly, it makes the modeling process faster and

randomness can be controlled. It is easy to update the rule files, for example, adding floors to

the buildings and changing the roof type can be done by making the changes in the parameters

and not manually modeling the object, and they are re-usable for other projects because the

process of creation has been recorded (Piccoli 2013).

2 Fundamentals and Applications of 3D Modeling

10

The next advantage of CityEngine is its variety of data formats supported for import and export.

Figure 2-10 shows the overview of the data formats which can be imported into CityEngine for

a modeling process and the data formats which can be exported as results. CityEngine supports

geospatial data, 2D data, 3D assets (polygonal meshes) and Python scripting as input data types

and offers a wide choice of generated 3D data export formats.

Figure 2-10: Overview of import and export data formats in the CityEngine software (Radies 2013b)

Further advantage of the procedural modeling is its possibility of dynamic editing. For example,

when a street network is imported, software will generate parcels within the streets and 3D

buildings will be generated within parcels and if the street is moved, then buildings will be

moved as well because they have been connected procedurally (Esri 2012).

The disadvantage of the procedural modeling is that it is less user friendly than the manual

modeling techniques (Piccoli 2013). Required knowledge of a CGA scripting to write rule files

makes procedural modeling process more complicated at the beginning if a user has no

experience with it.

2.4 Esri CityEngine as a tool for procedural 3D modeling

According to Watson et al. (2008), Esri CityEngine is one of the most mature procedural

modeling tools which are available. It is a stand-alone software which transforms 2D GIS data

into smart 3D City models. It improves urban planning, architecture and design (Esri n.d.(c)).

CityEngine combines procedural modeling methods with shape and split grammars to generate

a 3D content. Shape grammars perform recognition of a particular shape and its possible

replacement. The shapes which will be replaced and the manner in which it will be done are

specified by using rules. Split grammars split a 3D object into its components, for example,

faces, edges or vertices (Edvardsson 2013).

For a successful use of shape and split grammars in the modeling process two following steps

should be taken into account and completed. The first step is the acquisition of a good

understanding of basic building elements such as windows, doors, columns, walls and others.

2 Fundamentals and Applications of 3D Modeling

11

The next step is the creation of grammar rules to combine these basic elements (Watson et al.

2008).

The user interface of CityEngine consists of several windows. A typical modeling session

includes (figure 2-11):

1 “Scene Editor” window where the user can manage the scene, it is organized in

layers.

2 “Rule Editor” window where the CGA scripts are generated. “Rule Editor” can

have a text and a graphical view.

3 & 6 “Viewport” window where the generated 3D content is displayed.

4 “Inspector” window which gives a detailed view editing possibilities of selected

objects.

5 “Navigator” window where all the files are stored. In this section user can

manage and preview files in the workspace.

7 “Log” window shows the log records. They are classified as information

messages, warnings and errors.

8 “Console” window.

(Esri 2014b)

Figure 2-11: The CityEngine user interface (Esri 2014b)

Some of the elements which are required for a city modeling process in CityEngine are a terrain

and control map layers, a street network, building footprints and a CGA rule file. Terrain

consists of a height map or a texture map and map layers (images). A street network and

building footprints can be automatically or manually created in CityEngine or imported from

DXF and SHP files (Piccoli 2013).

The scripting language CGA (Computer Generated Architecture) which defines the rules or

procedures to create a 3D content is the core of this software. CityEngine can be used for the

whole procedural modeling development cycle because it includes tools for setting up the scene

2 Fundamentals and Applications of 3D Modeling

12

with pre-existing data, modeling street and lot geometries, writing and analyzing the CGA script

files, applying the CGA files to create 3D models and exporting the created models for further

processing (Viinikka 2014).

Two primary attributes which connect the initial shape to the procedural generation process are

“Rule file” which defines the CGA rule file assigned to the initial shape and “Start rule” which

defines the production rule from which the creation process begins. Other attributes which

describe the initial shape (for example, buildings heights, number of floors, roof shapes, etc.)

can be used as parameters in the CGA production rules (Viinikka 2014).

The advantage of CityEngine is the ability to create 3D urban scenes based on existing GIS data

easily. A high-quality 3D content can be created by using only the combination of 2D data,

attributes and procedurally defined rules. Components of CityEngine are feature geometry,

feature attributes and procedurally defined rules. Figure 2-12 shows the example of 2D data for

City of Philadelphia which consists of street centerlines, building footprints, multipatch

footprints, street furniture and vegetation data.

Figure 2-12: Example of 2D data (Esri n.d.(a))

The complexity and the real-world accuracy of the generated model depends on the amount of

the details provided for each of the CityEngine components (Esri n.d.(a)). The figure 2-13

shows an example of the graphical representation of a rule file in the CityEngine software. It

consists of the attributes, the constants and the textures defined and the rule.

2 Fundamentals and Applications of 3D Modeling

13

Figure 2-13: A graphical representation of a rule file in CityEngine

When the 3D city content using parametric rules is generated, a 3D city design creation and

further analysis (for example, visibility and shadow analysis) of the model are possible (figure

2-14).

Figure 2-14: Application possibilities of 3D city models created in CityEngine (Schubiger 2012)

To sum up, a creation of a 3D city model in CityEngine can be done in 5 steps (figure 2-15):

 First of all, there should be a 2D geodatabase or 2D GIS data, CAD data or data

from other formats which will be imported into CityEngine.

 After the import, GIS data can be edited and manipulated. This step includes 3D

street, block and parcel creation as well.

 Next step includes 3D extrusion of buildings, generation of roofs, street furniture

and other elements in the model.

 When the models have been created, the refinement of the model details using

procedural rules, selection of the Level of Details (LoD) and adding vegetation can

be done.

 The last step of the process is the export of the created city model to another 3D

application. It can be rendered in another application, exported to a game engine and

2 Fundamentals and Applications of 3D Modeling

14

shared online using Esri WebScene. It is also possible to export the created models

back to a file geodatabase for more accurate 3D analysis in ArcScene

(Sohail 2013), (Esri n.d.(b)).

Figure 2-15: Creation steps of a 3D city model in the CityEngine software (Esri n.d.(b))

3 Case Study Area

15

3 Case Study Area

3.1 Description of the case study area

After exploration of the available geodatabase of buildings and consultations with the supervisors,

Seefeld was chosen as the case study area. It is a municipality in the district of Starnberg, located

southwest of Munich. It lies on the northern coast of the Pilsen Lake (figure 3-1). This area was

chosen as the area of interest because typical Bavarian buildings can be found there and it is

conveniently reachable by public transport.

Figure 3-1: Location of Seefeld (Google 2014)

As can be seen in the figure 3-2, Seefeld is a so called scattered (nucleated) village. This type of

village is typical for Bavaria and the southern part of Germany.

3 Case Study Area

16

Figure 3-2: Case study area

Nucleated villages are villages in which the houses cluster around a physical or conceptual nuclei,

for example, the castle or the local church (Curtis 2013). These villages generally have an irregular

shape, but they roughly circle around a central place and/ or church. In central Europe nucleated

villages emerged as small settlement farmsteads which grew together with growing population

(Wikimedia Foundation 2010).

Other types of villages are linear settlements and polyfocal settlements. For the linear type of

village, houses are laid out in a linear row, usually along a dike, a main street or a waterway (Curtis,

2013). Polyfocal settlements have been developed through expansion of two or more small nuclei

which originally were separate (Williamson 2012).

According to available information about the Seefeld municipality, important buildings in Seefeld

are Seefeld Palace (figure 3-3), Sankt Peter and Paul Church (figure 3-4) and the town hall (figure

3-5). Seefeld Palace is a popular tourism object in this area. It was built in the 18th century and

consists of several buildings (Gemeinde Seefeld 2012).

3 Case Study Area

17

Figure 3-3: Seefeld Palace (Seefeld24.de 2000)

Sankt Peter and Paul Church is an important religious place and was built in baroque neo-gothic

style (Gemeinde Seefeld 2012).

Figure 3-4: Church in Seefeld (Gemeinde Seefeld 2012)

The Town Hall of Seefeld is a significant building for questions related to city administration

(Gemeinde Seefeld 2012).

3 Case Study Area

18

Figure 3-5: Town hall of Seefeld

After the review of the database of buildings in Seefeld, typical parameters were found, for

example, the number of floors and the roof shape. In this case study area, the number of floors for

the buildings varies between 1 and 6 floors. Most of the buildings have 1 or 2 floors. Buildings

which belong to the palace have 6 floors. The most typical roof type for the buildings in this area

is the gable roof. There are some flat roofs as well.

From the photos taken during field work, we can distinguish the typical colors of façades and the

window types. As can be seen in the figure 3-6, most of the façades of the buildings are light

colored, for example, white, light yellow and grey. For this case study area typical are windows

with shutters (figure 3-6 a and b). Flowers in front of windows are common as well (figure 3-6 c

and d).

a b

3 Case Study Area

19

c d

Figure 3-6: Examples of typical buildings in Seefeld

3.2 Description of necessary data

To create the 3D model of Seefeld, different types of data were used. At the beginning it was

planned to use data downloaded from OpenStreetMap (OSM) (© OpenStreetMap contributors n.d.)

for modeling the buildings, but after the download and exploration of the data, it was discovered

that using it for modeling in CityEngine was impossible because it did not contain any information

about the heights of the buildings and the roof shapes. Data for buildings downloaded from OSM

contained only the footprints of the buildings. This information was not detailed enough for

modeling because building heights and roof shapes are one of the most important attributes of the

buildings. As a solution to this problem, ready prepared geodatabase from Esri1, containing the

necessary data, was used. This database for buildings includes shapes of the building footprints and

the attribute table with the building heights, the number of floors, the roof shapes (classified with

codes) and other attributes (figure 3-7).

1 In this case Esri Deutschland GmbH

3 Case Study Area

20

Figure 3-7: Attribute table of buildings

For the street network, data downloaded from OSM was used. These data contain information about

street width, type, name and more.

The terrain model consists of imagery base map (figure 3-8) and height map (figure 3-9). The

imagery base map was taken from the ArcGIS base map collection. Relief data of DTM25 to create

the height map were provided by the Bavarian State Office for Survey and Geoinformation.

According to BKG (2012, p.3), DTM25 is a Digital Terrain Model which “describes the terrain

forms of the earth’s surface according to point quantity arranged in a regular grid” with a width

of 25 meters. The grid is georeferenced to planimetry and altimetry.

Figure 3-8: Imagery base map

3 Case Study Area

21

The height map shows the altitude in the area. As can be seen in the figure 3-9, in the case study

area it varies between 534.4 and 647.214 meters.

Figure 3-9: Height map

For vegetation objects, elements from Esri 3D Vegetation Library were used (figure 3-10).

Figure 3-10: Examples of vegetation models (Esri 2014c)

Typical textures of façades, windows and doors for buildings were taken from real photos. For the

facades of buildings lower than 4 meters, wooden façade texture from web source was used

(ArchiExpo n.d.).

Typical roof textures for buildings were taken from Google Earth.

For the creation of the street network, textures were taken from web sources (Adnin 2005),

(Vehicledonation100 2014) and the template “The Modern Street Example” (Esri 2013).

4 Data Processing

22

4 Data Processing

4.1 Data preparation before import into Esri CityEngine

Before import and start to model, it is necessary to make data preparation. It should be done for

more successful modeling process and for better results. In this project data preparation included:

 calculation of necessary parameters of buildings,

 generalization of the building footprint shapes,

 creation of location and attributes for vegetation elements,

 adapting the downloaded 3D model of Bavarian church model to Sankt Peter and Paul

Church in Seefeld.

For data preparation software Esri ArcGIS 10.2.2 was used. Data preparation started with the

calculation of additional parameter values for the buildings. For modeling process it was necessary

to calculate the roof height and the eave height. Figure 4-1 shows a part of the attribute table of the

buildings with highlighted values for a building total height (HOEHEGEB), an eave height

(Eave_Heigh) and a roof height (Roof_Ht).

Figure 4-1: Attribute table of buildings with the calculated values

The roof height for the buildings was assigned according to their total height. Buildings were

divided into three groups according to their total height – buildings lower than 4 meters, buildings

with height between 4 and 6 meters and buildings which are 6 meters and higher. If the building

total height was lower than 4 meters, the roof height was assigned as 0.5 meters. Buildings with

the total height between 4 and 6 meters have the roof height 1 meter and buildings with the height

6 and more meters were assigned with the roof height of 2 meters.

The eave height for the buildings was calculated by subtracting a roof height from a total height of

a building.

The next step in the data preparation process was the generalization of building footprints. It was

done for a better appearance of the buildings. As can be seen in the figures 4-2, 4-3 and 4-4,

4 Data Processing

23

polygons of the building footprints contain extra points and the generated buildings do not look

well enough.

Figure 4-2: Building footprints in ArcMap before the simplification

Figure 4-3: Building footprints before the simplification in CityEngine

4 Data Processing

24

Figure 4-4: Generated buildings in CityEngine before the simplification of footprints

As CityEngine is more a design software and not a CAD software, buildings should not have

exactly the same shape as initial footprints from geodatabase and a simplification of the shape of

footprints can be made.

To avoid the problem that footprints have extra points in polygons, a simplification of buildings in

ArcGIS with the tool “Simplify Buildings” from ArcToolbox (Esri 2014a) was used. When using

this tool, the simplification tolerance has to be set. After trying different values of the simplification

tolerance, the value of 3 meters was chosen as the most appropriate. The result of simplified

building footprints in ArcMap can be seen in the figure 4-5.

Figure 4-5: Building footprints after the simplification in ArcMap

Figure 4-6 shows the result of the buildings which were generated from the simplified building

footprints. As can be seen in the figure 4-6, buildings look better comparing to the buildings

generated before the simplification in the figure 4-4 and they do not have extra points in the

polygons.

4 Data Processing

25

Figure 4-6: Buildings generated in CityEngine after the simplification of footprints

After the generalization of the building footprints, the data preparation for vegetation import was

done. For the creation of vegetation in CityEngine a SHP file with locations and attributes of the

vegetation has to be created. Figure 4-7 shows the generated points for locations of trees in

ArcMap. Points were created according to the image base map. The types and the sizes of trees

were assigned randomly using Python scripting. For the tree height, there were chosen values

between 12 and 17 meters. For tree types “beech”, “pine”, oak”, and “maple” were assigned.

Figure 4-7: Generated points for the locations of trees

The last step in the data preparation process was the adaptation of the downloaded 3D model of

Bavarian church model to Sankt Peter and Paul Church in Seefeld.

The reason for downloading the ready created model of the Bavarian church from 3D Warehouse

(Goesgen 2014) (figure 4-8) and adapting it to the model was the shape of the church which is quite

4 Data Processing

26

complex. It would be time consuming to generate it. There should be a special rule file created for

such type of building because its shape is completely different from other buildings in this area.

The other reason for adding the model of Bavarian church to the project is that it makes the 3D

model of Seefeld look more real.

Figure 4-8: Bavarian church model downloaded from 3D Warehouse (Goesgen 2014)

There were some color changes made in the model to make it more similar to Sankt Peter and Paul

Church located in Seefeld. In the software Trimble SketchUp the location of the church was

assigned according to Google Earth (figure 4-9). The location setting for the church is necessary

for a successful import into CityEngine.

Figure 4-9: Bavarian Church model edited for the Seefeld project

4 Data Processing

27

4.2 Data import into CityEngine

After the preprocessing, the import of the data into software CityEngine can be started. It starts

with a creation of a new scene and setting a coordinate system of it. For this project WGS 1984

Web Mercator was chosen.

There were different types of data imported (table 4-1), for example, the building footprints and

the locations of vegetation were imported as shape files, the street network downloaded from

OpenStreetMap was imported as osm file and the 3D model of the Bavarian church (Goesgen,

2014) (figure 4-10) was imported as a KMZ file.

Table 4-1: Overview of the data imported

Data Type Source

Building footprints SHP Esri Deutschland GmbH

Street network OSM OpenStreetMap

Locations of vegetation SHP Assigned according to imagery base map

(ArcGIS base map collection)

Vegetation elements OBJ Esri 3D Vegetation Library

Imagery base map JPEG ArcGIS base map collection

Height map TIFF Generated from the DTM25 provided by

the Bavarian State Office for Survey and

Geoinformation

3D model of the Bavarian Church KMZ 3D Warehouse

3D model of a car KMZ 3D Warehouse

3D models of people KMZ 3D Warehouse

Figure 4-10: The 3D model of Bavarian church imported into the CityEngine scene

4 Data Processing

28

Terrain of the case study area was generated from the imagery base map and the height map.

After the import, all the shapes were aligned to the terrain (figure 4-11).

Figure 4-11: The building footprints and the street network imported into CityEngine scene

4.3 Steps of procedural modeling using CityEngine

Creation of the 3D model using procedural modeling was done with the software Esri CityEngine

2014. Procedural modeling process in CityEngine software starts with a rule file creation.

According to Esri (2014b), “a rule file is a collection of attributes, functions and rules”. Rule files

can be created as scripts (appendix 8.1) or graphically (figure 4-12).

4 Data Processing

29

Figure 4-12: Representation of rule files

At the beginning user has to define all the attributes, constants, functions and textures which will

be necessary for further modeling process.

Attributes, functions and constants are used to control the operations defined in the file and they

work as parameters to the operations used for modeling. Parameter values can be set or changed

by user as well in the Inspector window. It gives user more control over modeling process.

When starting to write the rule, the initial shape from which the generation process begins should

be defined. It can be created with CityEngine tools or created in other software and imported into

CityEngine. The final 3D result is a result of a sequence of transforming operations (for example,

extrusions, rotations, etc.) applied on the initial shape (Viinikka 2014).

When the rule file has been created, it is applied to the initial shapes and the 3D content is generated

(figure 4-13).

Figure 4-13: Standard CityEngine workflow (Viinikka 2014)

4 Data Processing

30

4.4 Problems during the modeling process

During the modeling process five problems with the generated buildings occurred. For example,

too many doors were created for one building and on the wrong façade, buildings were mismatched

with the imported street network, windows and/ or doors were created at the intersections of

buildings, and problems occurred with creating roof overhangs. Further these problems and their

solutions are described.

1. Doors were created on the façade which does not face a street (figure 4-14).

Figure 4-14: Doors of the buildings on the wrong façade

In a 3D city model the main door of the building in the most cases is created on the façade which

faces a street but in this project software in some cases created the doors on the façades which face

other house or a yard but not a street. The reason for this problem could be different data sources

of the building footprints and the street network and the fact that they were imported, not generated

in the CityEngine software. To solve this problem, the function “Set the First Edge” was used

(figure 4-15). First edge defines which façade will be the Front façade. Usually it is the façade

which faces a street.

4 Data Processing

31

Figure 4-15: “Set First Edge” function

Figure 4-16 shows the result after setting the street façade as the First Edge. In this case it was done

manually looking through the whole model. The model consists of 1795 buildings and it took

around 5 hours to change the Front façade. As the case study area is a rural area, the entrance of

the house is not always from the main road. It can be from a smaller path or a yard as well.

Figure 4-16: Result after changing “the First Edge”

2. Too many doors for one building (figure 4-17).

In this project, there were quite many buildings which had a complex shape (a shape which is more

complex than a rectangular-shaped). For this type of the buildings doors were created on the each

façade which faced the street (was defined as the Front façade).

4 Data Processing

32

Figure 4-17: Complex shape buildings with too many doors

To solve this problem changes in the rule file in splitting the building was made. Buildings have

been split into a bottom, a front façade, a roof and a side façade (appendix 8.1, line 53-57). To

avoid placing doors on all façades which face front in the complex buildings, the front façade was

defined with an index.

After this way of split, doors were created only on one façade (figure 4-18).

Figure 4-18: Result of complex shape buildings

3. Buildings were mismatched with the street network (figure 4-19).

In some cases there was a misalignment of the street network, the footprints of buildings and the

imagery base map. This misalignment resulted into problem that in some cases the buildings

intersected the street network. The reason for this problem could be the different data sources for

the model.

4 Data Processing

33

Figure 4-19: Building and street network mismatch

In this case, to solve the problem of the mismatch of the data layers, the imagery base map was

chosen as a reference layer. Streets were moved according to the base map and to avoid crossing

with the buildings (figure 4-20). When the osm file with street segments is imported into the

CityEngine software, it automatically creates streets with its sidewalks. It can be mismatched with

the imagery base map layer and intersect with the building layer.

Figure 4-20: Result after moving the streets

4. Windows and/or doors created at the intersections of buildings (figure 4-21).

4 Data Processing

34

Figure 4-21: Windows at the intersections of buildings

In some cases in the model of the case study area buildings were located next to each other and had

intersections.

To avoid windows and door placing at the intersections of buildings, the changes in the rule file

were made. There were added code lines for the cases when window (appendix 8.1, line 128-129)

or door (appendix 8.1, line 138-139) touches other elements. If a window or a door touches

elements of other buildings next to it, then a wall is created instead of windows and doors. Figure

4-22 shows the result when placing the windows at intersections is avoided.

Figure 4-22: Buildings after avoiding window creation at intersections

5. Creation of the roof overhangs.

Overhangs of the gable roofs were created to make the buildings look more realistic. To create the

roof overhangs the operation “roofGable(angle, overhangX, overhangY, even, index)” (Esri

2014b) was used. 5 parameters were used for this operation:

4 Data Processing

35

 angle – the angle of the roof-planes

 overhangX – the distance of overhangs which are perpendicular to the ridges (eave

overhangs)

 overhangY – the distance of overhangs which are in the direction of the ridges (rake

overhangs)

 even – the parameter which sets the generated gable roof to be even or not.

 index – an edge index which is used to control the orientation of the ridge. In this project

the index parameter was set to “1” which means that a ridge is oriented along the longest

ridge (Esri 2014b)

At the beginning to test the appearance of the roofs generated, test default values were set for the

attributes which describe the roof angle and the distances of the overhangs. The attribute roof angle

for all the buildings was set to 45 degrees and overhangs were set to 1 meter. As can be seen in the

figure 4-23, there was a problem with creation of the roof, it split the façades and it was not created

above the eave height.

Figure 4-23: Roof overhang problem

To solve this problem, the attribute which describes the roof angle, was defined as a function

(appendix 8.1, line 41) which calculates the roof angle for each building according to its base length

and the roof height. To avoid the intersection between a roof and façades and to avoid the cuts

between the roof planes, t operation for lifting up the textured projection of the roof within

RoofPlane tag was added (appendix 8.1, lines 223 and 227). The function of the t operation is used

to translate the scope by the vector (tx, ty, tz), where parameters tx, ty and tz describe the amount to

translate in each direction (Esri 2014b). As can be seen in the figure 4-24, after these corrections

there are no intersections between the roof and the façades.

4 Data Processing

36

Figure 4-24: Building with created roof overhangs

5 Results

37

5 Results

The final result of this Master’s Thesis is a procedurally generated 3D model of Seefeld. The model

includes buildings, street network, trees and the relief with the imagery base map (figure 5-1 a and

b).

a

b

Figure 5-1: 3D model of the case study area

The final export to the CityEngine WebScene includes not only the 3D content generated but

bookmarks, the current view and lightning settings of the scene as well. These settings should be

made before the export step and they improve the visual representation of the scene.

Figure 5-2 a, b, c and d shows the generated 3D content of the case study area. It represents the

typical Bavarian rural buildings in Seefeld. It shows façade and window textures which are

5 Results

38

common in this area. The content was generated procedurally by using initial shapes and procedural

rules.

a

b

c

5 Results

39

d

Figure 5-2: Final results of the 3D model of the case study area

Additionally, there were added 3 models of people (mrc.rbg 2014), (Gulmez 2014a), (Gulmez

2014b) and a car model (FreshPrince 2014) to make the final result look more realistic (figure 5-3

a and b).

a b

Figure 5-3: A car model and models of people added to the final result

The final result of the 3D content generated in the CityEngine can be viewed not only as a

WebScene but also in the ArcGIS software because CityEngine allows creating a rule package of

the project which can be imported into ArcScene for 3D visualization.

6 Summary

40

6 Summary

6.1 Conclusion

Procedural modeling is one of the most appropriate solutions for creating large size 3D city models

in a short time and with low expenses because, compared to manual modeling, 3D geometries and

textures are constructed using rules and algorithms. It allows the modeler to make changes in the

3D content more easily, and already created rules can be re-used for other projects.

The modeling process consisted of data collection, preparation, import into the software, model

creation and export for the model created.

For creation of the 3D model of geotypical Bavarian rural buildings in the case study area of

Seefeld, the following data types were collected:

 geodatabase with shape files of the building footprints and attribute table with necessary

parameters for modeling

 OSM data for street network

 DTM25 relief data for creation of height map

 imagery base map

 vegetation element models from “Esri 3D Vegetation Library”

 photos of typical textures of building façades and elements

 typical roof textures taken from Google Earth

All these data types were combined to create the 3D content of the case study area.

Data preparation step included selection of the coordinate system for the data, calculation of

necessary parameters, simplification of building footprints and creation of locations for vegetation

objects.

The modeling process started with importing prepared data into software and creating rule files.

After that, the rule files created were applied to the initial shapes, and the 3D content was generated.

As can be seen from the results achieved, procedural modeling in the software CityEngine can be

applied for modeling a 3D content of rural areas.

6.2 Problem overview

During the modeling process problems occurred. For example, doors were created on the edge

which does not face the street, windows and/or doors were created at the intersections of buildings,

buildings were mismatched with the street network and problems occurred with creating roof

overhangs. For all of these problems solutions were found.

6 Summary

41

6.3 Future work

The procedurally created 3D model of Seefeld can be used for further analysis and planning

purposes. The CGA code created can be applied to generate a realistic 3D model of other similar

rural areas.

The model can be improved by creating different Levels of Details (LoD). The content of the model

could be improved by adding more infrastructure elements and details of the buildings.

7 References

42

7 References

© OpenStreetMap contributors, n.d. OpenStreetMap. Available at:

http://www.openstreetmap.org/ [Accessed May 27, 2014].

Adnin, M., 2005. Dusty dirt road. Available at: http://mayang.com/textures/Nature/images/Soil

and Earth/dusty_dirt_road_6190196.JPG [Accessed October 22, 2014].

ArchiExpo, n.d. Wood siding. Available at: http://img.archiexpo.com/images_ae/photo-g/wood-

siding-70217-4856255.jpg [Accessed May 21, 2014].

BKG, 2012. Digital Terrain Model Grid Width 25 m, Available at:

http://www.geodatenzentrum.de/docpdf/dgm25_eng.pdf.

Curtis, D.R., 2013. The Emergence of Concentrated Settlements in Medieval Western Europe :

Explanatory Frameworks in the Historiography. Canadian Journal of History, 48(2),

pp.223–251.

Edvardsson, K.N., 2013. 3d GIS modeling using ESRI´s CityEngine. The University Jaume I.

Esri, n.d.(a). ArcGIS Resources. 3D urban content creation and design using CityEngine.

Available at: http://resources.arcgis.com/en/communities/city-

engine/01w900000008000000.htm [Accessed August 8, 2014a].

Esri, 2014a. ArcGIS Resources. ArcGIS Help 10.2, 10.2.1, and 10.2.2. Available at:

http://resources.arcgis.com/en/help/main/10.2/index.html#//00700000000z000000

[Accessed October 26, 2014].

Esri, 2012. ArcGIS Resources. Developing with Esri CityEngine. Available at:

http://video.arcgis.com/watch/1147/developing-with-esri-cityengine [Accessed August 4,

2014].

Esri, n.d.(b). ArcGIS Resources. What is CityEngine? Available at:

http://resources.arcgis.com/en/communities/city-engine/01w90000000m000000.htm

[Accessed October 23, 2014].

Esri, 2014b. CityEngine Help. Available at: http://cehelp.esri.com/help/index.jsp [Accessed

August 26, 2014].

Esri, n.d.(c). Esri CityEngine. Available at: http://www.esri.com/software/cityengine [Accessed

August 8, 2014].

Esri, 2014c. Esri Vegetation Library with LumenRT 3D Plants – Plant Loader. Available at:

http://www.arcgis.com/home/item.html?id=e49b1fb0f56e40c19ff6e7ad4e546dad [Accessed

June 16, 2014].

7 References

43

Esri, 2013. Example Modern Streets 2012. Available at:

http://www.arcgis.com/home/item.html?id=50e9b9b6c3ea4617b5b4a7bfd4e7f38c

[Accessed October 17, 2014].

Gemeinde Seefeld, 2012. Gemeinde Seefeld. Available at: http://www.seefeld.de [Accessed

August 8, 2014].

Goesgen, 2014. Bavaria Church. 3D Warehouse. Available at:

https://3dwarehouse.sketchup.com/model.html?id=48440627f174e0d011315e527a08c69b

[Accessed August 5, 2014].

Google, 2014. Google Maps. Available at: www.maps.google.de [Accessed May 13, 2014].

Govil-Pai, S., 2004. Principles of Computer Graphics. In New York: Springer, pp. 83–130.

Gulmez, M., 2014a. 3D People. 3D Warehouse. Available at:

https://3dwarehouse.sketchup.com/model.html?id=9521c2b15ae329c0a6c6460b19930644

[Accessed October 29, 2014].

Gulmez, M., 2014b. 3D People. 3D Warehouse. Available at:

https://3dwarehouse.sketchup.com/model.html?id=848098c04c3d72c2a6c6460b19930644

[Accessed October 29, 2014].

Luan, X.-D. et al., 2008. Research and Development of 3D Modeling. IJCSNS International

Journal of Computer Science and Network Security, 8(1), pp.49–53.

mrc.rbg, 2014. gym girl 3d. 3D Warehouse. Available at:

https://3dwarehouse.sketchup.com/model.html?id=fdd0793fad4006f81518055461846b23

[Accessed October 29, 2014].

Müller, P. et al., 2006. Procedural Modeling of Buildings. ACM Transactions on Graphics

(Proceedings of ACM SIGGRAPH), 25(3), pp.614–623.

Parish, Y.I.H. & Müller, P., 2001. Procedural Modeling of Cities. In Los Angeles: SIGGRAPH,

pp. 301–308.

Piccoli, C., 2013. CityEngine for Archaeology. In Amsterdam: 3D GIS for mapping the Via

Appia.

Radies, C., 2013a. Procedural Random Generation of Building Models Based Geobasis Data and

of the Urban Development with the Software CityEngine. In Bernburg, Germany, pp. 175–

184.

Radies, C., 2013b. Prozedurale Generierung von Gebäude- modellen aus Geobasisdaten und

Daten der Bauleitplanung mit der Software CityEngine. Technische Universität München.

7 References

44

Schubiger, S., 2012. Developing with Esri CityEngine. In San Diego: Esri International User

Conference.

Seefeld24.de, 2000. Schloß Seefeld. Available at: http://www.seefeld24.de/tourismus/galerie.php

[Accessed August 8, 2014].

Sohail, A., 2013. Creating Smart 3D City Models with Esri CityEngine. Available at:

http://www.youtube.com/watch?v=zScyrwQLf0k [Accessed June 27, 2014].

Vehicledonation100, 2014. Sidewalk Texture. Available at: http://vehicledonation.info/sidewalk-

texture/ [Accessed October 22, 2014].

Viinikka, J., 2014. Adopting Procedural Information Modeling in Urban Planning. Aalto

University.

Watson, B. et al., 2008. Procedural Urban Modeling in Practice. IEEE Computer Graphics and

Applications, 28(3), pp.18–26.

Wikimedia Foundation, 2010. Nucleated village. Available at:

http://en.academic.ru/dic.nsf/enwiki/5367161 [Accessed August 11, 2014].

Williamson, T., 2012. Environment, Society and Landscape in Early Medieval England,

Woodbridge: The Boydell Press.

Appendix

45

Appendix

Appendix A: Rule file for buildings

Appendix B: CE project of Seefeld (see Data-CD)

Appendix

46

Appendix A: Rule file for buildings

/** 1
 * File: buildings_new_rule.cga 2
 * Created: 14 Aug 2014 12:44:33 GMT 3
 * Author: iedo 4
 */ 5
 6
version "2014.0" 7
################################### 8
Constants 9
################################### 10
const randomWallTexture = fileRandom("*/facades/facade*.jpg") 11
const randomWindowTexture = fileRandom("*/windows/window*.jpg") 12
const randomRoofTexture = fileRandom ("*/roofs/roof*.JPG") 13
 14
################################### 15
Textures 16
################################### 17
randomDoorTexture = fileRandom("*/doors/door*.jpg") 18
roof_texture2 = "roofs/roof_texture2.JPG" #roof texture for buildings with 19
height less than 4m 20
wooden_facade = "facades/WoodenFacade.JPG" 21
 22
################################### 23
Attributes 24
################################### 25
attr DACHFORM = 3100 26
attr Eave_Heigh = rand(1, 20) #Eave height 27
attr ANZGESCHOS = rand(1, 6) #number of floors 28
attr ridgeOrient = 1 29
attr Roof_Ht = rand(0, 2) #Roof height 30
attr groundfloor_height = 3.7 31
attr floor_height = 3.3 32
attr Tile_Width = 5 33
attr Tile_Side_Width =1.3 34
attr Window_Base_Height = 0.9 35
attr Window_Height =1.8 36
attr HOEHEGEB = rand(1, 20) #Total height of the building 37
attr Wall_Texture = listRandom(randomWallTexture) 38
attr Window_Texture = fileRandom(randomWindowTexture) 39
attr Roof_Texture = fileRandom(randomRoofTexture) 40
attr Roof_Angle = atan(Roof_Ht/(0.5*scope.sx)) #calculation of roof angle 41
 42
################################### 43
RULES 44
################################### 45
@StartRule 46
@Location(1079,-6) 47
Lot--> 48
extrude(world.y, HOEHEGEB) # extrude the lot to building total height 49
Building 50
 51
@Location(1259,-8) 52
Building--> #building is split into bottom, front facade, roof and side facade 53
comp(f) {bottom : X. 54
 |2 : FrontFacade 55
 |top : Roof 56

Appendix

47

 |all : SideFacade} 57
 58
FrontFacade --> 59
case HOEHEGEB < 4 : 60
 setupProjection(0, scope.xy, 1.5, 1, 1) # setup 1.5m x 1m texture tiles 61
along scopes xy plane (and distortion in z) 62
 setupProjection(2, scope.xy, scope.sx, scope.sy) 63
 texture (wooden_facade)# buildings with total height less than 4 64
meters have wooden wall texture 65
 split(y){ groundfloor_height : GroundFloor # the front facade is 66
subdivided into one front groundfloor and upper floors 67
 | {~floor_height : Floor}* } 68
 else: 69
 setupProjection(0, scope.xy, 1.5, 1, 1) # setup 1.5m x 1m texture tiles 70
along scopes xy plane (and distortion in z) 71
 setupProjection(2, scope.xy, scope.sx, scope.sy) 72
 split(y){ groundfloor_height : GroundFloor 73
 | {~floor_height : Floor}* } 74
 75
@Location(1646,288) 76
SideFacade --> 77
case HOEHEGEB < 4 : 78
 setupProjection(0, scope.xy, 1.5, 1, 1) # setup 1.5m x 1m texture tiles 79
along scopes xy plane (and distortion in z) 80
 setupProjection(2, scope.xy, scope.sx, scope.sy) 81
 texture (wooden_facade) # buildings with total height less than 4 82
meters have wooden wall texture 83
 split(y){ groundfloor_height : Floor # a side facade is subdivided 84
into one bottom floor and upper floors. 85
 | {~floor_height : Floor}* } 86
else: 87
 setupProjection(0, scope.xy, 1.5, 1, 1) # setup 1.5m x 1m texture tiles 88
along scopes xy plane (and distortion in z) 89
 setupProjection(2, scope.xy, scope.sx, scope.sy) 90
 split(y){ groundfloor_height : Floor 91
 | {~floor_height : Floor}* } 92
 93
@Location(2000,257) 94
Floor --> 95
 split(x){ 1.5 : Wall 96
 | { ~Tile_Width : Tile }* 97
 | 1.5 : Wall } 98
 99
GroundFloor --> 100
 split(x){ 1.5 : Wall 101
 | { ~Tile_Width : GroundFloorTile }* 102
 | ~Tile_Width : EntranceTile 103
 |{ ~Tile_Width : GroundFloorTile }* 104
 | 1.5 : Wall } 105
 106
@Location(2226,26) 107
GroundFloorTile --> 108
 split(x){ ~Tile_Side_Width : Wall 109
 | 2 : split(y){ ~Window_Base_Height: Wall | ~Window_Height: 110
Window | ~1: Wall } 111
 | ~Tile_Side_Width : Wall } 112
 113
@Location(2164,297) 114

Appendix

48

Tile --> 115
 split(x){ ~Tile_Side_Width : Wall 116
 | 2 : split(y){ ~Window_Base_Height: Wall | ~Window_Height: 117
Window | ~1: Wall } 118
 | ~Tile_Side_Width : Wall } 119
 120
@Location(2221,117) 121
EntranceTile --> 122
 split(x){ ~1 : SolidWall 123
 | 2 : split(y){ 2.5: Door | ~1: SolidWall } 124
 | ~1 : SolidWall } 125
 126
@Location(2672,164) 127
Window --> 128
case touches () : Wall #avoids placing windows at the intersections of buildings 129
else : 130
 s('1,'1,0.4) 131
 t(0,0,-0.4) # windows and their textures are set back 0.4 meters into the 132
facade 133
 texture(Window_Texture) 134
 i("builtin:cube") 135
 136
@Location(2674,284) 137
Door --> 138
case touches () : Wall #avoids placing doors at the intersections of buildings 139
else: 140
 s('1,'1,0.1) 141
 t(0,0,-0.5) # doors and their textures are set back 0.5 meters into 142
the facade 143
 texture(randomDoorTexture) 144
 i("builtin:cube") 145
 146
@Location(3110,-72) 147
Wall --> 148
 case HOEHEGEB < 4 : 149
 projectUV(0) projectUV(2) 150
 texture (wooden_facade) # buildings with total height less than 4 meters 151
have wooden wall texture 152
else: 153
projectUV(0) projectUV(2) 154
texture (Wall_Texture) 155
 156
@Location(2657,408) 157
SolidWall --> 158
 case HOEHEGEB < 4 : 159
 texture (wooden_facade) 160
 s('1,'1,0.4) 161
 t(0,0,-0.4) 162
 i("builtin:cube") 163
 projectUV(0) projectUV(2) 164
 else: 165
texture (Wall_Texture) 166
s('1,'1,0.4) 167
t(0,0,-0.4) 168
i("builtin:cube") 169
projectUV(0) projectUV(2) 170
 171
####Roof Generation#### 172

Appendix

49

@Location(1698,495) 173
Roof --> 174
 case DACHFORM == 3100 :GableRoof 175
 case DACHFORM == 1000 :FlatRoof 176
 else :GableRoof 177
#gable roof 178
@Location(2190,484) 179
GableRoof --> 180
 case HOEHEGEB < 4 : roofGable(Roof_Angle,0.2,0.2,false,ridgeOrient) 181
#roof slope, eave overhang, rake overhang 182
#Buildings with total height less than 4m, have 0.2m overhangs 183
RoofMass(false) 184
else: 185
roofGable(Roof_Angle,0.8,0.8,false,ridgeOrient) #Buildings which are 4m and 186
higher, have 0.8m overhangs 187
RoofMass(false) 188
 189
@Location(2480,487) 190
RoofMass(removeBottomAndTop) --> 191
 case removeBottomAndTop: 192
 comp(f){ horizontal: NIL | vertical: Wall | all: RoofPlane } 193
 RoofMassScale 194
 else: # remove only the bottom face 195
 comp(f){ bottom: NIL | vertical: Wall | all: RoofPlane } 196
 197
roof volume 198
RoofMassScale --> 199
 s('1,'Roof_Ht,'1) 200
 RoofMass(false) 201
 202
#flat roof 203
FlatRoof --> 204
 case Roof_Ht > 0: 205
 RoofPlane offset(-0.4,border) extrude(Roof_Ht) RoofMass(false) 206
 else: 207
 RoofPlane 208
 209
roof surfaces 210
RoofFacade --> 211
 case HOEHEGEB < 4 : 212
 setupProjection (0, scope.xy, '1, '1) 213
 projectUV (0) 214
 texture (roof_texture2) 215
else:setupProjection (0, scope.xy, '1, '1) 216
 projectUV (0) 217
 texture (Roof_Texture) 218
 219
@Location(2672,781) 220
RoofPlane --> 221
 case HOEHEGEB < 4 : 222
 t(0,0.01,0.01) 223
 setupProjection (0, scope.xy, '1, '1) 224
 projectUV (0) 225
 texture (roof_texture2) 226
else:t(0,0.01,0.01) 227
 setupProjection (0, scope.xy, '1, '1) 228
 projectUV (0) 229
 texture (Roof_Texture) 230

