

Technical University of Munich

Faculty of Civil Engineering and Geodesy

Department of Cartography

Prof. Dr.-Ing. Liqiu Meng

Web based visual analysis of 3D lightning

data

Mohammad Abusohyon

Master Thesis

Bearbeitung: 15. 04. 2014

Studiengang: Cartography (Master)

Supervisor: Dipl.-Ing. Stefan Peters

2014

I

II

Declaration of Authorship

Last name: First name:

I declare that the work presented here is, to the best of my knowledge and belief, original
and the result of my own investigations, except as acknowledged, and has not been submit-
ted, either in part or whole, for a degree at this or any other University.

Formulations and ideas taken from other sources are cited as such. This work has not been
published.

Location, Date Signature

III

IV

“Anybody who has been seriously engaged in scientific work of any kind realizes

that over the entrance to the gates of the temple of science are written the words:

‘You must have faith”.

Max Planck

V

VI

Abstract

Addressing natural phenomenon impacts on urban areas and local environments have been

the major workload filling the researchers and analysts communities’ schedules.

With the advanced technologies available today, for collecting data during long periods of

time (as in satellites technologies), the researchers and analysts become forced to deal with

large amount of data related to natural phenomena. This new demand for dealing with huge

data sources has urged the need for an appropriate visualization and analysis package,

combined of innovative methods and powerful tools to ease the researchers and analysts

tasks.

Lately many tools have been developed to provide analysts with comprehensive solutions

for performing various analysis and visualization tasks, especially the tasks for detecting

phenomenon changes in terms of directions, volumes and coverage.

However, few of these current tools have provided their solutions through the web. The

main goal of this thesis is to design and develop a web application that enables the users to

perform online visualization and analysis processes for addressing a certain weather phe-

nomenon (lightning storms).

The main design of the web application was focused on providing the user with an interac-

tive visual and explorative tool, for analysing multidimensional lightning cells tracks, in 2D

and 3D figures .This visualization capability, will help the user in gaining new insights of the

phenomenon dynamics and also in understanding the characteristics of its nature. In addi-

tion to that, the design will focus on targeting a broad sector of users, by designing the ap-

plication to be more feasible and usable for users with different interests and backgrounds

e.g. weather analysts, decision makers, students...Etc.

VII

 VIII

Contents

Abstract ... VI

List of Figures ... XII

Abbreviations .. XIV

1 Introduction ... 1

1.1 Problem Definition ... 2

1.2 Objectives ... 3

1.3 Research solution .. 4

1.4 Thesis Structure .. 4

2 Scientific review .. 6

2.1 Definitions.. 6

2.1.1 Dynamic phenomenon ... 6

2.1.2 Discrete data and Continuous fields ... 8

2.1.3 Spatially extended objects ... 9

2.2 Related scientific disciplines ... 11

2.2.1 Visualization ... 11

2.2.2 Visual analysis and temporal analysis ... 12

2.2.3 Visual Analytics ... 14

2.2.4 Methods and tools of visual analytics .. 14

2.2.5 Four dimensions representation: .. 15

2.2.6 Web Mapping ... 16

2.2.7 Web-Cartography ... 16

2.3 Similar web approaches .. 20

3 Data description ... 23

IX

4 Methodology ... 25

4.1 Primary design .. 25

4.2 User interface .. 25

4.3 Basic user interface tools .. 25

4.3.1 Dynamic figure box .. 26

4.3.2 Radio buttons ... 27

4.3.3 Time slider .. 27

4.3.4 Combined view .. 28

4.3.5 Space time cube .. 28

4.4 Selecting web developing software platform ... 28

4.5 Web application design ... 29

4.5.1 Client to server model .. 29

4.5.2 Programming techniques ... 30

4.5.2.1 MATLAB functions for Web application .. 31

4.5.2.2 JAR files .. 33

4.5.2.3 Need for mySQL .. 34

4.5.3 Dynamic web pages ... 35

4.5.3.1 JSP ... 35

4.5.3.2 Java Script .. 35

4.5.3.3 Java Srevlet ... 36

4.5.3.4 AJAX ... 38

5 Implementation .. 39

5.1 Building MATALAB Codes ... 39

5.2 mySQL implementation .. 41

5.3 JavaScript, JSP, XML and HTML .. 43

5.4 Java for building application servlet .. 47

6 Results and discussion ... 50

7 Conclusion and outlook ... 52

References…………………...…………………...…………………………………………………54

 X

Appendix ... 57

A. MATLAB codes for plotting lighting data in different representations forms 57

A.1 Code for plotting lightning points in 3D ... 57

A.2 Code for plotting lightning clusters centers (point geometry) 57

A.3 Code for plotting lightning clusters tracks centers 58

A.4 Code for plotting lightning clusters tracks .. 58

A.5 Code for plotting lightning clusters as spherical objects 58

A.6 Code for plotting lightning clusters as convex hull in 2D 59

A.7 Code for plotting lightning clusters as convex hull in 3D 60

A.8 Code for plotting lightning clusters as ellipsoids .. 60

A. HTML Code for web page .. 62

B.1 slider functionality JSP file .. 62

B.2 multiple representation functionality JSP file .. 64

b.3 combined representation functionality JSP file ... 65

B. Java code for building the servlet file ... 66

C.1 Servelt file for running slider functionality ... 66

C.2 Servelt file for running multiple representation functionality................ 68

C.3 Servelt file for running combined representation functionality 75

C. Web application tools and functionalities interface ... 77

D.1 Radio buttons ... 77

D.2 Time slider .. 77

D.3 Combined view .. 78

D.4 Visualization options .. 79

D.4.1 visualizing lightning point data in 3D .. 79

D.4.2 visualizing lightning clusters centers .. 79

D.4.3 visualizing lightning clusters tracks centers ... 80

D.4.4 visualizing lightning clusters tracks ... 80

D.4.5 visualizing lightning clusters as spherical objects ... 81

D.4.6 visualizing lightning clusters as 2D convex hulls ... 81

D.4.7 visualizing lightning clusters tracks as convex hull in 3D 82

D.4.8 visualizing lightning clusters as ellipsoids .. 82

XI

XII

List of Figures

Figure 1: Lightning data distribution over the Upper region of Bavaria 24

Figure 2: user interface .. 26

Figure 3: Different data representation and visualization with the dynamic figure box . 27

Figure 4: client to server model ... 30

Figure 5: Matalb example code for plotting lightning point data .. 33

Figure 6: AJAX Diagram .. 38

Figure 7: Plotting lightning point in 3D code ... 40

Figure 8: Java code for loading mySQL tables .. 42

Figure 9: example code combining JavaScript, JSP, and HTML-part 1 44

Figure 10: example code combining JavaScript, JSP, and HTML-part 2 45

Figure 11: example code combining JavaScript, JSP, and HTML-part 3 46

Figure 12: example code combining JavaScript, JSP, and HTML-part 3 46

Figure 13: Servlet example code-first part (import declarations) .. 47

Figure 14: Servlet example code-Second part (declaration of main class sliding) 48

Figure 15: Servlet example code-third part (relational database connection) 48

Figure 16: Servlet example code-fourth part (implementing MATALB functions) 49

Figure 17: Servlet example code-fifth part (returning MATALB web figure) 49

Figure 18: Radio buttons for selecting different visualizing methods 77

Figure 19: time slider Implantation .. 77

Figure 20 : combined visualizing methods ... 78

Figure 21: lightning points distribution .. 79

Figure 22: cross representation.. 79

Figure 23: point representation ... 80

Figure 24: line representation ... 80

Figure 25: spherical objects representation .. 81

Figure 26: 2D convex hull representation .. 81

Figure 27: 3D convex hull representation .. 82

Figure 28: ellipsoidal representation ... 82

XIII

XIV

Abbreviations

LINET Lightning detection Network

VHF Very High Frequencies

RDBMS Relational Data Base Management System

OGC Open Geospatial Consortium

GML Geography Markup Language

GIS Geographic Information System

ArcIMS Arc Internet Map Server

LAN Local Area Network

MCR MATALB Compiler Runtime

JVM Java Virtual Machine

UI User Interface

GUI Graphical User Interface

HTTP Hyper Text Transfer Protocol

XML Extensible Markup Language

JS JavaScript

AJAX Asynchronous JavaScript and XML

JSP Java Server Pages

SQL Structured Query Language

JDBC Java Data Base Connectivity

APIs Application Programming Interfaces

XV

XVI

To my Parents:

Without your love and care, I never succeeded

XVII

1

Chapter 1

Introduction

With the modern technical achievements in producing and manufacturing advance sensing

unites for measuring natural phenomena, scientist and research can obtain limitless amount

of data representing any phenomenon of interest. For addressing a certain phenomenon,

the scientist and research usually examine the data representing this phenomenon under

different analysis and evaluation processes. Lately visualization methods and visual analyt-

ics techniques become an essential element for examining and evaluating any data set.[1]

The usage of visualization methods and visual analytic techniques has combined two im-

portant elements. The first element is to exploit the advances in computer graphics for visu-

alizing patterns or distinguished geometries in the data sets. The second element is to ex-

ploit human ability of constructing mental images from visualized patterns and distinguished

geometries.

However, even with these advantages of visualization and visual analytics in examining and

analyzing data sets, the user still has to deal with many restrictions before begging his pro-

cess of analysis. One of the main restrictions for the users to deal with is the suitability of

the visualization methods for analyzing their data sets. Even with the various available visu-

alizing tools, provide by many platforms, the user still cannot exploit these tools beneficially

in the process of visualizing and analyzing his data sets.

In addition to the restriction in beneficially exploiting available visualizing tools, many of the-

se tools are provided in commercial forms and will not be available for usage without pre-

licensing and authorization from the original developing firm.

In conclusion, for addressing a specific phenomenon represented by large amount of data,

the visualization tool should be more centered in addressing this specific phenomenon. The

tool should also be provided in a platform independent from any ownership restrictions.

The proper approach for addressing a specific phenomenon is to build and develop an ap-

plication that’s oriented from the begging to address and analyze this specific phenomenon.

The application design and implementation tool should serve the visualization and analysis

of the phenomenon in the most optimum way. The application should cover with its func-

tionalities every possible aspect for visualizing and analyzing the phenomenon. In result the

Chapter one: Introduction

 2

user will be provided with a tool for performing special information extraction and

knowledge revealing for the phenomenon hidden characteristics, which leads to better reali-

zation of the phenomenon potential impacts and helps in improving decision making pro-

cess.

To insure the user accessibility to the application functionalities, the application design also

should focus on providing the application free from any software or hardware restriction.

This requirement can be achieved by finding an independent medium for disseminating data

and communicating with users. The best medium for providing limitless access to the appli-

cation functionalities is the web.

Later on, in the following chapters, a detail explanation will be provided to discuss the is-

sues of designing and implementing visual analysis applications on the web.

1.1 Problem Definition

The lightning storms phenomenon can be considered as one of the frequent weather condi-

tions affecting the upper region of Bavaria (Germany).

Detecting this dynamic weather phenomenon can be done using various methods and

measurements techniques such as weather satellites, special radars or ground detecting

networks.

The European lightning detection network (LINET), is considered to be one of the permanent

data sources for detecting and positioning lightning storms around Europe. Capable of

providing 3D coordinates measurements for lightning strikes points with acceptable accura-

cies.

With the importance of addressing the lightning storms phenomenon as a dynamic weather

condition affecting the upper region of Bavaria and with the available and continuous posi-

tioning data for lightning strikes points provided by LINET, it becomes a necessity to design

and implement an interactive tool that can foster the process of visualizing, analyzing and

understanding this weather phenomenon.

A first try for designing and implementing an interactive visual analysis tool was done by

Stefan Betters and Liqiu Meng1. The interactive visual analysis tool was build using MATLAB

software platform and provided multiple interactive representations of the lightning phe-

1 Technical University Munich, Department of Cartography, Munich, Germany

Chapter one: Introduction

 3

nomenon. The interactive tool showed high performance for loading and visualizing lightning

data according to different user demands.

However, this interactive tool can only be run and executed on a MATALB software plat-

form, which added a level of restriction on the uses of the interactive visual analysis tool.

MATALB is not just a developing software platform; MATALB is a commercial software sup-

plier that applies many ownership and authorization policies on the usage of MATALB soft-

ware products. These MATALB policies prevent any use or access to any of the MATLAB

products without a previous MATALB authorization.

This means that for any user interested in implementing the interactive tool, MATALB soft-

ware installation and authorization should be first done so later the user can run and exe-

cute the interactive visual analysis tool.

In conclusion, for implementing an efficient visual analysis tool, for the purpose of address-

ing lightning storms data, new efforts should be provided to design and develop a visual

analysis tool that is free from any restriction. For filling this task, a scientific research topic

was presented for addressing the possibility of extending the existing visual analysis tool to

the web.

The research should cover both the theoretical and practical parts for addressing and im-

plementing the suitable solution.

1.2 Objectives
As motioned in the previous section, the lightning storms phenomenon has a major effect

on the weather condition in the upper region of Bavaria. An advance visualization and analy-

sis tool was implemented on the available lightning data with a level of restriction on free-

dom of usage. To overcome this restriction, a suggestion was made to address the exten-

sion of this visual analysis tool to the web.

In this context, the objectives of the thesis research are as follows:

• Design and develop a new interactive visual analysis tool. The design should imple-

ment a tool free form any restrictions, especially the type of restrictions presented by

the developing software platform.

• Provide unlimited access to the new interactive visual analysis tool functionalities by

using web capabilities with no interference from any third party.

• Benefiting from the existing interactive visual analysis tool design and techniques.

Chapter one: Introduction

 4

• Providing multiple representations of the lightning storms data in the extended web

visual analysis tool, to reveal the hidden characteristic and analysis the lightning

storms data from every possible aspect.

• Embedding a fusible interface in the new web visual analysis tool design, to ease the

interaction between the user and the visual and analysis functionalities.

1.3 Research solution

To overcome the previous mentioned restriction in the problem definition section, when us-

ing the visual analysis tool and also to achieve the objectives mentioned in the previous sec-

tions, the appropriate solution is to redesign and develop a new visual analysis tool that

promotes the free use of all existing visual analysis functionalities on the web.

To achieve this task, a research should be done to find the best software platform for the

web application development. The software platform should provide an independent devel-

oping environment from any ownership restriction. The best solution for this requirement is

to find an open source for providing developing software platforms.

The fourth chapter of this thesis will provide a full explanation of the research process in

finding the suitable web developing software platform. As an introduction for the upcoming

solution, the research focused in using Java technologies as an open source for building

and developing the web applications.

1.4 Thesis Structure

The thesis general structure revolves around presenting the idea of extending visual analysis

techniques to the web. The preliminary chapters will present the current challenges with the

general proposal for providing the proper solution, later a research of the related scientific

matters and disciplines that could be beneficial for the implementation process will be pro-

vided. The fallowing chapters will give an overview of the data used in the web application.

Later a methodology for building the web application will be presented. The implementation

process will be presented in details in a separate chapter and the last chapters will presents

the conclusions and the outlooks.

In the following, a detailed explanation for the content of each chapter:

Chapter one: Introduction

 5

Chapter 1: provides an introduction to the importance of extending visual analysis tech-

niques to the web. The chapter discussion will define the case of interest under process and

summarize the objectives of addressing this case.

Chapter 2: presents a scientific review of the related disciplines fostering the design and

implementation process. The chapter discussion will focus on defining some basic terms

used in addressing the lightning storms case. Details concerning related scientific fields will

be introduced with an overview of some similar approaches that already implemented visual

analysis solutions on the web.

Chapter 3: contains detailed description of the data that will be visualized and analyzed

under the web application.

Chapter 4: presents the proposed methodology for building and developing the web appli-

cation with details concerning the used technologies and techniques.

Chapter 5: presents detailed explanation on how the methodology techniques were imple-

mented.

Chapter 6: presents the work discussion and conclusion.

Chapter 7: presents the recommendations and outlooks for future updates and enhance-

ment of the implemented web application.

6

Chapter 2

Scientific review

Before discussing the techniques for extending visualization and analysis methods to the web,

a review for some of the fundamental concepts related to dynamic phenomena analysis,

should be done. Knowing how to define a dynamic phenomenon and understanding what is it

refereeing to, eases the process of designing and implementing a visual analysis tool. The solid

understanding of the phenomenon nature helps the developer in designing a tool that suits the

phenomenon examination and analysis process. In other words, understanding the geograph-

ical phenomenon nature is an essential element for designing an efficient visualization and

analysis tool.

The fallowing section will provide a comprehensive definition of the dynamic phenomenon,

which is taken from various disciplines of science. Also the fallowing section will present the

geographical methods for modeling a dynamic phenomenon, in seek of better understanding

and realization of the dynamic phenomenon.

2.1 Definitions

2.1.1 Dynamic phenomenon

What is a dynamic phenomenon? What does it refer to of events occurring in the nature? And

how can we describe the dynamic phenomenon?

A dynamic phenomenon description varies in different ways, according to which discipline of

science is addressing the dynamic phenomenon. If the dynamic phenomenon has been

addressed under the field of Geophysical Fluid Dynamics2, the definition will be comprised of

equations and mathematical formulas explaining the dynamic processes and potential patterns

of the phenomenon’s movements [2]. If the concepts of the Geophysical Fluid Dynamics disci-

pline are used to address the lightning storms phenomenon, the developer will be using the

atmospherical model to define and model the lightning storms phenomenon.

2 The main subject addressed by the discipline Geophysical Fluid Dynamics, is the natural phenomenon
motion occurring in earth oceans and atmosphere over a wide range of time and space. the discipline
uses nonlinear dynamics, mathematical analysis ,computational modeling, theoretical approach lab sim-
ulations and filed measurements to address and explain the nature of dynamic phenomenon.

Chapter 2: Scientific review

 7

To preserve the context of this thesis, the dynamic phenomenon definition will be explained by

a cognitive approach. The cognitive definition can be derived from the cognitive linguistic dis-

ciplines.[3]

The cognitive linguistic disciplines don’t refer explicitly to the natural dynamic phenomena.

However they still provide an obvious cognitive archetype for defining and modeling any

dynamic phenomenon.

The proposed cognitive archetypes, suggests that any dynamic situation is originally com-

posed of certain basic elements, these elements are: the state, event and the process.

 The cognitive archetype definition depends on cognitive perception of topological relations

between the objects in reality and depends also on cognitive realization of changes in objects

characteristics during time.[4]

For defining a dynamic process, the cognitive archetype definition revolves around the idea of

considering a dynamic process as a hierarchical structure of states or events and processes:

Initial Situation (state/event): represents an object in the initial phase.

Transition (process): represents changes and actions on the object that

 transforms the object status from the Initial phase to the

final phase (with a temporal sense).

Final situation (state/event): defines the final status of the object.

The cognitive archetype definition also provides taxonomy for the transitions (processes).

According to the definition, the transitions can be split into different types; depending on the

different status the object can take during a transition. Going more in to details, if a transition

between two situations doesn’t indicate a main change in the object properties, the transition

will be referred to as static situation transition. [5] On the other hand, if the transition between

two situations phases indicates a main change, the taxonomy will turn the focus on the ob-

ject’s spatial movement and the forces steering this movement. If the spatial movement was

under constrain, the transition will be mark with a different taxonomy than if the spatial move-

ment wasn’t under constrain.

As an example for implementing this cognitive definition, Shipley, Fabrikant and Lautenschütz

have explicitly mentioned the conceptual term event to refer to the stages of a Dynamic geo-

graphic phenomenon [6].

However, even with this cognitive archetype definition, that’s facilitating the realization of

Chapter 2: Scientific review

 8

a dynamic phenomenon, it’s better to rely on a definition that has been extracted from the

specialist domains for addressing geographical dynamic phenomena.

Goodchild and Glennon [7], have provided a specific definition for the term geographical dy-

namic phenomenon. In their definition, the terminology “geographical” referrers to “the surface

and near-surface of the Earth” and the terminology “dynamic” referrers to “changes through

time, and the characterization, understanding, and prediction of such changes“.

In other words, a geographical dynamic phenomenon is any phenomenon occurs at the surface

or near the surface of the Earth with a predicted change through time.

2.1.2 Discrete data and Continuous fields

Extracting spatial information from humans’ descriptions is considered to be a poor and ineffi-

cient process. When people try to map their surroundings, depending on their own under-

standings of the geographical elements, they always mix their descriptions with their own defi-

nitions of topological and topographical relation. Normally these definitions changes from an

individual to another and they never correspond. The resultant of human descriptions for earth

surface is unfortunately complex expressions and poor descriptions that cannot depict well the

earth surface.

To solve this inconsistency between the humans when they are trying to depict the earth sur-

face and also to solve the non uniformity between humans when they define the topological

and topographical relations between the earth surface features, formalized definitions and

comprehensive models of the earth surface should be proposed.

In these definitions and models, the earth surface features are defined by unified representa-

tions that distinguish each earth surface feature from another. Also the definitions and models

will present a unified explanation of the topological and topographical relations between the

earth surface features.

Finally these definitions and models will be used by every observer to describe the earth sur-

face features and shear this description with the others .[8]

One of the most used definitions for modeling the earth surface features is the Discrete data

definition.

The Discrete data, referrers to the entities and objects separated in space of interest with

known geographical location, with also determined boundaries and distinguished attributes.

The discrete data is usually used in representing man mad features (houses, blocks,

Streets...Etc) or separated natural features (forests, rivers, lakes...Etc.)

Chapter 2: Scientific review

 9

Another widely used definition for modeling the earth surface features is the Continuous

fields.

The Continuous fields: represents a smooth and continuous variation of known variable over

predetermined space, the variable variation can be represented by a continuous surface or can

be defined by a mathematical equation. The continuous fields can be implemented for geo-

graphical features as terrains elevations or for field properties such as air temperature, soil

minerals concentration...Etc.

It’s important to mention here, that there are many definitions defining discrete data and con-

tinuance fields terms on bases taken from databases management and structuring design. The

goal of this particular definition of discrete data and continuance fields’ terms is to make the

representative elements of earth surface features in the data model more fitting for database

operations (data querying, data exploring and data retrieving).[9]

2.1.3 Spatially extended objects

After discussing the definitions of a dynamic phenomenon and also after discussing the defini-

tions modeling the natural geographical features, for the goal of providing a unified representa-

tion and an efficient sharing process, the next subject that falls in the context of defining im-

portant concepts related to dynamic phenomenon analysis, is the definition of spatially ex-

tended objects.

The definition of spatially extended objects focus on defining and distinguishing the boundaries

and borders of spatially extended object. These boundaries and borders can be distinguished

ether physically by the physical appearance of object border (e.g. a lake has a defined physi-

cal border) or arbitrary by human demarcations of the object border (e.g. a province has hu-

man demarcation border).[10]

Smith and Varzi have discussed the potential hypothesis for physically distinguishing the ob-

ject borders, according to the object inner elements uniformity. If the object inner components

are composite uniformly with distinguishable inner boundaries, the object can be divided ac-

cording to these boundaries into several components with well defined perimeters.

Smith and Varzi have also discussed the hypothesis of distinguishing the object borders from

an arbitrary perspective, where the object components are not the basic concern for the divi-

sion process, but rather more the cognitive human vision for dividing this object. By this hy-

pothesis, Smith and Varzi were pointing toward the human nature and capabilities of proposing

Chapter 2: Scientific review

 10

non realistic dividing borders in the object of interest, to simplify the realization of this object

(e.g. dividing the earth in to two hemispheres).

For lightning storms case, the main concern is to distinguish the exterior borders of the light-

ning storms especially when their volumes (or extensions) are changing during time.

Depending on Brentano’s definition [11] for boundaries of features varying in their characteris-

tics with respect to space and time, Smith and Varzi have introduced the term: coincidence of

fiat boundaries. Fait boundaries are an imaginary separation lines between dynamic object

components. Usually these separation lines are determined by cognitive realizations and not

by physical characteristics. The fiat boundary resulting from the separation process is consid-

ered as a determination boundary that belongs to both adjacent separated parts.

Smith and Varzi have also included Brentano’s proposal for the process of determining fait

boundaries according to a temporal aspect. Brentano’s suggested that fait boundaries can

also be defined in a temporary matter, in which the fait boundaries are located in space, at a

certain time. Later these fait boundaries will be relocated during change of time.

Taking under consideration the coincidence fiat boundaries for separating a dynamic object

body, with the proposal for temporary determination of boundaries, the result will be an appli-

cable technique for dynamically visualizing and molding the lightning storms. Where the light-

ning storm is divide in to various components (e.g. convex halls in 2D or 3D) with fiat bounda-

ries relocated according to time change and regardless of any physical boundary of the whole

lightning storm.

Chapter 2: Scientific review

 11

2.2 Related scientific disciplines
After discussing the meaning of the term dynamic phenomenon and also after discussing the

suggested representation forms for a dynamic phenomenon, time to discuss the disciplines

involved in the process of visualizing and analyzing a dynamic phenomenon. The discussion

will also include the disciplines used to extend the dynamic phenomenon visualization and

analysis methods into the web.

2.2.1 Visualization

To understand the importance of visualization in the processes of gaining new insights and

information, the human visual system should be taken under focus[12]. The human eye con-

tains 125 Million receptors capable of receiving an electromagnetic spectrum with wavelengths

between 390 to 700 nanometers, which known as the visible spectrum. During this process of

receiving the visible spectrum, approximately third of the human brain is involved in analyzing

the received data from the visible spectrum. The brain eventually will build a mental image from

the received visual spectrum and proceed in further realization process.[13]

Knowing these facts about the human visual system and the human reaction toward visible

spectrum, leads to the importance of embedding the visualization element in any process re-

lated to data maiming or data analysis.

Also from the previous explanation of human visual system and human reaction process to-

ward visible spectrum, a formal definition for the visualization process can be derived as the

following:

“Visualization is a human cognitive process for forming mental image of a domain in space”.[14]

However, for the context of visual analysis, the visualization definition was interpreted by many

scientists as the use of computer graphics and representations for handling large amount of

data to extract new knowledge and gaining insights.[15]

WILLIAMS, SOCHATS and MORSE have introduced more specifications into the visualization

definition, to include computer technologies in the visualization process. WILLIAMS, SOCHATS

and MORSE have defined the visualization term as: “Using graphics, Images and animated

sequences to represent complex data structure and complex data dynamic behavior to reveal

the events, processes and concepts”. The following two sections, will present more principles

and techniques in the same context with WILLIAMS, SOCHATS and MORSE definition, to re-

veal and extract hidden information from datasets that represents dynamic process.

Chapter 2: Scientific review

 12

2.2.2 Visual analysis and temporal analysis

When testing a data set under conventional data analysis processes, the data set values will be

processed and manipulated according to a certain hypothesis for revealing the hidden infor-

mation. The analysis process will also measure the conformity of the data analysis results to

the hypotheses assessment for the outcomes. In exploratory data analysis, the approach for

processing the data set focuses more in revealing the hidden information with an empirical

process. In this process the analyst will explore the data regardless of any hypothesis, search-

ing for unusual trends, patterns, relationships or inconsistencies appearing visually in the

mapped data. later the analyst will present his conclusions as an extracted information from

the data set visual testing.[16]

During this process of visual analysis, the analyst main strategy will be to monitor and meas-

ure the variations in the phenomenon properties in every possible form. The monitoring and

measuring process could focus on the phenomenon spatial distribution in space, or on the

variations of the phenomenon coverage area and occupied volume in space. Also the monitor-

ing and measuring process could include the focuses on the phenomenon movement’s direc-

tion and speed during time. Another possible form of observing phenomenon variations is to

observe the variation in the phenomenon unity. In other words, is the phenomenon consists

from one main object during the phenomenon movement? Or possibly can be split into multi-

ple objects during this movement?

Temporal analysis

As simple as the monitoring and measuring process seems to be, still the analyst cannot per-

form the monitoring and measuring process immediately, some important data organizational

aspects should be determined at the beginning.

To enable the analyst from measuring the variations in a certain phenomenon, the phenome-

non should be divided into small portions. Dividing the phenomenon into small portions eases

the tasks of observing and analyzing the phenomenon variations more than if the phenomenon

been observed and analyzed as a one complete unite. However, even with this advantage driv-

en from portioning the phenomenon, it’s important to point out that the portioning process has

a significant effect on the observation and analysis process outcomes. According to which

portioning technique the phenomenon is divided to, the observation and analysis values will

change considerably. This portioning effect has gathered the attention to the importance of

defining a basic technique for dividing the phenomenon body in to small portions without af-

Chapter 2: Scientific review

 13

fecting the observation and analysis outcomes. In other words, finding a portioning technique

for extracting realistic changes in the phenomenon characteristics.

DONNA J. PEUQUET and NIU DUAN [17] have proposed time periods(in their model for

spatio-temporal data analysis) as the organizational technique for observing and detecting

realistic changes in the phenomenon properties, phenomenon characteristics or phenomenon

relationships when using visualizing analysis process.

In this time based model they suggested “time to be the primary organizational basis for re-

cording changes”. The sequenced changes in phenomenon components and phenomenon

properties will be detected according to sequenced time periods in the timeline of the phe-

nomenon.

The detection will begin from the starting point in the phenomenon timeline and stops at the

end of the first period. The changes in the phenomenon components and phenomenon proper-

ties during this period (e.g. location in space) will be recorded and measured. The detection

process continues for each phase of the timeline and at each phase the changes in the phe-

nomenon components and phenomenon properties will be recorded and measured until this

process finished by reaching the last phase in the timeline.

DONNA J. PEUQUET and NIU DUAN have also proposed multiple procedures for portioning a

dynamic phenomenon into different time periods. For example, they proposed that the portion-

ing technique could depend on distinguishing major changes occurring during the phenome-

non life time (an event) and later use these distinguish changes to portion the phenomenon

into time periods. The distinguished changes will be recorded individually in the phenomenon

timeline and their time of occurrence will define the time periods quantities and durations.

This technique for recording the distinguished rates of changes inside a phenomenon and later

portioning the phenomenon timeline to periods according to the occurrence time of each one

of the distinguished changes has been known inside the analysis society as the event-based

process.

For portioning the lightning storms phenomenon, the desktop application for visualizing and

analyzing lightning storms has implemented a time base approach.

The lightning point data were separated into time intervals with duration of 10 minutes. The

resultant portions have contained at least 10 lightning strikes points. Later the lightning por-

tions were clustered to bigger cells for better representation and visualization. The clustering

was distance based with distance-threshold of 6 km.[18]

Chapter 2: Scientific review

 14

2.2.3 Visual Analytics:

The primary idea behind any visual analytic process is to combine humans’ cognitive capabili-

ties when forming mental images with computer advance graphics representations of natural

phenomena, for providing better realizations and understandings of the natural phenomenon

characteristics. In this process the user will implement the available visualization and analysis

methods to reveal the hidden information with high quality. The higher quality in revealing hid-

den information will enable the analyst of reaching the correct conclusions and performing the

right decisions.[19]

To transform this theoretical idea to an applicable procedure the user should be provided with

an interactive visualization and analysis tool. The visualization and analysis tool will provide the

necessary platform for combining user cognitive capabilities with computer graphics capabili-

ties3.

2.2.4 Methods and tools of visual analytics

A visual analytical tool varies in functionalities and techniques according to the cases binning

under analysis. Also the visual analytical tool will vary in functionalities and techniques accord-

ing to the type of data representing these cases binning under analysis. In the following a list of

the Visual analytical tools used in addressing different natural phenomena with different data

types:

• Map animations: used for presenting the phenomenon movements or the phenomenon

changes during the phenomenon occurrence time.

• Map iterations: ordering a group of maps representing one particular phenomenon in a

special sequence to present the phenomenon changes and variations.

• Data Querying: In a querying process, the phenomenon data are usually structured in a

relational database management system (RDBMS), to enable users of sending data

queries requests and receiving data queries results (movement type, direction, speeds,

time ...etc). [20]

• Focused view: represents a partial view taken from a bigger scene with higher zooming

levels. The focused view presents the data with a significant enlargement (especially in

3D presentation) with also the possibility of panning and rotating the view. Usually this

technique is used to visually examine the presented phenomenon with high level of de-

3 More details for designing and implanting an interactive visualization and analysis tool will be provided in
chapter 4, section 3

Chapter 2: Scientific review

 15

tails obtained from the enlargement process. However this technique is only displaying

a part of the data and a link to the whole data display is needed. The linking process is

performed by providing both displays of the data next each other, the focused view and

the original display and then shading the area enlarged by the focused view inside the

original display.[21]

• Space-time cube: used for presenting discrete data with continuance changes during

time of occurrence. In this technique, the discrete data are aggregated to clusters ac-

cording to a temporal factor [22]. For positioning the clusters inside the cube, the exter-

nal sides of the cube are used as scaling axes for positioning the data clusters.

Usually the edges of the rectangular base inside the cube are used to represents X and

Y axes. For representing the altitudes of clusters, the cube height is used as an alti-

tudes scaling axis. [23]

2.2.5 Four dimensions representation:

As mentioned in the previous section, the space time cube technique is used to position clus-

tered data in a 3D display. These clusters are viewed during the whole time of the phenomenon

occurrence. However, if these clusters can be visualized or hidden according to changes in

time, this will simply transform the space time cube functionality from 3D representation to 4D

representation, where the fourth dimension refers to time shifting. For applying this transform

of functionality in the space time cube, an additional element should be included to add the

fourth dimension representation. The additional element is known as the “interactive display”

which is basically a dynamic visualization that displays the visualized objects according to

shifts in time; usually the time shifting is implemented by user requests. [24]

For adding the four dimensional representation to the application that visualize the lightning

storms data, a time slider (that can be controlled by the user) was proposed. By using this time

slider, the user can shift between different time intervals and the application will apply changes

(interactively) to the main display according to the shifting process. The user can visually ana-

lyze the changes in the phenomenon characteristics according to which part of the timeline the

phenomenon has been visualized to.

Chapter 2: Scientific review

 16

2.2.6 Web Mapping:

Using the World Wide Web as disseminating tool has become the main theme of our modern

digital era. When following the aspects of our daily life and daily activities, as working or study-

ing or even searching for a near grocery shop, we notes that accomplishing these activates

always involve the process of gathering information from the internet. The gathered information

can be received in different forms as in a visual form or in some services in an acoustical form.

These capabilities of publishing information in different forms and the feasible of using the in-

ternet as a tool for publishing data has influenced the scientist and researchers in the cartog-

raphy discipline to include the internet capabilities in the processes of designing and producing

modern maps.

The important use of maps as symbolic graphs for depicting our surroundings (or any place of

interest), brings the needs of an efficient media for publishing these important tools for depict-

ing our surroundings. The internet with its independency of any hardware or software re-

striction and with its wide capacity of reaching numerous users, qualifies it in being the best

medium for publishing maps. Furthermore the internet can add a significant value to maps

usability by adding dynamic and interactive capabilities into maps functionalities.[25]

Because of the convenience of embedding maps in the internet the concept of Web mapping

has been produced as a separated discipline for addressing the complete integration between

the maps functionalities and the web environment to form a new map service. In other words,

embedding maps in the web is no longer considered as an extension of paper maps into the

web as an image file but rather more as a complete service. This service include functionalities

never been available before as maps modification, maps integration, spatial data querying and

other new services that exceed the traditional use of maps on the web.

2.2.7 Web-Cartography

Moving from the traditional way of presenting maps in the form of paper sheets to the modern

form of on-screen displays that are reachable by web users, have triggered the process of de-

veloping new principles for map design and map layout to fit this new functioning inside the

web environment. This developing process includes modifying the map basic elements such as

graphs, colors, symbols, fonts, legends and other map basic elements.

In addition to modifying maps basic elements, the developing process includes the embed-

ment of various web technologies such as the advanced user interfaces. The modern web user

interfaces provides the user with an interactive environment that receives the user’s requests

Chapter 2: Scientific review

 17

and returns the desired responds. The responds can be sent in forms of hypertexts, graphical

objects or maps. Going further more into embedding other web technologies, the latest web

applications has included new communication tools that exceeded the usual readable textual

form or visual graph form to include communication tools such as sounds files, animations and

videos. Embedding these new communication tools in the map design foster and facilitate the

user’s perception process of the maps data.

The process of embedding web technologies in maps design is not limited only for exploiting

web tools and techniques, the process also embeds other technologies related or embedded

by the web technology. As an example, lots of modern computer graphics techniques already

exist as a main element in modern web maps design. Computer graphics techniques such as

transparent display become one of the fundamental tools used for displaying multi layers

maps. Also the transparent display has been used frequently for adding a sense of depth for

maps containing graphs of overlying objects. Similar to transparency, shading is also a funda-

mental tool used for designing 3D geographical displays.

However, even with this promising evolve in embedding web technologies and computer

graphics in maps production, the embedding process can still be hinder by few drawbacks

related to hardware issues as screen resolution, downloading speed or browsing capacity

which forces the map design to contain less information and to present less contents for the

purpose of lowering the map size and speeding the map downloading process. These draw-

backs results in producing less aesthetic maps with low content of information.

For addressing the lightning phenomenon case, no need for providing details explaining how to

compensate web mapping drawbacks using techniques such as generalization. The main fo-

cus will be on using web techniques related to interactive capabilities to provide an interactive

web analysis tool. Also the focus will be on using related computer graphics techniques related

to transparency effect for visualizing the phenomenon in 3D displays.

The fallowing paragraph provides details concerning the most used techniques in designing

web maps:

1-Priorty: since web maps have to be limited to relatively small sizes, priorities have to be as-

signed to the basic objects presented by the map to determine their level of appearance. The

map object which presents the main theme of the map has usually the priority for permanent

appearance. Otherwise, if the object represents a minor detail in the map, it will be assigned

with low priority level and will be displayed temporary according to specific event (e.g. when

the mouse crosser passes on the hidden object node) or by a user request. Usually the low

Chapter 2: Scientific review

 18

priority level objects are structured inside a drop list or a popup window, where the user can

select the option to view these hidden objects.

2- Maps scale: usually web maps have no fixed scale; the computer adjusts the map scale

automatically according to the zooming level. However, a certain scale could be assigned to

the map during the process of map printing.

3-Zooming: zooming is a process used to gather more visual details of the map objects by

applying sequent enlargements on the map objects size, this process usually know as zoom in.

Zooming also includes the process of obtaining general view of the map objects, by visualizing

the entire map objects regardless of their appearance sizes inside the map frame. In web

maps, the zooming process depends basically on the map format. For example, if the web

map was presented originally in an image format, the zooming process will depend on the res-

olution the map was produced in.

Web maps can be presented in various formats, and every format affects the zooming process

in a different way. One of the most addressed topic in cartography these days, is the principles

of generalization, which revolve around addressing the zooming process of maps in vector

format.

4- Map Colors: the most important element when addressing map colors is the determination

of the scaling concepts for measuring these map colors. These concepts are necessary for

selecting the right color combination for represent the different objects that appear in a map; in

the following are the basic concepts for scaling the map colors:

• Hue: represents the comparison between the map color and one of the primary colors:

blue, green, red or yellow. The goal of this comparison is to define the degree of similar-

ity or difference between the two compared colors.

• Saturation: represents the amount of color intensity.

• Brightness: represents the degree of brightness (from fully brightness to complete dim-

ness).

Most of the new visualization techniques such as: transparency and shading are implemented

by modifying colors values according to the previous color scales. For example, when ad-

dressing the transparency technique used for visualizing hidden objects in a particular display,

which is very similar to the foggy view technique (the objects appears faded as if there is a gray

filter abstracting the direct vision of these objects), the technique involves changing the satura-

tion value of the objects colors in the display front scene and background. The objects in the

Chapter 2: Scientific review

 19

display front scene will be given low intensity values and the objects in background of the dis-

play will be given high intensity values, leading to the visualization of the hidden objects behind

the front scene objects.

As in the transparency technique example, the shading technique is also done by using color

scaling concepts. The shading technique which is used for adding an extra sense of depth to

the display depends on raising the contrast between the presented objects in the display and

their back ground. This process of raising contrast can be done by applying three steps: first,

considering the color that appears in the object facade as the initial value for the brightness

scale. Second, decreasing the color brightness that appears in object sides to a faded value, if

the object doesn’t contain any sides, the fade color will be directed toward a certain angle for

providing a sense of 3D displaying. In most cases the brightness decreasing angle is directed

toward the south east of the display, since the illumination in most cases is directed from the

North West.[26]

Later in the discussions of the methodology for visualizing lightning storms phenomenon, the

transparency technique will be embedded and implemented in the visualization process. Most

of the visualization techniques provided by the application, depends on the transparency effect

to clarify the view between the overlapping objects in 2D and 3D displays.

Chapter 2: Scientific review

 20

2.3 Similar web approaches

After discussing the importance of exploiting the advanced web technologies in presenting

cartographic information, this section will emphasize on some of the attempted approaches for

implementing these web technologies in a form of an interactive web application. The ap-

proaches were oriented to exploit web technologies in producing an efficient web visual analy-

sis tool that can be use in addressing a certain geographical phenomenon and analyze its main

characteristics.

The following discussion will present four approaches for addressing four different natural phe-

nomena. The discussion will focus on the approaches creative process for comprehending the

challenges of each case of interest, implementing the proper solution and applying the feasible

techniques.

The first study case, presents a design for a web application to provide an interactive tool ,the

study case where done by Tom Auer, Alan M. MacEachren, Craig McCabe , Scott Pezanowski,

and Michael Stryker. The researchers were addressing the plant diversity patterns in the state

of California by designing A web-based client–server interface that can handle large amount

of spatiotemporal point data for mapping and exploring flora observation data(HerbariaViz).[27]

The researchers’ vision were originated from the new perspective toward Web-based map ap-

plications, as tools for facilitating the integration between spatial dataset and spatial data

analysis, that can provide capabilities in querying, displaying, and interpreting point data in

space and time. In addition to these capabilities, the researchers fined in the web mapping

technologies an appropriate domain for adopting the OGC open standards. This adopting ca-

pability will insure the existence of interoperability between the web mapping services gathered

and presented inside the researchers’ web application.

For managing the explorative analysis process the researchers implemented a temporal and

spatial aggregation approach. The approach aggregates the presented data during the explora-

tion activity. The aggregation is done ether with respect to the time of data capturing or with

respect to the points’ locations. The result of the aggregation process was the prevention of

any visual overloading in the main display when exploring data with long time periods or with

vast content of spatial information.

Finally for improving the functionality of the web application the researchers have succeeded in

utilizing various open sources tools such as Flex applications, GML ,GeoServer and

PostgreSQL.

Chapter 2: Scientific review

 21

The second approach has a unique advantage of allowing users to interactively perform on-

line data analyze, with the possibility of processing the data according to predefined statistical

and geo-statistical methods. Furthermore the approach has provided the capability of produc-

ing graphical documents such as semi variograms, contour maps and cross-sections.

The researchers Descamps, Therrien and Therrien have pointed in their research (interactive

and open approach for the analysis and diffusion of Geoscientific data)[28], to the limitation of

the static documents for answering potential users’ queries, or providing new detail about the

raw data more than what already have been processed and mapped.

These limitations have directed the researchers to the necessity of avoiding static documents

in earth sciences data diffusion and replacing them with interactive documents provided by

web applications.

However, to avoid using static document when diffusing Geo data the web, the researcher had

to deal with many challenges and difficulties. These changes and difficulties originate from the

need of implementing many geo-statistical interpolations processes on the spatial data and

later fallowed by complex representations processes. This difficult implementation process

hinders the efforts for developing a user-friendly application that can be used by a wide sector

of users. The user will be forced to deal with complex formulas and technical difficulties when

trying to extract information from the spatial data. To overcome these challenges, the re-

searchers developed a Web-based computer application (APERTA) with functionalities for al-

lowing user to extract spatial data from several databases, analyzing it with statistical and geo-

statistical methods and later crating professional maps and plots without the need for dealing

with complex formulas or knowing unnecessary presentation technicalities.

As an example for preventing the user from dealing with unnecessary operations when running

the application, the researchers have provided the user of their application with an adequate

controls (checkboxes, textboxes, radio button and drop-down lists), that can perform and ap-

ply the requested formulas and representations automatically without the need of any interac-

tion from the user with complex query languages or software commands.

 The researchers also have also avoided the complexity during the development of their appli-

cation. The researchers focused on using open sources software and tool kits in developing

the application such as Apache Web server. This usage of open sources for developing their

application provided the users with a web tool that is independent from any software or hard-

ware restrictions.

Chapter 2: Scientific review

 22

The third case addressed by Jaakko Kahkonen , Lassi Lehto , TiinaKilpelainen & Tapani

Sarjakoski [29], presents an example for using object-oriented techniques for developing an

Interactive visualization application. The application was developed using Java programming

language for building the main functionalities. The researchers have pointed in their research to

some important matters related to the modern use of web technologies. One of these im-

portant matters is the new trend in using the Internet as a geographical information distributer

especially with the modern concepts of digital maps and GIS technologies. Another important

matter is the problem of visualizing geographical phenomena on the web when using static

documents. The researchers pointed out to the important of utilizing the Web as a dynamic

tool for presenting and distributing geographical data.

As a result of the previous research notes provided by the researchers around the internet and

the importance of using it in distributing geographical data, the researcher have implemented

their interactive client application NetGIS (Java-based spatial Web browser) using the web

technology.

The forth case presents an interactive web application with capabilities of providing near real-

time information for motoring and forecasting marine pollution. The study case addressed by

the researchers Kulawiak, Prospathopoulos, Perivoliotis, Łuba, Kioroglou, and Stepnowski [30],

has pointed to the critical situation threatening the environment in the Mediterranean Sea.

According to the results driven from space borne radar detection and remote sensing data, a

dramatic shipping pollution caused by unauthorized discharges was detected. Adding the pos-

sibility of a major accident or a natural hazard event to the current pollution situation, the pollu-

tion levels will reach a crucial amount and will danger in the environment in the Mediterranean.

With this threatening situation, the researcher focus their efforts in developing a web service for

monitoring and forecasting the pollution levels in the Mediterranean environment, hoping that

this service could help the authorities in performing an effective responses during major pollu-

tion events or accidents .

The researchers’ approach provided a Web-based Geographic Information Systems (Web

GIS), with analysis and disseminating functionalities. The web GIS approach was developed to

be operated independently from any traditional GIS desktop application.

The implementation has included the usage of many open sources for software services such

as Apache tomcat (including JRE libraries, java servlet engine and JavaScript coding for

browser), Map server, Geo server, XML and HTML, with the implantation in one part of the re-

search of ESRI technologies (ArcIMS).

23

Chapter 3

Data description

The lightning data were originally investigated under a desktop application [31]. In this desk-

top application the processed raw data were provided by the European lightning detection

network (LINET). LINET project was initiated by the Department of Physics at the Technical

University of Munich. Later on the project was handed to nowcast GmbH in 2006 for contin-

uous operating.4

With 130 sensors distributed in 30 European countries, the lightning detection network pro-

vides 3D spatial data for locating the emission altitude and the X, Y position of lightning

strikes. The estimated accuracy for this 3D spatial data was about 150 m for the X, Y posi-

tioning and1 km for lightning emission altitude.

The accuracy of LINET 3D spatial data has been examined and compared to the 3D special

weather radar data and to the NASA special 3D-lightning detection network with very high

frequency (VHF). The result of the comparison between LINET data and the data from the

3D weather radar and NASA VHF results in a good match and insures the reliability of LINET

data for detecting and evaluating lightning storms.

The lightning data were collected on the twentieth second of July from the year 2010. The

range of the collected data extended between Latitudes = 47° – 50° North and Longitudes =

10° – 13° East, covering the Upper region of Bavaria (Germany). The collected data consist-

ed of 34809 lightning points; each point represents a lightning discharge.

Figure1 provides a representation of the lightning point distribution over the upper region of

Bavaria. Originally, this representation was build using the desktop application to illustrate

the limitation of extracting data from such a simple representation.

The following chapter will provide the methodology for building a web application that can

provide more efficient data representations. The provided representations will help in ex-

tracting valuable information from the lightning point data.

4 https://nowcast.de

https://nowcast.de/

Chapter 3: Data description

 24

Figure 1: Lightning data distribution over the Upper region of Bavaria5

5 Stefan Peters, H.-D.B., Liqiu Meng, Visual Analysis of lightning data using Space-Time-Cube. 2013.

25

Chapter 4

Methodology

4.1 Primary design

The primary design of the web application functionalities, general frame and user interface

(UI), was envisage depending on a previous research [31]. The research proposed a desktop

application for visualizing and analyzing lightning storms data using Space-Time-Cube

technique. The desktop application was developed using MATLAB software platform for

developing a graphical user interface (GUI).

The main goal of the thesis research (as mentioned before) is to extend and implement the

current visualization and analysis desktop application techniques into the web, inde-

pendently from any software or hardware restrictions. Therefore the web application imple-

mentation will depend only on open sources (for providing software technologies), for de-

signing and developing web applications.

4.2 User interface

As mentioned previously, the web application design will depend on a former desktop ap-

plication design. The main theme of the desktop application design (Figure 2) is to provide

the user with an interactive visual analysis tool. The tool design included the implementation

of controls for selecting and manipulating different visualization methods such as zooming,

rotating or adding multiple displays. The tool design also provides the possibility of visualiz-

ing the lightning phenomenon according to a timeline.

4.3 Basic user interface tools

For obtaining an efficient performance from the user interface; a number of basic visual and

analysis tools should be considered in the design. The design should include a main display

window such as the dynamic figure, with parallel tools for selecting possible visualization

Chapter 4: Methodology

26

methods. Also the design should include controls for changing the dynamic figure parame-

ters ether by selection or by user inputs.

The design of the application tools shouldn’t stop at the general concepts for designing vis-

ual analysis tools, but should exceed that to a more specialized and case cantered design.

In the following section, a number of control tools contained in the application design are

addressed. The following section will also provide a discussion about designing the web

application tool to handle the lightning phenomenon specifically.

Figure 2: user interface

4.3.1 Dynamic figure

In the process of designing a visual analysis application, the Dynamic figure can be consid-

ered as the core of the visual and analysis tool. It is simply a window for the user into the

lightning data. With the dynamic figure, the user can visually: test, examine, reveal and ex-

tract the hidden patterns and unknown characteristics of the lightning phenomenon. Without

the Dynamic figure, the user choice will be limited to test the data in a mathematical model

Chapter 4: Methodology

27

with results represented as numerical values. The Dynamic figure is the first significant step

in the procedure of designing and implementing an efficient visual analysis application.

Figure 3: Different data representation and visualization with the dynamic figure box

4.3.2 Radio buttons

As mentioned before, one of the visual analysis application design aspects is to develop

and build a tool for handling the lightning storm case specifically. For serving this purpose,

the design has included eight different visualizing methods for presenting and mapping the

lightning point data. This design of multiple choices for visualizing the lightning point data

has provided the user with a comprehensive solution for testing and examining the lightning

point data.

To select between these multiple visualization methods, a proper control tool should be

embedded in the application design. The tool should serve the purpose of presenting the

multiple visualization options with great amount of flexibility when choosing between these

visualization options. As a result of this design demand, the radio button tool has been cho-

sen to provide the user with a selection tool for choosing between different visualization

options.

4.3.3 Time slider

As mentioned in chapter 2, section 2.2, in discussing the temporal analysis topic, the point

data were divided into separated clusters based on time division. The final number of time

Chapter 4: Methodology

28

periods was found to be 71 periods. According to this division the user may move from one

time period to another to observe the changes in the phenomenon characteristics when

shifting through time. For providing this capability in real practice, a time slider tool was im-

plemented inside the visual analysis application. Using the time slider tool, the user can shift

between different time periods by simply clicking the forward or backward buttons of the

timeline scale contained inside the time slider tool. The shifting can be done ether step by

step or by big shifts in the timeline scale.

4.3.4 Combined view

The combined view represents a combination of multiple visualization options at the same

time. When combining two or three visualization options in the same display, the different

techniques provided by each visualization option individually, are grouped into one tech-

nique, giving the user a more powerful tool for examining and understanding of the visual-

ized phenomenon.

4.3.5 Space time cube

Combining the time slider tool, with the 3D view, provides the users with a technique known

as: space-time-cube. The implementation of space time cube concept has significant im-

portance in gaining better understanding of lightning phenomenon characteristics with the

consideration of time changes.

4.4 Selecting web developing software platform

In the process of selecting an appropriate developing software platform for building the web

applications, the focus should be on the level of programming capability and flexibility the

software platform can provide. However, as mentioned before, the web application design

originally depends on a parallel desktop application design, with the intentions of extending

some of the desktop application functionalities to the web application. Putting in mind this

dependency of the web application design on the desktop application design, the developer

will be restricted in his choices for choosing the developing software platform, to whatever

developing software platform that can be combined with the original developing software

platform in the desktop application.

Chapter 4: Methodology

29

The desktop application was build and developed using MATLAB developing software plat-

form. One of the advance features in MATALB is the possibility of implementing and em-

bedding any basic functionality or method defined by MATLAB under the Java developing

software platform. The implementation and embedding process are done by using MATLAB

builder JA tool. Through this tool, the MATLAB basic functionalities and methods can be

encapsulated inside a Java class frame, which is readable and executable by the Java soft-

ware platform.

This specialty of MATALB in extending its basic functionalities to the use of Java platform

had restricted the selection process for the web developing platform in (and only in) Java

technologies.

The web application will be built using: Java for building the servlets on the server side, Ja-

vaScript for organizing of the HTML files and JSP for providing a dynamic implementation.

4.5 Web application design

After discussing the primary design of the visual analysis web application and the basic

functionalities the web application should contain. And also after pointing out to the possi-

ble technology used for developing the web application, time now to discuss the actual de-

sign of the web application, especially from a technical perspective.

The web application design should provide basically, the same visual analysis functionalities

provided by the desktop application design, with also the same level of usability when oper-

ating these functionalities by the user. The user should simply enter the URL of the web ap-

plication on the server and receive a web page with the all necessary visual analysis tools.

Also the user should be able to communicate with the server side through this web page

easily and smoothly, especially when posting his requests and receiving the responses from

the server.

The application design should also prevent any form of complexity during the run time, all of

the computing and processing operations should be done completely behind the scene

without any interference from the user.

4.5.1 Client to server model

For implementing the pervious criteria of functionalities and performances, the Client to

Server model represents a suitable technique for matching the implementation demands.

Chapter 4: Methodology

30

The client to server model provides the functionalities of computing and processing the user

requests on a remote computing recourse know as the server. The computing and pro-

cessing functionalities provided by this server are known as the server services. The server

services can be invoked by the user through personal computing unites, normally these

unites are PCs or workstations. The user computing unite (which posts the use inputs to the

server side) is known as the client side. The connection between the client side and the

server side is done usually by global connection network as the internet, or in some cases,

by local connection network (LAN).

In the practical implementation of the Client to Server model, the developer can chose vari-

ous implementing paradigms for the Client to Server model, but the ultimate paradigm for

performing an efficient application processing, is the peer to peer processing paradigm [32].

Figure 4: client to server model 6

4.5.2 Programming techniques

The process of building and developing the web application will move through various stag-

es of programming, testing and evaluating to determined how much of the application de-

velopment process has been achieved for filling the design requirements.

In the first step toward building the web application, the MATLAB basic functions and previ-

ously developed codes (used in building the desktop application) should be modified and

edited, to fit the implementation requirements in the web application.

Since the web application is developed trough Java software platform (as mentioned previ-

ously in section 4.4), the implementation of MATLAB basic functions and previous devel-

6 http://thefloppydisk.wordpress.com/2013/05/08/how-to-build-a-restful-web-api-on-a-raspberry-pi-in-
javascript/

http://thefloppydisk.wordpress.com/2013/05/08/how-to-build-a-restful-web-api-on-a-raspberry-pi-in-javascript/
http://thefloppydisk.wordpress.com/2013/05/08/how-to-build-a-restful-web-api-on-a-raspberry-pi-in-javascript/

Chapter 4: Methodology

31

oped codes inside Java platform, has certain demands and restriction, especially that the

developing environment is moving from MATLAB platform, which represent a fourth pro-

gramming generation, to a less developed programming environment such as Java, which

represents a third programming generation7.

Unfortunately, this non uniformity in programming capabilities, have caused a technical

problem in using the original desktop application functionalities. A new task is added to the

developer workload, the developer has to reprogram the whole desktop application codes,

so the MATLAB codes can fit for the use of the java software platform.

In the following, a detailed example for reprogramming the basic functions of MATLAB and

the remarks and notes that needs to be taken in mind when extending these functions to

java programming platform.

4.5.2.1 MATLAB functions for Web application

As mentioned before, the desktop application provides the users with eight different options

for visualizing the lightning storms data; each option is implemented using MATALAB

codes. Executing and Running these MATLAB codes in a MATALB Compiler Runtime (MCR)

gives the estimated results properly and efficiently. However when extending these

MATLAB codes in to a Java software platform and later trying to run these codes under Ja-

va virtual machine, the application simply crashes and an error message will be sent to the

user interface.

The differences between the runtime environment in MATALB and Java software platforms,

and the differences in their developing capabilities levels, forces the developer (as men-

tioned previously) to modify and reprogram MATLAB codes to be more fitting for Java de-

veloping criteria and Java execution requirement.

For extending MATALB basic functions and codes to Java software platform, the developer

has to use (and only use) the similar programming principles used for structuring codes in

both developing tools. This process includes using the similar methods between the two

software platforms for defining (declaring) variables and also the similar methods for defin-

ing arrays.

7 However, even with this difference in developing capabilities, the Java platform can still provide a powerful

developing functionalities (for other developing requirements) more than what most programming platforms can
provide. For this reason the Java platform will still consider a suitable tool for developing the web application.

Chapter 4: Methodology

32

For example, structure arrays are a common technique used in MATALB developing envi-

ronment for structuring different types of data in one file. This is similar to the structuring

means used in other developing platforms such as C, but it’s not used inside Java develop-

ing environment.

For declaring a structure array inside MATALB, the STRUCT declaration statement is used to

arrange multiple data types in one structure array. The process begins by declaring a sub-

structure form known as field. The field represents a container for containing only one spe-

cific type of data. When a group of fields are combined together, a structured array is de-

fined (in the simplest manner of defining a structured array).

When moving from MATALB specifications for declaring different data types to Java specifi-

cations, a technical problem occurs, since Java provides a declaration for only one data

type per one array. In other words, an individual array declared in Java, cannot hold two

different types of data at the same time. Most of Java arrays are declared in a similar man-

ner to variables declarations, ether as integer, double, string or any other data types

that can be declared in Java.

The only way to have an array with multiple types in Java is to declare an array of the type

object and nest each array with different type or different dimension as an object element

inside this array of objects. Later by using a for loop statement, the nested arrays can be

called and casted to their original types e.g. integer, char, double...Etc.

To overcome this non similarities between MATALB and Java, the developer has to imple-

ment a matching process that includes (and only includes) the use of common techniques

for declaring variables or defining statements by both platforms (statements such as: for

loop statement, while loop statement and any other statement that is commonly used by

both programming languages).

In the following a MATALB code (scriptlet) that has been edited to fit in the Java declaration

criteria.

Chapter 4: Methodology

33

function plottingAllPoint3D =AllPoint3D(arg)
f = figure;
for k=1:7101
 i=arg(k,5);
 if i ==1
 d(k)= plot3(arg(k,1),arg(k,2),arg(k,3),
'*','markersize',2,'Color',[0.85 0.50 0.15],'visible','on');
 hold on;
 view(3);
 end
 if i == 2
 d(k)= plot3(arg(k,1),arg(k,2),arg(k,3),
'*','markersize',2,'Color',[0.50 0.85 0.15],'visible','on');
 hold on;
 view(3);
 end
 grid on
end
plottingAllPoint3D=webfigure(f);
close(f);
end

Figure 5: Matalb example code for plotting lightning point data

The previous MATALB code declares a function for plotting point data in a three dimension

perspective, the function receive the inputs as an array with predefined size (the dimensions

should not exceed the declared limits of (7101 * 5)).

After passing the point data array to the plotting function, the for loop filters the array col-

umns to separate and classify the points according to their assigned graphical values. For

every point data record, if the fifth column value (which represent a classification code) is

equal to: 1, the point will be plotted with the color value [0.85 0.50 0.15] and if the fifth col-

umn value equals: 2, the point will be plotted with the color value [0.50 0.85 0.15].

It’s important to mention here that this plotting function is designed originally for plotting a

static array of certain values (lightning storms point data) and not intended to be used for

plotting dynamic arrays with non predefined values.

4.5.2.2 JAR files

The JAR term is an acronym for Java Archive, which represents an aggregated package of

java classes, metadata and other sources files that can be implemented on a Java virtual

machine (e.g. apache Tom cat).

Chapter 4: Methodology

34

To extend the MATALAB functions to Java software platform, the MATALAB functions

should be encapsulated inside the JAR file, which contains the necessary classes and

methods for invoking and executing MATALB functions on Java software platform.

Building the JAR file is an automated operation provided by MATALAB developing software

platform and can be modified and edited by the user (structuring the classes and methods

included in the JAR file).

4.5.2.3 Need for mySQL

For visualizing the lightning storms data using MATALB software platform, a number of pre-

processing operations have to be performed on the lightning raw data; otherwise the direct

visualization of the raw data will result in a poor presentation of the lightning phenomenon.

However, the fallowing section will not focus on discussing the preprocessing operations

details, but rather on the structuring of the preprocessed data inside the desktop applica-

tion, to reveal the need for using mySQL.

In desk top applications, the data are preserved in particular space on the memory, without

any logical connection between the data entities. However in web applications, the server

side is responsible for preserving the data in a totally different and unique manner. Usually

the data should be structured in a logical pattern with defined relations between its entities,

before it can be stored by the server. This form of structuring is performed by using the

concept of: relational database. The relational database represents a logical structuring form

for containing data. (This is necessary to perform operations such as: data query and data

retrieve).

Due to the differences in structuring and preserving data between desktop application and

web application, the uses and implementations of relational database management sys-

tem for managing the lightning point data and passing it to the Java platform, becomes a

necessary approach.

There are several open sources that can provide an accessible relational database man-

agement system; one of the most widely used open sources is the mySQL.

The Implementation of mySQL is supported with a powerful user interface that can ease the

administration and management process of the relational database and prevent the user

from dealing with unnecessary coding commands. This is done by automatically generating

the code that represents the database structuring through the user interface tools. The code

Chapter 4: Methodology

35

generation process can be done completely behind the scene; with the option for the user

to generate the code manually.

4.5.3 Dynamic web pages

For designing a dynamic web page, the same HTML markup language used for designing

the statics web pages is used. For adding the dynamic performance, a number of web de-

veloping software platforms should be included and a certain technique combining these

developing software platforms should be implemented.

4.5.3.1 JSP

The JSP term stands for Java Server Page, which is a technology used to generate a dy-

namic HTML content on the server. The core of the JSP technology is the possibility of im-

plementing the JSP files as a servlet object on the server side. Going more into details,

when a JSP file (originally stored on the server side) is invoked by the client side, the server

runs this JSP file as servlet object and preserves a space for it on the memory. Later the

server observes the additional client requests and applies the new changes on the JSP ob-

ject that has been already loaded on the memory, if no farther requests were sent from the

client side, the server will keep loading the JSP object without any changes.[33]

4.5.3.2 Java Script

JavaScript is a high level programming language for developing web pages, capable of add-

ing dynamic performance to a web page. Originally JavaScript was based on Java syntax

with some classes and functionalities derived from Self and Scheme programming lan-

guages. Recently JavaScript becomes the most commonly used language for interpreting

web pages and interacting with users requests on the client side. Due to the object oriented

programming style of JavaScript and also due to the capability for adopting the asynchro-

nous schemas, JavaScript becomes widely use for developing web application.[34]

For building the lightning web application, the JavaScript libraries and functionalities will be

embedded for organizing the HTML file behavior when receiving user requests. With the

unique JavaScript APIs for handling graphical user interface implementation, the JavaScript

technology will serve significantly in implementing the lightning storm web application. In

addition to that, lots of browsers developing tool kits are designed to function on a JavaS-

http://en.wikipedia.org/wiki/Self_(programming_language)
http://en.wikipedia.org/wiki/Scheme_(programming_language)

Chapter 4: Methodology

36

cript software platform, which facilities embedding various tools for communicating with the

application users, leading to a better design for the application interface.

Dojo

Dojo is a rich open source for providing web functionalities over a JavaScript soft ware plat-

form. Manly the Dojo tool kit is used for developing web pages and web applications. With

its capability of providing an end to end solution and with its adoption of java script stand-

ard library for implementing different widgets and also with its flexibility for testing the frame

work during the development process, it becomes the developers most used tool kit for

building browser pages.

The Dojo tool kit is basically portioned to:

Base: for providing foundations for every module in the package.

Core: build on the Base for facilitating processes as parsing widgets, adding animation

effects and other advanced features in the goal of optimizing JavaScript function-

alities on the browsers.

Dijit: represent a library built directly upon Core, that can be used and implement with-

out the need of writing any JavaScript code.

DojoX: collection of modules that still not officially considered as stable or fitting

 for Core or Dijit.

Util: represent a JavaScript framework testing unit. Special tools can be built using

Util to provide custom versions of Dojo that have different production settings.

The Dojo capability of providing functionalities for fostering web pages developing, keeps

on going with the availability of utilizing dojo kit in AJAX scenarios. Later this utilizing availa-

bility will becomes a necessity in developing the lightning storms web application and one

of the major reason for embedding Dojo techniques in the web application. [35]

4.5.3.3 Java Srevlet

The servlet is the mean engine for implementing and executing any predefined functions

and methods on the server side. Without this engine no implementation will be possible on

Chapter 4: Methodology

37

the server and none of the server functionalities can be reachable by the client side (the

browser).

In other words the servlet is an extension of the server functionalities to the client side that

can be invoked and manipulate according to user requests. Usually most of servlet engines

are developed using Java software platform since Java technology provides many classes

and functionalities for organizing the communication between the server side and the client

side.

For executing these java classes and functionalities, a java execution platform known as

java virtual machine (JVM) has to be installed to contain and run these classes. Fortunately

Java technologies are supported by most server operation systems, which make the Java

servlet a suitable engine for developing and running web applications.

The advantages of using Java servlets goes on to include many features as the power of

exploiting all of Java APIs for improving access and connectivity to networks ,URLs and

data bases(which will play a major role in using mySQL database in our application). Anoth-

er advantage of using Java servlets is their efficient performance when been loaded on the

server as a respond to user calls, they remain on the server memory as single object without

the need to be interpreted or processed every time the user submit a call for a servlet ,

which leads to immediate respond to user requests and reflect lightweight method of invo-

cation.[36]

In addition to the previous advantages, Java servelts usage grantees an added value to oth-

er levels of efficiency such as: information protection and safty, elegance dealing with APIs

and handing the coding scripts (since its object oriented programming platform) and the

ability of integrating with server functionalities (logging, authorization…ETC).

As mentioned earlier, for running the servlet java classes, a container has to contain these

classes (JVM). There are different types of servlet containers the most important are the

Standalone container, the Add-on servlet container and Embeddable container.

The Embeddable container is lightweight servlet deployment platform, than can be included

inside a web application files and during executing time become the real server. Apache

tomcat server is one of the famous open server functionalities providers, and also supports

the Embeddable container technique. This technique will be the backbone for running and

testing the trials versions of the lightning storms web application, since this technique al-

lows the developer to embed the server files in his application and perform real time server

services without the need for any form of connections to a remote server to run the applica-

Chapter 4: Methodology

38

tion services. After the testing and developing phases ends, the whole application files will

be including on the servlet container and will be implemented on the server side as JAR file.

4.5.3.4 AJAX

AJAX is technique for combining a group of web developing and programming technologies

to work in a manner similar to what the user can experience from a desktop application.

The term AJAX stands for Asynchronous JavaScript And XML file, which can also include

other technologies related to web development such as: DOM (document object model),

HTML and CSS.

In practice the AJAX approach follows certain steps when running the web application, the

process starts by making a call to the AJAX engine from the JavaScript control tools in the

user interface(HTML file), the AJAX engine (which is a JavaScript object: XMLHTTPrequest)

performs asynchronous call to the server side, the server responds to the call and runs the

necessary calculations and connections to database, later the AJAX engine receive the

server respond and pass it to the user interface without loading the whole HTML page.[37]

Figure 6: AJAX Diagram

39

Chapter 5

Implementation

5.1 Building MATALAB Codes

As discussed before, when moving from MATLAB which represents fourth generation of

programming and developing software platform, to Java which represents third fourth gen-

eration of programming and developing software platform, this process hinders the devel-

oper progress and limits the flexibility of his developing environment. The major drawback

comes from the non unified standards for syntax structure and programming statement be-

tween the two platforms. To overcome this case of non uniformity, the developer should

address both software platforms techniques and try to find up the common programming

standards that can be interpreted in both platforms.

In the following a MATLAB code example that have been edited to fit inside Java interpret-

ing environment.

Plotting lightning point data in 3D example

In the example code (Figure 7) a declaration of a function for plotting point data in 3 dimen-

sional representation, the point data is passed into the function as an array (arg), the

function then declares a graphic figure object figure with the name f, a figure object is

a window on the display screen that MATLAB uses for displaying the graphical output.

Since the passed data to the function is the lightning data, the function is designed specifi-

cally to map this data in the application, the for loop is defined to perform 7101 iterations

which matches the number of records for the lightning point data.

The function plots the data in 3D by using the default MATLAB plotting function plot3.

Specific colors are assigned to the mapped points according to their classification records,

if the point record equals 1, it will be colored as [0.85 0.50 0.15], if the point record

equals 2, it will be colored as [0.50 0.85 0.15].

the last part of the function declares a webfigure for displaying the mapped points, the

web figure is used for embedding MATALB default figures on to the web browser, with the

possibility for the users to manipulate the figure functionalities as if they are using the

MATLAB software.

Chapter 5: Implementation

40

function plottingAllPoint3D =AllPoint3D(arg)
f = figure;
for k=1:7101
i=arg(k,5);
if i ==1
plot(k)= plot3(arg(k,1),arg(k,2),arg(k,3),
'*','markersize',2,'Color',[0.85 0.50 0.15],'visible','on');
hold on;
view(3);
end
if i == 2
plot(k)= plot3(arg(k,1),arg(k,2),arg(k,3),
'*','markersize',2,'Color',[0.50 0.85 0.15],'visible','on');
hold on;
view(3);
end
grid on
end
plottingAllPoint3D=webfigure(f);
close(f);
end

Figure 7: Plotting lightning point in 3D code

Chapter 5: Implementation

41

5.2 mySQL implementation

For implementing the relational data base provided by mySQL, two steps are formed:

First: building the database using mySQL software (MySQL workbench 6.0).

Second: connecting the database to the servlet engine. (JDBC, Java Database Connectivi-

ty).

For the first step, the mySQL workbench provide the developer with a comprehensive tool

for building and managing the data base, without the need of dealing with the any manual

coding processes. The mySQL workbench enables the user from designing his data struc-

tures (tables) and editing his data entities, through a sophisticated interface. The interface

contains multiple tools and options for structuring and editing the data easily and efficiently.

After finishing the steps of generating tables and editing their contents, the coding process

is done automatically behind the scene without any interference from the user. The final da-

tabase structure will be loaded and saved under a directory chosen previously by the user.

It’s important to mention that mySQL workbench still enables the user from building and

structuring his database manually, if the user preferred to go on with a manual developing

method.

mySQL workbench UI

Chapter 5: Implementation

42

For the second step:

Because the database is built outside of the web application, a certain connectivity proce-

dure should be implemented to establish the connection between the application and the

database.

This connectivity procedure is applicable by using the mySQL application programming

interfaces (APIs).mySQL DriverManager is the main object in mySQL for providing the con-

nectivity interfaces (Class.forName and com.mysql.jdbc.Driver), which enables the data-

base connection.

In the fallowing example code, an example of how these two programming interfaces are

implemented to perform a connection to the database and to load data from specific table:

try
{
 Class.forName("com.mysql.jdbc.Driver");
} catch (ClassNotFoundException e) {
 throw new ServletException(e);
}
double[][] coor = new double[71][5];
try
{
 java.sql.Connection connection = DriverManager.getConnection(
 "jdbc:mysql://127.0.0.1:3306/plotting", "root", "123456");
 java.sql.Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery("Select X, Y, Z,
Class, Size From trackcentresize");
 int i = 0;
 while (resultSet.next()) {
 coor[i][0] = resultSet.getDouble("X");
 coor[i][1] = resultSet.getDouble("Y");
 coor[i][2] = resultSet.getDouble("Z");
 coor[i][3] = resultSet.getDouble("Class");
 coor[i][4] = resultSet.getDouble("Size");
 i++;
 }
 connection.close();
} catch (SQLException e) {
 throw new ServletException(e);
}

Figure 8: Java code for loading mySQL tables

Chapter 5: Implementation

43

5.3 JavaScript, JSP, XML and HTML

For explaining the implementation process of JavaScript, JSP, XML and HTML, in building

and forming the basic user interface (UI) elements, an important aspect should be pointed

out; these technologies should be combined together in certain manner for the UI to be op-

erational.

The combination of these technologies is based on the functionalities of each individual

technology and their main use in the field of web application development.

In the fallowing, a detail explanation of the role of each one of these technologies in imple-

menting the UI functionalities:

First: the HTML represents the main container for all these technologies, except for XML

which is represented in separated file, but still connected to the other elements during exe-

cution time.

Second: JSP (as explained before) enables the developer from adding a dynamic behavior

to the web page.

Third: XML used for documenting the main application elements (files) and data structure

to clarify these elements and structures for the server during the run time. Without the XML

defining and pointing out for the server the basic elements in the application, the server

cannot locate, realize or execute these elements even if they already existing on the server.

Furth: JavaScript represents the main engine for organizing the processes of:

a) Receiving user’s inputs.

b) Passing these inputs to the server

c) Receiving the server execution result in return.

In addition to the previous processes, JavaScripts also provides the platform for implement-

ing technologies (such as DOJO) that focuses on organizing the user inputs.

In the fallowing an example code combining all of the previous discussed technologies. For

each part of the code, an explanation will be provided to point out the used technology in

this part of the code and the standard syntax format.

In the first part of this example code, it’s clear that the whole document is defined inside

HTML tag <html>…</html>. The fallowing head tag <head>…</head>, is declared for

providing a container for the JavaScript code. The link tag <link> is used to define a relation

between the current document and external styling document used for the Dojo slider im-

Chapter 5: Implementation

44

plementation. The Dojo implementation is defined and processed inside JavaScript tag

<script>…</script>. As result of implementing this Dojo script, the user will be able from

changing the dynamic web figure parameter (cell number), in an easy and sufficient way.

This provided tool comes in a simple and easy to use form of a horizontal slider:

<%@ page language=”java” contentType=”text/html; charset=ISO-8859-1”
pageEncoding=”ISO-8859-1” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<link rel=”stylesheet”href=”dojoToolKit/dijit/themes/claro/claro.css”>
<script>
dojoConfig ={async: true,
parseOnLoad: false};
</script>
<script src=”dojoToolKit/dojo/dojo.js”>
</script>
<script>
var widget;
require([”dojo/dom”,”dojo/parser”,”dijit/form/HorizontalSlider”,
“dijit/registry”,”dojo/domReady!”],
function go(dom, parser, HorizontalSlider, TextBox, number)
 {
parser.parse();
slider = new dijit.form.HorizontalSlider({
name: “slider”,
value: 35,
minimum: 1,
maximum: 71,
intermediateChanges: false,
showButtons: true,
discreteValues: 71,
style: “width:300px;”,
onChange: function doit(value) {
dom.byId(“sliderValue”).value = value;
widget = dijit.byId(“sliderValue”);
document.getElementById(“mytext”).value = widget.get(“value”);
document.getElementById(“object”).submit(“mytext”);
 }
 ,
 }
, “slider”);
 }
);

Figure 9: example code combining JavaScript, JSP, and HTML-part 1

Chapter 5: Implementation

45

The second part of the code represent a parsing method for the slider inputs, when the user

changes the slider value, this value is immediately parsed to an integer variable by the pars-

ing method. This step is necessary since the servlet engine is defined to deal with user in-

puts as an integer value, which will be used later in executing Java and MATLAB classes .

<%
String sizeStr = request.getParameter(“mytext”);

int mytext = 35;
boolean sizeSet = false;
if (sizeStr != null && sizeStr.length() > 0
 {

mytext = Integer.parseInt(sizeStr);
sizeSet = true;

 }
%>
</script>

</head>

Figure 10: example code combining JavaScript, JSP, and HTML-part 2

As mentioned previously, the JavaScript tag </script> should enclose this section of code

for providing Dojo Slider tool and parsing its value. Finally, the whole script tag is enclosed

by the head tag </head>.

The third part of the example code represents the main body of the HTML document con-

tained inside the body tag <body>…</body>, inside the body tag the developer can form

many declarations for adding important elements to the HTML document such as the div

tag <div>…</div> for defining cretin CSS style to group of elements inside the HTML file.

 One of the important declinations inside the body tag is the declaration of the form tag

<form>…</form>, which is used to handle user inputs to the HTML file. The form tags con-

tains various tag elements for dealing with user inputs, one of the most used tags is the in-

put tag <input>…</input>, which is used here specifically for handling the user inputs

through Dojo slider.

Chapter 5: Implementation

46

<body class=”claro”>
<div id=”slider”>
</div>
<form id=object method=”get”>

<p><input id=”sliderValue” name=”mytext” type=”text”
data-dojo-type=”dijit/form/TextBox” value=”<%=mytext%>” /></p>

<p><input type=”hidden” name=”mytext” id=”mytext” /></p>

Figure 11: example code combining JavaScript, JSP, and HTML-part 3

The final section of this code example presents the AJAX technique for sending the user

inputs to server and processing the results as of the whole operation was implemented in a

desktop application (asynchronously implementation).

Inside the script tag a XMLHttpRequest() object is declared under the name myRequest,

the object specifies the requesting method for calling the server side, (the GET method)and

the URL pointing for the servlet name on the server (sliding123?) with the passed slider val-

ue which represents the user input (‘sliding123?sliderValue=<%=mytext%>’).

The object also specifies the type of the data received from the server side (Text) as re-

spond for the GET method request.

<script type=”text/javascript”>
try
{
var myRequest = new XMLHttpRequest();
 }

catch (e)
{
try
{
var myRequest = new ActiveXObject(‘Msxml2.XMLHTTP’);

 }
catch (e)
{

try
{
var myRequest = new ActiveXObject(‘Microsoft.XMLHTTP’);

 }
catch (e)
{
document.write(‘XMLHttpRequest not supported’);

 }
 }
 }

myRequest.open(‘GET’,‘sliding123?sliderValue=<%=mytext%>’, false);
myRequest.send(null);
document.writeln(myRequest.responseText);

</script>

Figure 12: example code combining JavaScript, JSP, and HTML-part 3

Chapter 5: Implementation

47

5.4 Java for building application servlet

As mentioned in the previous chapter, the servlet engine is considered to be the main core

for running the web application functionalities. in the follow section, an example code will be

provided to reveal the main structure of the servlet code. The code will contain the main

classes and functions defined in any servlet file. The code also will contain the extra meth-

ods and statements used for invoking the MATALB functionalities from the JAR file.

The first part of servlet code is the import declarations, which is used to refer to a static

member in the web application. The import declaration calls the necessary methods (under

the available classes) by using their canonical names.8

package timeSlider.moh.test1;
import java.io.IOException;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;

import passingTimeSliderNumber.*;

import com.mathworks.toolbox.javabuilder.MWException;
import com.mathworks.toolbox.javabuilder.MWJavaObjectRef;
import com.mathworks.toolbox.javabuilder.MWNumericArray;
import com.mathworks.toolbox.javabuilder.webfigures.WebFigure;

import com.mathworks.toolbox.javabuilder.webfigures.WebFigureHtmlGenerator;
import com.sun.xml.internal.ws.api.config.management.policy.
ManagementAssertion.Setting;

Figure 13: Servlet example code-first part (import declarations)

The second part of the code is a declaration for the main class sliding, which implements

the HttpServlet subclass. The HttpServlet subclass provides the basic functionalities for the

main class sliding to operate on web site (doGet method, init and destroy method…ETC).9

8 http://docs.oracle.com/javase/specs/jls/se8/html/jls-7.html#jls-7.5.1

9 http://docs.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServlet.html

http://docs.oracle.com/javase/specs/jls/se8/html/jls-7.html#jls-7.5.1
http://docs.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServlet.html

Chapter 5: Implementation

48

public class sliding extends HttpServlet
{

private static final long serialVersionUID = 1L;
protected void doGet(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException
{

String test = request.getParameter(“sliderValue”);
WebFigure figure1 = null;

Figure 14: Servlet example code-Second part (declaration of main class sliding)

The third part provides a call procedure for the relational database.10

try
 {

Class.forName(“com.mysql.jdbc.Driver”);
 }

catch (ClassNotFoundException e)
 {

throw new ServletException(e);
 }

double[][] coor = new double[71][5];
try

 {
java.sql.Connection connection = DriverManager.getConnection(
“jdbc:mysql://127.0.0.1:3306/plotting”, “root”, “123456”);
java.sql.Statement statement = connection.createStatement();

ResultSet resultSet = statement.executeQuery(“Select X, Y, Z, Class,
Size From trackcentresize”);

int i = 0;
while (resultSet.next())

 {
coor[i][0] = resultSet.getDouble(“X”);
coor[i][1] = resultSet.getDouble(“Y”);
coor[i][2] = resultSet.getDouble(“Z”);
coor[i][3] = resultSet.getDouble(“Class”);
coor[i][4] = resultSet.getDouble(“Size”);
i++;

 }
connection.close();

 }
catch (SQLException e)

 {
throw new ServletException(e);

 }

Figure 15: Servlet example code-third part (relational database connection)

10 More details provided in previous mySQL implementation section.

Chapter 5: Implementation

49

The forth part of the cods provide the main declaration of the object calc, that implements

the methods defined previously in the MATLAB file (the MATLAB file is already encapsulated

inside a Java class).

try
 {

Plotting calc = new Plotting();
MWNumericArray size = new

MWNumericArray(Integer.parseInt(request.getParameter(“sliderValue”)));
Object[] results = calc.TrackCentreSizeBackup(1, coor, size);
MWJavaObjectRef ref = (MWJavaObjectRef) results[0];
figure1 = (WebFigure) ref.get();
getServletContext().setAttribute(“UserPlot1”, figure1);

 }
catch (MWException e3)

 {
e3.printStackTrace();

 }

Figure 16: Servlet example code-fourth part (implementing MATALB functions)

The fifth part of the code provides the declaration for returning the MATLAB web figure to
the client side.

StringBuffer buffer = new StringBuffer();
WebFigureHtmlGenerator webFigureHtmlforStefan = new

WebFigureHtmlGenerator(“WebFigures”, getServletContext());
try

 {
String outputString =

webFigureHtmlforStefan.getFigureEmbedString(figure1, “UserPlot1”,
“application”, “600”, “600”, null);

buffer.append(outputString);

 }
catch (Exception e)

 {
e.printStackTrace();

 }
response.getOutputStream().print(buffer.toString());

 }
}

Figure 17: Servlet example code-fifth part (returning MATALB web figure)

50

Chapter 6

Results and discussion

Addressing the topic of extending visual analysis functionalities on the web, for addressing

a certain weather phenomenon, has introduced the problem of interoperability when com-

bining two different developing software platforms to design and implement the visual anal-

ysis application.

The results of the developing process has shown the possibility of extending the main func-

tionalities build by MATALB software platform to the web using Java developing software

platform. However, the integration between MATALB and Java was an unfixable process

that experienced many technical difficulties. The reason for these difficulties during the im-

plementation is the differences between MATALB and Java in their basic functionality. The

MATALB is considered to be a fourth generation programming and developing technology,

oriented originally for developing numerical computation applications. In the other hand,

Java is considered to be a third generation programming and developing technology, ori-

ented for practical applications development.

In addition to the differences in the main functionality between the two technologies, both

technologies have different performance level during the runtime. Originally the fourth gen-

eration programming and developing technology was produced to improve the performance

of the third generation programming and developing technology. The third generation suf-

fered from slow performance during runtime and produces lots of implementation errors.

In conclusion, the attempt for extending MATALAB functionalities on the web by using Java

software platform, with all of these major differences between the both software platforms,

has revealed the following outcomes:

1- There is no possibility for embedding the original MATALB codes used of building

the desktop application inside Java software platform. The Java JVM is simply inca-

pable of interpreting the MATLAB code and the web application will crash during

runtime.

Chapter 6: Results and discussion

51

2- In result of this limitation, all functionalities build by MATALB software platform

should be reprogrammed to fit the Java JVM specifications.

3- To fulfill this requirement, the thesis practical work included reprogramming MATALB

code and later testing every visual analysis functionality under Java JVM specifica-

tions. All of the visual analysis functionalities provided by the MATALB application

were running under the Java JVM successfully with similar results and performance.

4- MATALB contains advance developing tool for building the user interfaces. In the

Java case, extra tool kits should be added to the Java developing software platform

to provide the same user interface functionalities provided by MATALB.

5- During the design and programming phase for building the web user interface, the

necessary software tool Kits needed for adding the user interface functionalities to

the Java platform was embedding successfully. The implemented web user interface

has provided the basics functionalities available in the MATALB application interface.

6- The thesis methodology and implementation proven in a practical procedure the

possibility of extending and integrating two different developing platforms with dif-

ferent capabilities and performance for developing web applications.

7- The thesis methodology and implementation have also provide a primary procedure

that can be used later on in building other analysis tools for addressing a different

natural phenomenon.

8- The provided procedure can also be used for building an open visual analysis tool

for addressing any type of data.

52

Chapter 7

Conclusion and outlook

After addressing the case of performing visual analysis for a lightning storm phenomenon,

and also after handling the task of extending this visual analysis techniques performed on

the lightning storm phenomenon to the web, a number of conclusions can be presented in

the context of this thesis research:

1- For a better visual analysis performance in addressing a special whether condition, the

implemented visual analysis tool should be designed and developed from the begging to

handle the requirement for addressing this specific whether condition.

2- Implementing a new and fusible technique for extending the existing desktop application

on the web. The implementation has provided a procedure for executing every function-

ality available in the desktop application successfully.

3- Exploiting every open sources technology and technique to extend the existing visual

analysis application to the web. The implementation has provided a technique for design-

ing and developing web applications free from any restrictions.

4- Proving the possibility of extending analysis functionalities between multiple platforms as

MATLAB and Java, even if the two platforms handle the developing processes and the

functionalities execution differently.

As an outlook for further potential steps in enhancing the visual analysis techniques for ad-

dressing the lightning storms phenomenon. And also as an outlook for further usage of the

web as a medium for performing visual analysis process, the fallowing outlooks can be ad-

dressed:

1- Different clustering techniques can be applied on the lightning data according to the

aspect the research focuses on.

2- The methods for visualizing lightning data can include any other possible visualization

technique, ether by using different colors or by using different geometrical representa-

tions. Adding animations or sequent graphs can also be possible approach for visualizing

the lightning data.

3- The implemented procedure for extending the desktop visual analysis functionalities to

the web can be enchased by providing additional options for the user, for example:

Chapter 7: Conclusion and outlook

53

providing the option of loading the user own lightning data or any other similar point data

and processing it under the web application.

4- Further researches can be done to combine other platforms with MATLAB developing

software platform. Also further researches should be done to foster the interoperability

between Java developing software platform and MATALB developing software platform.

5- More focus can be oriented towered the principles of usability and how to apply these

principles in visual analysis process.

54

References

1. Daniel Keim1, G.A., Jean-Daniel Fekete3, Carsten G¨org4,J¨orn Kohlhammer5, and

Guy Melan¸con, (2008), Visual Analytics Definition, Process, and Challenges.

2. McWilliams, J.C., Fundamentals of Geophysical Fluid Dynamics.

3. Moulin, H.H.a.B., (2007), Using Cognitive Archetypes and Conceptual Graphs to

Model Dynamic Phenomena in Spatial Environments. p.69-82

4. Desclés, J.-P., (1990), Langages applicatifs, langues naturelles et cognition.

5. Desclès, J.-P., (1994), Quelques Concepts Relatifs au Temps et à l’Aspect pour

l’Analyse des Textes. p.57–88

6. Shipley, T.F., S.I. Fabrikant, and A.-K. Lautenschütz, (2013), Creating Perceptually

Salient Animated Displays of Spatiotemporal Coordination in Events. p.259-270

7. Michael F. Goodchild, A.G., REPRESENTATION AND COMPUTATION OF

GEOGRAPHIC DYNAMICS.

8. Burrough, P.A. and R.A. McDonnell, (1998), Principles of Geographical

Information Systems.

9. GOODCHILD, M.F., (1992), GEOGRAPHICAL DATA MODELING. p.401-408

10. Barry Smith, A.C.V., (1997), Fiat and Bona Fide Boundaries: Towards an Ontology

of Spatially Extended Objects. p.103-119

11. Brentano,(1976), Philosophische Untersuchungen zu Raum, Zeit und

Kontinuum.

12. McDerby, M.T.a.M., Experiences of Using State of the Art Immersive

Technologies for Geographic Visualization.

13. Oyster, C.W., (1999), The Human Eye – Structure and Function.

14. E., W.J.G.S.K.M.M., (1995), Viualization. Annual review of information science and

technology.

15. Telea, A.C., (2008), Data visualization,principles and practice. 2008.

16. Gennady ANDRIENKO, N.A., Peter GATALSKY, Mapping spatio-temporal data for

exploratory analysis.

17. DONNA J. PEUQUET, N.D., (1995), An event-based spatiotemporal data model

(ESTDM) for temporal analysis of geographical data. International journal of

geographical information systems, p. 7-24.

References

55

18. Peters, S. and L. Meng,(2013), Visual Analysis for Nowcasting of

Multidimensional Lightning Data. ISPRS International Journal of Geo-Information,

p. 817-836.

19. Gennady Andrienko, N.A., Urška Demšar, Doris Dransch,Jason Dykes, Sara

Fabrikant, Mikael Jern, Menno-Jan Kraak, HeidrunSchumann, Christian Tominski,

(2010), Space, Time, and Visual Analytics.

20. Andrienko, N., G. Andrienko, and P. Gatalsky, (2003), Exploratory spatio-temporal

visualization: an analytical review. Journal of Visual Languages & Computing, p.

503-541.

21. A. Buja, D.C., D.F. Swayne, (1996), Interactive high-dimensional data

visualization. Computational and Graphical Statistics, p. 78–99.

22. A. Fredrikson, C.N., C. Plaisant, B. Shneiderman, (1999), geographic and

categorical aggregations viewed through coordinated displays. ACM Press, New

York, p. 26–34.

23. MacEachren, A.M., (1995), How Maps Work: Representation, Visualization, and

Design. The Guilford Press.

24. Andrienko, G.A.a.N., Dynamic and interactive displays.

25. Menno-Jan Kraak, A.B., (2001), Settings and needs for web cartography. Web

Cartography, p. 1-7.

26. Worm, J.v.d., (2001), Web map design in practice. Web Cartography, p:91-111.

27. Tom Auer , A.M.M., Craig McCabe , Scott Pezanowski, Michael Stryker, HerbariaViz:

(2011), A web-based client–server interface for mapping and exploring flora

observation data. Ecological Informatics, p. 93-110.

28. G. Descamps, P.T., R. Therrien,(2006) An interactive and open approach for the

analysis and diffusion of geoscientific data. Computers & Geosciences, p. 643-

655.

29. Kahkonen, J., et al., (1999), Interactive visualisation of geographical objects on

the Internet. International Journal of Geographical Information Science, p. 429-438.

30. Kulawiak, M., et al., (2010), Interactive visualization of marine pollution

monitoring and forecasting data via a Web-based GIS. Computers &

Geosciences, p. 1069-1080.

31. Stefan Peters, H.-D.B., Liqiu Meng, (2013), Visual Analysis of lightning data using

Space-Time-Cube.

32. Berson, A., (1996), Client/Server Architecture. Second edition.

References

56

33. Goodwill, J., (2000), Pure JSP - Java Server Pages: A Code-Intensive Premium

Reference. p. 320.

34. Flanagan, D., (2011), JavaScript: The Definitive Guide. Sixth edition.

35. Russell, M.A., (2008), Dojo: The Definitive Guide. First Edition.

36. Jason Hunter, W.C., (April 2001), Java Servlet Programming. 2nd Edition.

37. Allen, R., Web development with JavaScript and Ajax illuminated.

57

Appendix
A. MATLAB codes for plotting lighting data in different rep-
resentations forms

A.1 Code for plotting lightning points in 3D (point geometry)

function plottingAllPoint3D =AllPoint3D(arg)
f = figure;
for k=1:7101
i=arg(k,5);
if i ==1
plot(k)= plot3(arg(k,1),arg(k,2),arg(k,3), '*','markersize',2,'Color',[0.85
0.50 0.15],'visible','on');
hold on;
view(3);
end
if i == 2
plot(k)= plot3(arg(k,1),arg(k,2),arg(k,3), '*','markersize',2,'Color',[0.50
0.85 0.15],'visible','on');
hold on;
view(3);
end
grid on
end
plottingAllPoint3D=webfigure(f);
close(f);
end

A.2 Code for plotting lightning clusters centers (point geometry)

function plottingCellsCenter =cellsCenter(arg)
f = figure;
for k=1:71
i=arg(k,4);
if i ==1
d(k)= plot3(arg(k,1),arg(k,2),arg(k,3), ‘x’,’markersize’,12,’Color’,[0.85
0.50 0.15],’linewidth’,2);
hold on;
end
if i == 2
d(k)= plot3(arg(k,1),arg(k,2),arg(k,3), ‘x’,’markersize’,12,’Color’,[0.50
0.85 0.15],’linewidth’,2);
hold on;
view(3);
end
end
plottingCellsCenter=webfigure(f);
close(f);
end

Appendix

58

A.3 Code for plotting lightning clusters tracks centers (point geometry)

function plottingTrackCentres =TrackCentres(arg)
f = figure;
for k=1:71
i=arg(k,4);
if i ==1
out_TrackCentre2(k) = plot3(arg(k,1),arg(k,2),arg(k,3),’.’,’color’,[0.85
0.50 0.15],‘markersize’,15);
hold on
end
if i ==2
out_TrackCentre2(k) = plot3(arg(k,1),arg(k,2),arg(k,3),’.’,’color’,[0.50
0.85 0.15],‘markersize’,15);
end
end
plottingTrackCentres=webfigure(f);
close(f);
end

A.4 Code for plotting lightning clusters tracks (line geometry)

function TrackLine3D =tracklines3D(arg)
f = figure;
for k=1:71
i=arg(k,8);
if i ==1
d(k)=line(arg(k,1:2),arg(k,3:4),arg(k,5:6) ,’Color’,[0.85 0.50 0.15]);
end
if i ==2
d(k)=line(arg(k,1:2),arg(k,3:4),arg(k,5:6) ,’Color’,[0.50 0.85 0.15]);
end
end
view(3);
TrackLine3D=webfigure(f);
close(f);
end

A.5 Code for plotting lightning clusters as spherical objects (volume geometry)

function plotting cellsCentreSize =TrackCentreSize(arg)
f = figure;
for k=1:71
i=arg(k,4);
h=arg(k,5);
if i ==1
out_TrackCentre2(k) = plot3(arg(k,1),arg(k,2),arg(k,3),’.’,’color’,[0.85
0.50 0.15],
‘markersize’,h);
hold on,grid on
end

Appendix

59

if i ==2
out_TrackCentre2(k) = plot3(arg(k,1),arg(k,2),arg(k,3),’.’,’color’,[0.50
0.85 0.15],
‘markersize’,h);
hold on, grid on
end
end
plotting cellsCentreSize=webfigure(f);
close(f);
end

The spherical objects are varying in their sizes to depict the changes in the lightning storm

volume

A.6 Code for plotting lightning clusters as convex hull in 2D (Polygon geometry)

function plottingconvexhull2D =convexhull2D(arg)
f = figure;
eee1=arg(arg(:,4)==1,:);
for k=1:24
ppp1=eee1(eee1(:,3)==k,:);
ddd1=convhull(ppp1(:,1:2));
b(k)=fill3(ppp1(ddd1,1),ppp1(ddd1,2),zeros(1,length(ddd1)),
[0.85, 0.50, 0.15],’facealpha’,.1);
hold on;
end
eee2=arg(arg(:,4)==2,:);
for k=25:71
ppp2=eee2(eee2(:,3)==k,:);
ddd2=convhull(ppp2(:,1:2));
b(k)=fill3(ppp2(ddd2,1),ppp2(ddd2,2),zeros(1,length(ddd2)),
[0.50, 0.85, 0.15],’facealpha’,.1);
hold on;
end
plottingconvexhull2D =webfigure(f);
close(f)
end

In the previous code, convhull is a function provided by Matlab for building convex hull

objects out of a set of points in 2D or 3D space. fill3 is also a Matlab function that can be

used to create flat-shaded polygons.

These two default MATALB functions are used to visualize the lightning data as 3D convex

hull with distinguish surfaces.

Appendix

60

A.7 Code for plotting lightning clusters as convex hull in 3D (volume geometry)

function plottingconvexhull3D =Conv3D(arg)
f = figure;
eee1=arg(arg(:,5)==1,:);
for k=1:24
 ppp1=eee1(eee1(:,4)==k,:);
 ppp2=ppp1(:,1:3);
 ppp3=arg(arg(:,9)==k,:);
 ppp4=ppp3(:,6:8);
 b(k)=trisurf(ppp4,ppp2(:,1),ppp2(:,2),ppp2(:,3),‘facecolor‘,
[0.50, 0.85, 0.15],’facealpha’,.1,’edgecolor’,’none’);
 hold on;
end
eee2=arg(arg(:,5)==2,:);
for k=25:71
 ppp1=eee2(eee2(:,4)==k,:);
 ppp2=ppp1(:,1:3);
 ppp3=arg(arg(:,9)==k,:);
 ppp4=ppp3(:,6:8);
 b(k)=trisurf(ppp4, ppp2(:,1),ppp2(:,2),ppp2(:,3),‘facecolor‘,
[0.85, 0.50, 0.15],’facealpha’,.1,’edgecolor’,’none’);
 hold on;
end
plottingconvexhull3D =webfigure(f);
close(f)
end

In the previous code, the MATLAB function (trisurf)is used to create a triangular net-

work from the lightning point data, later the combined triangles will form a surface for rep-

resenting the volume the lighting strike can occupy from space.

A.8 Code for plotting lightning clusters as ellipsoids

function plottingEllipsoide=ellipsoide(arg)
f = figure;
eee1=arg(arg(:,19)==1,:);
for k=1:24;
ttt1=eee1(eee1(:,18)==k,:);
x1=ttt1(ttt1(:,17)==1,:);
x=x1(:,1:16);
y1=ttt1(ttt1(:,17)==2,:);
y=y1(:,1:16);
z1=ttt1(ttt1(:,17)==3,:);
z=z1(:,1:16);

b(k)=surf(x,y,z,’FaceColor’,[0.85,0.50,0.15],’LineWidth’,0.1,
‘EdgeColor’,[0.85, 0.50, 0.15],’FaceAlpha’,.6,’EdgeAlpha’,.6);
hold on;

end
eee2=arg(arg(:,19)==2,:);
for k=25:71;
ttt2=eee2(eee2(:,18)==k,:);
x1=ttt2(ttt2(:,17)==1,:);
x=x1(:,1:16);

Appendix

61

y1=ttt2(ttt2(:,17)==2,:);
y=y1(:,1:16);
z1=ttt2(ttt2(:,17)==3,:);
z=z1(:,1:16);

b(k)=surf(x,y,z,’FaceColor’,[0.50 0.85 0.15],
‘LineWidth’,0.1,’EdgeColor’,[0.50 0.85 0.15],
‘FaceAlpha’,.6,’EdgeAlpha’,.6);

hold on;
end
view(3);
plottingEllipsoide=webfigure(f);
close(f);
end

Notes: the MATLAB function (surf) creates a surface using X and Y (as vector compo-

nents) and Z value for representing the height.

Appendix

62

A. HTML Code for web page (representing user interface)

The HTML code also includes the codes of JSP, JavaScript and Dojo, which is used for or-
ganizing and manipulating the functionality and behavior of the HTML file.

B.1 slider functionality JSP file

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" pageEncoding="ISO-8859-1" %>
 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
 <html>

 <head>
 <link rel="stylesheet" href="dojoToolKit/dijit/themes/claro/claro.css">
 <script>
 dojoConfig = {
 async: true,
 parseOnLoad: false
 };
 </script>
 <script src="dojoToolKit/dojo/dojo.js"></script>
 <script>
 var widget;
 require(["dojo/dom", "dojo/parser"
 "dijit/form/HorizontalSlider", "dijit/registry", "dojo/domReady!"],

 function go(dom, parser, HorizontalSlider, TextBox, number) {
 parser.parse();
 slider = new dijit.form.HorizontalSlider({
 name: "slider",
 value: 35,
 minimum: 1,
 maximum: 71,
 intermediateChanges: false,
 showButtons: true,
 discreteValues: 71,
 style: "width:300px;",

 onChange: function doit(value) {
 dom.byId("sliderValue")
 .value = value;
 widget = dijit.byId("sliderValue");
 document.getElementById("mytext")
 .value = widget.get("value");
 document.getElementById("object")
 .submit("mytext");
 },

 }, "slider");
 });

 <%
 String sizeStr = request.getParameter("mytext");
 int mytext = 35;

Appendix

63

 boolean sizeSet = false;
 if (sizeStr != null && sizeStr.length() > 0) {
 mytext = Integer.parseInt(sizeStr);
 sizeSet = true;
 } %>
 </script>
 </head>

 <body class="claro">
 <div id="slider"></div>
 <form id=object method="get">
 <p>
 <input id="sliderValue" name="mytext" type="text" data-dojo-
type="dijit/form/TextBox" value="<%=mytext%>" />
 </p>
 <p>
 <input type="hidden" name="mytext" id="mytext" />
 </p>
 <script type="text/javascript">
 try {
 var my = new XMLHttpRequest();
 } catch (e) {
 try {
 var my = new ActiveXObject('Msxml2.XMLHTTP');
 } catch (e) {
 try {
 var my = new ActiveXObject('Microsoft.XMLHTTP');
 } catch (e) {
 document.write('XMLHttpRequest not supported');
 }
 }
 }
 my.open('GET', 'sliding123?sliderValue=<%=mytext%>', false);
 my.send(null);
 document.writeln(my.responseText);
 </script>
 </form>
 </body>

 </html>

Appendix

64

B.2 multiple representation functionality JSP file

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
 <html>

 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
 <title>First Demo</title>
 <link rel="Stylesheet" type="text/css" media=all href="./StyleSheet.css" />
 <link href="StyleSheet.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <form method="get" action="Gui1">
 <h1> Visualizing Services</h1>
 <h3> Please select the desired view</h3>
 <div style="text-align: left">
 <input type="radio" name="stefan" value="AP3D">All Points3D

 <input type="radio" name="stefan" value="CC2D">Cells Centers

 <input type="radio" name="stefan" value="3DTC">Tracks Centers

 <input type="radio" name="stefan" value="3DTCS">Track Centers Sizes

 <input type="radio" name="stefan" value="3DTL">Tracks lines

 <input type="radio" name="stefan" value="2DCH">convex Hall2D

 <input type="radio" name="stefan" value="3DCH">convex Hall3D

 <input type="radio" name="stefan" value="ELL">Ellipsoid

 <input type="submit" value="submit" />
 </div>
 </form>
 </body>

 </html>

Appendix

65

b.3 combined representation functionality JSP file

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
 <html>

 <head>
 <link rel="Stylesheet" type="text/css" media=all href="./StyleSheet.css" />
 <link href="StyleSheet.css" rel="stylesheet" type="text/css" />
 </head>

 <body>
 <form method="get" action="Space123">
 <h1> Visualizing Services</h1>
 <h3> Please select the desired view</h3>
 <div style="text-align: left">
 <p>
 <input type="checkbox" name="box" value="2DCH" />convex Hall2D</p>

 <p>
 <input type="checkbox" name="box" value="3DTL" />Tracks lines</p>

 <p>
 <input type="checkbox" name="box" value="3DTC" />Track Centers Sizes</p>

 <input type="submit" value="Submit">
 </div>
 </form>
 </body>

 </html>

Appendix

66

B. Java code for building the servlet file

C.1 Servelt file for running slider functionality

package timeSlider.moh.test1;
import java.io.IOException;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import passingTimeSliderNumber.*;
import com.mathworks.toolbox.javabuilder.MWException;
import com.mathworks.toolbox.javabuilder.MWJavaObjectRef;
import com.mathworks.toolbox.javabuilder.MWNumericArray;
import com.mathworks.toolbox.javabuilder.webfigures.WebFigure;
import com.mathworks.toolbox.javabuilder.webfigures.WebFigureHtmlGenerator;
import com.sun.xml.internal.ws.api.config.management.policy.ManagementAssertion.Setting;
public class sliding extends HttpServlet {
 private static final long serialVersionUID = 1L;
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
 String test = request.getParameter("sliderValue");
 WebFigure figure1 = null;
 try {
 Class.forName("com.mysql.jdbc.Driver");
 } catch (ClassNotFoundException e) {
 throw new ServletException(e);
 }
 double[][] coor = new double[71][5];
 try {
 java.sql.Connection connection = DriverManager.getConnection(
 "jdbc:mysql://127.0.0.1:3306/plotting", "root", "123456");
 java.sql.Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery("Select X, Y, Z, Class, Size
From trackcentresize");
 int i = 0;
 while (resultSet.next()) {
 coor[i][0] = resultSet.getDouble("X");
 coor[i][1] = resultSet.getDouble("Y");
 coor[i][2] = resultSet.getDouble("Z");
 coor[i][3] = resultSet.getDouble("Class");
 coor[i][4] = resultSet.getDouble("Size");
 i++;
 }
 connection.close();
 } catch (SQLException e) {
 throw new ServletException(e);
 }
 try {
 Plotting calc = new Plotting();
 MWNumericArray size = new
MWNumericArray(Integer.parseInt(request.getParameter("sliderValue")));

 Object[] results = calc.TrackCentreSizeBackup(1, coor, size);

Appendix

67

 MWJavaObjectRef ref = (MWJavaObjectRef) results[0];
 figure1 = (WebFigure) ref.get();
 getServletContext()
 .setAttribute("UserPlot1", figure1);
 } catch (MWException e3) {
 e3.printStackTrace();
 }
 StringBuffer buffer = new StringBuffer();
 WebFigureHtmlGenerator webFigureHtmlforStefan = new
WebFigureHtmlGenerator("WebFigures", getServletContext());
 try {
 String outputString =
webFigureHtmlforStefan.getFigureEmbedString(figure1, "UserPlot1", "application",
"600", "600", null);
 buffer.append(outputString);
 } catch (Exception e) {
 e.printStackTrace();
 }
 response.getOutputStream()
 .print(buffer.toString());
 }
}

Appendix

68

C.2 Servelt file for running multiple representation functionality

package Moh.All.Codes;
import java.io.IOException;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletConfig;
import com.mathworks.toolbox.javabuilder.MWException;
import com.mathworks.toolbox.javabuilder.MWJavaObjectRef;
import com.mathworks.toolbox.javabuilder.webfigures.WebFigure;
import com.mathworks.toolbox.javabuilder.webfigures.WebFigureHtmlGenerator;
import test1.*;
public class Gui1 extends HttpServlet {
 protected void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {
 WebFigure figure1 = null;
 WebFigure figure2 = null;
 String f = request.getParameter("stefan");
 try {
 Class.forName("com.mysql.jdbc.Driver");
 } catch (ClassNotFoundException e1) {
 throw new ServletException(e1);
 }
 if (f.endsWith("2DPC")); {
 double[][] coor = new double[7150][6];
 try {
 java.sql.Connection connection = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/plotting", "root", "123456");
 java.sql.Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery("Select xcoor, ycoor, color1,
color2, color3, clusters From allpoints");
 int i = 0;
 while (resultSet.next()) {
 coor[i][0] = resultSet.getDouble("xcoor");
 coor[i][1] = resultSet.getDouble("ycoor");
 coor[i][2] = resultSet.getDouble("color1");
 coor[i][3] = resultSet.getDouble("color2");
 coor[i][4] = resultSet.getDouble("color3");
 coor[i][5] = resultSet.getDouble("clusters");
 i++;
 }
 connection.close();
 } catch (SQLException e1) {
 throw new ServletException(e1);
 }
 try {
 Plotting calc = new Plotting();
 Object[] results = calc.AllPoints(1, coor);
 MWJavaObjectRef ref = (MWJavaObjectRef) results[0];
 figure1 = (WebFigure) ref.get();
 getServletContext()
 .setAttribute("UserPlot1", figure1);

Appendix

69

 } catch (MWException e2) {
 e2.printStackTrace();
 }
 }
 if (f.endsWith("2DAP")) {
 double[][] coor = new double[7101][5];
 try {
 java.sql.Connection connection = DriverManager.getConnection(
 "jdbc:mysql://127.0.0.1:3306/plotting", "root", "123456");
 java.sql.Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery("Select X, Y, Z, cellID, class
From AllPoints2D3D");
 int i = 0;
 while (resultSet.next()) {
 coor[i][0] = resultSet.getDouble("X");
 coor[i][1] = resultSet.getDouble("Y");
 coor[i][2] = resultSet.getDouble("Z");
 coor[i][3] = resultSet.getDouble("cellID");
 coor[i][4] = resultSet.getDouble("class");
 i++;
 }
 connection.close();
 } catch (SQLException e3) {
 throw new ServletException(e3);
 }
 try {
 Plotting calc = new Plotting();
 Object[] results = calc.Allpoints2D(1, coor);
 MWJavaObjectRef ref = (MWJavaObjectRef) results[0];
 figure1 = (WebFigure) ref.get();
 getServletContext()
 .setAttribute("UserPlot1", figure1);
 } catch (MWException e2) {
 e2.printStackTrace();
 }
 }
 if (f.endsWith("2DCH")) {
 double[][] coor = new double[7099][4];
 try {
 java.sql.Connection connection = DriverManager.getConnection(
 "jdbc:mysql://127.0.0.1:3306/plotting", "root", "123456");
 java.sql.Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery("Select X, Y, cellID, class From
convexhull2D");
 int i = 0;
 while (resultSet.next()) {
 coor[i][0] = resultSet.getDouble("X");
 coor[i][1] = resultSet.getDouble("Y");
 coor[i][2] = resultSet.getDouble("cellID");
 coor[i][3] = resultSet.getDouble("class");
 i++;
 }
 connection.close();
 } catch (SQLException e2) {
 throw new ServletException(e2);
 }
 try {
 Plotting calc = new Plotting();

Appendix

70

 Object[] results = calc.convexhull2D(1, coor);
 MWJavaObjectRef ref = (MWJavaObjectRef) results[0];
 figure1 = (WebFigure) ref.get();
 getServletContext()
 .setAttribute("UserPlot1", figure1);
 } catch (MWException e3) {
 e3.printStackTrace();
 }
 }
 if (f.endsWith("AP3D")) {
 double[][] coor = new double[7101][5];
 try {
 java.sql.Connection connection = DriverManager.getConnection(
 "jdbc:mysql://127.0.0.1:3306/plotting", "root", "123456");
 java.sql.Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery("Select X, Y, Z, cellID, class
From AllPoints2D3D");
 int i = 0;
 while (resultSet.next()) {
 coor[i][0] = resultSet.getDouble("X");
 coor[i][1] = resultSet.getDouble("Y");
 coor[i][2] = resultSet.getDouble("Z");
 coor[i][3] = resultSet.getDouble("cellID");
 coor[i][4] = resultSet.getDouble("class");
 i++;
 }
 connection.close();
 } catch (SQLException e2) {
 throw new ServletException(e2);
 }
 try {
 Plotting calc = new Plotting();
 Object[] results = calc.AllPoints3D(1, coor);
 MWJavaObjectRef ref = (MWJavaObjectRef) results[0];
 figure1 = (WebFigure) ref.get();
 getServletContext()
 .setAttribute("UserPlot1", figure1);
 } catch (MWException e3) {
 e3.printStackTrace();
 }
 }
 if (f.endsWith("CC2D")) {
 double[][] coor = new double[71][4];
 try {
 java.sql.Connection connection = DriverManager.getConnection(
 "jdbc:mysql://127.0.0.1:3306/plotting", "root", "123456");
 java.sql.Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery("Select X, Y, Z, class From
CellsCenter");
 int i = 0;
 while (resultSet.next()) {
 coor[i][0] = resultSet.getDouble("X");
 coor[i][1] = resultSet.getDouble("Y");
 coor[i][2] = resultSet.getDouble("Z");
 coor[i][3] = resultSet.getDouble("class");
 i++;
 }
 connection.close();

Appendix

71

 } catch (SQLException e2) {
 throw new ServletException(e2);
 }
 try {
 Plotting calc = new Plotting();
 Object[] results = calc.cellsCenter(1, coor);
 MWJavaObjectRef ref = (MWJavaObjectRef) results[0];
 figure1 = (WebFigure) ref.get();
 getServletContext()
 .setAttribute("UserPlot1", figure1);
 } catch (MWException e3) {
 e3.printStackTrace();
 }
 }
 if (f.endsWith("3DTC")) {
 double[][] coor = new double[71][4];
 try {
 java.sql.Connection connection = DriverManager.getConnection(
 "jdbc:mysql://127.0.0.1:3306/plotting", "root", "123456");
 java.sql.Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery("Select X, Y, Z, Class From
trackcentre");
 int i = 0;
 while (resultSet.next()) {
 coor[i][0] = resultSet.getDouble("X");
 coor[i][1] = resultSet.getDouble("Y");
 coor[i][2] = resultSet.getDouble("Z");
 coor[i][3] = resultSet.getDouble("Class");
 i++;
 }
 connection.close();
 } catch (SQLException e2) {
 throw new ServletException(e2);
 }
 try {
 Plotting calc = new Plotting();
 Object[] results = calc.TrackCentres(1, coor);
 MWJavaObjectRef ref = (MWJavaObjectRef) results[0];
 figure1 = (WebFigure) ref.get();
 getServletContext()
 .setAttribute("UserPlot1", figure1);
 } catch (MWException e3) {
 e3.printStackTrace();
 }
 }
 if (f.endsWith("3DTCS")) {
 double[][] coor = new double[71][5];
 try {
 java.sql.Connection connection = DriverManager.getConnection(
 "jdbc:mysql://127.0.0.1:3306/plotting", "root", "123456");
 java.sql.Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery("Select X, Y, Z, Class, Size
From trackcentresize");
 int i = 0;
 while (resultSet.next()) {
 coor[i][0] = resultSet.getDouble("X");
 coor[i][1] = resultSet.getDouble("Y");
 coor[i][2] = resultSet.getDouble("Z");

Appendix

72

 coor[i][3] = resultSet.getDouble("Class");
 coor[i][4] = resultSet.getDouble("Size");
 i++;
 }
 connection.close();
 } catch (SQLException e2) {
 throw new ServletException(e2);
 }
 try {
 Plotting calc = new Plotting();
 Object[] results = calc.TrackCentreSize(1, coor);
 MWJavaObjectRef ref = (MWJavaObjectRef) results[0];
 figure1 = (WebFigure) ref.get();
 getServletContext()
 .setAttribute("UserPlot1", figure1);
 } catch (MWException e3) {
 e3.printStackTrace();
 }
 }
 if (f.endsWith("3DTL")) {
 double[][] coor = new double[71][8];
 try {
 java.sql.Connection connection = DriverManager.getConnection(
 "jdbc:mysql://127.0.0.1:3306/plotting", "root", "123456");
 java.sql.Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery("Select X1,X2, Y1,Y2, Z1,Z2,
cellID, class From tracklines");
 int i = 0;
 while (resultSet.next()) {
 coor[i][0] = resultSet.getDouble("X1");
 coor[i][1] = resultSet.getDouble("X2");
 coor[i][2] = resultSet.getDouble("Y1");
 coor[i][3] = resultSet.getDouble("Y2");
 coor[i][4] = resultSet.getDouble("Z1");
 coor[i][5] = resultSet.getDouble("Z2");
 coor[i][6] = resultSet.getDouble("cellID");
 coor[i][7] = resultSet.getDouble("class");
 i++;
 }
 connection.close();
 } catch (SQLException e2) {
 throw new ServletException(e2);
 }
 try {
 Plotting calc = new Plotting();
 Object[] results = calc.tracklines3D(1, coor);
 MWJavaObjectRef ref = (MWJavaObjectRef) results[0];
 figure2 = (WebFigure) ref.get();
 getServletContext()
 .setAttribute("UserPlot1", figure2);
 } catch (MWException e3) {
 e3.printStackTrace();
 }
 }
 if (f.endsWith("3DCH")) {
 double[][] coor = new double[7100][9];
 try {
 java.sql.Connection connection = DriverManager.getConnection(

Appendix

73

 "jdbc:mysql://127.0.0.1:3306/plotting", "root", "123456");
 java.sql.Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery("Select X, Y, Z, cellID,class,
ch1, ch2, ch3, chcellID From Full3Dconvexhull");
 int i = 0;
 while (resultSet.next()) {
 coor[i][0] = resultSet.getDouble("X");
 coor[i][1] = resultSet.getDouble("Y");
 coor[i][2] = resultSet.getDouble("Z");
 coor[i][3] = resultSet.getDouble("cellID");
 coor[i][4] = resultSet.getDouble("class");
 coor[i][5] = resultSet.getDouble("ch1");
 coor[i][6] = resultSet.getDouble("ch2");
 coor[i][7] = resultSet.getDouble("ch3");
 coor[i][8] = resultSet.getDouble("chcellID");
 i++;
 }
 connection.close();
 } catch (SQLException e2) {
 throw new ServletException(e2);
 }
 try {
 Plotting calc = new Plotting();
 Object[] results = calc.Conv3D(1, coor);
 MWJavaObjectRef ref = (MWJavaObjectRef) results[0];
 figure1 = (WebFigure) ref.get();
 getServletContext()
 .setAttribute("UserPlot1", figure1);
 } catch (MWException e3) {
 e3.printStackTrace();
 }
 }
 if (f.endsWith("ELL")) {
 double[][] coor = new double[3408][19];
 try {
 java.sql.Connection connection = DriverManager.getConnection(
 "jdbc:mysql://127.0.0.1:3306/plotting", "root", "123456");
 java.sql.Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery("Select
a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s From ellipsoide");
 int i = 0;
 while (resultSet.next()) {
 coor[i][0] = resultSet.getDouble("a");
 coor[i][1] = resultSet.getDouble("b");
 coor[i][2] = resultSet.getDouble("c");
 coor[i][3] = resultSet.getDouble("d");
 coor[i][4] = resultSet.getDouble("e");
 coor[i][5] = resultSet.getDouble("f");
 coor[i][6] = resultSet.getDouble("g");
 coor[i][7] = resultSet.getDouble("h");
 coor[i][8] = resultSet.getDouble("i");
 coor[i][9] = resultSet.getDouble("j");
 coor[i][10] = resultSet.getDouble("k");
 coor[i][11] = resultSet.getDouble("l");
 coor[i][12] = resultSet.getDouble("m");
 coor[i][13] = resultSet.getDouble("n");
 coor[i][14] = resultSet.getDouble("o");
 coor[i][15] = resultSet.getDouble("p");

Appendix

74

 coor[i][16] = resultSet.getDouble("q");
 coor[i][17] = resultSet.getDouble("r");
 coor[i][18] = resultSet.getDouble("s");
 i++;
 }
 connection.close();
 } catch (SQLException e2) {
 throw new ServletException(e2);
 }
 try {
 Plotting calc = new Plotting();
 Object[] results = calc.ellipsoide(1, coor);
 MWJavaObjectRef ref = (MWJavaObjectRef) results[0];
 figure1 = (WebFigure) ref.get();
 getServletContext()
 .setAttribute("UserPlot1", figure1);
 } catch (MWException e3) {
 e3.printStackTrace();
 }
 }
 StringBuffer buffer = new StringBuffer();
 WebFigureHtmlGenerator webFigureHtmlforStefan = new
WebFigureHtmlGenerator("WebFigures", getServletContext());
 try {
 String outputString = webFigureHtmlforStefan.getFigureEmbedString(figure1,
"UserPlot1", "application", "600", "600", null);
 buffer.append(outputString);
 } catch (Exception e) {
 e.printStackTrace();
 }
 response.getOutputStream()
 .print(buffer.toString());
 }
}

Appendix

75

C.3 Servelt file for running combined representation functionality

package Space.SideView.Moh;
import java.io.IOException;
import java.io.PrintWriter;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.mathworks.toolbox.javabuilder.MWException;
import com.mathworks.toolbox.javabuilder.MWJavaObjectRef;
import com.mathworks.toolbox.javabuilder.webfigures.WebFigure;
import com.mathworks.toolbox.javabuilder.webfigures.WebFigureHtmlGenerator;
import SpaceTimeCube.*;
public class SpaceTimeCube extends HttpServlet {
 private static final long serialVersionUID = 1L;
 protected void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {
 try {
 Class.forName("com.mysql.jdbc.Driver");
 } catch (ClassNotFoundException e1) {
 throw new ServletException(e1);
 }
 double[][] coor = new double[29386][22];
 try {
 java.sql.Connection connection = DriverManager.getConnection(
 "jdbc:mysql://127.0.0.1:3306/plotting", "root", "123456");
 java.sql.Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery("Select A1, A2, A3, A4, A5, A6, A7,
A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, A22 from
SpaceTimeCube");
 int i = 0;
 while (resultSet.next()) {
 coor[i][0] = resultSet.getDouble("A1");
 coor[i][1] = resultSet.getDouble("A2");
 coor[i][2] = resultSet.getDouble("A3");
 coor[i][3] = resultSet.getDouble("A4");
 coor[i][4] = resultSet.getDouble("A5");
 coor[i][5] = resultSet.getDouble("A6");
 coor[i][6] = resultSet.getDouble("A7");
 coor[i][7] = resultSet.getDouble("A8");
 coor[i][8] = resultSet.getDouble("A9");
 coor[i][9] = resultSet.getDouble("A10");
 coor[i][10] = resultSet.getDouble("A11");
 coor[i][11] = resultSet.getDouble("A12");
 coor[i][12] = resultSet.getDouble("A13");
 coor[i][13] = resultSet.getDouble("A14");
 coor[i][14] = resultSet.getDouble("A15");
 coor[i][15] = resultSet.getDouble("A16");
 coor[i][16] = resultSet.getDouble("A17");
 coor[i][17] = resultSet.getDouble("A18");
 coor[i][18] = resultSet.getDouble("A19");
 coor[i][19] = resultSet.getDouble("A20");

Appendix

76

 coor[i][20] = resultSet.getDouble("A21");
 coor[i][21] = resultSet.getDouble("A22");
 i++;
 }
 connection.close();
 } catch (SQLException e2) {
 throw new ServletException(e2);
 }
 WebFigure figure1 = null;
 String[] values = request.getParameterValues("box");
 int h = 0;
 int n = 0;
 int o = 0;
 for (int i = 0; i < values.length; i++) {
 if (values[i].matches("2DCH")) {
 h = 1;
 }
 if (values[i].matches("3DTL")) {
 n = 1;
 }
 if (values[i].matches("3DTC")) {
 o = 1;
 }
 }
 try {
 Plotting calc = new Plotting();
 Object[] results = calc.SpaceTimeCube(1, coor, h, n, o);
 MWJavaObjectRef ref = (MWJavaObjectRef) results[0];
 figure1 = (WebFigure) ref.get();
 getServletContext()
 .setAttribute("UserPlot1", figure1);
 } catch (MWException e3) {
 e3.printStackTrace();
 }
 StringBuffer buffer = new StringBuffer();
 WebFigureHtmlGenerator webFigureHtmlforStefan = new
WebFigureHtmlGenerator("WebFigures", getServletContext());
 try {
 String outputString = webFigureHtmlforStefan.getFigureEmbedString(figure1,
"UserPlot1", "application", "600", "600", null);
 buffer.append(outputString);
 } catch (Exception e) {
 e.printStackTrace();
 }
 response.getOutputStream()
 .print(buffer.toString());
 }
}

Appendix

77

C. Web application tools and functionalities interface

D.1 Radio buttons

Figure 18: Radio buttons for selecting different visualizing options

D.2 Time slider

Figure 19: time slider Implantation

Appendix

78

D.3 Combined view

Figure 20 : combined visualizing methods

The previous figure illustrates the combined view functionality. When using the combined

view tool, the user can visualize the patterns of the lightning storms, combined with the

changes in the lightning storm volume through time. The 3D lines presents the pattern of

lightning storms and the spherical objects presents the variation of lightning cloud size dur-

ing the cloud traveling time.

Appendix

79

D.4 Visualization options

D.4.1 visualizing lightning point data in 3D

Figure 21: lightning points distribution

D.4.2 visualizing lightning clusters centers

Figure 22: cross representation

Appendix

80

D.4.3 visualizing lightning clusters tracks centers

Figure 23: point representation

D.4.4 visualizing lightning clusters tracks

Figure 24: line representation

Appendix

81

D.4.5 visualizing lightning clusters as spherical objects

Figure 25: spherical objects representation

D.4.6 visualizing lightning clusters as 2D convex hulls

Figure 26: 2D convex hull representation

Appendix

82

D.4.7 visualizing lightning clusters tracks as convex hull in 3D

Figure 27: 3D convex hull representation

D.4.8 visualizing lightning clusters as ellipsoids

Figure 28: ellipsoidal representation

	Declaration of Authorship
	Abstract
	List of Figures
	Abbreviations
	Introduction
	1.1 Problem Definition
	1.2 Objectives
	1.3 Research solution
	1.4 Thesis Structure

	Scientific review
	2.1 Definitions
	2.1.1 Dynamic phenomenon
	2.1.2 Discrete data and Continuous fields
	2.1.3 Spatially extended objects

	2.2 Related scientific disciplines
	2.2.1 Visualization
	2.2.2 Visual analysis and temporal analysis
	2.2.3 Visual Analytics:
	2.2.4 Methods and tools of visual analytics
	2.2.5 Four dimensions representation:
	2.2.6 Web Mapping:
	2.2.7 Web-Cartography

	2.3 Similar web approaches

	Data description
	Methodology
	4.1 Primary design
	4.2 User interface
	4.3 Basic user interface tools
	4.3.1 Dynamic figure
	4.3.2 Radio buttons
	4.3.3 Time slider
	4.3.4 Combined view
	4.3.5 Space time cube
	4.4 Selecting web developing software platform
	4.5 Web application design
	4.5.1 Client to server model
	4.5.2 Programming techniques
	4.5.2.1 MATLAB functions for Web application
	4.5.2.2 JAR files
	4.5.2.3 Need for mySQL
	4.5.3 Dynamic web pages
	4.5.3.1 JSP
	4.5.3.2 Java Script
	Dojo

	4.5.3.3 Java Srevlet
	4.5.3.4 AJAX

	Implementation
	5.1 Building MATALAB Codes
	5.2 mySQL implementation
	5.3 JavaScript, JSP, XML and HTML
	5.4 Java for building application servlet
	The third part provides a call procedure for the relational database.9F

	Results and discussion
	Conclusion and outlook
	References
	Appendix
	A. MATLAB codes for plotting lighting data in different representations forms
	A.2 Code for plotting lightning clusters centers (point geometry)
	A.8 Code for plotting lightning clusters as ellipsoids
	B.1 slider functionality JSP file
	B.2 multiple representation functionality JSP file
	b.3 combined representation functionality JSP file
	C.1 Servelt file for running slider functionality
	C.2 Servelt file for running multiple representation functionality
	C.3 Servelt file for running combined representation functionality

	C. Web application tools and functionalities interface
	D.1 Radio buttons
	D.2 Time slider
	D.3 Combined view
	D.4 Visualization options
	D.4.1 visualizing lightning point data in 3D
	D.4.2 visualizing lightning clusters centers
	D.4.3 visualizing lightning clusters tracks centers
	D.4.4 visualizing lightning clusters tracks
	D.4.5 visualizing lightning clusters as spherical objects
	D.4.6 visualizing lightning clusters as 2D convex hulls
	D.4.7 visualizing lightning clusters tracks as convex hull in 3D
	D.4.8 visualizing lightning clusters as ellipsoids

