

Deriving the distribution of population from nighttime lights data

Master's Thesis

Ainur Matayeva

Supervisors: Dipl.-Phys. Thomas Krauss (DLR)

M.Sc. Juliane Cron (TUM)

Source: NOAA/NGDC

Agenda

- Introduction
- Data description
- Methods & Experiments
- Results
- Discussion
- Conclusion and Outlook
- Questions

Agenda

- Introduction
- Data description
- Methods & Experiments
- Results
- Discussion
- Conclusion and Outlook
- Questions

Munich nighttime lights and its overview in OSM

Source: NOAA/NGDC

North Belgium nighttime lights and its overview in OSM

Source: NOAA/NGDC

Gas flares of oil fields

Source: NOAA/NGDC nighttime lights, ESRI shapefile

Floodlit border between India and Pakistan

Source: www.dailymail.co.uk; NASA

Source: NOAA/NGDC

Fishing boats in the Yellow Sea

Source: NOAA/NGDC nighttime lights; ESRI shapefile

North and South Korea

Source: NOAA/NGDC nighttime lights; ESRI shapefile

Egypt. Population density versus Nighttime lights

Source: NOAA/NGDC nighttime lights, ESRI shapefile

Population density VS Nighttime lights density

Source: NOAA/NGDC nighttime lights; Naturalearthdata shapefile; Eurostat population data

Agenda

- Introduction
- Data description
- Methods & Experiments
- Results
- Discussion
- Conclusion and Outlook
- Questions

Suomi NPP satellite

VIIRS

Source: NOAA/NGDC

VIIRS DNB

- Cloud free monthly composite of January 2013
- Zero moonlight
- The background noise
- The unit is nano Watts / (cm² * sr)

The data

• VIIRS DNB

Nighttime Lights

- ESRI
- Natural earthdata
- Diva-GIS

Shapefiles

- Factbook
- Eurostat
- Other official authorities

Statistics

Agenda

- Introduction
- Data description
- Methods & Experiments
- Results
- Discussion
- Conclusion and Outlook
- Questions

Finding the best correlation

Comparison regression types

Population estimation

- Method 1 using NTL intensity
- Method 2 using NTL density

Nighttime light density

$$\lambda = L/A$$

where,

 λ - nighttime light density, nano Watts/(cm² * sr *km²),

L - nighttime light intensity, nano Watts/(cm² * sr),

A - area of an administrative unit, km²

Tile 2 with country borders

Source: NOAA/NGDC Nighttime lights image, ESRI shapefile

NTL versus Population

Finding the best correlation

Nighttime lights of Germany

District (NUTS3) borders of Germany

Source: NOAA/NGDC Nighttime lights image, naturalearthdata shapefile

Comparing regression types

NTL Germany & NUTS3.shp

NTL of 411 districts

7 groups by λ

Best R²

- Districts masking
- Apply masks

- Grouping by λ:
- 2<λ<5
- 5<λ<7
- 7<λ<9
- 9<λ<13
- 13<λ<25
- 25<λ<50
- 50<λ<170

- Scatter plot
- Population vs NTL
- <R²> Lin.=0.44
- <R²> Log.=0.40
- <R²> Exp.=0.43
- <R²>Power=0.53

Correlation coefficients of compared regressions

λrange	Average λ	R ² linear	R ² logarithmic	R ² exponential	R ² power
2-170		0.66	0.34	0.58	0.67
2-5	3.5	0.12	0.13	0.13	0.15
5-7	6	0.25	0.28	0.29	0.34
7-9	8	0.32	0.35	0.34	0.38
9-13	11	0.44	0.41	0.45	0.48
13-25	19	0.37	0.43	0.44	0.65
25-50	37.5	0.82	0.72	0.60	0.84
50-170	110	0.77	0.51	0.78	0.87

Population estimation

Method 1

Population estimation using NTL intensity

Method 2

Population estimation using NTL density

Deriving the population distribution

Population estimation by method 1

where,

P_e – estimated population

λ - nighttime light density

L - nighttime light intensity

f – factor

f(a) – factor to calculate f

e(a) – exponent to calculate f

e – exponent

f(b) – factor to calculate e

e(b) – exponent to calculate e

Method 1 using NTL intensity

Example of extracting a factor and an exponent values from group $10 < \lambda < 15$

All extracted factors and exponents values

average λ of a group	3.5	6	8.5	12.5	20	32.5	70
factor	494.4	673.63	663.19	246.41	645.89	215.78	129.33
exponent	0.6277	0.5953	0.5906	0.7136	0.6201	0.7371	0.8103

Deriving a factor and an exponent by method 1

Population estimation by method 1

where,

P_e – estimated population

λ - nighttime light density

L - nighttime light intensity

f – factor

f(a) – factor to calculate f

e(a) – exponent to calculate f

e – exponent

f(b) – factor to calculate e

e(b) – exponent to calculate e

NTL intensity vs. Population

NTL density vs. Population density

Method 2 using NTL density

NTL DE, FR, IT & Shapefile

600 NTL provinces

Groups by λ

 $\mu_{de} = \frac{P_{de}}{L_{de}}; \mu_{c} = \frac{P_{c}}{L_{c}}$ $b = \frac{\Sigma \mu_{c}}{\Sigma \mu_{de}}$

 $P_e = f * \lambda^e * A * b^e$

- Mask
- Apply mask
- λ < 100 **Grouping by λ:**
- 2<λ<5
- 5<λ<7
- 7<λ<10
- 10<λ<15
- 15<λ<25
- 25<λ<40
- 40<λ<100

- Scatter plot
- Population vs NTL
- Power regression

- Normalisation parameters
- Population estimation

Population estimation by method 2

where,

P_e – estimated population

P_c – country population

P_{de} – Germany population

λ - nighttime light density

L - nighttime light intensity

f – factor

e – exponent

Agenda

- Introduction
- Data description
- Methods & Experiments
- Results
- Discussion
- Conclusion and Outlook
- Questions

Results

Cross validation

- 755 provinces
- 11 countries

Data Visualization

- Method 1:
 Poland and Lodzkie province of Poland
- Method 2: Estonia and Italy

Cross validation of 755 provinces

Relative error:

$$\varepsilon = \frac{|Pe - Pa|}{P_a}$$

- Method 1
- Method 2
- ---- Average Relative error of European countries by method 1
- --- Average Relative error of all countries by method 1
- --- Average Relative error of European countries by method 2
- —Average Relative error of all countries by method 2

Population density per km² by GPW (2000) Spatial resolution: 5km

Source: GPW v2, naturalearthdata shapefile

Estimated population density per km² by method 1 Spatial resolution: 750m

Estimated population density per km² by method 2

Spatial resolution: 750 m

Agenda

- Introduction
- Data description
- Existing work
- Methods
- Experiments
- Results
- Discussion
- Conclusion and Outlook
- Questions

Discussion

- General restrictions: gas flares, wildfires, auroras
- Method 1 restrictions: valid for European countries with evenly distributed population
- Negative values on VIIRS DNB: consequence of calibration

Agenda

- Introduction
- Data description
- Methods & Experiments
- Results
- Discussion
- Conclusion and Outlook
- Questions

Conclusion

- Power law is the best among regression types
- Relationship of NTL density and Population density is stronger than NTL intensity to Population
- Method 2 (ϵ_{all} =0.33; ϵ_{eu} =0.25) using NTL density is much better than Method 1 (ϵ_{all} =0.55; ϵ_{eu} =0.35)

Outlook

- Removing noise
- Using land cover
- Several year time lapse

Questions?

Thank you for your attention

Population density per km² by GPW (2000)

Estimated population density per km² by method 1

Source: GPW v2, ESRI shapefile

Population density per km² by GPW (2000)

Estimated population density per km² by method 2

Log-log plots of 21 countries

 $R^2 = 0.96$

Source: Elvidge et.al.,1997

 $R^2=0.97$

 $R^2 = 0.85$

Map of a subnational NLDI

NLDI values produced on a 0.25 degree spatial grid

Source: Elvidge et.al., 2012

The dynamics of urban expansion in China from 1992 to 2008.

Source: Liu et al., 2012

XDibias – image processing system developed by IMF at DLR

Idibias interface – Xdibias image viewer

Tile 2. Europe and Northern Africa

Source: NOAA/NGDC

Reference

- 1. C. D. Elvidge, K. E. Baugh, E. A. Kihn, H. W. Kroehl, E. R. Davis & C. W. Davis (1997) **Relation** between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption, *International Journal of Remote Sensing*, 18:6, 1373-1379.
- 2. Elvidge, C. D.; Baugh, K. E.; Anderson, S. J.; Sutton, P. C.; Ghosh, T. (2012) **The Night Light Development Index (NLDI): a spatially explicit measure of human development from satellite data,** Social Geography, 7(1):23-35
- 3. Liu, Z.; He, C; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime data from 1992 to 2008. *Urban Planning*, 2012, 106, 62-72.