

Procedural 3D modeling and visualization of geotypical Bavarian rural buildings in Esri CityEngine software

Master's Thesis

leva Dobraja

Supervisors: Dr.-Ing. Mathias Jahnke (TUM) Dr.-Ing. Özgür Ertac (Esri Deutschland GmbH)

29.01.2015

Contents

- 1. Introduction
- 2. Theoretical Background
- 3. Case Study Area
- 4. Data Processing
- 5. Results
- 6. Summary

1. Introduction

1. Motivation

Created 3D city models can be widely used in different areas

2. Purpose

Is the software CityEngine appropriate for creating the 3D content of rural areas?

3. Objectives

- Literature review
- Data collection and preparation
- 3D model creation
- Publication of the results

2. Theoretical Background

- 1. Related work
- 2. 3D modeling
- 3. Procedural 3D modeling
- 4. Esri CityEngine as a tool for procedural 3D modeling

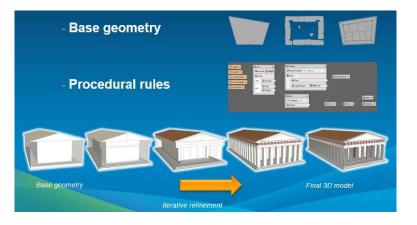
2.1. Related work

- "Research and Development of 3D Modeling" by Luan et al. (2008)
 ✓ overview of the 3D modeling process
 - ✓ application possibilities of a 3D modeling
- "Procedural Modeling of Cities" by Parish and Müller (2001)
 - ✓ introduction of "CityEngine"
 - ✓ Description of L-Systems
- "Procedural Modeling of Buildings" by Müller et al. (2006)
 - ✓ description of CGA shape
 - ✓ comparison between CGA and L-Systems
- "Procedural Urban Modeling in Practice" by Watson et al. (2008)
 ✓ Description of a typical workflow and applications of CityEngine
 ✓ Suggestions for creating a more realistic 3D urban content

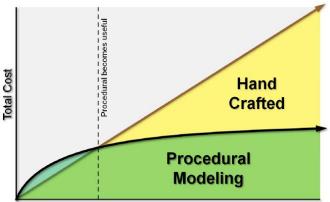
2.2. 3D modeling

"The process of creating a 3D model in the computer" (Govil-Pai 2004, p.83)

Consists of 3 main steps:


- 3D data acquisition
- Modeling
- Rendering

(Luan et al. 2008)


A wide range of **applications:** Architecture, Animation, Decision Making

2.3. Procedural 3D modeling

- A 3D model creation process using **rules** and **algorithms**
- Consists of a **base geometry** and **procedural rules**
- Saves time and costs when a lot 3D modeling iterations are needed

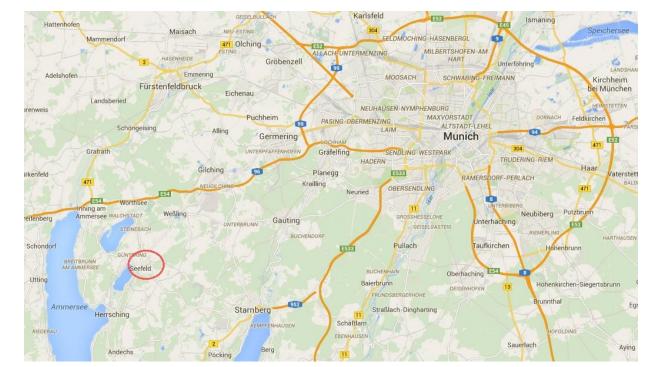
Principles of the procedural modeling Source: Schubiger (2012)

Amount/quality of content/design

Comparison of efficiency between manual and procedural modeling Source: Schubiger (2012)

2.4. Esri CityEngine as a tool for procedural3D modeling

- A stand-alone software which transforms 2D GIS data into smart 3D City models
- Combines procedural modeling methods with shape and split grammars



Creation steps of a 3D city model in the CityEngine software Source: Esri (n.d.)

3. Case Study Area

Seefeld

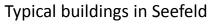
- a municipality in the district of Starnberg
- located southwest of Munich
- lies on the northern coast of the Pilsen Lake

Location of Seefeld Source: www.maps.google.de

3. Case Study Area

Why Seefeld Village?

- Scattered (nucleated) village
- Data availability
- Typical target buildings



Case study area

3. Case Study Area

Typical building **parameters**:

- 1-6 floors (mainly 1 or 2 floors)
- gable and flat roofs
- building facades are light colored
- windows with shutters
- flowers in front of windows

4. Data Processing

- 1. Data preparation
- 2. Data import
- 3. Procedural modeling using Esri CityEngine
- 4. Overview of modeling problems

4.1. Data preparation

Data preparation in the software Esri ArcGIS 10.2.2

• Selection of the **coordinate system**

WGS 1984 Web Mercator

- Calculation of the **necessary building parameters**
- Simplification of building footprints
- Creation of locations for vegetation objects

4.2. Data import

Data import into the software Esri CityEngine

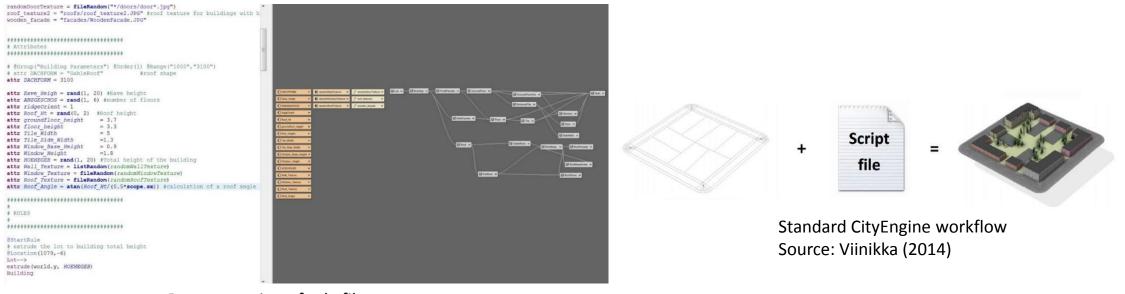
Data Types:

- Shape files
- OSM data
- Object data
- Raster (TIFF, JPEG)
- KMZ

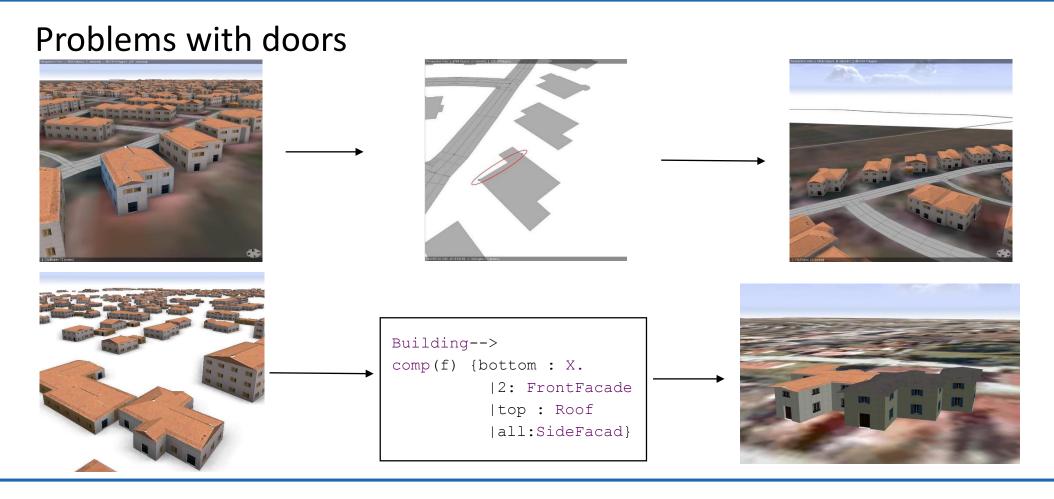
Data	Туре	Source
Building footprints	SHP	Esri Deutschland GmbH
Street network	OSM	<u>OpenStreetMap</u>
Locations of vegetation	SHP	Assigned according to imagery base map (ArcGIS base map collection)
Vegetation elements	OBJ	Esri 3D Vegetation Library
Imagery base map	JPEG	ArcGIS base map collection
Height map	TIFF	Generated from the DTM25 provided by the Bavarian State Office for Survey and Geoinformation
3D model of the Bavarian Church	KMZ	3D Warehouse
3D model of a car	KMZ	3D Warehouse
3D models of people	KMZ	3D Warehouse

Overview of the data imported

4.2. Data import



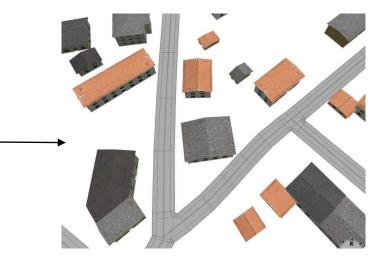
Data imported and aligned to the terrain


4.3. Procedural modeling using Esri CityEngine

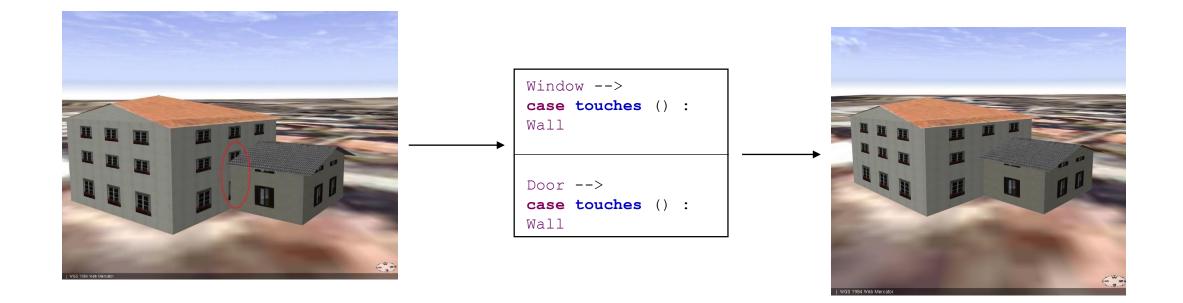
"A rule file – a collection of attributes, functions and rules"

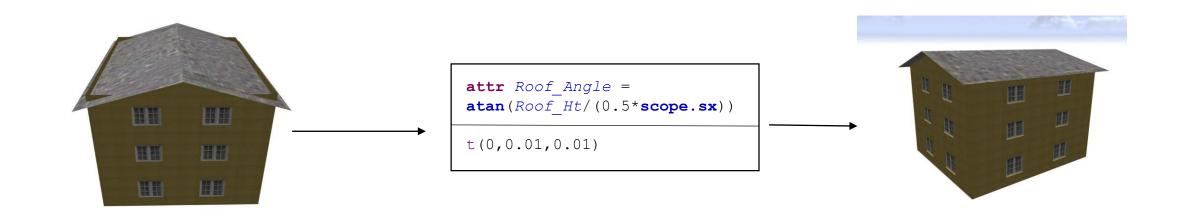
(Esri 2014)

Representation of rule file



leva Dobraja


Mismatch of the layers


Move streets according to the base map and avoid crossing with the buildings

Building elements at intersections

Roof overhangs

5. Results

- 1. Procedurally generated 3D model of Seefeld represents:
- <u>buildings</u>, <u>street network</u>, <u>vegetation</u>, <u>satellite image</u> and <u>DTM</u>
- typical Bavarian rural buildings in Seefeld
- 2. Dealing with modeling problems in rural area
- 3. The final results published as CityEngine WebScene

3D model of the case study area

5. Results

3D model output samples from CityEngine

Final result of the 3D model of the case study area

5. Results

Additional 3D objects

A car model added to the final result

Models of people added to the final result

- Procedural modeling is one of the most appropriate solutions for creating large size 3D city models
- Created **rules** can be **re-used** for further projects
- The software **CityEngine** can be applied for modeling **rural areas**
- Procedurally created model of Seefeld can be used for further analysis and planning purposes
- In the future the model can be improved with different LoD (Levels of Details)

- Govil-Pai, S., 2004. Principles of Computer Graphics. In New York: Springer, p. 83.
- Luan, X.-D. et al., 2008. Research and Development of 3D Modeling. IJCSNS International Journal of Computer Science and Network Security
- Müller, P. et al., 2006. Procedural Modeling of Buildings. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH)
- Parish, Y.I.H. & Müller, P., 2001. Procedural Modeling of Cities. In Los Angeles: SIGGRAPH
- Schubiger, S., 2012. Developing with Esri CityEngine. In San Diego: Esri International User Conference
- Viinikka, J., 2014. Adopting Procedural Information Modeling in Urban Planning. Aalto University
- Watson, B. et al., 2008. Procedural Urban Modeling in Practice. IEEE Computer Graphics and Applications

Thank you!

Questions?